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ABSTRACT

Real-time adaptive non-uniformity correction by a neural network algorithm was implemented on the 12-
bit digital image from a Boeing SE-U20 uncooled 320x240 microbolometer camera. Nonlinearities in an
infrared sensor require either periodic recalibration of a one or two point correction algorithm as the
scene and environment change or require an adaptive continuous correction. The adaptive neural network
correction is performed in real-time with an off-the-shelf processor board inserted in an IBM PC
compatible machine. The real time implementation allows long term stability and performance issues of
the algorithm to be addressed. Evaluation of the adaptive algorithm shows that the spatial noise in the
corrected image depends strongly on the estimate of the desired image used in the adaptive algorithm.
The desired value is calculated by means of neighborhood functions such as median or convolution with
kernels such as the sinc function. We have determined that the adaptive algorithm works better when the
time sample between images of a moving scene is large; that is, when the images are relatively
uncorrelated. This effect must be balanced by the need to have the algorithm converge in a finite time.
The net effect of this balance is that the hardware signal processing requirements are reduced
considerably since the algorithmic calculations need not be done on every frame.

1.0  INTRODUCTION
Infrared image sensors have significant advantages over visible light sensors in low light level
surveillance situations and in differentiating and detecting objects that radiate in the infrared, such as
engine exhausts, missile launch burns, vehicle engines and human personnel. The disadvantages of
infrared sensors include the low temperature refrigeration requirements, the non-uniformity of the sensor
response, low signal to noise ratio and high cost. Non-uniformities or defects in the process of
manufacturing the sensor often create spatial regions in the sensor with different dark currents and
different sensitivity to incident radiation. The refrigeration requirement is tied to the non-uniformity
because the dark current rises with temperature. The sensor essentially has a biased noisy signal that
depends on the temperature. That is, pixels have values offset from the average due to the dark current
non-uniformity or can even be saturated in the presence of no external infrared radiation. Non-
uniformities also create regions with different quantum efficiencies and differences in transistor gains in

Approved for public release; distribution is unlimited.



Form SF298 Citation Data

Report Date
("DD MON YYYY") 
00021999

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY") 

Title and Subtitle 
Adaptive Infrared Non-Uniformity Correction

Contract or Grant Number 

Program Element Number 

Authors Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
HNC Software 5930 Cornerstone Court West San Diego, CA
92121 Monterey, CA 93943 Fort Belvoir, VA 22060

Performing Organization 
Number(s) 

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym 

Monitoring Agency Report 
Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 

Abstract 

Subject Terms 

Document Classification 
unclassified

Classification of SF298 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
unlimited

Number of Pages 
15



readout circuitry. This creates a non-uniform gain effect so that even with no non-uniformity in the dark
current, a uniformly illuminated sensor will result in a mottled, striped, or otherwise non-uniform image.

The non-uniformities found in sensor arrays can vary both from array to array and within a given array
from pixel to pixel. A two-point non-uniformity correction assumes that the value of each pixel can be
corrected by multiplying it by a gain and adding an offset to it. This correction is mathematically stated
as

ijijijij OxGy +∗= (1)

where xij is the uncorrected pixel's output value due to the incident light pattern, yij is the corrected

value, and Gij and Oij are the gain and offset coefficients for each pixel. In general, each pixel will have

a different value of its gain and offset coefficient. However, if an array has spatially uniform sensitivity,
then all the gain coefficients have the same value and all the offset coefficients have the same value. In
that case, the correction can be performed by one set of gain and offset values per sensor array. It still
may be necessary to provide a distinct gain and offset for each sensor array manufactured because the
manufacturing process can vary. On the other hand, if the array has internal non-uniformities that cause
the response to vary from pixel to pixel within the array, then each pixel must be corrected by its own
gain and offset values. This correction is more difficult to implement than the simple case of spatially
uniform sensors. In some sensors, the gain may also be nonlinear and dependent on the incident light
level and ambient temperature. This is even more difficult to correct.

The implementation of a non-uniformity correction must be preceded in some manner by a non-
uniformity measurement. If the array is spatially uniform, it is not difficult to test each array's response in
the laboratory and provide a single set of gain and offset values for the entire array. A non-uniform
sensor array of size 256x256, on the other hand, requires a test and measurement for each of the 65,536
pixels. This is a time consuming and expensive task. Furthermore, these values are only valid for a given
ambient temperature and scene temperature. The sensor electronics may even age and the coefficients
would be invalid because of that. Thus, camera manufacturers provide users with the capability to
periodically recalibrate their cameras.

