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Preface

"The Second U.S.-Japan Workshop on Advanced Plasma Modeling"

meet at IPP Nagoya from March 23-27th, 1987. The program for the

meeting is attached as appendix I.

There were seven American participants and 26 Japanese

participants;the list of participants is attached as appendix II.

We consider that this workshop was very successful. There

was lively discussion from both sides on detail of modeling

techniques, their advantages and disadvantages, how they might be

improved and what types of physics problems could be treated. It

was clear that Japanese-U.S.collaboration has played a large rcle

in developing many powerful new techniques for handling large

time step large space scale problems. There were also

developments that took place in one country nr the other and it

was clear that the participants learned a lot from hearing of

each others work. We have drawn a number of conclusion from this

workshop.

J.M. Dawson

T. Kamimura



Summary

Gyrokinetic Particle Simulation

The numerical properties of a gyrokinetic plasma have been discussed in detail

in this workshop. It is generally agreed that considerable improvement in time

step, grid spacing and noise level can indeed be realized with the present model.

Numerical schemes for solving the nonlinear gyrokinetic equations have also been

presented. The consensus is that the treatment of the electron motion parallel to

the magnetic field is very crucial. The proposed sub-cycling scheme should be

examined carefully.

With the arrival of the present generation of super-compute ,Prof. Dawson
... 5 en .,-e_

feels very strongly that it igthie timer- to work actively toward the realistic

simulation of tokamak discharges with particle codes - gyrokinetic or implicit.

However, there are numerous important issues one has to resolve before chiving

that goal, such as particle re-cycling techniques, 3D diagnostics, the MHD

equilibrium problem, the development of collision operators and the choice of the

appropriate coordinate systems for the simulation. Another important aspect is

the inclusion of the *kitchen phycs4 in the code.

In view of the man power shortage in this area, Profs. Dawson and Kamimura

have proposed a collaboration effort between the US and Japan. The initial phase

of this joint endeavor will start this summer at UCLA.

W. W. Lee
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Ap endix I

U3-Japan Workshop on Advanced Plasma Modeling

March 23-27, 1987

IPP, Nagoya, Japan

A GENDA

March 23 (Monday)

Registration (9:30)

Opening Remarks (10:00-10:20)
J. M. Dawson and T. Kamimura

Morning Session (10:20-12:30) Chairman I.Kawakami

A.Aydemir(IFS) : Generalized Reduced MHD and Full MHD Calculations
with Semi-Implicit Techniques

D.D.Schnack(SAI) • Semi-Implicit Methods for 3D MHD Computations

G.Kurita(JAERI) : Nonlinear Evolution of Free Boundary Modes in Tokamak

Lunch (12:30-14:00)

Afternoon Session 0 (14:00-15:30) Chairman: A. Aydemir

T.Hayashi(HIFT) • 3D-Equilibrium and Stability code of Helical System

T.Hayashi(HIFT) : A Simulation of Driven Reconnection

by a high precision MHD code

Coffee Break (15:30-15:45)

Afternoon Session 0 (15:45-17:15) Chairman: G. Kurita

T. Ogino : An MHD Simulation Of the Solar Wind and romer -, Piasma

(Nagoya Univ.) (An MHD Model with Plasma Production)

C.Z.Cheng(PPPL) : NOVA-2: A Kinetic MHD Stability Code



March 24 (Tuesday)

Morning Session ( (9:15-10:50) Chairman: H. Abe

J.M.Dawson(UCLA) : A Hybrid Vlasov-Fluid Model with Kinetic Ions
and Massless Fluid Electrons

W.W. Lee(PPPL) : Gyrokinetic Particle Simulation of Finite-Beta Plasma

Coffee Break (10:50-11:00)

Morning Session D (11:00-12:30) Chairman: C.Z. Cheng

M.Tanaka(HIFT) : Macroscale Particle Simulation of Kinetic Alfven Waves
(Code Description and Application )

A. Friedman(LLL) : Advanced Particle-in-cell Plasma Modeling at LLNL

Lunch (12:30-14:00)

Afternoon Session 0 (14:00-15:50) Chairman: M.Tanaka

K. Nishihara : Particle-Particle Particle-Mesh code
(Osaka Univ.) for Nonideal High Density Plasma and Its Application

on Rayleigh-Taylor Instability in ICF Plasma

S.Kawata : TRIPIC: Triangular-Mesh PIC code
(Nagaoka Tec.) for LIB Diode Simulation

S.Y.Kim : Particle Simulation Technique using FEM Methods

(KIT, Korea)

Coffee Break (15:50-16:00)

Afternoon Session ® (16:00-17:30) Chairman: M.Aizawa

K.Miki : A Domain Decomposition and Overlapping Method
(Hitachi Ltd.) for 3D Large Scale Numerical Simulation

R.Sydora(UCLA) : Subtraction Technique for Plasma Physics and
Evaluation of Numerical Effects in Codes

Group Dinner (18:30-)
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March 25 (Wednesday)

Mcrning Session (9:15-10:50) Cha irnai: T. Cgi ro

A. Friedman(LLL) Numerically Induced Stochasticity

T.Yabe(Osaka Univ.) • Reduced Atomic Model for Calculation of Charge
Distribution in Multiply-Charged Plasma

Workinq Time for Discussion Leaders and Group Photo (10:50-11:30)

Lunch (11:30-13:00)

Discussion and Working Sessions Q (13:00-17:30)

Advanced MHD Model (13:00-15:00)

Discussion Leaders: T. Hayashi and D.D. Schnack

comments: I. Kawakami, T. Ogino, and T. Hayashi

Coffee Break (15:00-15:30)

0 Implicit Particle Model (15:30-17:30)
Discussion Leaders: K. Nishihara and A. Friedman

comments: T. Kamimura, H. Abe, M. Tanaka, A. Friedmdn, and W. W. Lee

March 26 (Thursday)

Discussion and Working Sessions 0 (9:15-15:00)

0 Gyrokiretic Particle Model (9:15-11:15)
Discussion Leaders: H. Naitou and W.W. Lee

comments: W.W. Lee and J.M. Dawson

Coffee Break (11:15-11:30)
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@®-1 Improvement of Simulation Moftl V@1:)
Discuss ion Letes T. Ya !. Katanuma, and R. Sydora

comments: S. Takeuchi, K. Hanatani, and '1. Abe

Lunch (12:30-14:00)

@ -2 Continuation (14:00-15:00)

Summary and Conclusions (15:00-16:00)

Co-chairmen : J. M. Dawson and T. Kamimura

March 27 (Friday)

Working Session

closing

T he max imum t ime al lowed for spea ke rs i nc ludi ng dis cuss io ns
(40 - 45) min. for the oral presentations
(10 - 15) min. for comments
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Appendix II

List of Participants

US-Japan Workshop on Advanced Plasma modeling

March 23-27, 1987

IPP, Nagoya, Japan

U.S.A.

Dawson John M. University of California, Los Angeles

Department of Physics 405 Hilgard Ave.

Los Angeles, Calif. 90024

Aydemir Ahmet University of Texas Austin

Institute for Fusion Studies

Austin, Texas 78712

Cheng C.Z. Plasma Physics Laboratory

Princeton University

P.O. Box 451, Princeton, N.J. 08544

Friedman Alex University of California

Lawrence Livermore Lab.

P.O. Box 808, Livermore CA. 94550

Lee W.W. Plasma Physics Laboratory

Princeton University

P.O. Box 451, Princeton, N.J. 08544

Schnack Dalton.D.

Science Applications International Corp.

San Diego, Calif. 92121

Sydora Richard University of California, Los Angeles

Department of Physics

405 Hilgard Ave.

Los Angeles, Calif. 90024
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JAPAN

Abe Hirotada Dept. of Engineering

Kyoto Univ., Kyoto 606

Abe Yoshihiko Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Aizawa Masamitsu Atomic Energy Research Institute

College of Science & Technology

Nihon Univ., Tokyo 101

Amano Tsuneo Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Hanatani Kiyoshi Plasma Physics Laboratory

Kyoto Univ., Gokasho, Uji, Kyoto 611

Hayashi Takaya Institute for Fusion Theory

Hiroshima Univ., Hi-'oshima 730

Ichiguchi Katsuji Plasma Physics Laboratory

Kyoto Univ., Gokasho, Uji, Kyoto 611

Ichikawa Yoshi H. Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Ishiguro Seiji Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Kamimura Tetsuo Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Katanuma Isao Institute of Applied Physics

Plasma Research Center

Univ. of Tsukuba, Ibaraki 305

Kawakami Ichiro College of Science & Technology

Nihon Univ., Tokyo 101
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Kawata Shigeo Technological Univ. of Nagaoka

Nagaoka, Niigata, 940-21

Kurita Genichi Japan Atomic Energy Research Institue

Tokai Research Establishment

Ibaraki 319-11

Miki Kazuyoshi Energy Research Laboratory

Hitachi, Ltd.,

Hitachi-shi, Ibaraki, 316

Mizuno Yukio Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Naitou Hiroshi Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Nakajima Noriyoshi

Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Nishihara Katsunobu

Institute of Laser Engineering

Osaka Univ., Suita 565

Ogino Tatsuki Research Institute of Atmospherics

Nagoya Univ., Toyokawa 442

Takemoto Yukimasa Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Takeuchi Satoshi Faculty of Engineering

Yamanashi Univ., Kofu 400

Tanaka Motohiko Institute for Fusion Theory

Hiroshima Univ., Hiroshima 730
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Terashima Yoshinosuke

Institute of Plasma Physics

Nagoya Univ., Nagoya 464

Wakatani Masahiro Plasma Physics Laboratory

Kyoto Univ., Gokasho, Uji, Kyoto 611

Yabe Takashi Institute of Laser Engineering

Osaka Univ., Suita 565

Observers

U.S.A.

Horton Wendell University of Texas, Austin

Institute for Fusion Studies

Austin, Texas 78712

Sadowski Walter. D.O.E.

KOREA

Kim Soo Yong Korea Institute of Technology

Department of Physics

400 Kusong-dong Chung-gu Taejon-shi

Chung chong nam-do Korea

EGYPT

Makar Malak N. Assuit National Univ.

Dept. of Mathematics

Assuit, Egypt
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GENERALIZED REDUCED MHD, AND FULL MHD CALJLATILS WITH

SEMI-IMPLICIT TECHNIQUES

A. Aydemir

University of Texas Austin
Institute for Fusion Studies

Austin, Texas 78712

The Four-Field model of Hazeltine, et al' , generalizes the well-

known reduced MHD (RMHD) equation to include parallel and perpendicular

compressibility, diamagnetic dift frequencies, and pressure gradients in

the parallel Ohm's law. This model is applied to the study of drift-

tearing modes in tokamaks: newly-found Alfven-resonant modes are

discussed. Applications of recently-developed semi-implicit techniques 3

for efficient treatment of shear Alfven waves, ion sound waves, and semi-

collisional terms are presented.

semi-implicit techniques are discussed in the context of non-reduced,

full MHD equations also. Fully toroidal, linear and nonlinear studies of m

= I modes in tokamaks are presented and discussed in terms of their appli-

cation to fast saw-tooth crashes.

(1) R.D. Hazeltine. et al, Phys. Fluids, 28. 2466 (1985).

(2) A.V. Aydemir. et al, Phys. Fluids, 30, 4(1987).

(3) D.S. Harred, and D.D. Schnack, J. Comp. Phys. (1986).
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SEMI-IMPLICIT METHODS FOR 3-D MHD COMPUTATIONS

D.D. Schnack

Science Applications International Corp.
San Diego, Calif. 92121

Nonlinear MHD systems often evolve on time scales that are long

compared to those associated with the fastest normal modes of the system.

Stability restrictions placed on explicit temporal approximations may

result in uneconomically small time steps, while the fully implicit treat-

ment of nonlinear terms requires iteration, or results in unacceptably

large matrices. Recently, a new class of methods for solving the time-

dependent MHD equations, based on an algorithm developed for long-range

weather simulation, has been introduced. These semi-implicit methods allow

very large time steps, yet avoid the complexity and large memory require-

ments associated with implicit methods. In the semi-implicit methods for

MHD new terms are added to the time-discretized equations that do not

affect the consistency of the solution, yet provide a simple and efficient

means of enhancing stability. This method is unconditionally stable with

respect to all Alfven modes, and consequently permits such large time steps

that accuracy becomes the most important consideration in the chioice of

step size. The semi-implicit method may be implemented using a variety of

different time advance schemes and choices for the semi-implicit terms.

