AD-A073 693 MARYLAND UNIV SOLOMONS NATURAL RESOURCES INST F/G 8/8 HYDROGRAPHIC AND ECOLOGICAL EFFECTS OF ENLARGEMENT OF THE CHESA--ETC (U) SEP 73 M H TAYLOR, W R HALL, R W SMITH DACW61-71-C-0062

UNCLASSIFIED

END

Date
Fuluto

$10-79$

sEcuRITY CLASSIFICATION OF THIS PAGE (When Data Entered)

For public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abet act entered in Black. 20 . 11 -dy sent frown Report)

18. SUPPLEME
Franklin C./Daiber

This report presented the results of sampling of grab and dredge samples from 25 stations in the Del. portion of the $C \& D$ Canal system during 1971-72 Patterns of distribution within the study area were identified. Possible effects of the enlargement of the canal are discussed

$$
407036 \mathrm{Hm}
$$

DD, FOND TS 1 ITS EDITION OF I NOV SS IS OBSOLETE

NOTICE
THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

C \& D CANAL ECOLOGICAL SURVEY

Biological Survey of the Canal and its Approaches

- Quarterly Benthic Survey -

Final Report

Appendix IV - Delaware Benthos

Malcolm H. Taylor William R. Hall Ronal W. Smith
Lanny M. Katz
Franklin C. Daiber Victor Lotrich

Department of Biological Sciences
University of Delaware
Newark, Delaware 19711

College of Marine Studies
University of Delaware

Lewes, Delaware 19958

September 1973

Approved for public release; distribution unlimited

Table of Contents

Page
List of illustrations ii
Acknowledgement iii
Abstract iv
Methods 1
Results \& Diacuscion 3
Sumpary 11
References Cited 13
Figure 14
Tables 15

List of Illustrations

Illust. No. Title Page
Figure 1 Benthos sampling stations in Delaware 14
Table I Benthic study field operations personnel 15
Table II Comparison of $0.1 \mathrm{~m}^{2}$ Petersen and Van-Veen grabs (December 1972) 16
Table III Invertebrates sampled in Delaware end of $C \& D$ Canal system 17
Table IV Quarterly totals for grab samples 18
Table V Quarterly totals in detritus-sledge collection (1972.) 19
Table VI Total benthic invertebrates per year in grabs at representative stations 20
Table VII Description of sediment types at benthic stations in the Delaware study area 2]
Table VIII Dry weight biomass at selected stations in the Delaware part of the $C \& D$ Canal system 22
Table IX - XVI Summary benthic data - March 1971 - December 1972 23
Table XVII -XIX Summary benthic data - June - December 1972- dredge 39
Table XX Summary benthic data - December 1972-grab comparison 42
Table XXI Benthic Station description for C \& D Canal Survey 43

ACKNOWLEDGEMENT

This field study and the Fish Suryey described in Appendix J required the support of many individuals other than the personnel directly involved in the collection of data. The authors gratefully acknowledge the efforts of the administrative staff of the College of Marine Studies, particularly Cheryll Hopkins and Art Hanby of the Lewes Field Station. Special recognition is also due the members of the Wolverine crew who, by participating beyond the requirements of their jobs, became integral members of the research team. Mr. Wilbert Hocker built or supervised construction of much of the specialized equipment used in this study.

Preparation of this report and the preceding status reports was made easier by the efforts of Ann Taylor who did the illustrations, and the following CMS secretaries: Patty Bradford, Anna LeCates, Doris Mitchell and Marybeth Sparpaglione.

Significant contributions in data processing and statistical analysis were made by Art Olsen of the Biology Department, University of Delamare.

Mr. Joseph Phillips of the Philadelphia District, Corps of Engineers, provided essential. liaison and background information.

Abstract

Twenty-five stations in the Delaware portion of the C \& D Canal system were sampled between March 1971 and December 1972. Both grab and dredge samples were collected for four stations during 1972.

More than 50,000 invertebrates of 23 species were collected and identified. The dominant organism in grab and dredge samples, as well as in fish stomachs, was Gammarus daiberi, Garveia frapciscana, Limnodrilus sp., Neomysis americana, Crangon septemspinosa, Cyathura polita and Chiridotea almyra were also abundant.

Patterns of distribution within the study area seemed to be associated with water chemistry parameters and substrate.

Possible effects of enlargement of the C \& D Canal are discussed.

Methods

Benthic invertebrates were sampled quarterly between March 1971 and December 1972 at 15 stations in the Delaware River approaches and the eastern half of the C \& D Canal proper (Figure 1). An additional 10 stations were sampled in the first year of the study. Canal stations were located near the center of the channel, while river stations were usually on the 18 ft . contour at the edge of the channel and located by triangulation from shore land marks plus radar fixes (Table XXI).

