


THE 
NUMERICAL 
SOLUTION OF 
ORDINARY 
AND PARTIAL 
DIFFERENTIAL 
EQUATIONS 



This page intentionally left blank



THE 
NUMERICAL 
SOLUTION OF 
ORDINARY 
AND PARTIAL 
DIFFERENTIAL 
EQUATIONS 

GRANVILLE SEWELL 

Mathematics Department 
University of Texas at El Paso 
El Paso, Texas 

ACADEMIC PRESS, INC. 

Harcourt Brace Jovanovich, Publishers 

Boston San Diego New York 
Berkeley London Sydney 
Tokyo Toronto 



Copyright © 1988 by Academic Press, Inc. 
All rights reserved. 
No part of this publication may be reproduced or 
transmitted in any form or by any means, electronic 
or mechanical, including photocopy, recording, or 
any information storage and retrieval system, without 
permission in writing from the publisher. 

ACADEMIC PRESS, INC. 
1250 Sixth Avenue, San Diego, CA 92101 

United Kingdom Edition published by 
ACADEMIC PRESS INC. (LONDON) LTD. 
24-28 Oval Road, London NW1 7DX 

Library of Congress Cataloging-in-Publication Data 
Sewell, Granville. 

The numerical solution of ordinary and partial differential 
equations / Granville Sewell. 

p. cm. 
Bibliography: p. 
Includes index. 
ISBN 0-12-637475-9 
1. Differential equations—Numerical solutions—Data processing. 

2. Differential equations. Partial—Numerical solutions—Data 
processing. I. Title. 
QA372.S4148 1988 
515.3'5-dc 19 87-28915 

CIP 

Printed in the United States of America 
88 89 90 91 9 8 7 6 5 4 3 2 1 



In memory of my father, 

Edward G. Sewell (1919-1987) 

who made us understand the words: "whoever would be great among you 
must be your servant." 



This page intentionally left blank



Table of Contents 

Preface xi 

0. Direct Solution of Linear Systems 1 
0.0 Introduction 1 
0.1 General Linear Systems 1 
0.2 Systems Requiring No Pivoting 5 
0.3 The LU Decomposition 9 
0.4 Banded Linear Systems 12 
0.5 Sparse Direct Methods 18 
0.6 Problems 24 

1. Initial Value Ordinary Differential Equations 29 
1.0 Introduction 29 
1.1 Euler's Method 31 
1.2 Truncation Error, Stability and Convergence 32 
1.3 Multistep Methods 38 
1.4 Adams Multistep Methods 43 
1.5 Backward Difference Methods for Stiff Problems 50 

vu 



Vlll TABLE OF CONTENTS 

1.6 Runge-Kutta Methods 56 
1.7 Problems 64 

2. The Initial Value Diffusion Problem 67 
2.0 Introduction 67 
2.1 An Explicit Method 71 
2.2 Implicit Methods 76 
2.3 A One-Dimensional Example 80 
2.4 Multi-Dimensional Problems 83 
2.5 A Diffusion-Reaction Example 89 
2.6 Problems 93 

3. The Initial Value Transport and Wave Problems 97 
3.0 Introduction 97 
3.1 Explicit Methods for the Transport Problem 103 
3.2 The Method of Characteristics 111 
3.3 An Explicit Method for the Wave Equation 114 
3.4 A Damped Wave Example 120 
3.5 Problems 124 

4. Boundary Value Problems 129 
4.0 Introduction 129 
4.1 Finite Difference Methods 133 
4.2 A Nonlinear Example 135 
4.3 A Singular Example 138 
4.4 Shooting Methods 139 
4.5 Multi-Dimensional Problems 144 
4.6 Successive Over-Relaxation 148 
4.7 Successive Over-Relaxation Examples 152 
4.8 The Conjugate Gradient Method 164 
4.9 Systems of Differential Equations 170 

4.10 The Eigenvalue Problem 174 
4.11 The Inverse Power Method 178 
4.12 Problems 183 

5. The Finite Element Method 189 
5.0 Introduction 189 
5.1 The Galerkin Method for Boundary Value Problems 190 



TABLE OF CONTENTS ix 

5.2 An Example Using Piecewise Linear Trial Functions 194 
5.3 An Example Using Cubic Hermite Trial Functions 199 
5.4 A Singular Example 209 
5.5 Linear Triangular Elements 216 
5.6 Examples Using Triangular Elements 220 
5.7 Time-Dependent Problems 227 
5.8 A One-Dimensional Example 231 
5.9 A Time-Dependent Example Using Triangular Elements 236 

5.10 The Eigenvalue Problem 240 
5.11 Eigenvalue Examples 242 
5.12 Problems 247 

Appendix 1 253 
Appendix 2 261 

References 267 

Index 269 



This page intentionally left blank



Preface 

The roots of this text can be traced back to a short syllabus entitled 
"Solucion Numérica de Ecuaciones Diferenciales," written in 1974 for a 
course at Universidad Simon Bolivar in Caracas. It is still a short book to 
have as wide a scope as implied by the title, but we believe it gives a solid 
introduction to the computer solution of ordinary and partial differential 
equations, appropriate for a senior level undergraduate or first year graduate 
course. 