The proper choices can lead to improved efficiency and accuracy for long-

time scale 3-d nonlinear MHD computations. Examples of such simulations of

fusion devices (tokamaks and RFPs) and the solar corona are presented.
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NONLINEAR EVOLUTION OF FPEE BOUNDARY MODE

IN A TOKAHiAK

Gen ichi KURITA, Tomonori TAKIZUKA, Masafui AZUMI

and Tatsuoki TAKEDA

Department of Thermonuclear Fusion Research

Naka Fusion Research Establishment

Japan Atomic Energy Rescarch Institute

Naka-machi, Naka gun, Ibaraki ken

Nonlinear MHD calculations of the m/n-2/1 free boundary mode including

tearing mode in a cylindrical tokamak are carried out by taking account of

the parallel diffusion of resistivity. When 1.75<q<1.9 for qo/q 0=0.5 :,

q0 is the safety factor at the magnetic axis and q, is that at the plasma

surface ), the plasma column shrinks with the elliptic deformation, the value

of q,, is decreased in time, the plasma becomes stable against the m/n 2/1

mode, and finally damping oscillation is observed. The vacuum bubbles

inside the plasma are formed for 1.9<q,<2. due to free boundary kink mode

and for 2.0<q5<2.25 due to surface tearing mode, respectively. The

saturation of magnetic islands are observed for 2.25<q%<2.4 due to surface

tearing mode with plasma expansion and for higher q values due to usual

tearing mode with fixed plasma surface position, respectively. Interaction

between the plasma and material limiter causes the shrinkage for all the

unstable values of qa to free-boundary mode. When q0 is nearly equal to

or larger than unity, the plasma shrinks rapidly and q can be reduced less

than unity below which the m/n I/I kink mode becomes unstable. This plasma

shrinkage is a candidate of the major disruptions in the tokamak discharge

with q around 2.

-18-



I. INTRODUCTION

In the tokamak discharges with q,, ncrly euILJ to 2, some mjo!
disruptions are observed which limit the m&:.mu(, plasma current [,23.
The m,'n2,l tearing mode , m and n are the p bdal and toroidal mod,
numbers, respectively ) is considered to play an, jmw,: Lnat role in this n:j
disruption process. This disruption process has ben studied by nuMarIjcW]
calculations (3,4,5]. The m,'n2 , 1 free boundary kink mode is also
considered to play an importnat role in the major disr uption. The following
scenario has been supposed: The plasma deforms ellipti-_ally due to the
growth of the kink mode and the deformation is saturated by the negative:
surface current. With the dissipation of the surface current due to th,
plasma limiter interaction (6] or due to high electric resistivity near th,
plasma surface (7). however, the deformation continues to grow and the current
disruption is caused. A new scenaroi of the disruption has been presented
by Kurita et al. (8] by means of numerical calculaiton of the mn I 2 1
free-boundary kink modes, wherc the rusistivity evolution including parallel
diffusion is considered. The plasma is deformed by the interaction with
the limiter. This shrinkage may cause the major disruption. The plasma
deformation by the m.'n 2, 1 surface tearing mode has been also presented by
Kurita et al. (9]. In this report we review theore results and present
detailed results of numerical calculations. In se-tion 2, basic equations
are described. The linear stability of free boundary modes and tearing
mode including resistivity equation with finite parallel diffusion is
analysed in section 3. The results of nonlinear evolutions are shown in
section 4. and summlary and discussion are given in section 5.

2. BASIC EQUATIONS

As basic equations, we employ the single hcAicity reduced set of
resistive MHD equations of a low beta cylindrical plasma including the
resistivity evolution equation. Fourier expanded equations in poloidal
and toroidal directions are written as follows:

64(p/11 - E OD&mc, , (1

a_____ = [U, I ]/n + .,/, (2)

ay_ _ -E,']m/n -K 1(V,177,]/n +, $)m, , (3)

JU/n - AI'/n 1 (4•J.1. - AP./n + 2Rj/;6.o , (5)

x ,X (x..)' 4r a../n, at (6)
=' in rnn r

(., is the helical poloidal magnetic flux, 1,., the stream function, ,
the resistivity, J,/ the current density, U,/ the vorticity, E"' the electric
field at the wall, 6,, the Kronecker delta and R,/, is the ratio of mr/n, where
i and n are the Fourier mode numbers of our interest. In these
equations, the uniform plasma density is assumed, and the time is normalized
by the poloidal Alfven transit time p=Bt,/-R (Bt is the toroidal magnetic
field, p the plasma density, and R the major radius). Other normalization
factors are , (Btb 2) (b is the shell radius) for 7 and V'1-R/(BtR 2 ) for
K1.

The resistivity is assumed to follow the same equation as that for the
electron temperature. The parallel diffusiPn coefficient of resistivity,
,. and perpendicular one, K,. are assumod to b- uniform for simplicity.

The parallel gradient of n is defined as (VMr , To calculate
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the free boundary problem, we use the 'pseudo-vacuum" model, where the vacuum
is replaced by the plasma with high resistivity. This method has been
successfully applied to nonlinear simulations of free boundary modes
(10, 11]. The above set of nonline- cqutnas is solved by the
predictor-corrector time integration scheme. The diffusion terms in
Eqs.(1) and (3) are approximated by the implicit representation. These
implicit parts of nonlinear calculation spend almost CPU time of the
computer. The equation for resistivity, Eq.(3), including the diffusion
term is solved by a mapping method. In this method, the radial plasma
displacement, S, is solved instead of resistivity equation, that is,

=s = 11
a s, P - Kcg(V,*) + 17 v,)2) + KXS (7)

The additional term, (17/1')(v,7)2, is appeared by the variable transformation
of n-S, and plays a very important role in the resistivity evolution of
free-boundary case. Obtaining new S,, and Fourier-composed (r,O), we
calculate Y)(r,O) by a mapping,

) ; (8)

After expandeing n(r,O) in Fourier series, we can calculate the right hand
side of Eq.(1), and can advance the time step. By this procedure, the
resistivity is always kept positive at all grid points, which is necessary
to integrate Eq.(1) in time without numerical instability (10).

3. LINEAR STABILITY ANALYSIS

In this section, we investigate the effect of parallel diffusion on
the linear stability of tearing mode and free-boundary modes; kink and
surface tearing modes [10,12. From Eqs. (I)~(6), the following linearized
reduced set of resistive MHD equations is derived,

"yt = FAq - m dJeq , (9)

r dr
4 -F$ + Y)qA4' + ?Jq , (10)

r dr + ,.F( M--e--_Fy) (11)
r d r dr

F l(m-nq) , (12)

where q is the safety factor, subscript "eq" means equilibrium quantities,
and the time derivatives are replaced by the growth rate, y. The
perpendicular diffusion is negligibly small in general. Since the singular
surface ( F-0 ) does not exist in the plasma region for the kink mode (
qa<m/n ), a m-F$ holds and Eq.(11) becomes

( + - + Ry-)(e- - 0 (13)

This relation implies that the parallel diffusion scarcely affects the kink
mode in the linear stage. The ratio of the plasma radius, a, to the wall
radius, b, is a/b=0.66. The resistivity, nN(r), is inversely proportional
to Jeq(r) with ,?7q(O)=10-6 and l??(b)=l. The profile of current density is

chosen as

-15-



Jeq(r) { Jeq(O) - Jeq(b) { I -I r/uj 5b + Jeq(b), (14)

for 0r:c5ui, and Jq(r) = Jeq(b) = Jeq(O)k7qO,7'.q~h) for u<r2b. The ratio,
qo/q,, is 0.5 for this current profile, and the value of Jq(O) is
determined by the value of q0. In Fig.1, the graph of linear growth rate
versus q, for three values of K. is shown by three solid curves. The
dependence to Ku is small in free-boundary kink mode region ( q!2) as
indicated by Eq.(13). Numerical calculations of the eigenvalue problem
support above prediction. The growth rate of the kink mode is smoothly
connected to that of the "surface tearing mode" in the q 2 region (12].
The growth rate for higher K, value is higher than that of lower KU at q,
around 2. This relation is inverted in the surface tearing mode region,
and the growth rate for higher v, becomes smaller than that of lower case.
For sufficiently large K, value, the growth rate of tearing mode with
resistivity perturbation tends to that without resistivity perturbation
(n7const.) shown by the broken curve in the figure. This result is
consistent to that in Refs.[13,14. The relatively large value of the linear
growth rate at q, 2.0 is attributed to finite and relatively large plasma
resistivity near the singular surface, details of which will be presented
elsewhere. The parallel diffusion of resistivity becomes very important
in the nonlinear phase, especially in the phase of the interaction between
plasma and limiter.

4. NONLINEAR CALCULATIONS

In this section, we carry out nonlinear calculations of the m/n-2/1
free-boundary mode including tearing mode for the cases (4.a) without a
limiter and (4.b', with a limiter. The initial profile of current density
is given by Eq.(14) ( qo/qt,,_o-0.5 ). Total plasma current is assumed to
be constant in time. The resistivity at t 0 is determined as
-(r)=E'/J(r) with 7(0)=10 -6 and ii(b)=1. We choose, in the following
calculations, the initial plasma radius, ao, as ct/b=0.66. The parallel
diffusion coefficient, Ku is set 102, and K,=10 -8. The nonuniformity of 77
on a magnetic surface disappears within the time interval of about 0.1 due
to the diffusion of K4=1O-. This value of K, corresponds to the following
actual parameters; toroidal magnetic field Bt:z4 T, major radius R=1 m,
electron temperature Te=l keV, and plasma density n=1O m-3. Number of
Fourier components, M, and radial meshes, Nr, are typically M=]O and
N,=200.

4.a Case without limiter
The nonlinear evolutions without limiter are studied at first for

various initial values of qao=qa(t=0); (a) q0=1.85, (b) q0o=1.95, (c)
qao=2.05, (d) qo0=2.15, and (e) q,0=2.5. Figures 2 and 3 show the time
evolutions of *-contour for q,,0=1.85 and qo0 =1.95, respectively. The bold
line in the figure represents crowded resistivity contours which correspond
to the approximate position of the plasma surface. For qao=1.85, the
elliptic deformation grows with the shrinkage of the plasma column (
O<tztOo ). Since the plasma current is constant, this shinkage makes q,
value smaller from 1.85 to 1.25, and the plasma becomes linearly stable
against the m/n=2/1 kink mode. Finally the damping oscillation of the
shrunk plasma is observed ( tZ]00 ). The radius of each shrunk plasma with
circular cross section is 0.95ao for q,0=1.75, 0.85 o for qao=l. 8 and 0.80o0
for qg=1 .85. The shrinkage of the plasma column is caused by the following
processes. An )?-contour in a resistive plasma crosses '-contours near the
plasma surface due to the convection, and the plasma periphery connected with
the vacuum region is drastically cooled by the parallel thermal conduction.
It is to be noted for the case of K,10 that the plasma area is conserved
and the saturation state with elliptic deformition can be realized (10).

-16-



On the other hand, for larger Qao value ( q0o-1.95 ), the vacuum bubbles are
formed by the free boundary kink mode, as shown in Fig.3, even for such a
decreasing current profile ( q0/qlit o=0.5 ). The hot plasma flows out into
the "pseudo -vacuum" region along the magnetic fild line and the vacuum region
penetrates into the plasma to form the vacuum bubbles. It was shown by
Rosenbluth et al. that the saturation state of the ideal kink mode is the
elliptic deformation for the parabolic current profile (15). The vacuum
bubbles were found to be formed by the surface tearing mode in a resistive
plasma for qo>2 and qo/qait=o=0.5 [I0]. The bubble formation by the
free boundary kink mode for the initial condition of q.=1.85 and q0=1.2
has been found by Dnestrovskii et al. using the 'heating' model for the
transprrt of 1 in which the convection of plasma boundary is not considered
(11). The transition from the formation of vacuum bubbles to the
shrinkage with elliptic deformation occurs between the qo values of 1.85
and 1.9 for this current profile. The current profile determines this
transition point, but the detailed mechanism or the criterion of this
transition is not clarified yet.

When q0o becomes larger than 2, the formation of vacuum bubbles by the
surface tearing mode is observed even for finite K value just the same as
for the case of no K, (I0). This bubble formation occurs in the following
process; First, the plasma boundary touches the magnetic islands formed
inside of the plasma due to the horizontal plasma flow. Because of finite
large K,, the cold plasma in the vacuum flows into the hot plasma along the
magnetic field line instantaneously and the magnetic islands with plasma
current are put to the vacuum region, being separated from the plasma hot
core. At this point, the singular surface is also put in the vacuum and
after that the vacuum bubbles are formed just the same process as that in
free-boundary kink mode (see Fig.4).

We observe the magnetic island saturation with plasma expansion for
higher qo values 2.05%qO:2.3 as shown in Fig.5. The transition from
formation of vacuum bubbles to saturation due to magnetic islands occurs
about qo=2.05 for the plasma of this current profile with K,=10 2. To see
this, we rewrite Eq.(11) by elimination of * by use of Eq.(1O) as follows;

r dr (15)

Sign of resistivity perturbation at the plasma surface, n(a), determines
whether vacuum bubbles are formed or not, so the condition for the formation
of vacuum bubbles can be written by the following condition for K,;

K, < 0 qf m-nq (16)

In the case of K,=O, since m-nq < 0 and ' > 0 at plasma surface r=a, this
condition becomes to be 0 < 0, just the same as the condition of surface
tearing mode (10,12). So, in this case, the plasma always forms the vacuum
bubbles by the surface tearing mode, which is consistent to our former
results (10). In the case of K,-, this condition cannot be satisfied and
in this case plasma always saturate to form the magnetic islands. When
qo value becomes much larger, and the unstabel mode changes from surface
tearing mode to tearing mode, the usual magnetic islands saturation with
fixed plasma surface position is realized in the simulation (see Fig.6).