The individuals involved in field operations are listed in Table I. Three replicate samples were taken at each station from the University of Delaware's R.V. Wolverine, a 52 ft . research vessel. A subsample for sediment size analysis was usually taken from one of the replicates. The sediment analyses will be described in Part B of this appendix.

Sampling was carried out with a $0.1 \mathrm{~m}^{2}$ Van Veen type grab for the last five quarters of the study. A $0.1 \mathrm{~m}^{2}$ Petersen grab was used for the first three collections because a Van Veen grab was not available. When this instrument was obtained, it was found necessary to modify it by the addition of 50 lbs . of lead to the top of the grab bucket. A large door was cut in the top to facilitate sediment sampling and reduce shock-wave scattering of animals (Wigley, 1967).

Epifaunal organisms were sampled with biological dredges on several occasions. A Menzies trawl $(100 \mathrm{~cm} \times 10 \mathrm{~cm}$ opening, $X 300 \mathrm{~cm}$ long) was tested in September and December 1971. A smaller rectangular biological dredge ($42.5 \times 24.5 \times 43 \mathrm{~cm}$) was also used in December 1971.

In June 1972 a Detritus-Sledge built to the design of Ockelmann (1964) was tested. This device was about twice the size of Ockelmann's and carried a $50 \mathrm{~cm} \times 20 \mathrm{~cm} \times 100 \mathrm{~cm}$ bag. The wide runners on this sledge reduced digging in soft substrates and gave a satisfactory sampling of the epifauna. The sledge was used at: 4 stations in the last three sampling periods of this project to supplement the regular infaunal sampling schedule.

Salinity, dissolved oxygen, water temperature, and turbidity were measured at each station. The techniques used are described in Appendix VII.

Dry weight biomass was calculated for samples from Stations 2, 7, 11, and 19 for all eight quarters of the study. Samples preserved in alcohol were dried in an oven at $70^{\circ} \mathrm{C}$ to constant weight. Weights were checked at 12 and 24 hours. Covered aluminum dishes were used for drying the samples.

Identification of organisms was based on a number of sources (Smith, 1964; Edmondson, 1959; Pennak, 1953; Watling and Maurer, 1973),

Results \& Discussion

Eight quarterly collections were made in the Delaware portion of the C \& D Canal study area between March 1971 and December 1972. The combined catch in grabs and epifaunal dredges total 23 species which are listed in Table III. About half of these organisms were caught very infrequently, averaging less than two per quarterly collection.

The dominant organism in these samples, in numbers, frequency of occurrence, and biomass, was the amphipod Gammarus daiberi (Table III). This species was only recently described (Bousfield, 1969), as separate from Gammarus fasciatus, a common fresh water form. Gammarids are epifaunal organisms living in organic debris and vegetation over a variety of substrates.

Fish stomach analyses were carried out on 340 fish of various species. Grab totals are the summation of eight quarters of collections with a total of 459 samples of $0.1 \mathrm{~m}^{2}$ each. The sledge samples represent three collections at each of four stations totaling $1,000 \mathrm{~m}^{2}$. If both samples were quantitative, a twenty-fold difference would be expected. Since the dredge was frequently filled with sediment when retrieved, it may have sampled only a fraction of the area covered. Interpretation of data collected in this fashion is limited to qualitative comparisons, and the grab samples are, therefore, better estimators of population density.

The second most abundant invertebrate was the hydroid Garveia franciscana. This organism was found in colonies attached to rock or other hard substrate. It would, therefore, be inefficiently
sampled with a bottom grab, and estimates of its abuncance are qualitative at best. Substrate materials on which Garveia was found were densely covered, usually with five to ten colonies per cm^{2}. It is to be noted that this organism was not found in fish stomachs, as were the other common invertebrates. Gammarus and Garveia dominated both grab and dredge samples, together comprising 65% and 88.9% of the respective totals.

The third-ranking species in terms of abundance was the tubificid oligochaete Limnodrilus sp. This organism occurred in large numbers at stations 9-11 (Tables IV \& V). Tubificid oliogochaetes are indicators of suboptimal water quality when they are dominant and other species are eliminated (Aston, 1973). Limnodrilus accounted for approximately 9% of organisms taken in grab samples, but only 2.9% of dredge totals. This discrepancy may be explained by the fact that this worm is primarily a burrower and probably would be picked up in a dredge only when bottom material was scooped up. Its poor representation in fish stomachs may also be due to its burrowing behavior.