The offset coefficients of many focal plane sensors used for infrared imaging are temperature dependent.
The offsets are caused by dark currents that provide a temperature dependent signal even in the absence
of incident radiation. The sensor integration time can also provide a source of variation for the offset.
The output offset is directly proportional to the integration over time of the dark current. Thus the
corrector, even for a spatially uniform array, may have to implement a complex temperature and frame
rate dependent algorithm to calculate the required offset. In addition, the temperature dependence must
be measured in the laboratory and the appropriate constants provided for the corrector's algorithm. The
gain is less dependent on temperature, but some sensors may require this correction also. These
correction methods also require the measurement of temperature in the field. Thus it is desirable to
develop an adaptive non-uniformity corrector that does not depend on measurements made in the
laboratory, but can make correction to the pixel values in real time based solely on the scene contents.

Most uncooled IR cameras correct the image by imposing an analog offset of limited precision to each
pixel before calculating a more precise digital gain and offset for each pixel. For the most part, this paper
assumes that the analog correction is already made and that the adaptive correction is being done within
the dynamic range of A/D converter after the analog offset is done. . This is discussed more thoroughly in
section 3.



2.0  ADAPTIVE NON-UNIFORMITY CORRECTION
The adaptive neural network algorithm, that was proposed and tested by Scribner et al [1], is essentially a
recurrent neural network based on a Least Mean Squares algorithm similar to those developed by
Widrow [2]. It optimizes a set of gain and offset values for every pixel in the image. Figure 1 is a
simplified flow chart of the algorithm. The desired image, f, is created from the input image, x, by a local
neighborhood interpolation. It is then compared to the gain and offset corrected image, y, to generate the
error term, (y – f). That term is then used to adjust the gain and offset coefficients to eliminate the error in
a least mean square sense.
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Figure 1.  Neural net algorithm for adaptive non-uniformity correction

The spatial interpolation operation over a neighborhood, as described above, is the mathematical
operation of convolution with a kernel whose values are given by the sinc function. Neighborhood sizes
(or equivalently, convolution kernel sizes) from 3x3 to 21x21 were tested by Scribner et al [1]. The
equations in Figure 1 are derived by the method of steepest descent and can be translated into a more
detailed flow-chart block diagram representation as illustrated in Figure 2.

The block diagram provides insight as to how the algorithm can be implemented in hardware and
software. Each one of the functions called out in the block diagram (convolution, multiplication,
subtraction, and addition) is a basic operation that the our hardware performs through a software library
function call. Each of the blocks in the algorithm is implemented sequentially. The image from the sensor
is used as an input for several of the operations. Thus, it must first be read out of the sensor and stored in
memory so that it is available at each point in the sequential algorithm. From memory, the image is
convolved with a kernel to produce an estimate of the desired image. This estimate is “desired” in a
statistical sense. The long-term average of the estimate should be equal to the long-term average of the
true value of the pixel. The desired image is then subtracted from the corrected image and serves as an
error term. The error term is then used to correct the gain and offset. The algorithm proceeds in this
manner, executing each block operation sequentially, while storing intermediate results in memory.
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Figure 2.  Non-uniformity correction algorithm block diagram

Scribner et al [1] experimented with inserting additional feedback into the calculation of the gain and
offset function by using y(t) in place of x(t) in the upper half of the algorithm illustrated in Figure 2. The
use of y(t) can lead to instabilities, but if the adaptation rate is small enough the algorithm remains
stable. We experimented with using y(t) in place of x(t) and found no significant difference in image
quality when the algorithm was stable. Consequently, none of the images in this paper use y(t) in place of
x(t).

3.0  REAL-TIME IMPLEMENTATION AND RESULTS

3.1  Processing Hardware
We have used a Matrox Genesis board with a Texas Instruments TMS320C80 chip to perform the image
processing. The board is plugged into a PCI slot on a Dell 200 MHz Pentium Pro computer. Matrox
provides a library of functions callable from a Microsoft Visual C++ environment that are sufficient to
perform the required image processing. The C80 chip has four 32-bit integer processors and one 32-bit
floating point processor running in parallel at 50 MHz. The 32-bit integer processors can perform four 8-
bit operations per cycle or two 16-bit operations per cycle. The C80 can perform, in total, over 2 Billion
8-bit operations per second. In addition, Matrox provides a separate chip, the Neighborhood Operations
Accelerator, for accelerating neighborhood operations such as convolution. It can typically provide a
factor of 8 to 20 over the C80 for convolution. Typical processing times for elementary operations on a
16-bit image on size 320x240 are given in Table 1.