'4.b Case with limiter
In this subsection, the effect of the limiter on the nonlinear evolution

of free--boundary kink mode and surface tearing mode is studied. We assume,
for simplicity, that the plasma is surrounded'by the limiter for all poloidal
and toroidal angles. The limiter radius, bl, is chosen as bl/o=1.03 for

-17-
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all cases. The value of K in th(e plamui 1tic)1 is 10, while that in
the vacuum region is set 10 4 for numerical reasons. Other parameters are
the same as those for the case without the limiter.

At first, we investigate the effect of limiter to the case of m"n-2 I
free boundary kink mode; 1.75 q,,<2.0. We show the time evolutions of q,
and the internal inductance, li, for the cases with ( solid line ) and without
( broke n line ) the limiter in Fig.7 for q, 1.85 (a: and q&o- .95 (b), where
1%p 2(v)jdS / (4I).2S ( S is the plasma area and a denotes the plasma
surfa ) and its initial value is 1. The bold line, shown upper side of
the figure, denotes the time duration when the plasma contacts with
limiter. In the shrinkage phase with the constant total current, the values
of qo is unchanged in contrast with the decrease of q, value, the positive
skin current flows near the plasma surface, and the value of 1, becomes
small. In the case of qo-r.85, the final value of q is about 1.3 and that
of 1i is about 0.7, respectively, for both cases with and without the
limiter. After the plasma surface touches the limiter (t>55) the plasma
is shrinking as the ellipticity is increasing. In contrast to this case,
the time evolutions of q and 1, for q0- 1.95 are quite different between
two cases with and without limiter. Figure 8 shows the time evolutions of
* and ) contours for the case of qn=1.95, in the region of formation of
vacuum bubbles. The deformation of plasma is much restricted by the limiter
shown by a row of small rectangles in the figure. After the plasma touches
the limiter (tz40), it is hardly sharpened by the limiter, shrinks rapidly
and finally goes into the stable state to m/n-2/1 free-boundary kink mode.
When the plasma becomes stable against the min 2/I kink mode, the plasma is
detatched from the limiter and and the damping oscillation begins (t;80),
which is clearly seen by the magnetic energy evolution of each mode shown
in Fig.9. Since the separatrix always crosses the limiter, the vacuum
bubbles cannot be formed and plasma periphery is cooled as the same as the
case of q0o-1.9. As shown by solid lines in Fig.7(b), the minimum value
of q. becomes to be less than one and the value of Ii becomes about 0.6 in this
case. To demonstrate the plasma shrinkage and the fluttening of average
current density, the radial current profiles of m/n 0/0 mode before (t=O)
and after (t=187.5) the shrinkage are shown in Fig.IO. This phenomenon is
much different from that without the limiter; the formation of large vacuum
bubbles. The evolutions of q. and Ii of that case are shown by broken lines
in Fig.7(b) and the evolution of ' and n are shown in Fig.2, respectively.

Next, we investigate the limiter effect in the case of surface tearing
mode, 2.:qO.2.45. In Figs. 11 and 12, time evolutions of ' and n contours
are shown for qo2.05 and q%=2.15, respectively. In both cases, when the
singular surface is put into the vacuum region, the magnetic islands with
ths plasma current are also put there. This helical current flowing in
the magnetic islands, which is separated from the hot plasma core, makes
the plasma in the equilibrium state stable to m/n-2/1 kink mode and the
plasma is detached from the limter once (tZ3 in Fig.11 and ti230 in
Fig.12). The helical current, however, disappears due to the interaction
with the limiter and the plasma becomes unstable to m/n2/1 kink mode again,
and the same process develops as that in the free-boundary kink mode. The
values of q. become nearly equal to I in both cases.

Figure 13 is the stability diagram in the (qa,qo/qa) plane for
approximated current profile to that realized in the nonlinear calculations
with the limiter, where the hatched region denotes the unstable one. The
trajectories of qo-const. for q,o=1.85 and q,0-1.95 are also depicted, which
correspond to the results of nonlinear calculations. In this stability
calculation, the plasma radius is determined from the condition of constant
total current, that is, a=ao ,-/qao with ao./b-0.66. It is easily seen from
the figure that higher qo values for the same qo/qo, value reslut in lower
q. value in the final stable state. Final q,, values of nonlinear
calculations for both %o cases are shown in the figure by open circles.
Because of its inertial effect, the final q values decrease lower than the
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marginaly stable values. It should be noted, hocevcr. that the numerical
results here are obtained from the single helicity calculation and in an
actual plasma with q. less than unity, the most dangerous mn 1, 1
free boundary kink mode becomes unstable, which can easily lead the current
disruption. The existence of this m'n 1, 1 free boundaiy kink mode in a
tokamak is already detected in T-1O experilnetzand the relation to ma.ior
disruption is also suggested in Ref.[16]. To show the whole disruption
process, multiple helicity calculation must be carried out.

It is also easily seen from Fig.13 that, if the plasma can pass th_
dangerous zone, q0 of about 2, without large deformation of plasmc surfa :. ,
in some way, the m, n-2i1l free-boundary kink mode becomes not so dangrcou:;
and the shrinkage due to the instability makes the value of q, a littie
bit smaller; just the intermediate one, 1.3Z q, :1.7. where the plasma is
stable to both m'n-:2,'1 kink mode and mnn-1 '1 surface tearing and kink
modes. This can explain the reason of realizing the very low q, value in
a few tokamak experiments, once q, is lowered blow 2 (17].

4.c Negative surface current
In this subsection, the evolution of negative surface current, which

is considered to play an important role in the major disruption process, is
studied. Figure 14 shows the time evolution of the maximum value of
negative surface current near top or bottom of plasma poloidal plane in Fig.8
for q,0 -1.95 without limiter(broken line) and with limiter(solid line'
The negative surface current developed to suppress the instability does not
disappear in spite of the interaction between the plasma and limiter, but
even grows rapidly during the contact and disappears suddenly when the plasma
reaches the stable state and is detached from the limiter. This fact is
different from the prediction of Kadomtsev[6] or Zakharov[7, but it is
plausible because the plasma surface is always formed just inside of limiter,
the plasma is unstable during the interaction and, furthermore, the negative
surface current grows almost exponentially.

5. SUMMARY AND DISCUSSION

In this section, we summarize the results of nonlinear calculations.
The parallel diffusion of resistivity plays a crucial role in the evolution
of free-boundary modes, especially in the case with the limiter; The plasma
shrinks due to the diffusion, while the plasma area and the value of q0 is
conserved in time without the diffusion. The final states of nonlinear
m/n=2/1 free-boundary modes evolutions without the limiter are classified
into following four cases according to the value of initial q0, qo0.

1. Saturation of magnetic islands without plasma surface deformation
2. Saturation of magnetic islands with pla ia expansion
3. Saturation due to formation of vacuum bubbles
4. Stable state of shrunk plasma

The ranges of qo are 4%qao;2.3, 2.3;qo;2.05, 2.05;q 0o;1.9 and
1.9Zqao%1.75 for cases 1, 2, 3 and 4, respectively, which are values for
calculation parameters in this report, and depend on the current profile
and/or the value of K.. The boundary between cases 1 and 2 almost coincide
with that between tearing and surface tearing modes, and that of cases 2
and 3 is given by Eq.(16). As for the boundary between cases 3 and 4,
however, the mechanism is not clarified yet, and we can determine this
boundary only by the nonlinear calculations at present.

When the plasma is surrounded by the limiter placed near the plasma
surface, the above-mentioned final states of cases 2 and 3 becomes completely
different one, that of case 4, and in this case, all unstable free-boundary
modes with plasma surface deformation go into stable state of shrunk plasma
to m/n2/1 kink mode In some cases, however, the minimum value of q
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becomes even less than 1, where the most dangerous m, n 1/1 free boundary kink
mode is unstable. New disruption scenario of tokamak discharges with
q!-2 is described briefly in the following;

1. When q0-2, m/n-2/1 free-boudary kink mode becomes unstable.
2. Plasma shrinks due to the interaction with the limiter.
3. If qor1, this shrinkage makes q, value to be less than or nearly equal

to 1.
4. Then m/n=1/1 free--boundary kink mode becoinc-s unstable, which causes

the major disruption.

This process occurs in the neighborhood of the broken line.in the stability
diagram shown in Fig.13. It can be concluded that the condition, q0<1,
is required to pass the dangerous zone of qc2 in tokamak discharges,
because, by the interaction with the limiter, q, decreases nearly equal to
1 for q0= and the m/n=1/1 kink mode is destabilized. The condition of
q0< 1 for realization of low q, (q(1 1.5) discharges is the same as that in
Ref.(7, but the mechanisms are completely different each other. The
nonlinear calculations of multiple helicity are now being carried out and
the complete results of this disruption scenario will be presented
elsewhere.
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FIG.I Linear growth rate, y, versus safety factor at the plasma surface
q, for various values of parallel resistivity diffusion coefficients K, for
current profile; J(r)-J(0)(1-(r/a)3 56 )2. Parameters are chosen as a/b=0.66a n;(b)/n(O)=106.  ales5 o o
nd Values of K. are 105,102 and 10( for three solid lines.

Broken line is growth rate without resistivity perturbation, Eq.(1I).
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TIME 0.0 TIME 90-00

4 ~A~ //N/

TIME 110.00 TIME 150-00

TIME 185-00 TIME 207-50

FIG. 2 Time evolutions of %P contours and plasma surface (bold line' for
current profile, J(r)>-J(O)(1--(r/a)3 ~~ with q,,o1.85. Plasma shrinks with
elliptic deformation.

-22-



WNW) ~ ~ iPIII iy

TIME 0.0 TIME 52-50

TIME - 102.50 TIME 105-00

TIME 112-50 TIME 120-00

FIG. 3 Time evolutions of *-'contours and plasma surface for q,0o=1.95.
Formation of large vacuum bubbles is observed.
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TIME 37-50 TIME 40-00

TIME 55-00 TIME 77-50

TIME =80.110 TIME 122-50

FIG. 4 Time evolutions of *I-contours and plasma surface for q,0o=2.05.
Formation of vacuum bubbles is observed for plasma of q.;2 with finite K,.
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TIME 0.0 TIME 100-00

TIME 200-00 TIME 300-00

1 51

TIME 400.00 TIME 500-00

FIG.5 Time evolutions of 4I' contours and plasma surface for q,0o=2.15.
Plasma expands due to surface tearing mode with magntic islands.
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TIME 650.00 TIME 665-00

FIG.6 Time evolutions of *i-contours and plasma surface for q0 ,o=2.5. For
this sufficiently high q. value, usual tearing mode saturation with fixed
plasma surface is observed.
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FIG.7 Time evolutions of q and internal inductance 1i for (a) q.o=1.85
and (b) qao=1.95. Results of calculation with and without limiter are shown
by solid and broken curves, respectively. Bold line, shown upper side of
figure, denotes the time duration when plasma contacts with limiter.
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TIME - 0.0 TIME '70.-00 TIME 76.00
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TIME 6.00 TIME 90-00 TIME 95.00

FIG. 8 Time evolutions of *l-contour and plasma surface for q 0 -1.95.
Limiter is placed at r'i1.O3oo. The plasma touches limiter at t _-38 and is
detached from it at th 79.
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FIG.IO Radial current profiles of m/nO /0 mode before (t O; broken line)
and after (t=1l87.5; solid line) plasma shrinkage for q,0o=1.95. Plasma
radius, a,/b-O.66 initially, becomes a/brO.485 through this shrinkage.
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TIME 60.00 TIME 102.50

TIME = 130.00 TIME 147.50

TIME 155.00 TIME 167.50

FIG.11 Time evolutions of *-contour and plasma surface for surface tearing
mode with qo=2.05. After helical current disappears due to interaction with
limiter, the same phenomenon occurs as that in Fig.8.
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TIME z145-00 TIME 155-00

TIME 1i95.00 TIME 230.00

TIME 240.00 TIME =245.00

FIG.12 Time evolutions of 'I-contour and plasma surface for surface tearing
mode with q,,o=2.15. Almost the same phenomenon occurs as that in F'ig. 11 .
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FIG.13 Stability diagram of m/n=2/1 free-boundary kink mode for
approximated current density profile to that realized in nonlinear
calculations. Hatched region denotes unstable one, and two broken lines
of trajectory correspond to nonlinear calculations with limiter for
q0o=1.85 and q 0=1.95. Black and open squares denote start and final
positions, respectively. Trajectory of q&-2 (qo=i) is shown by dotted
line. Plasma radius is determined from condition of constant total current,
i.e., a=ao a/qciO with ao/b=0.66.
Current density profiles are determined from following formula,

I j (r)=j0[ (1 -(r/ao)3 6) 2+kexp(-2((r-a+p)iPV) 2) ]{1-(r/a)v}2.