The two isopods, Cyathura and Chiridotea, accounted respectively for 6.0% and 8.2% of grab samples and appeared in dredge samples and fish stomachs as well. Scolecolepides viridis, a polychaete worm, made up another 5.7% of the total grab collection, but was not a significant contributor to dredge or fish stomach samples. These three species together with Gammarus, Garveia, and Limodrilus account for more than 90% of the organisms taken in grabs during the study. These can be considered the dominant members of the benthic
community of the Delaware portion of the Canal system. Addition of the two, shrimp-like crustaceans, Crangon and Neomysis, from the dredge rankings and the blue crab which was abundant in fish trawls, completes the list of numerically important macroscopic invertebrates.

Two demersal crustaceans were more frequently found in fish stomachs than abundant infaunal organisms such as Limnodrilus. Neomysis americana, a mysid shrimp, and Crangon septemspinosa, a decapod, were respectively second and third in abundance in fish stomachs. Neomysis was third in abundance in dredge samples, but neither shrimp was common in grabs. Since both are efficient swimmers, they would be expected to escepe the grab. Crangon is found in the water column as well as near the bottom and was sampled more efficiently by the fish than by either sampling device. Neomysis is also a strong swimmer but is less active in daylight hours than Crangon. Both of these animals occurred in large numbers only in the September samples. This pranounced seasonal cycle is supported by the incidental capture of Crangon in fish trawls only during the fall. It is worthy of note that these relatively mobile invertebrate species show seasonal changes in abundance similar to those seen in most of the fish species studied.

Seasonal cycles in numbers of benthic organisms were less well defined. Numbers of animals in grab samples were lower in March than in other quarters, but otherwise highly variable. Gammarus, Chiridotea almyra, Corophium lacustre, and Limnodrilus were most abundant in the summer, while Cyathura polita showed peak populations during colder months. The environmental periodicities to which these fluctuations
were entrained were similar to those shown in the Delaware fish survey (Appendix VII). Temperatures ranged from near zero in winter to $27^{\circ} \mathrm{C}$ in mid-summer. Salinity was quite variable but tended to be highest in late summer (range 0.1-10 \% / 00). Dissolved oxygen, being an inverse function of both salinity and temperature, dropped in summer. Concentrations in the $2 \mathbf{- 3} \mathbf{m g} / 1$ range were not unusual. The physical data collected in conjunction with the benthic survey are shown in Tables IX - XVI, which summarizes the individual quarterly collections.

Rangia cuneata shells comprised another 2% of the grab collection, but only six living clams were captured in the entire study. Since most of the shells were collected in the Canal proper, it is hypothesized that the shells are washing through from the upper Chesapeake Bay, where a viable population exists (Appendix III). The amphipod, Corophium lacustre, also accounted for about 2% of individuals in grab samples and might be considered of marginal significance in the ecology of the area.

Comparison of grab totals for 1971 and 1972 (Table IV), suggests a significant increase in numbers of organisms in the second year of the study. The average number of organisms per station in 1972 was 137.6 as compared to 69.2 in 1971 (Table IV), but the difference is attributable to the large number of Garvela in the June 1972 collection. It was mentioned previously that these hydroids are distributed irregularly, because they require hard substrate. Of the 3072 collected in June 1972, 2885 were on rocks in the sample from a single station, number 15, which is in a rocky area east of Pea Patch Island. This
sample also contained over 1000 Gammarus, many of which were in association with the hydroids. If, as frequently happens, the grab had failed to pick up the rocks, the collection would have been reduced by about 4000 animals, and the average per station in June would have been about 150 instead of 369.2 . Extending this hypothetical calculation to the yearly total, yielded an average for 1972 of 70.9 animals per station as compared to 69.2 in 1971. Since our observations of the distribution of Garveia support the chance occurrence of isolated populations of high density; it seems reasonable to conclude that this extremely large sample was not representative of the overall population. Thus, the apparent increase in number of benthic invertebrates in the Canal area was a sampling artifact produced by the non-random distribution of Garveia.

Grouping of stations by geographic location brought out some differences in the species makeup of benthic populations in representative parts of the study area (Table VI). Stations $1 \mathbf{- 3}$ were in the Canal proper; stations 9, 11, 12 north of the Canal near the Pea Patch Island fetty; and $17,19,21$ south of the Canal near Reedy Island. There were no significant differences in the total numbers of organisms, but individual species were distributed in consistent patterns throughout the two-year study.