Table 1. Typical Processing Times for Elementary Operations
Operation Processing Time

Add two images 2.07 ms
Multiply two images 2.37 ms
3 x 3 convolution 1.72 ms
3 x 3 median filter 6.80 ms
15 x 15 convolution 12.20 ms
12-bit histogram equalization 13.73 ms
Display 8-bit image 0.87 ms
Store 8-bit image to disk 23.39 ms
Store 16-bit image to disk 39.93 ms

3.2 Algorithm Complexity
All uncooled IR camera manufacturers provide a simple two-point calibration capability for the user to
generate fixed gain and offset coefficients. The signal processing is done on board the camera within
some very strict power and weight limits. In addition, a dead pixel substitution algorithm replaces known
dead pixels with a nearby neighbor. In Boeing’s SE-U20, the substituted pixel can be any neighbor in an
8x8 region. The adaptive algorithm, described in section 2, adds significant complexity to the signal
processing requirements. This section goes into the details of the algorithm and its implementation.

3.2.1 Arithmetic Precision
The method of steepest descent works by adding small corrections to the gain and offset coefficients and
minimizing the resultant error. Thus the coefficient, α, in the equations (2) is usually very small.
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(2)

Arithmetic with only 8-bits of precision is inadequate to this task. All images in the equations (2) can be
adequately represented by 16 bits. The arithmetic operations, such as subtracting two images are also
done adequately with 16 bits. However, the Gain and Offset coefficient arithmetic requires 32-bit
precision for storing intermediate products and adding small error terms to large quantities. The
combination of different levels of required precision makes the C80 and the corresponding Matrox
Genesis software library an excellent choice to implement these algorithms.

Integer arithmetic has a set of concerns and problems that would not occur in floating point arithmetic
and one must be very careful to address them in the software. For instance, α cannot be too small or else
we would always be adding zero in equations (2). It is convenient to let α be the inverse of a power of 2
so that multiplying by α is equivalent to a right shift. However, the right shift of a small negative number
has, because of the automatic sign extension of 2’s complement negative numbers, a lower limit of –1.
That is, -1 is represented as a 16-bit integer by 1111111111111111. No matter how many times we right
shift this with sign extension, it never goes to zero. And thus, there is a systematic bias in the gain and
offset calculation unless we take this into account.



3.2.2 Convolution Edge Effects
The desired image is created from the raw image (after dead pixel correction) by a convolution with a
fairly large kernel. At the edges of the image, a large part of the kernel is outside of the image as
illustrated in Figure 3 for a 7 x 7 kernel. In the convolution calculation, the pixels outside of the image
are set equal to zero. This creates systematic errors in the desired image that will result in visible
artifacts. One method to avoid these artifacts is to redefine the image of interest to have fewer pixels than
the sensor itself. Thus, if the kernel size is 15 x 15 and the sensor is 320 x 240, the image, for which gain
an offset coefficients are computed, is 306 x 226. With the smaller image, we have valid values for the
pixels outside the 306 x 226 image of interest and the convolution results are valid. The problem with
this method is that a large fraction of the image is then uncorrected. A second method is to renormalize
the results of convolution after assuming that the pixels outside of the image are zero. The utility of this
solution can be best seen by assuming that we have chosen a kernel of all 1’s, normalized by the sum of
all the values in the kernel. Thus our best estimate of the desired pixel value (for a 15 x 15 kernel) is the
sum of the all the pixels in the 15 x 15 pixel neighborhood divided by 225. This works well in the interior
of the image, but at the edges, we want to divide by the count of pixels inside the image instead of 225.
Convolving an image of all 1’s with the kernel of all 1’s easily gets this count. The image generated is
used to normalize the result of convolving the raw image. We will actually use a kernel with coefficients
generated by a circularly symmetric sinc function (sin(x) / x) to provide the desired image. In that case,
we will use the result of convolving the sinc function kernel with an image of all 1’s as the normalizing
image.

x  x  x  x  x  x  x
x  x  x  x  x  x  x
x  x  x  x  x  x  x
x  x  x  x  x  x  x  .  .  .  .  .  .
x  x  x  x  x  x  x  .  .  .  .  .  .
x  x  x  x  x  x  x  .  .  .  .  .  .
x  x  x  x  x  x  x  .  .  .  .  .  .