Height of skin current, k, is determined from condition of constant total
current for fixed position of skin current, p=0.lao, and width of that,
v=O.O5ao. Value of v, which denotes current gradient near plasma surface,
is chosen to be several ten.

-32-



10

--
0 10 20 30 40 50 60 70 80 90 100

TIME

FIG.14 Time evolutions of maximum value of negative surface current near
top or bottom of plasma poloidal plane in Fig.8. This is the same
calculation as in Fig.7(b). Bold line, shown upper side of figure, denote
the time duration when the plasma contacts with limiter. Broken line
denotes result without limiter.
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A high precision MHD code, which has the fourth-order accuracy for both

the spatial and time steps, is developed, and is applied to the simulation studies of

two dimensional driven reconnection. It is confirm that the numerical dissipation

of this new scheme is much less than that of two-step Lax-Wendroff scheme. The

effect of the plasma compressibility on the reconnection dynamics is investigated by

means of this high precision code.
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l. Introduction

The magnetohydrodynamic (MHD) simulations have given a great contribu-

tion to the researches of the nuclear fusion and astrophysical plasmas. The widely

used numerical schemes of the MHD simulation codes are categorized to two types

of schemes, i.e. Fourier and finite difference schemes. The former is useful for the

problems that have a periodic boundary condition, and the latter is favorable for the

free boudary problems, the typical example being space plasma phenomena. Two-

step Lax-Wendroff scheme is one of the most widely used finite difference

schemes. This scheme time-centres the integration by defining temporary or inter-

mediate values of the dependent variables at the half time steps, and this is a explicit

method that has the second-order accuracy in the spatial and time steps. Because of

the stability and the convenience for the implementation, two-step Lax-Wendroff

scheme is much powful for analyzing the global MHD dynamics. In this scheme,

however, large numerical diffusion occurs in short wavelength components, and

hence this method is not so appropriate for the problem in which short wavelength

components are important, for example, turbulence and shock problems.

In this research, we develop a high precision MHD code that has the fourth-

order accuracy in both the spatial and time steps, and apply that to the simulation of

two dimensional driven reconnections. It is widely known that there are two types

of reconnections, one being tearing mode reconnection and the another being driven

reconnection. Sato and Hayashi in detail investigated the dynamics of driven recon-

nection by means of two-step Lax-Wendroff simulation code, and they found that

driven reconnection leads to accelaration of plasma as high as the local Alfven

speed, and that slow MHD shocks is formed just downstream of the separatrix.

They also revealed that once reconnection proceeds, its ultimate fate no longer

seems to be dependent on the resistivity, but is largely controlled by the boundary

conditions.
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The first objective of this paper is to reconfirm the above conclusions by

means of high precision code. The second one is to show the effectiveness of the

high precision code by quantitatively comparing the simulation results by two dif-

ferent codes. And the another objective is to investigate the influence of the plas-

ma compressibility on the reconnection dynamics by using of the high precision

code.

§2. Numerical Scheme and Simulation Model

We employ the fourth-order finite difference approximation to the spatial

derivative

(8L) -f ) - (f1-f)_2 Ax, j= 3, 4,...,Nx 2

axj f8 (fif i-)-(f+-j2)/N

where the simulation region, x= -L/2-Lx/2, is implemented on a set of Nx mesh

points xj; x =-L/2+ (j-1)Ax, Ax= L,(Nx-1). For the other spatial dimensions,

the same fashion is employed. And the time integral is carried out by means of the

fourth-order Runge-Kutta-Gill method. The time integral scheme for eq.

af/at=F(f) is given as follows,

Ao = F(fro).,At

f., = f'o+cl.Afo

Af = F(f.').At

f-= fI'+C2 .(Af'-AfO)

Af, 1  Q2 .Af°+S2 .Af'

MI = F(f, 2 )-At

f. 3  f' 2 +c 3.(AIf-Af')
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Af. 2 = Q3 .Af +S3.Af

M(3 = Ff3-&

= f"3 +c4.(Af 3-2_f. 2)

where cI=l/2, c2 =-I-1/2, c3 =I+i1V2, c4 =1/6, Q2=1-3c2 , Q3 =1-3c3 ,

S2 =2c2 , S3 =2c3, and n denotes the time step.

The boundary condition, the initial condition and the basic equations are just

same as Sato and Hayashi's ones.2  The initial distributions of the magnetic field

B,(z), the current j(z), and the pressure p (z), are chosen to be

B,(z) = BOtanh(z), j(z) = josech2(z), (I)

p (z) = p0 sech2(z) + P0 , (2)

where po=Bxo2/2, and P0 is constant for space. (But P0 is usually zero, if not indi-

cated differently.) The simulation region is a square box surrounded by four

planes, two being parallel to the x axis and placed at z= +2 (normalized), and the

other two being parallel to the z axis and placed at x = ± 3. We inject the plasmas

with a given mass flux, magnetic energy flux, and total energy flux symmetrically

from the boundaries placed at z = ± 2 (input boundary). The boundaries at x = ±3

(output boundary) are assumed to be free boundary. We presume that the resistivi-

ty -9 takes the form

q(j) = (j-j) 2  for j>-j

0 otherwise.

And the basic equations to be solved are the compressible, isotropic, one-fluid mag-

netohydrodynamic equations. The real calculation is carried out by using of the

normalized set of these equations as same as in Ref.2.
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§3. Results

Figure 1 is the contour plot of the magnetic flux at three different times,

where A0 is the maximnvim speed of the injected flow from the input boundaries.

As same as Fig.1 in Ref.2, the X-type neutral point and the separatrix are formed

before t=12 Alfven times. Afterwards, reconnection proceeds and plasma is ac-

celerated as high as local Alfven speed, the slow shock being generated. Figure 2

shows the cross section distributions of j, B, and p in the results by two-step Lax-

Wendroff code and high precision code. All parameters in both calculations by two

codes are same. Note that the global structures of these two simulations are almost

same. This global agreement strongly supports the correctness of the main result in

Ref.2, i.e. the slow shocks are formed just downstream of the separatrix. Further-

more, we can see that the high prcision code more sharply reproduce the shock

structure on about z=0.5. In the up-stream side of shock front, however, the

current distribution by the high pricision code has a wavy structure. These small

differences in the local structure between two simulations are caused by the reduc-

tion of the numerical diffusion in the high prcision code.

Figures 3, 4, and 5 show the temporal evolutions of the electric field by both

two-step Lax-Wendroff and the high precision codes, when C, jc, and A0 are

changed. No remarkable change between two different calculations confirms Sato

and Hayashi's conclusion that the crucial parameter for the electric field on the

reconnection point, i.e. for the reconnection rate, is not the resitivity, but the plasma

flow on the input boundary, A0 .2  The interesting difference between two-step

Lax-Wendroff code and the high precision code is that the pulsation of the electric

field is more clearly observed in the high precision code than in two-step Lax-

Wendroff code. The difference clearly appears in the curves of A0 = 0.2 in Fig.5.

This pulsation is caused by the effect of magnetosonic wave, which is bouncing

between two input boundaries. The disappearance or tne reduction of magnetoson-
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ic wave pulsations in two-step Lax-Wendroff code seems to be caused by large nu-

merical diffusion in two-step Lax-wendroff code. These results show that the nu-

merical diffusion of the high precision code is less than that in two-step Lax-

Wendroff code.

Lastly, we investigate the effect of the plasma compressivility on the recon-

nection dynamics by this high precision code. Though driven reconnection have

been studied numerically by many authors, the most of them employed the in-

compressible approximation. 3 -6  Recently, however, it is revealed in the reversed-

field pinch study that the rate of driven reconnection is reduced by the effect of the

finite 03 of plasma. 7 The reason is that the converging flow into the X-point can

lead to the peaking of the plasma pressure on the X-point by the influence of the

adiabatic compression, and the peaked pressure on the X-point acts to suppress the

converging flow and to delay the reconnection process. From this results, we can

suspect that as the system is approaching to the incompressible system the driven

reconnection is being reduced, since the incompressible approximation is

corresponding to the large pressure limit or large magnetic field limit. In order to

confirm this suspection, we execute some calculations of several P0 in eq.(2). The

results are shown in Fig.6, where the up- and down-side panels show the evolutions

of the plasma density and electric field on the reconnection (X-)point, respectively.

In this simulation, the plasma resistivity is settled to a constant value (n = 0.01), and

the injected plasma flow is adjusted so that the electric field on the input boundaries

is constant (E 0 0.2). We can see that as P0 is increasing the change of the density

on the reconnection point is reduced. If we remember that the uniform density

profile is unchanged everywhere in the incompressible approximation, we can con-

sider that the system is approaching to the incompressible system as P0 is increasing.

And we can see also that the electric field, that is proportional to the reconnection

rate, is saturated in lower level for larger P0. Therefore, we can conclude that the
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incompressible effect leads to the reduction of the rate of driven reconnection.
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ABSTRACT

Interaction between the solar wind and the plasmas produced from

cometary gases has been modeled by using a three-dimensional time-dependent

magnetohydrodynamic (MHD) simulation with the cometary mass loading. The

model reproduced several features observed by the recent missions to comet

Halley. A weak bow shock was located at 3.2xl0 5 km in front of the comet.

The magnetic field increased by a factor of 3.7 across this weak bow shock

and continued to increase up to the contact surface (Bmax/BjMF=6-8). The

plasma temperature increased across the bow shock and decreased nearer to the

comet. IMF lines were hung up on the comet and formed a long plasma tail in

which the lobe field was quite strong and Blobe/BIMF.5. A cold dense plasma

sheet formed in the tail and this thin plasma sheet was oriented normal to

the IMF direction.

1. Introduction

Interaction between the solar wind and a comet is somewhat different

from that between the solar wind and unmagnetized planets like Venus. The

difference may occur because the comet has a very small mass or a small

gravitational force. Therefore, a large amount of gas is evaporated from the

cometary icy nucleus and extends into the solar wind where it is ionized by

the photoionization process due to the solar ultra-violet ray and the charge

exchange process. Thus a quite broad dayside interaction region, which is

composed of three discontinuities, the outer shock, contact surface and inner
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shock, can be formed around the comet [Brant and Mendis, 1979; Mendis and Ip,

1977; Mendis and Houpis, 1982; Niedner, 1984]. The cometary plasma tail

frequently has a complicated structure with narrow rays, kinks and

condensations. Moreover it sometimes shows a mysterious behaviour which is

known as a disconnection event [Niedner and Brandt, 1978, 1979; Niedner et

al., 19811. That is, the cometary tail is disconnected and propagates down

the tail from the comet.

In the international spacecraft missions to comet Halley, the Suisei

probe got to a closest approach of 1.51xlO 5km at 13:06 UT on 6 March 1986

(Itoh and Hirao, 1986]. The plasma flow vectors, the proton density and the

estimated directions of draped magnetic field in the sun side strong

interaction region were demonstrated during the Suisei encounter with comet

Halley [Mukai et al., 1986a, b]. The transition corresponding to the bow

shock was clearly shown and the shape of the bow shock was given by a

parabola. The shock distance from the comet was estimated to be 3.5xo 5km on

the sun-comet line at the time of the closest approach of the Suisei probe.

The Geotto magnetometer experiment [Neubauer et al., 19861 demonstrated that

the magnetic field was strongly enhanced (B=50i.6OnT) near te comet and

suddenly disappears in the cometary center region or probably inside the

contact surface. The many features of the strong interaction region have

been made clear from the satellite observations. On the other hand, a

disturbance of the plasma tail of comet Halley was also observed by handreds

of photographs and its dynamics was discussed in connection with the

disconnection events of cometary plasma tail [Saito et al., 19861.

Schmidt and Wegmann [1982] solved the full set of MHD equations to model
the interaction between the solar wind and the cometary ionosphere in the

region exterior to a fixed contact surface by introducing the cometary gas

production. Two surfaces of discontinuity, the shock front and the contact

surface are reproduced and the embedded magnetic field induces an asymmetry
in the plasma flow and in the density distribution of cometary tail. Fedder

et. al. (1986 a,b] also simulated the interaction processes to demonstrate

the overall structure of the cometary tail. A spheroidal head and a long

ribbon-like tail were formed for a steady solar wind and interplanetary

magnetic field (IMF). Furthermore, predictions for comet Giacobini-Zinner

were presented by the MHD simulation of comets. The interaction of the solar

wind with the outflowing plasma from a comet was simulated by using a 2

dimensional MHD model to reproduce the contact surface and the cometary

magnetotail [Ogino et al., 1986b]. For a constant IMF, tail magnetic
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reconnection begins to occur at several points in a thin plasma sheet. A

plasmoid with high plasma density appears in the cometary tail and propagates

tailward with a local Alfven speed. When the IlF orientation is reversed,

dayside magnetic reconnection occurs at the subsolar point, and a larger

disturbance occurs in the whole tail region and propagates down the tail.

In the present paper, the interaction processes between the solar wind

and comet Halley have been successively studied by using a 3 dimensional

time-dependent MHD model with a cometary plasma production. The model

reproduced several features of the comet and solar wind interaction predicted

by earlier theories and observed from the recent missions to comet Halley.