Garveia franciscana appeared to be less abundant in the Canal proper than in the Delaware River approaches, presumably because the necessary hard substrate was scarce in the Canal proper. The isopod Cyathura polita was also relatively rare in the Canal, but common at representative stations both north and south of the Canal. This is a
burrowing organism which might be expected to be most successful in fine sediments. Distribution of sediment types in the study area was considered as a potential source of variability in benthic populations. Description of sediment types at bottom sampling stations is presented in Table VII, and additional detail will be found in Part B of this appendix. In general, the Delaware portion of the Canal had a well sorted medium to fine sand substrate prior to dredging. This has been altered by siltation at station 2 and 3, with the change correlating well with the times of dredging.

The dominant benthic species in the Canal proper were the polychaete Scolecolepidus viridis, the isopod Chiridotea almyra and the amphipod Gammarus daiberi. All are characteristic of sandy crustaceans and in this study was more limited in distribution. Gammarus, on the other hand being an epifaunal organism is probably less limited by substrate. Chiridotea was also common at sandy stations in the river such as stations 12 and 17 in June 1971 (Table X). The empty valves of Rangia cuneata which are thought to wash through the Canal from its western end, were concentrated in the Canal proper and also to the south of the Canal. This is presumably a function of current movement rather than substrate. Relatively few Rangia shells were found in the area west of Pea Patch Island which dye studies have shown to receive flow from the Canal when flood tides coincide in the two bodies of water.

The area north of the Canal was distinctive in being dominated by the oligochaete, Limnodrilus sp. This worm can thrive in heavy sulfurous silts with low oxygen concentrations. Much of the bottom
west of Pea Patch Island was of this type. Grab samples contained oily black silt which had a strong hydrogen sulfide odor. Clay and sand were relatively minor constituents. Limnodrilus occurred only rarely south of the Canal although suitable substrate was available. Possibly the slightly higher average salinity limited its invasion of this area.

Stations to the south of the Canal were dominated by silty substrate with the exception of \#17 and \#21 which were characterized by moderately well sorted fine to medium sand. Both of these were included in the group of stations representing the area south of the Canal, and may bias the results in favor of organisms associated with sandy substrates.

The organisms associated with this area (Table VI) were Corophium lacustre and Rhithropanopeus harrisi. Corophium is a tube-dwelling amphipod found in brackish waters (Brown, 1971) and Rhithropanopeus is a euryhaline decapod. It is likely that salinity rather than substrate is the most important factor in the localization of these two species south of the Canal.

Biomass values were obtained for four selected stations throughout the two year study (Table VIII). Variation between weights amounted to several orders of magnitude as was the case for the numbers of animals per sample. Replicate grabs totaling $0.3 \mathrm{~m}^{2} / \mathrm{station}$ were extrapolated to $1.0 \mathrm{~m}^{2}$ for purposes of comparison with data from other sources. These values ranged from 0.023 to $1.265 \mathrm{~g} / \mathrm{m}^{2}$.

Station \#7 west of Pea Patch Island was most productive based on a quarterly average. Gammarus and Limnodrilus were the dominant
organisms in these samples as in most of those collected north of the Canal. The Canal biomass average was only $0.038 \mathrm{~g} / \mathrm{m}^{2}$ which could be an underestimate since stations \#2 produced fewer organisms than others in the Canal. Lack of biomass in the Canal proper is also probably due to lack of substrate variation and high current velocities.

Summary

The invertebrate populations in the Delaware part of the Canal system were dominated by the same eight species throughout the two year study. Gammarus daiberi, Garveia franciscana, Limnodrilus sp., Chiridotea almyra, Cyathura polita and Scolecolepides viridis each accounted for more than 5% of the organisms collected in grab samples. Neomysis americana and Crangon septemspinosa were rare in grabs, but abundant in dredge collections. All of the above, with the exception of Garveia, were significant in the diets of local fish, as evidenced by their presence in stomachs examined during the study.

Although variation between samples was large, it was possible to document patterns in the distribution of the more abundant species. Garveia was always associated with hard substrate such as wood or stones and seemed to be less abundant in the Canal proper than at River stations, possibly because frequent dredging prevents accumulation of suitable substrate.

If the siltation observed at Canal stations (Part B of this appendix) persists, it is possible that the present benthic species will be replaced by a community of animals which is better adapted to fine substrates. Cyathura polita and Limnodrilus are potential. invaders. It is reasonable to assume that any permanent change in the water quality of the area resulting from the Canal enlargement, would be limited to a slight drop in salinity. Since most of the species now present are able to tolerate fresh water, one would expect only a few brackish forms such as Rhithropanopeus and Corophium to be affected, and overall impact of the salinity drop would be minor.
Examination of fish stomach contents and invertebrate biomass data supports the conclusion that the Delaware end of the Canal is at present relatively unproductive and serves primarily as a highway for transfer of mobile fish species, and their eggs and larvae between the Chesapeake Bay and the Delaware River. Of the species which utilize the Canal, the white perch and catfish should be most sensitive to changes in the invertebrate populations, since they depend on invertebrates as a source of food, and remain within the Canal system year round. It is uncertain what changes in sedimentation will occur in the first few years after completion of the enlargement, but reduced dredging frequency might permit expansion of the Canal's benthic community. This would increase the probability of the Canal supporting a significant resident fish population.