    .  .  .  .  .  .  .  .  .  .
    .  .  .  .  .  .  .  .  .  .
    .  .  .  .  .  .  .  .  .  .

Figure 3. Placement at image edge of initial 7 x 7 convolution kernel for first output result.

3.2.3 Dead Pixels
Some pixels in the sensor are often either zero, saturated or too noisy to use. The Boeing SE-U20 camera
replaces, via hardware in real time, those pixels with a pixel chosen from an 8 x 8 surrounding
neighborhood. The choice of pixels is done at the factory and is fixed. They also provide the user a map
of the dead pixels. By having an 8 x 8 neighborhood choice, very large blobs can be accommodated.
After observing that most dead pixels are either point or line defects and that the sensor had no very large
blobs of dead pixels, we decided to use a four-corner, 3 x 3 averaging kernel as the estimator for dead
pixels. This kernel provides a better estimate of point and line defects than a simple fixed neighbor
replacement and is shown in Figure 4.

1   0   1
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1   0   1

Figure 4.  Dead Pixel Replacement Kernel.



Convolving this kernel with the complement of the dead pixel map (an image that has 0’s in dead pixels
and 1’s in good pixels) provides us with a normalization factor to use in the same manner as that done for
the edge effect normalization. A single pass of this algorithm can replace blobs of up to 2 x N where N is
arbitrary. By iteratively using this dead pixel replacement method twice, blobs of up to 4 x N pixels can
be replaced.

3.2.4 Column Offset
One of the most visible image defects due to non-uniformity is a vertical striping of the image. This is
illustrated in some of the figures in section 3.2.8. To eliminate these non-uniformities, we use an adaptive
technique of summing each column in the raw image (after dead pixel correction) and exponential
averaging the resulting row in time to come up with a long term mean value for each column. We then
use the long term mean value for each column to derive a long term mean value for the image.
Subtracting the image mean from the column mean then creates a column offset.

[ ] [ ][ ]jiRaw
N

jsumcolumn
i

∑= 1
_        where N = number of pixels in a column   (3)

>=< sumcolumnsumcolumnmean ___ where the average is done over time    (4)

Msumcolumnmeanmeanimage /___ =      where M = number of pixels in a row  (5)

meanimagesumcolumnmeanoffsetcolumn ____ −=         (6)

The column offset is then subtracted from the raw image to produce a corrected raw image that is then
passed to the adaptive gain and offset correction algorithm. Correcting the raw image with this column
offset is done before using the adaptive algorithm because the adaptive algorithm assumes that the
surrounding neighborhood can be used to give a statistically valid estimate of the desired pixel. This
assumption is not valid if there are correlated defects in the neighborhood as there would be from a
defective column.

3.2.5 Low Contrast Scenes
When the image from an infrared camera is displayed, an automatic gain or histogram normalization is
usually used. We have seen that the non-uniformities can get exaggerated when the scene itself has low
contrast, that is, when the signal to noise ration is small. This is particularly annoying in a moving scene
where the scene variations also tend to produce a jitter in the overall illumination level. Plateau
equalization, described by Vickers [3], provides a good compromise solution to the display problem for
low contrast scenes. Plateau equalization essentially caps the histogram values at a level that can be
adaptively set for each image with the equation:

( ) DGPSP desirednn /1 ∗= − (7)

where P is the plateau value for the n’th image. This equation employs iterating in time, whereas, Vickers
[3] iterated on the same image. Practically, they are the same for slowly moving imagery. The plateau
value converges fast with most histograms. The function S(P) is the total count of pixels in the histogram
given the cutoff value P.
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where

),min( PCc ii = (9)

and Ci is the count of pixels having raw signal level, i. After examining many images from the camera,
particularly with low contrast scenes, we chose a value of the parameter, G, as ¼. This seemed to
minimize the spatial noise. Vickers [3] preferred a value of 1 for the images that he examined. In
addition, we set a minimum of 10 for the plateau value. This assured us that we would never converge to
a value of 0, from which it is impossible to recover and this also assured us that we would never go all
the way to a histogram projection regime, that has its own set of problems with noise emphasis.