2. Simulation Model

The present purpose is to study the interaction between the solar wind

and the cometary plasmas by using a 3 dimensional MHD simulation [Ogino,

1986a] with plasma production. Therefore, the plasma production rate is

added to the MHD equations as it was given by Schmidt and Wegmann [1982].

The normalized MHD equations are written as follows,

a - " ( vP ) + D Y 2 P + A (la)

a VA( v -vC )
- V V P+ J x B + -4 A (1b)

a t P P p
at=_ ( v ) p - p • Tv1+ p +2 (p+ A v -I c1 + - (1c)a t 2 Tc

- = V x ) + n Y2 B, (1d)
a t

where,

mcQo e-r/icA= ec~

4xhcrz

stands for the cometary plasma production, J--VxB is the current density, P
the plasma density, v the flow velocity, p the plasma pressure, B the

magnetic field, #*= Uv the viscosity, -5/3 the ratio of specific heats,

--no(T/To) - 3 / 2 the resistivity and T/To the normalized temperature. For the
sake of convenience the units of distance, velocity and time are respectively

defined by the earth's radius (Re=6.37x10 6m), the Alfven velocity (vA=6 .80x

106m/s) and the Alfven transit time (ts=Re/VA=0.937s). The other numerical

parameters are no=0.01, u/Psw=D=Dp=-O.005 where Psw is the solar wind density,

and the small diffusion terms in (la), (1b) and (ic) are simply added in

order to suppress numerical MHD fluctuations. For the present comet
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simulation, vc and Pc for the cometary plasma are neglected because IVcl <<

lvi and Pc << p. The magnetic Raynold's number, which is the magnetic

diffusion time devided by the Alfven transit time, S is larger than 400.

The coordinate system used in the 3 dimensional MHD simulation is shown

in Figure 1, where xo=yo=zo=7.7xQ 5 km and x1 =-1.54x10 6 km. The solar wind

accompanying a uniform IM in the z-direction flows into the simulation box

through the boundary at x=xo and begins to interact with the cometary plasma.

The mirror boundary is used at z=O and y=O, on the other hand the free

boundary, where the spatial derivative of the physical quantities is zero, is

used at z=zo, y=yo and x-xl.

The typical parameters of the solar wind are vsw=500km/s, nsw=15/cc,

Tsw=2X10o5K and BINF=Bz=6nT for a closest approach of the Suisei probe to

comet Halley [Itoh and Hirao, 1986; Mukai et al., 1986a, b]. Moreover, the

parameters of the plasma production for comet Halley are as follows: the

plasma production rate, Qo=1.0x103 0s-1, the ionization rate, €=3.3x10- 6 s-1,

the radial flow velocity, Vr=lkm/s, the ionization distance, Ac=vr/a

=3.03xlo5km and the effective cometary mass ratio of the water group to the

proton, mc=16 [Mukai et al., 1986a, b]. The MHD equations are solved by the

two step Lax-Wendroff method as an initial value problem on the grid points

of (Nx, Ny, Nz)=(90, 30, 30) , (150, 50, 50) or (120, 60, 60) except for the

boundary. The mesh size is ax=Ay=Az=4Re, 3Re or 2Re and the time step, At is

selected as 8Ax (=30s for Ax=4Re) in order to assure the numerical

stability.

3. Simulation Results

Interaction processes between the solar wind and comet Halley were

simulated by using the observed parameters for the closest approach of the

Suisei probe [Mukai et al., 1986a, b] as was previously mentioned. Stating

from the initial conditions where a uniform solar wind only exists, the code

was run until a quasi-steady state configuration resulted. This required

about 1024 time steps or 8.5 hours in real time.

In Figure 2 is shown a quasi-steady state configuration of the

interaction between the solar wind and comet Halley in the x-z and x-y planes

for no uniform IMF where BIMP=Bz=OnT, vsw=500km/s and nsw=1 5/cc. The plasma

density, P and the plasma pressure, p are depicted by the contours and the

flow velocity by the arrows. A bow shock is formed at 3.2xlo5km as is shown

in the plasma pressure and the velocity flow pattern, and a cometary dense
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plasma extends toward the downstream. The plasma flow changes its direction

toward the outside across the bow shock, however it is rather parallel to the

sun-comet line in the further tail. The configuration of interaction is

symmetric in the x-z and x-y planes because of no uniform IMF. When a

uniform IMF of BIMy=Bz=6nT is introduced in the z direction, the quasi-steady

state configuration is modified as is shown in Figure 3. On the top panel

the magnetic field is also depicted by the arrows. The position of the bow

shock moves little and an asymmetry appears in the x-z and x-y planes. The

plasma density and pressure are thinner in the z direction parallel to the

uniform IMF, which comes from the draping effect of hanged IMF lines. The

megnetic field has a strongly disturbed feature in the neibourhood of the bow

shock and is again well ordered in the tail region. The field magnitude is

quite large even in the tail lobe (B=3OnT). It should be noted that a high

density lump appears at x=-8.8xlO5 km in the tail and propagates tailward.

The tailward velocity is about 50km/s which is comparable with a local Alfven

velocity, vA=4Okm/s.

In Figure 4 are shown the profiles of the magnetic field, B,

temperature, T, x-component of velocity, vx and density, P on the sun-comet

line where M is an effective mass ratio to the proton. The weak bow shock is

formed at x= 3.2xlo5km and the Mach number of the fast magnetosonic wave is

about M=2.0 on the sun-comet line, which is quite reduced from the solar wind

value, M=6.45. This is because that the plasma temperature increases whereas

the velocity decreases in the upstream region of the bow shock due to the

cometary plasma production processes. In fact, the simulated temperature,

velocity and density are T/M=1.3x1O 6OK, v=350km/s and P=Mn=22/cc in front of

the bow shock. The temperature increases across the weak bow shock and then

decreases nearer to the comet. The magnetic field increases by a factor of

3.7 across this weak shock and continued to increase up to the contact

surface (Bmax/BIMF6). A cold and dense plasma extends toward the tail and

the high density lump is seen at x--8.8x1O5km. The magnetic field also

exhanced on the comet side of the high density lump at x-7.6xlo 5km.

In Figure 5 are shown the profiles of the magnetic field, B,

temperature, T, density, P, velocity, v and the direction of velocity, ev at

x=1.7xl0 5km in the dayside interaction region. The sharp gradients at

z=7=5x1O5km for T/M, B, v and P correspond to the weak bow shock. The

velocity somewhat decreases even in the outside of the weak shock from the

solar wind value, vsw=500km/s due to the plasma production. The flow

velocity decreases from 460km/s to 260km/s across the weak shock and
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gradually approaches a minimum value of 80km/s on the sun-comet line. The

plasma density and the magnetic field increase about 2.7 times across the

shock and continue to increase toward the sun-comet line. The flow angle, ev
deviates about 250 from the sun-comet direction (ev=1800) inside the bow

shock. These features are very similar to the Suisei probe observation when

they are compared with Figure 2 in the article of Mukai et al. (1986a). The

plasma temperature increases about 6.8 times across the weak bow shock and

decreases toward the sun-comet line. It is noted that the magnetic field

strongly fluctuates along the z-direction as well as the y-direction inside

the bow shock.

In Figure 6 are shown the profiles of the magnetic field, B,

temperature, T, density, P and velocity, v at x--8.lxlO 5km in the cometary

tail. The magnetic field is enhanced up to about 5 times the IMF value in

the tail lobe and is a little enhanced up to 1OnT along the y-axis

perpendicular to the uniform WlF. The magnetic field does not extremely

decreases near the sun-comet line at x--8.lxlO 5km, which means the intrusion

of the magnetic field into the cold and dense cometary plasma tail, however

it becomes very small in further tail for x<-1.OxlO 6km (see Figure 4). The

temperature and the velocity decrease at the center of tail and the plasma

density increases there. The high plasma density in the tail is thin in the

z-direction or in the uniform IMF direction and expands in the y-direction,

which is consitent with the draping picture of hanged IMF lines.

In Figure 7 are shown the cross sectional patterns of the plasma

pressure, p, density, P and the x-component of magnetic field, Bx in the tail

for Bz=6nT and OnT. Tail lobes and a thin cold plasma sheet are cleary

formed by draping effect of IMF lines (see Bx component). The cold plasma

sheet is thin in the parallel direction to the uniform IMF, and the tendency

becomes remarkable in the distant tail. On the other hand, the plasma sheet

is naturally symmetric for no uniform IMF, Bz=OnT as are shown in the lower

two panels.

In Figure 8 are shown the three dimensional cc_.figuration of the

magnetic field lines and their projection onto the three planes for the

interaction between the solar wind and comet Halley, where considerably

draped IMF lines are only depicted and the colour means a measure of the

field draping. It is clearly seen on the figures that the IMF lines hang up

to the cometary plasma as was suggested by Alfven (19571 and slip away toward

the tail. The slipped magnetic field lines gradually come close toward the

sun-comet meridian (plane at y=O) in the further tail.
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4. Conclusion

The interaction between the solar wind and the cometary plasmas has been

simulated by using a three dimensional MHD model in order to compare with the

recent sattelite observations to comet Halley. As the result, several

features of the interaction which are consistent with the Suisei probe and

the Giotto observations have been reproduced when the parameters proposed

from the satellite observations for the solar wind, the IMF and the plasma

production of comet Halley were used.

The simulated position of the weak bow shock, and the spatial variation

of the plasma density, velocity and temperature in the sun side interaction

region are consistent with those of the observational results from the Suisei

probe. The dense and cold cometary plasma sheet extends toward the

downstream of the solar wind and becomes thinner down the tail in the

parellel direction to the upstream IMF. The magnetic field is enhanced up to

about 3 times the IMF value across the weak bow shock and continues to

increase up to 6,8 times the IMF value near the comet. The field magnitude

of the draped IMF is not small even in the tail lobes and keeps about 5 times

the IMF value.

The MHD fluctuations were enhanced in the neibourhood of the weak bow

shock. The plasma production, which in turn captures the IA lines into the

cometary interaction region, as well as the Kelvin-Helmholts instability due

to the velocity shear must have the responsiblity to the excitation of the

MHD waves. A further simulation is needed to study the excitation mechanism

of MHD waves in the neibourhood of bow shock and also cometary tail dynamics

such as the magnetic reconnection and disconnection events.
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Figure 8. Three dimensional configuration and projection of the magnetic
field lines in the interaction regions of the solar wind and comet

Halley, where the colour means a measure of the field draping.
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NOVA-2: A Kinetic-HHD Stability Code

C. Z. Cheng

Plasma Physics Laboratory
Princeton University

P.O. Box 451, Princeton, N.J. 08544

To study the effect of energetic particles on MHD instabilities, a

kinetic-MHD stability code (NOVA-2) has been developed. A low-frequency

drift kinetic model is employed to describe energetic particle dynamics and

the MHD fluid model for the bulk plasma. NOVA-2 is and extension of the

previously developed nonvariational ideal MHD stability code(NOVA) for

computing stability of low -n modes in toroidal geometry. Some numerical

examples of the energetic particle driven toroidicity-induced shear Alfven

waves anf fishbone modes will be presented.
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A HYBRID VLASOV-FLUID MODEL WITH KINETIC IONS AND MASSLESS

FLUID ELECTIPOS*

John M. Dawson

University of California, Los Angeles
Department of Physics,

405 Hilgard Los Angeles, Calif. 90024

We have developed two-and three-dimensional models with kinetic ions

and massless fluid electrons. The use of fluid electrons allows us to

eliminate the electric field so that it never has to be solved for. We are

then able to derive a Vlasov equation for the particle ions and obtain the

linear dispersion relation from it. We compare the results from this

theory with simulation results from our model; excellent agreement is

found. The model exhibits Alfven waves, ion cyclotron waves, low frequency

whistler waves and ion Bernstein waves. We have used the model to simulate

instabilities such as might be caused by the injection of an energetic

neutral beam into the plasma.

We h-rc il= implemented a two time step correction technique into

code which improves energy conservation by a factor of 10(3) and allows us

to use time steps which are an order of magnitude larger.

*Work done in collaboration with F. Kazeminejad, J.N. Leboeuf, and R.

Sydora.
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GYROKINETIC PARTICLE SIMULATION OF FINITE-BETA PLASMAS

W.W. Lee and T.S. Hahm and R.D. Sydora*

Plasma Physics Laboratory
Princeton University

P.O. Box 451, Princeton, N.J. 08544

Gyrokinetic particle simulation for finite-beta plasmas will be

discussed. The four main topics are: 1) the basic formulation of the

nonlinear gyrokinetic equations including magnetic perturbations, 2) num-

erical properties of the simulation plasma such as time step, grid spacing

and noise level, 3) special techniques for the evaluation of the genera-

lized Ohm's law, and 4) the relationship between the gyrokinetic equations

and the MHD equations.