References Cited

Aston, R. J. 1973. Tubificids and water quality: A review. Environ. Pollut. 5:1-10.

Birkett, L. 1958. A basis for comparing grabs. J. Cons. Int. Explor. Mer. 22:289-92.

Bousfied, E. L. 1969. New records of Gammarus (Crustacea: Amphipoda) from the Middle Atlantic Region. Chesapeake Science 10:1-17.

Brown, Alison. 1971. Ecology of fresh water. Harvard University Press, Cambridge, Mass.

Edmondson, W. T. Ed. 1959. Fresh-water biology, 2 Ed. Wiley, New York.

Ockelmann, K. W. 1964. An improved, detritus - sledge for collecting meiobenthos. Ophelia 1 (2):217-22.

Pennak, R. W. 1953. Fresh-water invertebrates of the United States. Ronald Press Co., New York.

Smith, R. I. 1964. Keys to marine invertebrates of the Woods Hole Region. Marine Biological Laboratory, Woods Hole, Mass.

Watling, L. and D. Maurer. 1973. Guide to macroscopic estuarine and marine invertebrates of the Delaware Bay Region. College of Marine Studies, University of Delaware, Newark, Delaware.

Wigley, R. L. 1967. Comparative efficiencies of the Van Veen and Smith-McIntyre grab samplers as revealed by motion pictures. Ecology 48(1):168-9.

Table I - Benthic Study Field Operations Personnel

NAME
Malcolm H. Taylor, Ph.D.
William R. Hall, M.S.
Ronal W. Smith, M.S.
Lanny M. Katz
Neal Parker
Milton W. Cooper
W. F. Carlsten
David Matthews

TITLE	Responsibility
Research Associate	Field Coordinator
Biologist	Identification and
Resident Biologist	Fnumeration of Organisms
Graduate Assistant	Field Operations
Graduate Assistant	Field Operations
Boat Captain	Vessel Operations
Utilities Mechanic	Vessel Operations
Boat Engineer	Vessel Operations

Table II - Comparison of $0.1 \mathrm{~m}^{2}$ Petersen and Van-Veen Grabs (Dec. 1972)

Station \#			Pet. Silt 70\%	Var. V. sify	12		Total	
Grab Type Bottom Material Grab (\% Full)	Pet. Sand 100	Van V. Silt 100			Pet. sand 100\%	$\begin{aligned} & \text { Van V. } \\ & \text { sandy } \\ & \text { sift } \\ & 85 \end{aligned}$	Pet.	Van V
Species								
Garveia franciscana					10		10	0
Scolecolepides viridis		2		20	6	13	6	35
Rangia cuneata						1	0	1
Chiridotea almyra		2		8	3	2	3	12
Cyathura polita			4		4	5	8	3
Corophium 1acustre			4				4	0
Gammarus daiberi	1	6	11	8			12	14
Rhithropanopeus harrisi			2				2	0
Limnódrilus sp.	9	1		2			9	3
Callinectes sapidus			1.				1	0
Total	10	11	22	38	23	21	55	70

Table III - Invertebrates Sampled in Delaware End of C \& D Canal System.