3.2.6 Motion Requirement and Statistical Correlation of Images
Computing the desired pixel value (the quantity, f, in equations (2)) is a very important step in the
algorithm. We have used a two-dimensional circularly symmetric sinc function (15 x 15) to provide the
estimate of the desired pixel value. A sinc function can be shown to be the optimum convolution kernel
for interpolation within a prescribed frequency limit. However, for the gain and offset coefficients to be
valid over the whole dynamic range of the pixel, the algorithm must sample that whole range. This is
accomplished best either by a moving scene or a panning camera. If a panning camera stops, then the
algorithm tends to slightly wash out the image. This then creates a ghost of prominent objects in the
scene when the camera resumes motion. We can eliminate this problem by detecting motion and only
adapting the gain and offset coefficients when the image changes. Both these requirements are
accomplished fortuitously by sampling the image at a frame rate much less that the nominal camera
frame rate of 30 frames per second. If we sample at approximately one frame per second, and if the scene
is changing, each pixel in the image is likely to have a much different value than it had in the previous
sample. This provides the method of steepest descent algorithm good statistical coverage of the dynamic
range of the independent variable and will lead to convergence. Also, if a pixel has not changed in value
from the previous image (that of one second ago), then we assume that there was no motion and can
choose not to adapt that pixel’s gain and offset coefficients. This has the effect of stopping adaptation
when there is no motion and eliminating the unwanted ghosting effect of the algorithm. We make the
decision on whether a pixel has changed by comparing the desired images, not the raw images. This is
done because the desired image is the result of a 15 x 15 spatial convolution and has much less temporal
noise. Thus the threshold value for deciding whether a pixel has changed can be set close to the temporal
noise level of the raw image and one can be confident that if the threshold is exceeded, then the pixel has
truly changed. Thus it is OK to proceed with adaptation of the gain and offset coefficients.

3.2.7 Speed
The gain and offset correction must be done on every image. The dead pixel correction must be done on
every image. If the image is to be displayed, the plateau equalization must be done on every image. The
mean column offset must be done on every image. However, the adaptation of the gain and offset
coefficients need not be done on every image. Indeed, it is wrong to perform the adaptation on every
image because that does not provide the algorithm with statistically independent samples of the dynamic
range of the independent variable. The plateau equalization algorithm requires a histogram and look-up
table creation. If the scene is changing slowly, the histogram and creation of the look-up table need only



be done once every N frames. We have been conservative and used N = 2. The display of the image every
frame requires the image to be passed through the look-up table every frame. These requirements are
summarized in Table 2.

Table 2.  Functional Processing Requirements
Operation Every Frame Every 2 Frames Every 30 Frames

Gain Multiplication x
Offset Addition x
Dead Pixel Correction x
Mean Column Offset x
Image Display x
Histogram Calculation x
Equalization Look-up
Table Creation

x

Gain and Offset
Adaptation

x

3.2.8 Temperature Drift, Dynamic Range and Long Term Stability
A fixed gain and offset corrected image can look quite good, particularly at one of the two temperature
points used for calibration. Figure 5 illustrates the results of a two-temperature calibration. The two
temperatures used were approximately 4.4 oC and 21.7 oC. Dead pixels are shown as completely black.
This is done so that subsequent subjective comparisons of the imagery in this paper are not confused by
differences in dead pixel replacement strategies. Figure 5 shows the output of the Boeing camera with a
fixed gain and offset at the upper temperature calibration point 21.7 oC. The figure shows a coffee cup in
front of a disk drive on a lab bench. A diagonal cable is also stretched across the scene. Panning a camera
back and forth automatically across the lab bench generated the images in this paper. A picture of the lab
bench taken in the visible spectrum is shown in Figure 6.

Figure 5.  Two Point Temperature Corrected Image at T = 21.7 oC

The adaptive gain and offset correction algorithm also converges to a good set of coefficients as
illustrated in Figure 7. Initially, the image at Frame = 1 has a gain of 1.0 and an offset of 0. At frame



numbers 1, 100, 1,000, 10,000, 50,000 and 100,000, the panning of the camera was stopped and the same
scene with the coffee cup placed in front of a disk drive enclosure was saved to disk. Mildly warm air is
being vented by the disk drive to warm the coffee cup to a temperature of 26.6 oC =. The scenes observed
by the camera vary from low contrast imagery to extremely low contrast imagery. This imagery was
chosen because gain and offset errors are very visible in such scenes. Errors show up mainly as vertical
stripes and individual pixel errors. The gain and offset adaptation was done every 30 frames. After 1000
frames, most of the offset errors are gone and after 10,000 frames, the coefficients are mostly converged
and at 50,000 frames, they are fully converged.