* University of California, Los Angeles Department of Physics 405

Hilgard Ave. Los Angeles, Calif. 90024
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MACROSCALE PARTICLE SIMULATION OF KINETIC ALFVEN WAVES

Motohiko Tanaka', Tetsuya Sato1, and Akira Hasegawa,

'Institute for Fusion Theory, Hiroshima University, Hiroshima 730, Japan
2 AT&T Bell Laboratories, Murrray Hill, New Jersey 07974, U.S.A.

Abstract

Simulation of the kinetic Alfven wave, which has many applications

in space and fusion plasmas, has been performed by using macroscale

(magnetohydrodynamic scale) particle simulation code. Dispersion

properties and wave-particle interactions of the kinetic Alfven wave

(such as Landau damping and electron acceleration) are successfully

obtained in the simulation.

1. Introduction

The kinetic Alfven wave is the Alfven wave for which wave-particle

interactions are important' - 3. This wave has received much attention

recently in connection with particle acceleration along the auroral field

lines4' 5 and plasma heating in fusion plasmas6. The kinetic Alfven

wave can also be an active agent to heat the plasma in the solar corona 7

and in Jupiter. Moreover, the structure of the auroral arcs seem to be

determined partly by this wave8 since the latitudinal scale of the arcs

(= 100km) is comparable to the ion Larmor radius.

The existence of the kinetic Alfven wave has been suggested only

for limited experimental observations in space and in the laboratory.

The Pc 5 magnetic pulsations observed on geostationary satellites 9 show

small azimuthal wavelength M 300-1000km and an azimuthal (west-

ward) propagation speed of the order of 10km/sec. The wavelength

and azimuthal phase speed of the kinetic Alfven wave (k:/k<<1) are

theoretically scaled by 2 trpi and (kz/kx)vA, respectively, where the typi-

cal proton Larmor radius pi on the geostationary orbit is 100km and the

Alfven speed vA -l000km/sec. In a small tokamak experiment at

Lausanne' ° , they observed low frequency density fluctuations and spa-
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tial damping of the wave which could be the kinetic Alfven wave.

Numerical simulation of Alfven waves were restricted to a scale

length comparable to the Debye length Xe when the conventional parti-

cle code was employed. This is because the parallel electric field of the

wave, which appears as a consequence of the finite ion Larmor radius,

must be solved properly; but the space and time scales of the kinetic

Alfven waves are in the magnetohydrodynamic scales. So far, simula-

tion of plasma heating by the antenna-launched Alfven wave was made

using a long time scale but Debye length scale Darwin particle code11.

2. Simulation model and common parameters

Two types of simulations of the kinetic Alfven wave 12 are presented
here by using a newly developed macroscale particle simulation code 13

which enables us to follow individual particle dynamics in the MHD

scales, namely, in the scale length much larger than the Debye length.
In this code, low frequency electromagnetic electric and magnetic fields

are solved by eliminating high frequency oscillations such as the light
modes; the scalar potential electric field is solved by eliminating Lang-

muir oscillations. This is achieved by using the decentered time dif-
ferential scheme which can be coded in semi-implicit algorithm 13 or in
full-implicit algorithm. Both ions and electrons are treated as particles

with finite mass whose motions are governed by the relativistic version
of the equations of motion. The electron motion along the magnetic

field line is, therefore, properly treated in this code.

The simulation system is assumed doubly periodic in the x and z
directions. An ambient magnetic field is applied in the z direction.
The velocity is normalized by the speed of light c, the time by WAi-eI,

and the electric and magnetic fields normalized as eE/meccope and

eB/meCCpe, respectively. The number of the grids is 32x64 with the

system length L, = 5Oc/wpe and L.=400c/wpe (except L,= lOOc/wpe for

the run in the next section and run A in Table 1). This system size

corresponds to nearly 250keX2000ke. 32768 particles are used for

each ion and electron species with the particle size of a = 3 c/wpe. The

parameters used for the background thermal plasma are the ion beta

0 = 0.36, the ratio of the electron cyclotron frequency to the plasma fre-
quency welope= 1 (i.e.,eBo/mecwpe= 1), the ion to electron temperature
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ratio TITe=4, and the mass ratio m,/me=50. Then the Alfven speed

becomes vA =0. 14c and the ion Larmor radius p, = v,, 3c/oWP, where

vi= (T/mi) 1/ 2 is the ion thermal speed.

3. Simulation results: Kinetic Alfven wave eigenmode in a thermally
near equilibrium plasma

Let us first describe the simulation which successfully detects the
kinetic Alfven wave eigenmode in a thermally near-equilibrium plasma

by means of power spectrum analysis. As the initial condition, the
plasma particles are loaded as quietly as possible without giving any

drifts and density perturbations. Figure 1 shows the measured power
spectrum for the y component of the magnetic field as functions of the
perpendicular wavenumber k, and the frequency to for fixed

k.= 2rr/(400c/cope). The amplitude of the spectral power is plotted in a

logarithmic scale above (to the right of) each baseline for descrete k,
values. Here for the spectral analysis, the maximum entropy method

has been emplyed. The peaks in Figure 1 show the presence of the
eigenmode in the low frequency range, i.e.,w/t,<0.1. The measured

frequency increases with the perpendicular wavenumber when krp, be-

comes comparable to unity. The other small peaks at the higher fre-
quencies wo;=ocj and 2wc1 are noises due to ion gyromotion. The line in

Figure 1 corresponds to the theoretically derived wave frequency for
the kinetic Alfven wave. The dependence of this measured cigenmode
frequency on the perpendicular wavenumber shows good agreement

with the theory.

4. Simulation results: Finite amplitude kinetic Alfven wave and

associated particle acceleration

As the second type simulation, the propagation of the finite ampli-

tude kinetic Alfven wave and associated nonlinear effects are present-
ed. Four runs are made by systematically changing the perpendicular
wavenumber kX with the parallel wavenumber k, being fixed (Table 1).

To set up a monochromatic plane wave initially, the density and current
perturbations are calculated using an electromagnetic kinetic dispersion
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solver. The perturbation assumes the form of Bn-sintp, bv.,-sin*,

Bv>,_cos0i, and bv.-sin* where 4j=kxx+k z. The amplitudes of these

initial perturbations are given in Table 1. To represent the density per-

turbation which is characteristic of the kinetic Alfven wave, the particle

spacing is modified in the particle loading. The drift velocities of the

aforementioned forms are given to the particles in superposition to the

random thermal spread.

The scalar potential field 4), the x and z components of the electric

field (Ex,E:) and the magnetic field B, are shown, respectively, in Fig-

ure 2(a), (b) and (c) for t/TA =1.8 of run B where TA = 2 r/k:VA is the

Alfven wave period. It is seen that the loaded wave propagates in the

direction almost perpendicular to the ambient magnetic field keeping

well the initial wave pattern in the two-dimensional magnetic plasma.

The major fields are the x-component of the electric field Ex and the y-

component of the magnetic field B,.. A small but finite parallel electric

field, a unique property of the kinetic Alfven wave, exists as seen in

Figure 2(b) owing to the finite Larmor radius effect (this will be dis-

cussed below).

The y-component of the magnetic field B, sliced at constant x posi-

tions for runs A, B and C are shown against the positions z and time t

in the bird's-eye view plots of Figure 3(a), (b) and (c), respectively.

For run A with kxp,=0.19, the loaded wave propagates with the parallel

phase velocity close to the Alfven speed (see also Table 1). As the per-

pendicular wavenumber kx increases for run C, the parallel phase velo-

city becomes appreciably large, as seen in Figure 3(c).

The phase velocity of the waves in the direction parallel to the am-

bient magnetic field, co/kz, is plotted in Figure 4 against the perpendicu-

lar wavenumber which is normalized with the ion Larmor radius, kxp,.

As kxp i increases, the parallel phase velocity increases parabolically as

shown by solid circles in the figure. The solid line shows the theoreti-

cal dispersion relation for the kinetic Alfven wave.

Shown with the open circles in Figure 4 are the damping increments

of the loaded waves. The numerical damping rate of the wave is es-

timated to be ,Yi/k:VA< 3 X 10 3 at most, which is negligibly small ex-

cept for run A. For run D with kxfi l.1, the damping increment is so

large that the loaded wave decays substantially in a few wave periods

[(2"rylco)b, =0.5J. The dashed line in the figure shows the theoretical
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damping increment of the kinetic Alfven wave. Both the measured

parallel phase velocity and the damping increment of the loaded waves

are in excellent agreement with the theory.

The damping of the kinetic Alfven wave occurs due to the Landau

damping. Under the parameters used in this study, the damping is pri-

marily due to the electrons. The initial Maxwellian distribution of the

electrons parallel to the ambient magnetic field in Figure 5(a) evolves

into a non-symmetric one with respect to v:=O, which has a plateau on

the positive side around v:zco/k.,(-ve) as shown in Figure 5(b). How-

ever, the locations of both edges of the velocity distribution remained

unchanged. The parallel electron effective temperature continues to in-

crease, especially when the wave amplitude is large. On the other
hand, ion parallel temperature stays almost the same. The electron

heating rate is found to be proportional to the damping increment of

the wave for runs A to D, which is scaled as aTe:/at:-16yEB where B =

6B/16irr is the magnetic field energy.

The electrons are monotonically accelerated towards the direction of
the wave propagation. The acceleration is not appreciable for run A.
For runs B, C and D, the acceleration occurs in the early time when the

electric field energy EE= BE /16-tr is large, i.e.,EE/Te>2x 10- 3 . At the

end of run D, the total increase in the electron parallel velocity

amounts to nearly 10% of the initial electron thermal speed. The in-

creasein the parallel momentum density of electrons is found, with an

accuracy of 10%, to be in agreement with the decrease in the total wave

momentum density, (8B2/8-r)(k:./w). This fact supports the validity of

nonlinear results obtained by using the macroscale particle simulation

code.

The electron acceleration and heating are attributed to the small but
non-vanishing parallel electric field. In order to estimate the torque on

the electrons, the parallel electric field is averaged with the electron

density as a weight, i.e.,<(-e)E:Bne>/<ne>. (The normal average

field <E:> vanishes exactly due to the periodicity.) The weighted

average electric field becomes 1x 10- 5 eB 0 for run C when the elec-

tron acceleration is occurring and is consistent with the time rate of in-
crease in the parallel electron momentum (note the initial wave ampli-
tude Exk(t= 0)-3 x 10--2 B0 ). This results from the occurrence of a posi-

tive correlation between the electron motion and the electric field, i.e.,

the phase difference between the electron density perturbation and the
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electric field becomes within 90 degrees. Using the measured values,

<(-e)E:8n,>!<n,>:1X1O-5 eBo and (<E ->) 1x10- 4B0 , the

phase angle difference is estimated to be 78 degrees. (Note that

<sinisin(*+8)> =cos8/2 where the average is made over ti.) Similar-

ly, the energy transfer rate to the electrons from the wave is estimated

by measuring <(-e)nve:E:>/<ne>. This quantity becomes positive

definite, i.e., 4x 10- 6 ceBo for run C, only during the electron heating.

These facts quantitatively verify the electron acceleration and heating

observed in the simulation.

5. Conclusion

A successful application of the newly developed macroscale particle

simulation code was shown for the kinetic Alfven wave, which has

many applications in space and astrophysical plasmas. The detailed

wave characteristics, the dependences of the frequency and the Landau

damping on the perpendicular wavenumber, were examined and excel-

lent agreements were found between the simulation and theoretical

prediction. Some fundamental nonlinear interactions of the kinetic

Alfvcn wave with the particles (parallel acceleration of the electrons)

were also found.

The present simulation work assumed a periodic (closed) system.

In the space environment, however, particle acceleration (heating) oc-

curs in an open geometry. Moreover, the Alfven speed changes its

magnitude in an inhomogeneous plasma, for example, along the mag-

netic field line of the earth. In that case, particles resonating with the

wave may be accelerated and convected toward the direction of the

wave propagation. Consequently, the distribution function of the parti-

cles may evolve into a bi-Maxwellian one rather than formation of the

plateau. These specific problems of the kinetic Alfven wave will be re-

ported ;n the future.
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Table 1

The initial perturbation of density, 8n, and the drift velocities, v ,By , for

the ions (electrons) in the left (right) column (upper part). The measured phase

velocity (frequency) (w/k) and the damping increment Y of the wave (lower part).

k, and k, are, respectively, the perpendicular and parallel wavenumber; p, is the ion

gyroradius; vA is the Alfven speed.