	Mar J	$\begin{aligned} & 1971 \\ & \text { June } \\ & \hline \end{aligned}$	Sept	Dec	Total	Mar	1972 June,	Sept	Dec	Total	Grand Total
G. franciscana	10	26	102	736	874	120	3072	11	514	3717	4591
Nematode	6				6					0	6
H. stagnalis	1			1	2	2	2			4	6
Limnodrilus sp.	139	189	182	86	596	78	506	95	39	718	1314
S. Viridis	197	55	25	41	318	17.	177	198	125	517	235
N. succinea	2	4	1	1	8	0	0	0		0	8
B. balanoides		4			4		1		32	33	37
C. fragilis		1			1					0	1
C. polita	207	147	62	200	616	78	90	35	69	272	888
C. almyra	44	236	388	51	791	4	185	266	36	491	1210
M. edwardsi					0	2	2			4	4
G. daiberi	12	728	887	1229	2856	12	1401	79	619	2113	4969
C. 1acustre	9	9	91	61	126	13	7	81	1	102	272
N. americana	5	5	5	1	16		1	42	2	45	71
C. septemspinosa	2		1		3			5		5	8
Palaemonetes Sp.			0		0		1			1	1
R. harrisi	16	17	18	39	90	17	26	21	17	81	171
Insect larvae	4			1	5		2			2	7
R. cuneata (valves)	37	34	32	34	1,37	47	61	33	8	149	286
A. ovalis	2	0	0	0	2	0	0	0	1	1	3
Modiolus .sp.				1	1		1			1	2
A. vidovici	5	7	1	3	16	0	1	0	0	1	17
Total Organisms No. Stations avd/station ($0.3 \mathrm{~m}^{2}$) est. organisms/m²	$\begin{aligned} & 698 \\ & 23 \\ & 30.3 \\ & 101 . \end{aligned}$	1462 24	1795 24	$\begin{aligned} & 2485 \\ & 22 \\ & 113.0 \\ & 376.7 \end{aligned}$	$\begin{aligned} & 6440 \\ & 93 \\ & 69.2 \end{aligned}$	$\begin{aligned} & 390 \\ & 15 \\ & 26.0 \\ & 86.7 \end{aligned}$	$\left\|\begin{array}{c} 5538 \\ 15 \\ 369.2 \\ 1230 \end{array}\right\|$	8561557.7$719 \%$	1463 ${ }^{15} 8$	825760137.6.0	1376
		60.9	74.8								
		¢ 203.	249.3								

Table VI - TOTAL BENTHIC INVERTEBRATES PER YEAR IN GRABS AT REPRESRETATIVE STATIONS

1. Mean of three groups of stations over two years \pm Standard Deviation.
2. Means of two yearly totals for each group of stations.

Table VII - DESCRIPTION OF SEDIMENT TYPES AT BENTHIC STATIONS IN THE DELAWIARE STUDY AREA

STATION

1
2

Well sorted fine sand
Well sorted medium sand
Poorl.y sorted silt
We11 sorted medium sand
Poorly sorted silt
Well sorted medium sand
Moderately well sorted fine silt Poorly sorted fine silt and clay
Poorly sorted fine sand and silt
Moderately well sorted silt
Well sorted very fine sand with trace of silt
Poorly sorted silt
Well sorted medium to coarse sand
Well sorted fine silt
Poorly sorted silt and very fine sand
Ext remely variable
Predominantly poorly sorted silt
Moderately well sorted coarse silt
Moderately well sorted fine to medium sand
Very poorly sorted fine silt and clay
Poorly sorted silt
Poorly sorted fine silt and clay
Moderately well sorted medium sand

Table VIII - DRY WEIGHT BIOMASS AT SELECTED STATIONS IN THE DELAWARE PART OF THE C \& D CANAL SYSTEM.

STATION \#1F	2 (Canal)	7 (3 Mi.North)	11 (5 Mi. North)	19 (3 Mi.South)
$\begin{array}{\|r\|r\|} \text { March } 1971 \\ 1972 \\ \hline \end{array}$	$\begin{aligned} & 0.021 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.326 \\ 0.027 \\ \hline \end{array}$	$\begin{aligned} & 0.003 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.138 \\ & 0.233 \\ & \hline \end{aligned}$
Average Average $/ \mathrm{m}^{2}$	$\begin{array}{r} 0.012 \\ 0.040 \\ \hline \end{array}$	$\begin{aligned} & 0.177 \\ & 0.590 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.043 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.185 \\ 0.616 \\ \hline \end{array}$
$\begin{array}{\|r} \text { June } 1971 \\ 1972 \\ \hline \end{array}$	$\begin{aligned} & 0.016 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.347 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.119 \\ & 0.062 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.046 \\ & 0.425 \end{aligned}$
Average Average/m ${ }^{2}$	$\begin{aligned} & 0.009 \\ & 0.023 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.206 \\ & 0.686 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.091 \\ & 0.303 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.789 \end{aligned}$
$\begin{array}{r} \text { Sept. } 1971 \\ 1972 \\ \hline \end{array}$	$\begin{aligned} & 0.027 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.173 \\ & 0.587 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.100 \\ & 0.025 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.067 \\ & 0.144 \end{aligned}$
Average Average/m ${ }^{2}$	$\begin{aligned} & 0.014 \\ & 0.047 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.380 \\ & 1.265 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.066 \\ & 0.220 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.353 \end{aligned}$
$\text { Dec. } 1971$	$\begin{aligned} & 0.004 \\ & 0.022 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.639 \\ & 0.029 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.055 \\ & 0.033 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.215 \\ & 0.012 \\ & \hline \end{aligned}$
Average Average/m ${ }^{2}$	$\begin{aligned} & 0.013 \\ & 0.043 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.334 \\ & 1.112 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.044 \\ & 0.147 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.114 \\ & 0.380 \\ & \hline \end{aligned}$
Average/quarter/m ${ }^{\text {(2) }}$	0.038	0.913	0.178	0.535
(1.) Averages per m (2.) Mean of averag	were ${ }^{2 x t r a}$ per m^{2} for	olated from 0.3 each station	data.	