Figure 6.  Visible Spectrum Image of Objects on the Lab Bench

Figure 8 shows the same images used in Figure 7 using the fixed gain and offset coefficients from a full
two-point temperature correction. The ambient temperature in the room varied approximately between 21
oC and 22 oC. As the ambient temperature in the room changed, the operating point of the sensor changed
and the fixed gain and offset coefficients became no longer valid. The images in Figure 8 have significant
errors while the images shown in Figure 7 that were produced using adaptive gain and offset coefficients
remains good as the temperature varies.

The ability of the adaptive gain and offset algorithm to compensate for temperature variations becomes
even more important as the temperature varies over a wider range. Most of the infrared photons
(approximately 80%) that are sensed by the microbolometer actually come from the lens body. Thus a
relatively small ambient temperature increase of three degrees Celsius causes many pixels to approach
saturation. The adaptive gain and offset algorithm is able to correct somewhat for this effect as seen in
Figure 7 where the temperature varied by about  one oC. The uncooled infrared bolometer sensors have a
very large dynamic range. The A/D converter that transforms the signal from the sensor into a 12-bit
value is arbitrarily placed in that range so that the mean flux gives a value of about ¼ of the maximum
and the gain is set so that small temperature changes may be distinguished. The placement of this A/D
window into the whole scene can be controlled in the Boeing camera by a signal, Vreset. We made use of
this signal to extend the dynamic range of the camera. When Vreset is modified, the sensor is in a new
regime and any fixed gain and offset coefficients are no longer valid. This is illustrated in Figure 9 where
the ambient air temperature and lens body temperature vary over a 6 oC range. Vreset is manually set to
increasing values between 110 and 118 over this same range. If we did not control and modify Vreset over
this temperature range, then the whole image would have saturated completely.



Frame = 1 Frame = 100

Frame = 1,000 Frame = 10,000

Frame = 50,000 Frame = 100,000

Figure 7.  Images Processed with Adaptive Gain and Offset Algorithm



Frame = 1 Frame = 100

Frame = 1000 Frame = 10,000

Frame = 50,000 Frame = 100,000

Figure 8.  Images Processed with Fixed Gain and Offset Correction



Figure 9 compares the fixed gain and offset image quality with that of the adaptive gain and offset image
quality as a function of ambient temperature and Vreset. Even a small increase in temperature degrades the
quality of the image generated using fixed gain and offset coefficients. As the temperature increases, the
image quality of the fixed gain and offset image remains in a degraded state while the quality of the
adaptive gain and offset image remains relatively constant.

Fixed Gain and Adaptive Gain and
       Offset  Offset

Frame = 10,000 Lens = 21.56 oC Air = 20.21 oC Vreset = 110

Frame = 60,000 Lens = 23.89 oC Air = 22.61 oC Vreset = 112

Figure 9. Comparison of Image Quality as a Function of Ambient Temperature and Vreset



Frame = 100,000 Lens = 25.58 oC Air = 23.60 Vreset = 114

Frame = 130,000 Lens = 27.01 oC Air = 24.03 oC Vreset = 116

Frame = 160,000 Lens = 28.32 oC Air = 25.26 oC  Vreset = 118

Figure 9 (continued). Comparison of Image Quality as a Function of Ambient Temperature and Vreset



4.0  CONCLUSIONS AND RECOMMENDATIONS

We have applied several techniques to solve the non-uniformity correction problem applied to images
from an uncooled bolometer camera. The real time implementation allows long term stability and
performance issues of the algorithm to be addressed. We determined that the adaptive algorithm works
better when the time sample between images of a moving scene is large; that is, when the images are
relatively uncorrelated. This effect must be balanced by the need to have the algorithm converge in a
finite time. The net effect of this balance is that the hardware signal processing requirements are reduced
considerably since many algorithmic calculations need not be done on every frame. The neural network,
by itself, is not adequate. We have also had to 1) replace dead pixels accurately, 2) use a column offset to
eliminate correlated column defects, 3) employ plateau equalization to create a pleasing output image,
and 4) adapt the A/D converter voltage offset as the temperature changes to keep the mean value of the
image within the dynamic range of the A/D converter. The net result of the signal processing yields a
camera that can generate good imagery over a much larger dynamic ranges than a camera without such
signal processing.
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