The student taking a course based on this text should have had introduc-
tory courses in multivariate calculus, linear algebra, and general numerical 
analysis. A formal course in ordinary or partial differential equations would 
be useful but is not essential, provided the student has been exposed to such 
equations in applications or in the numerical analysis course. 

After a review of direct methods for the solution of linear systems in 
Chapter 0, with emphasis on the special features of the linear systems that 
arise when differential equations are solved, the following four chapters 
introduce and analyze the more commonly used finite difference methods for 
solving a variety of problems, including both ordinary differential equations 
(ODEs) and partial differential equations (PDEs), and both initial value and 
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boundary value problems. The techniques studied in these chapters are quite 
easy to implement, and after finishing Chapter 4 the student should be able to 
solve a wide range of differential equations. The finite difference methods 
used to solve partial differential equations in Chapters 2-4 are mostly 
classical low order formulas, easy to program but not ideal for problems with 
poorly behaved solutions or (especially) for problems in irregular multi-
dimensional regions. More complicated finite difference techniques are not 
studied in this text. It is our philosophy that finite difference methods are still 
useful only because they are easy to program and to understand. When these 
methods become complex (e.g., when problems with irregular domains are 
solved), they cease to be attractive, and finite element methods should be 
used. 

Chapter 5 contains an overview of the basic ideas behind the finite element 
method. After finishing this chapter, the student should have a good idea of 
what the finite element method is all about, and should even be able to use it 
to solve many simple problems. However, the student who wants to be able 
to write programs that efficiently solve more difficult problems should 
continue his/her study using the text Analysis of a Finite Element Method: 
PDE/PROTRAN, by Granville Sewell [Springer-Verlag, 1985]. This is a 
reference book for PDE/PROTRAN, IMSL's partial differential equation 
package (see Section 5.6), but it can be used as a supplementary text for a 
course in the numerical solution of differential equations. Chapter 5 provides 
an excellent introduction for the PDE/PROTRAN text, since it examines 
many of the ideas discussed in that book in a simpler, less general, context. 
The PDE/PROTRAN book can be considered as a companion text for this 
one, and a course that covers both would provide a good practical and 
theoretical understanding of the numerical solution of differential equations. 

An important feature of the current text is that FORTRAN77 programs 
are given that implement many of the methods studied, and the reader can see 
how these techniques are implemented efficiently. Machine-readable copies 
of the FORTRAN77 programs displayed in this book are available upon 
request from the author. 



0 
Direct Solution of Linear Systems 

0.0 Introduction 

The problem of solving a system of N simultaneous linear equations in N 
unknowns arises frequently in the study of the numerical solution of 
differential equations: when an implicit method is used to solve an initial 
value problem, and when almost any method is used to solve a boundary 
value problem. Direct methods to solve such systems are based on Gaussian 
elimination, a process whose basic ideas should be familiar to the student. 
However, those systems that arise during the numerical solution of differen-
tial equations tend to have certain characteristics that can be exploited using 
appropriate variations to the basic elimination algorithm. In this chapter we 
review Gaussian elimination and look at some of these special characteristics. 

0.1 General Linear Systems 

The basic idea behind Gaussian elimination is to reduce the linear system 
Ax = b to an equivalent triangular system by interchanging rows (equations) 
and adding a multiple of one row (equation) to another. Then the equations 
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2 DIRECT SOLUTION OF LINEAR SYSTEMS 

of the reduced (triangular) system are solved in reverse order, by back 
substitution. The reduction is done systematically, zeroing all the sub-
diagonal elements in the first column, then those below a22, etc., until all 
subdiagonal elements are zero and the system is triangular. To zero the 
subdiagonal element ocik(i > k\ we add — <xik/oLkk times the /cth row to the ith 
row (Figure 0.1.1) and add the same multiple of bk to b{. If akk (called the 
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Figure 0.1.1 

"pivot") is zero, of course, we must switch row k with another row that 
contains a nonzero element in the /cth column. We do not want to switch with 
a row above the /cth row, because that would cause some of the elements in 
previous columns to become nonzero again, after they have been zeroed. 
Thus we must select one of the elements akfc, afc+1 k,..., aNk as the next pivot 
and bring it to the pivot position by switching its row with the /cth row. If all 
of these potential pivots are also zero, the matrix is singular, and we must give 
up. To see this, notice that in this case the last N — k + 1 rows of A each 
contain nonzero elements only in the last N — k columns. These rows must 
be linearly dependent, because a maximum of N — k independent rows can 
exist in an N — k dimensional space. Since Gaussian elimination does not 
alter the rank of a matrix, the original matrix must have had dependent rows, 
and therefore it must have been singular. 

On the other hand, if the potential pivots are not all zero, we face the 
question of which to use. If pivoting is only done when ockk = 0, this can lead 
to bad numerical results, for a nearly zero pivot is almost as bad as a zero one, 
as the following example illustrates. 

Consider the two by two linear system 

= 
"1 +εΊ 
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which has (1, 1) as its exact solution. If ε is very small, this system is not ill-
conditioned (nearly singular). Its determinant is ε — 1, or almost — 1. Yet 