Table XI - Sumany Benthic Data - September 1971

Total animals per

Table XXI

BENTHIC STATION DESCRIPTION FOR C \& D CANAL SURVEY

Stations in the Canal are located at mid-channel and those in the River predominately on 18 ft . contout. Use C \& G.S chart \#570 in Canal and 294 in the Delaware River.

1. Second light east of overhead pipeline; approximately .75 mile east of Summit bridge in canal.
2. West of St. Georges Bridge approximately . 75 of a mile, second light past pier in canal.
3. Approximately . 5 miles west of Delaware City Branch Channel, 1st light in water after rock pile starts south side (off Ice House Point) in Canal.
4. A beam, quick flashing R " 2 " at Canal entrance.
5. $C \& D$ Canal entrance Range-Move east to 28 ft . depth beyond shipping Channe1.
6. Place most southerly storage tank at Getty terminal in line with front range light of Delaware City range. Sample at western edge of channe1.
7. Located on same east-west range as 7, at intersection with range formed by Spar bouy R " 8 " and buoy " 1 " at entrance to Branch Canal.
8. East-west range F1 "B" on bulkhead bar (Pea Patch) and "F14 sec $30 \mathrm{ft} .7 \mathrm{M}^{\prime \prime}$ on western point of KilHcohook National Wildife Refuge, N.J. Move west across deep slough to western edge, use 18 ft . depth.
9. Same East-west range as "9". At intersection with north south range formed by beacon "A" on Bulkhead Bar Jetty and buoy " 1 " at entrance to Delaware City branch canal.
10. Bulkhead bar range at intersection with range formed by beacon "E" on Bulkhead Bar and bouy " 40 " (Deep water point Range)
11. Approximately 75-100 ft. southeast of beacon " g " on Bulkhead Bar.
12. North-south range, buoy "2B" on Bulkhead Bar Range and "F1 G 2 $\frac{1}{2}$ sec" on Pea Patch Island. Sample at intersection with range formed by beacon "B" on Bulkhead Bar and "1D" on Deepwater point range.
13. Range formed by beacon on Killicohook Refuge, N.J. and buoy "1D" on Deepwater Point range, 75-100 ft. northwest of beacon.
14. Range formed by monument on Killicohook Refuge and tank to eastnortheast $\left(65^{\circ}\right)$, approximately 100 ft . from small sand island located 1500 yards north west of "F1 G" on Pea Patch Island.
15. Same range as " 15 " at intersection with range formed by "2B" on Bulkhead Bar and "Fl $2 \sec B$ " at spoil pumping site.
16. North-south range formed by "C 27" in anchorage 3 and " $R 2$ " on Canal jetty. Sample 0.3 mile south of "C 27 ".
17. Northwest-southeast range formed by "C 27 " and fork 0.3 miles east of Delaware City Branch Canal. North-south range, "IN" (QK F1) and " 8 R".
18. East-west range " 5 R " and spire at Port Penn. approximately 100 feet from Dolphins on East side of Reedy Island.
19. East-west range formed by " $5 \mathrm{R}^{\prime \prime}$ and spire at Port Penn. and Northsouth, "WR1OR" Realy Island Range and "2R" (QK F1)
20. Same range as " 20 " ate intersection with range formed by North-south "WR1OR" and anchorage white nun "B"
21. East West range "C27" and "IN" (QK F1). Sample at . 5 mile, 265° "C27"
22. Same range as "22" intersection "1" (Qk F1) south jetty C \& D anal and "3" Delaware City ship canal.
23. North-south range "C29" and "IC" (Qk F1) and intersection formed by East-west standpipe and tank .5 mile north of New Castle.
24. North-south range, army maintained structure (F1. 2 sec) . 5 mile south Delaware Memorial Bridge and front range light deep water range and intersection of standpipe and tank .5 mile North of New Castle.