Run A Run B Run C Run D

bn/no  (0.069, 0.071) (0.126. 0.129) (0.219, 0.227) (0.275, 0.288)

6v',1c ( 2.5x10-3,-5.4×10- 4)  2.4x10-3,-6.4x10-4 , (2.3x10-3,
- 6 .-'× 1 -4) ( 2.2x10-3,"-6 .7 ×

10- ')

bvrc (-2.x10-2,-2.SX10- 2) (-2A×10j-2,-2.8×10- 2) (-1.6x10-2,-3.1 × 10 - 2) (-8.2×10-3,- 3 .6× 10 -2)

6%/c ( -0, 1.2<10-2) ( =0. 2.4x10-2) ( =0, 4.7x1IO- 2 ) ( =O, 6.9x 10-2)

tan-(k./k.) 76.0 82.9 86.4 87.6

k ~pi 0.19 0.38 0.76 1.13

w ksvA 1.03 1.07 1.41 1.98

7y k:xA  7,2=3.61 x 10- 3  (1.3=0.7)x 10-2 (5.9-0.)\ 10-2 (1.6=--0.2)x 10-1
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Figure captions

Fig. 1 The power spectrum for the y-component of the magnetic
field in a thermally near-equilibrium plasma. The abscissa is the
perpendicular wavenumber normalized with the ion Larmor ra-
dius, and the ordinate is the frequency /lepe. The power ampli-

tudes are plotted in a logarithmic scale above (to the right of) each
baseline with the 104 range between two adjacent baselines.

Fig. 2 The scalar potential field 0, the x and z-components of the
electric field (Ex,Ez), and the y-component of the magnetic field

B. for t/'rA= 1.8 of run B. The maximum amplitudes are (a)
e4l/mec 2 -:O.22, (b) eE.,meCtpe-=3.5X 10- 2, and (c)

eB./meCWpe -=O.17.

Fig. 3 The y-component of the magnetic field sliced at constant x
positions plotted against position z and time t for runs A, B and C
from top to bottom, respectively.

Fig. 4 The parallel phase velocity (solid circles) and the damping
increment (open circles) of the initially loaded waves of runs A to
D. The solid and dashed lines, respectively, show the theoretical
parallel phase velocity and the damping increment.

Fig. 5 The electron velocity distribution function parallel to the
ambient magnetic field at (a) t= 0 and (b) t= 1.8TA of run C. The

scale in the ordinates is the same in (a) and (b).
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PARTICLE-PARTICLE PARTICLE-MESH CODE FOR NONIDEAL HICH DENSITY

PLASMA AND ITS APPLICATION ON RAYLEIGH-TAYLOR INSTABILITY

IN ICF PLASMA*

Katsunobu Nishihara

Institute of Laser Engineering, Osaka University
Suita, Osaka 565

In an inertial confinement fusion plasma, the Coulomb coupling con-

stant, F = (Ze) 2 'kBT , becomes of the order of one, where u is the Wigner-

Seitz radius defined as a- 3/4Ani) /3 In such a strongly coupled plasma

(F 1), the Coulomb interaction can not be treated as perturbations and

the system begins to exhibit features qualitatively different from those in

an ideal collisionless plasma. To study dynamics of a strongly couples

plasma, we have developed three-dimensional two-component particle-particle

particle-mesh code. The code calculates exact Coulomb forces among parti-

cles within a short distance, while the PIC method is used for long

distance forces. We have observed the pair distribution functions and the

result has been found to agree quite well with the hypernetted chain theory

and Thomas-Fermi model.

We use the code to study effect of a contact potential on the

Rayleigh-Taylor instability between two plasmas with different charge

state. The preliminary results will be discussed.

*Work done in collaboration with H. Furukawa and M. Kawaguchi
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TRIPIC: Triangular-Mesh Particle-in-Cell Oode for LIB Diode

Shigeo Yawata, Masami Matsumoto and Yukio Masubuchi

The Technological University of Nagaoka

Nagaoka, Niigata 940-21, Japan

A particle-in--cell code using triangular meshes (TRIPIC code) is

described to simulate the motion of charged particle in an

electromagnetic field self-consistenly in some complicated computational

space region. TRIPIC is fitted for the simulation of LIB (Light Ion

Beam) diode, for example.

1. Introduction

Up to now many particle simulations have been done [1-5] and many

particle-in-cell (PIC) codes [2,6,7] have been developed to study a

self-consistent interaction between charged particles and

electrcmagnetic field. In many codes usually rather regular space

meshes are employed to describe the computational regions. On the other

hand, recently, we have a problem of, for example, intense LIB diode

simulation in which the computational space cegion has a nonuniform or

curved boundary. TRIPIC code employs triangular space meshes to

simulate such the problem. The paper presents the description for

TRIPIC code.

In order to solve the electromagnetic field on triangular meshes,

we have a finite element method and finite differencial one which is,

for example, developed by Winslow [8]. Here we focus on the latter
method. Winslow developed the numerical method in nonuniform triangular

meshes to solve the Poisson type of equation. SUPERFISH code [91 was

also developed by the similar method. A descendant of these two codes

is TRIDIF code [10] which is a time-dependent code to solve a magnetic
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diffusion. Based on this method the Poisson equation and the equation

of magnetic vector potential are solved in TRIPIC code.

In TRIPIC code a particle pusher is solved by the Buneman scheme.

The interaction between particles and space meshes are accomplished by a

simple weighting method.

2. Structure of TRIPIC code

At first space meshes are generated in the x-y or r-z plane. In

the space-mesh generator two Poisson type of equations are solved [8],

because of the 2.5 dimensional code of TRIPIC. The logical meshes are

composed of two kinds of lines with labels K and L, shown in Fig. 1. We

have to do the mapping to the real space region. In the real space

mapped lines are considered to be like equi-potential lines. If the two

Poisson equations are solved inversely in the logical space with the

appropriate boundary conditions, the numbering of the space meshes can

be acccmplished. Figure 4-a) shows an example for the generated meshes.

The following basic equations are used in TRIPIC code:

dP/dt = (q/m) ( E + VxB ),

VxE = - B/at, VxB = ( J + D/at ), D = E

'-D = p

TRIPIC code employs the Coulomb gauge and, the Poisson equation for the

static electric potential and the equation of the magnetic vector one

are solved on triangular meshes. These equations can be solved on the

cartesian or cylindrial coordinate in TRIPIC code. Following Winslow

the descretization method is described for the generalized Poisson

equation:
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303 t = V( XVi ) + S,

S1 1i I  +1

The computational region covered by triangular mashes has sets of six

triangles surrounding a vertex, that is called the primary mesh. The

area of the secondary mesh is one third of the primary one, shown in

Fig. 2. Over the secondary mesh the generalized Poisson equation is

integrated, assuming the gradient of physical quantities constant in

each triangles. The Gauss law is adapted to the first term at the right

hand side of the above equation. Then the sum of the flux is ccrnputed.

Finally we obtain the descretized equation of the generalized Poisson

one on the triangular meshes:

n +1 ( n,/ t = r ( Zw + S )/G ]n+1 /2

1 1

wi = ( Xi+1 /2 cot i+1 ii /fti-1 &

G = a, Z =Z a: area of the
i= -6, secondary mesh

S= Zs a
i+1/2 i+1/2

By using this method basic equations are also descretized for the

electromagnetic field. The resulting matrixes of the basic equations

are solved by the direct Gaussian forward- and backward-subtraction

method [9].

By using electric and magnetic fields particles are pushed. In

order to find the electric and magnetic fields on a particle we should
find the particle position in the logical space. If the logical meshes

are numbered in series, we remember the position at the former time step
and the time step is enough small, to find the new particle position is
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accomplished by searching the several meshes just surrounding the mesh

in which the particle was located at the former time step. To

accomplish the interaction between the particles and the space meshes

each particle has a finite radius and meshes locating in this circle

interact with the particle. In the weighting method the weight is

defined by the inverse of the distance between the particle and the raesh

ooints(see Fig. 6). By this method the new current and charge densities

are computed.

In addition TRIPIC has an additional subroutine for the particle

generation at the specified region as an option. The generation rule is

the space-charge limitted condition. For example electrons and ions

generated at the electrodes in an intense-ion diode[11].

As a boundary condition the Dirichlet-boundary condition is used

for the static Poisson equation. For example at the anode surface in an

intense-ion diode the applied voltage is imposed at the anode surface.

At the surface of the perfect conductor the condition that a parallel

electric field is zero is imposed. This is done even at the curved

boundary surface by using the coupled equation of the vector potential

which is the summed-up equation of parallel component of equations for

Ax (or Ar) and Az in the x-z (or r-z) plane.

As a summarization of this section we present the time chart of

TRIPIC.

n n+1 n+2

------ I ---. I ---- I - I-- --- > time step

v x v x v

J Rho J Rho J

Phy Phy

Es Es

A A A

B Et B Et B
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Here v is the velocity, x the space coordinate, Rho the charge density,

Phy the static electric potential, Es the static electric field, J the

current density, A the vector potential, B the magnetic field and Et the

transeverse electric field.

3. ExKample of Computation

In this section examples of numerical computations are presented.

3.1 Mesh generation

The mapping is done from the uniform mesh in the logical space (K-L
space, see Fig. 1) to the nonuniform real space mesh. Figure 4-a) shows
an example of mapped meshes. In Fig. 1 the computational region is the
non-hatched region and the hatched outer region is used for the boundary

treatment of particles and the fields. Therefore the mesh size of most
outer region has no need to be same with the mesh size in the

computational region.

3.2 Potential

A computed electric static potential in the region of Fig. 4-a) is
presented in Fig. 4-b). The equi-potential lines are plotted by dotted

lines. In this case curved electrodes has constant voltages in time,

respectively and the system is cylindrically symmetric.

Figure 5 shows the propagation of an electromagnetic single-mode
wave. The propagation of vector potential is presented in Fig. 5-a) and

Fig. 5-b) shows the electric and magnetic fields. In the direction of

the wave vector the cyclic boundary condition is used.

3.3 Particle

In order to check TRIPIC cole we simulate the Child-Langmuir

current in a diode gap. Figure 7 shows an example of electron map in
the diode gap. In this case a gap distance is 0.5 cm and the applied



voltage is 1 volt because of the avoidance of the particle bending by

the self-magnetic field. The simulated current coincides well with the

analytical value which is obtained only in the case of no magnetic

field. The particle emission is controled by the space-charge limit

condition.

4. Conclusion

A particle-in-cell code TRIPIC was developed to do the particle

simulation in the irregular boundary by using the nonuniform triangle

meshes. The electromagnetic fields are solved by the finite

differencial method in the nonuniform triangle meshes. The particles

are pushed by solving the relativistic equation of motion. The

interaction between the particles and the meshes can be accomplished by

the simple weighting method. The weight is proportional inversely to

the distance between the particle and the mesh. Our particle has a

shape of circle in 2 dimensional space. The radius is comparable with

the mesh size. The meshes inside of the circle can interact with the

particle. This weighting method can be easily switched to the other

weighting one.

TRIPIC code can simulate the space region with the irregular

boundary. Therefore, for example, TRIPIC is fitted for the simulation

of an ion or electron diode [ 11 ] which has a curved electrodes to focus

the beam.

The technique in TRIPIC code can be also used in other type of PIC

code, that is fluid PIC code.
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Fig. 5-a) Vector potential in the case of
single-em-wave propagation

Fig. 5-b) Electromagnetic wave propagation
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Fig. 6 A particle has a finite radius
In TRIPIC code and interacts with
grids inside of the circle.

1.

Fig. 7 Electron map in the anode-cathode
gap. Applied voltage is 1 volt andthe gap is 0.5 cm. This is done for

the program check.
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A DOMAIN DECOMPOSITION AND OVERLAPPING TECHNIQUE

METHOD FOR 3D LARGE SCALE NUMERICAL SIMULATION

Kazuyoshi Miki

Energy Reseasrch Laboratory, Hitachi, Ltd.,
1168 Moriyama-cho, Hitachi-shi, Ibaraki, 316

A direct-solution scheme for numerically solving the 3-dimensional

Poisson's problem with arbitrarily shaped boundaries V o (RV& = S on

Q, Cp+ Cn .2:4,,; = C3 on dQ, has been developed by using a boundary-

fitted coordinate transformation. The scheme also used the technique of

decomposing the closed domain 9 into several hexahedron subdomains and then

overlapping neighboring hexahedrons to deal with complicated geometries. A

large system of linear equations deroved from discretizing the Poisson's

equation was solved by suing a biconjugate gradient method with incomplete

LU factorization of the nonsymmetric coefficient matrix as

preconditioning. The convergence behavior of the different domain decompo-

sitions was demonstrated for a numerical experimant. Application to the

electrostatic field problem in the electron gun of a color picture tube

confirms that the present numerical scheme should provide an efficient and

convenient tool for solving many important large-scale engineering pro-

blems.
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SUBTRACTION TECHNIQUE FOR PLASMA PHYSICS AND EVALUATING NUM ERICAL

EFFECTS IN CODES

Viktor K. Decyk

University of California, Los Angeles
Department of Physics,

405 Hilgard Los Angeles, Calif. 90024

Presented by R.Sydora

We have developed a technique for simulation of subtle effects in

plasmas. This technique consists of performing the simulation twice. The

first time one simulates the background plasma, and the second time one

uses exactly the same initial conditins plus some small perturbation, such

as an extra test charge, or test wave, etc. One then subtracts the results

from each of the simulations, to see only the effect of the perturbation.

