4.34 selenium

Stable	Relative	Mole					
isotope	atomic mass	fraction					
⁷⁴ Se	73.922 4759	0.0086					
⁷⁶ Se	75.919 2137	0.0923					
⁷⁷ Se	76.919 9142	0.0760					
⁷⁸ Se	77.917 309	0.2369					
⁸⁰ Se	79.916 522	0.4980					
82 Se [†]	81.916 700	0.0882					

Radioactive isotope having a relatively long half-life (9 \times 10¹⁹ years) and a characteristic terrestrial isotopic **composition** that contributes significantly and reproducibly to the determination of the standard atomic weight of the element in normal materials.

Less than 1 hour

⁶³ Se	ⁱ³ Se ⁶⁴ Se		⁶⁵ Se ⁶⁶ Se		⁶⁶ Se	⁶⁷ Se		(⁶⁸ Se		⁶⁹ Se	70	⁷⁰ Se		⁷¹ Se		⁷² Se			
73	Se	74	⁴ S∉	75	Se	76	Se	77	Se	78	Se	79	Se	80	Se	81	Se	82	Se	
	⁸³ Se		84	⁴ Se	85	⁸⁵ Se		⁸⁶ Se		Se	88	Se	⁸⁹ s	Se	<mark>90</mark> Se	e	⁹¹ s	e	92 _{Se}	
		⁹³ s	e	⁹⁴ s	e	95 Se	Ð													

4.34.1 Selenium isotopes in Earth/planetary science

Molecules, atoms, and ions of the stable isotopes of selenium possess slightly different physical and chemical properties, and they commonly will be fractionated during physical, chemical, and biological processes, giving rise to variations in isotopic abundances and in atomic weights.

IUPAC

There are measureable variations in the isotopic abundances of selenium in natural terrestrial materials (Figure 4.34.1).

Fig. 4.34.1: Variation in the **isotope-amount ratio** $n(^{82}Se)/n(^{76}Se)$ of selected selenium-bearing materials (modified from [270]).

4.34.2 Selenium isotopes in industry

⁷⁵Se (with a half-life of 120 days) is used for **X-ray radiography** of welds to visualize welds and ensure that each weld is appropriate for its purpose [271].

4.34.3 Selenium isotopes in medicine

⁷⁵Se-selenomethionine (organic compound that combines to form proteins, found in Brazil nuts and soybeans) has been used to study the production of digestive enzymes (biological catalysts that accelerates chemical reactions) [272]. Selenium stable isotopes are used in metabolic studies to monitor selenium intake and output [273, 274].

4.34.4 Selenium isotopes used as a source of radioactive isotope(s)

⁷⁷Se and ⁷⁸Se are used to produce the therapeutic **radioisotope** ⁷⁷Br via the ⁷⁷Se (n, p) ⁷⁷Br and the ⁷⁸Se (n, 2p) ⁷⁷Br reactions, respectively. ⁸⁰Se is used to produce ^{80m}Br via the reaction ⁸⁰Se (n, p) ^{80m}Br. The m the superscript of ^{80m}Br indicates a **metastable isotope**.