C\&D CANAL ECOLOGICAL SURVEY
 Biological Survey of the Canal and its Approaches
 Appendix IV - Delaware Benthos
 Part B - Sediment Analyses

Christian A. Wethe
Malcolm H. Taylor

College of Marine Studies
University of Delaware
Newark and Lewes, Delaware
September, 1973
Page
Methods 1
Results 3
Figures 5

METHODS

Grain size analysis was performed on a representative portion of the sediment obtained at each benthic sampling station. Sieve analysis was used on the coarse grained, sand and gravel portion and pipette analysis was used on the fine grained, silt and clay material. The results of these analyses were examined for both geographic and seasonal variations in the sediment composition.

The coarse and fine grained portions of the sediment were separated by wet sieving the entire sample through a 62 micron sieve. The sand-gravel fraction was then oven dried and weighed. Using a sample splitter, a thirty to seventy gram sample was obtained. This sample was poured into a stack of sieves graded in $1 / 2 \phi$ intervals, in order, coarsest sieve at the top, pan at the bottom. The sieves were placed in a Ro-Tap machine and shaken for fifteen minutes. The sand trapped by each sieve was then weighed on a Mettler top-loading balance to 0.01 gm .

The silt-clay portion of the sample was poured into a liter cylinder. One gram of dispersant was added along with enough distilled water to fill the cylinder to exactly 1000 ml . The cylinder was then vigorously shaken to distribute the sediment uniformly throughout the column. When the shaking was stopped, a timer was started; and after fifteen seconds on pipette was inserted into the suspension to a depth of twenty centimeters and exactly twenty milliliters of suspension was withdrawn. Additional pipette
withdrawals (20 ml each) were made at specified time intervals and depths. The suspension removed was expelled into a pre-weighed fifty milliliter beaker. The pipette was then rinsed with distilled water, and the rinse water expelled into the same beaker. The beakers were placed in an oven and evaporated to dryness. They were then removed from the oven, cooled and weighed to 0.001 gm . The weight of the sediment in each twenty milliliter withdrawal was determined, then multiplied by fifty and the weight of the dispersant subtracted.

Knowing the weight of the sediment removed from the suspension at each withdrawal time, the grain size distribution of the sediment can be determined. Since the silt-clay material was uniformly distributed throughout the 1000 ml cylinder, the twenty milliliter withdrawal represents $1 / 50$ of the total amount of sediment remaining in suspension at the time and at the depth of withdrawal. All particles larger than a given diameter have settled past the point of withdrawal after a given time, according to Stokes Law. With each successive withdrawal, the diameter of the largest particle removed by the pipette becomes smaller and smaller. Based on time and withdrawal depth, the maximum particle size present in each withdrawal can be calculated. Therefore, the difference in weight of two successive withdrawals represents the weight of a particular size fraction. By making pipette withdrawals at the proper times and depths, a complete grain size distribution is obtained. These distributions combined with the data from the sieve analysis were obtained for all the sampling stations.

RESULTS

Reviewing the grain size distribution data for the sampling stations within the Canal, some interesting differences before and after dredging are revealed. In June 1971, Station 2, just west of St. Georges Bridge, was a well-sorted, medium sand. After dredging, in December 1971, a fine, moderately-sorted sand was obtained at that location. By March 1972, a coarse, poorly-sorted silt was discovered and subsequent sampling revealed the same material (December 1972 is typical).

At Station 3, in the area where the Delaware City Branch Channel intersects the Canal, a similar shift in bottom sediment type occurred. September 1972 is typical of the pre-dredging grain size distribution, revealing a well-sorted, medium sand. Just after dredging, in October 1972, a slightly finer but still well-sorted sand was observed. By July 1973, with dredging completed in the area, the appearance of a coarse silt was noted at this station also.

The introduction of the coarsesilt at both Stations 2 and 3 is probably the result of silt washing out of the dredged bottom material, becoming suspended in the canal waters, and finally settling out in the quieter waters of the deeper canal sections. It is quite possible that this coarse silt will be washed away when the canal deepening has been completed. The bottom sediment will probably return to being a well-sorted sand.

Comparisons are possible with the canal sediments and with bottom deposits found in the Delaware River adjacent to the canal. Station 12, east of the Pea Patch Island Jetty, and Station 17, in mid-channel south of Reedy Point, are both well-sorted, coarse sands similar to the pre-dredging canal samples. All the Stations west of Pea Patch Island (Station 11 provides the best match) and Station 19, south of Reedy Point, are similar to the poorly-sorted silt sediments observed in the canal after dredging.

FIGURE 1

FIGURE 2

Sediment Size Analysis - Benthic Station \#3

3 A
JULY 1973

FIGURE 3

Sediment Size Analysis - Benthic Stations 12, 11, 19