This method has been used to measure precisely the wake field excited by a

single electron out of millions. This technique can be applied to new

codes in several ways. It can be used as an extremely demanding test to

verify that new codes are behaving correctly. It can also be used to

explore the physical behavior of new models, where the physical preperties

are not well understood beause of numerical approximations used, such as in

implicit codes.
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NUMERICALLY INDUCED STOCHASTICITY

and

LONG-TIME BEHAVIOR OF NUMERICAL

TRAJECTORIES - SMALL AT ANALYSIS

Alex Friedman
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and

Steven P. Auerbach

Berkeley Research Associates

Presented at the

Second US-Japan Workshop on Advanced Plasma Modeling

Nagoya, Japan, March 23-26, 1987.

Numerically Induced Stochasticity

In a one-dimensional anharmonic potential well 4(x), the period of an

orbit is a function of its energy. The true motion in such a well is regular,

since energy conservation constrains the velocity v at each value of the

coordinate x. Nonetheless, when the orbit is computed numerically, stochastic
behavior can result.

We consider simple integrators as mappings from (xv) at one time

level to (x,v) at the next. With timestep size A and 4' a4/ax,
the leapfrog mover is:

vn+
1 / 2 _ vn-1/2 - A 4'(x

n
) ; X

n+l 
= 

n + A Vn +1
/
2

We linearly interpolate v to time level n, then plot the pair (xn,vn). Equiva-
lently, we can write a variant with x,v defined at integer time levels:

V, -n _ , (X
n ) ; xknl - X

n + A4 ; v+1 - - A, (Mn+l)

In a harmonic well with natural frequency w0 , the classical leapfrog "dispersion

relation" is: sin wA/2 = ±w0A/2, with stability limit A, = 2/w0 = (period)/r.

We first noted the phenomenon of numerically induced stochasticity in the

potential:

OWx= x
2 + a

0.25+x
2

For a > 0.0625, this well has a central "bump" but is harmonic with natural

frequency w0 - at large x. We have concentrated on the case a = 1

(fig. 1) and begin with a description of the behavior in this double-well

potential.

The physical phase plane (fig. 2) consists of closed curves with one

separatrix. For small enough A (, 0.2), stochastic behavior is limited to

orbits near the separatrix which are (analytically) barely trapped in one
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sub-well, or are barely untrapped. There are in addition large trajectory errors
(without stochasticity) for orbits which do not carefully sample the central bump.

For larger A, a wide range of initial conditions yield a rich stochastic
behavior, with a complicated island structure. The situation for A = 0.25 is
depicted in fig. 3. For small enough energy the motion is confined to a single
sub-well and is regular; for intermediate values there is stochasticity; for
large values there are large trajectory errors without stochasticity; and for
very large energy the central bump is negligible and the motion harmonic (frequency
independent of amplitude). These effects occur at timesteps well less than the
classical leapfrog stability threshold for the harmonic part of the potential.

Over a large part of phase space (including the region corresponding to
"large trajectory errors") we often observe a phase-locking phenomenon; the
number of radial oscillations in the locus of points corresponding to an orbit is
the nearest integer to the number of steps needed to complete one orbit in the
harmonic part of the well. In the run depicted in fig. 3, the harmonic-well
period (about 4.44) is 17.77 times the timestep (0.25), and we observe 18 major
excursions. When A is 0.2, the harmonic period is 22.2 steps, and we observe 22
major excursions. However, while oscillations are still evident at A = 0.3,
their number is 44, while the harmonic period is 14.8 steps, or a third as long.

Effects of "cantori" are evident in our runs; an orbit often remains
trapped in one sub-region of a large chaotic "sea" for a long time before it
breaks through to another part of the sea. Runs using single and double
precision (Cray-l) arithmetic have been compared; the varying machine roundoff
makes the number of steps required to enter the various sub-regions of a large
sea differ, confirming that the gaps in the cantori are indeed "found" by the
orbit in a random manner. In addition, the island structurc is somewhat
different, since smaller islands can be resolved in double precision.

We can write the leapfrog mover in a third form most suitable for analysis:

,n+1 . xn + Av- - A2/2 0'(Xn ) ; v n +1 =V
n - A/2 [0' (x n ) + 0' (x n+ ' ) I

The Jacobian of the mapping (xn,v n ) - (xn+,,v n+,) is J - =(xn+l,vn+l)/a(xn,v
n ) . 1,

and thus the leapfrog integrator is an area-preserving map. In fact,

the leapfrog motion in the potential well O(x) = A cos x is equivalent' to

Chirikov's "Standard Map"2: + - 9n + in+1 "n+1 = + K sin 8 n 
. In the

leapfrog scheme as usually written, we redefine Avn+ 1 2 _ vn+1; then Avn - 1/ 2 = Vn ,

and we obtain: xnl = xn + Vn+l; V+ = Vn + AA2sin xn . Thus, we make the corres-

pondence: x - 0 ; V - I ; AA2 = K ,and so the Standard Map theory is
directly applicable to leapfrog motion in a sinusoidal potential.

The usual Standard Map orbits (fig. 4) are symmetric about neither 9 = 0
nor I = 0 (i.e., x = 0 nor v = 0). By replacing the usual leapfrog mover with
our variant that defines v at integral time levels, we have synthesized a "Sym-
metrized Standard Map" (fig. 5) which posesses both of these symmetries and may
prove useful in other contexts. In our experience with small-A analyses of
various movers we have found that simpler power-series expansions result from
symmetrized schemes.
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We have examined other wells, and find that stochasticity is not limited to
double wells. For example, the single-well potential a - 0.0625 admits a
chaotic leapfrog orbit for A - 0.75. Chaotic motion is more pervasive in
double-wells; it sets in at infinitesimal A because the phase plane entails a
separatrix even in the absence of finite-timestep perturbations.

We have also examined other particle moving algorithms; the second mover we
consider is an implicit time-centered mover which is stable for all A:

v-+' - v
- - A/2 (0'(x0+1 ) + 0'(xP)) ; xP+1 - x + A/2 fvn+l + V1

In a harmonic well with natural frequency w., the dispersion relation is:
tan wA/2 - ±w0A/2. With a - 1 and A - 0.25, this mover exhibits behavior

similar to that of the leapfrog. In the "stiff spring" potential 4 - x4 it
yields stochasticity for large enough energy and A.

The implicit mover is not (locally) an area-preserving map. The Jacobian of

the mapping from (xn,vn) to (xn+l,v n+1 ) is: J - [l+(A 2/4)0''(,n)] / [l+(A2 /4)40'(xn+1)].

Note that interchanging x1 and xn 1 amounts to changing J into l/J, as
it must for any "reversible" scheme which retraces its steps if the sign of A
is reversed. Any change in phase space area due to motion in one direction is
made up for when the particle moves in the other direction. Thus, we can
expect no net change in phase space area after integration over a complete
orbit. For this scheme, the fact that J # I has no global consequences.

Our third mover is a second-order predictor-corrector algorithm:

x- xn + An ; - AO n (xn) ;

2 2

This mover yields orbits that don't lie on closed curves even for small
timestep. It is not an area-preserving map, and does poorly because the

Jacobian of the transformation is always greater than unity: J = 1 + A4(4"')2/4.
This can't integrate to zero around an orbit, and so the phase-space area of a

given set of initial conditions will grow continuously. Since only (0 ,)2
enters, the orbit will diverge even in a purely harmonic well, with a dispersion

relation: t - + (A2t03/6) [1 + iAw0]

The fourth difference scheme3 we consider conserves energy identically;
it derives from a symmetrized discretization of Hamilton's equations. Let a
subscript * denote the advanced time level; the scheme is, for any Hamiltonian

H(q,p),

q.-__H(q,_. H (q.,p) +H (q, p.) H H(q, p)

A {T ( . PP.-P

P. ~ -p 1  (q., p.) H(q,p.) + H(q.,p) -H(q,p)

A 2 \ q. q q. q J
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Using such a scheme, the points of a numerically computed orbit will fall

on the exact phase plane curves (for a one dimensional Hamiltonian). In a one-

dimensional potential well, the Hamiltonian is: H - v2/2 + O(x) , and the

difference scheme becomes:

x -+1 xP v+1 + v v+ 1  vn (x " +') -(x )

A 2 ' Ax n

By energy conservation, the latter equation can be replaced by:

(vf+1)2/2 - (v )2/2 - O(x) -

For most potentials either form must be solved iteratively; for the harmonic
oscillator potential the scheme reduces to the centered-implicit one described

above. For O(x) - x2/2, the orbits are exactly the circles x2 + v2 - 2H,

but there are phase errors which grow, in a single step, by an amount - -A3/12.

The Jacobian of the mapping is: J - (I-A2Q/2)/(l+A2Q./2), where Q - (0'-D)/(x.-x),

Q. - (O.'-D)/(x.-x), and D - (O.-O)/(x.-x). As was the case for the centered-
implicit scheme above, interchanging x and x. changes J into l/J; the scheme
is reversible and thus area preserving on the average.

Other researchers have advocated the use of both energy conserving3 and

symplectic4 (in ld, area-preserving) schemes. However, at least in Id these
desirable attributes seem to be incompatible, since the only scheme which
satisfies both criteria yields a series of points along the true orbit, within
a uniform (same for all orbits) rescaling of the time parameter. Thus, it seems
one would need to know the solution in order to devise such a scheme. The energy
conserving scheme in ld has the advantage of making only phase errors, and is
at least area preserving on the average, so it has real merit for at least a
restricted class of problems; it is still an open question which property is
the more useful in higher dimensions.

The phenomenon of numerically induced stochasticity has significance in
several contexts. Firstly, a numerical investigation of the regions of phase
space accessible to an orbit may lead to erroneous results, if the timestep is
too large or the mover inappropriate. Furthermore, conclusions about orbital
stability based on numerical integrations may be erroneous, since neighboring
chaotic orbits diverge exponentially, even if the chaos is numerically induced.
When studying the dynamics of a physical system, one should demonstrate that any
chaos observed is not numerically induced. Also, linearized simulations of
collective phenomena must avoid numerically induced stochasticity, since the
zero-order and perturbed trajectories are "neighboring". Finally, trajectory

crossings in PIC simulations can lead to enhanced noise and other errors. 5
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Long-Time Behavior of Numerical Trajectories - Small At Analysis

One can construct a "pseudo-energy" which is conserved along the

numerical trajectory. We define:

*(x,v) - v2/2 + O(x) + M'l(x,v) + A2*2(x,v) I

and expand I(x.,v.) in a Taylor series using the leapfrog expressions for

x. and v.. Defining f - -4' and keeping terms through T1,

'(x.,v.) - *(x,v) + A2 [V 1 ' + faiP 1/8v) +

Thus T is conserved if the derivative of *P along the unperturbed orbit is zero

d- v- + - 0
dt x Ov "

This differential equation has sc~ution 'P constant, so the conserved

quantity is just the usual v2/2 + 4.

Through the next order we find:

(x. ,V.)- (XV) + A3 [ d*2 
+ vff' + v3f''

dt 4 12

and thus the equation for P2 is:

d*2/dt - -vff'/4 - v3f''/12.

With x,v at interlaced times, the first-order term A 1 does not drop out.

*1 satisfies the equation:

d*1 )2

For the harmonic oscillator potential 4(x) - x1/2, we find that:

*(x,v) - x2 + v2 - Axv ) +

This amounts to a skewing of the constant-energy curve in the (numerical) x,v

plane due to the leapfrog points being defined at "different times on the orbit".

One can explicitly solve for the O(A2) correction to the conserved

energy. From before, t. " - J dt [ vO'4''/4 - v3O '. /12 ]. We use:

d 4, '
dt - dx/v ; v2 - 2 (e-4) ; ---- - ''

to write:

*2 - - f [ 4'4"/4 - v24'/12

" - f dx [ d(4'2/8)/dx - e,'''/6 + 4,4.'''/6 ]
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We then use: d(4 '')/dx - $''' + d(' 2/2)/dx to write:

~2  fdx~ ( 8 6 6

+

- 12 24

Thus, the conserved quantity is:

=E + 0 + A2 F rI o 2] +.

2 L 12 24 j~

Along a numerical orbit, we do indeed find it to be better conserved than v2/2 + f.

Using this "Hamiltonian," we can derive an equation of motion which puts
the particle on the leapfrog points at integer times, but is smooth in between.
Consider x as position, v as canonical momentum:

dx/dt - a/av ; dv/dt = - a/ax.

This clearly conserves * on a trajectory:

dik/dt - (ao/ax) dx/dt + (agi/av) dv/dt - 0.

It also conserves phase space volume; the volume after a time A = n6 is unchanged
(we take n infinitesimal steps each of size 6 to get there, then let n -*):

x(6) - x + k6 + ... ; v(6) - v + -S + ...

- [x(),v(6)) -l+ a/ax + ... 6a/ax +a[x,vj 6a/ax + ... 1 + 6a /av +

_ 1 + S(9*/ax + a-/av) + 0(52)
=1+ + - y,) +0(62)

- 1 + 0(62)
Thus, after a time A,

J(A) a[x(6),v(6)] a(x(26),v(26) X .
-(A O(x,v] a[x(S),v(6) "

- 1+ 0(62) 1 x [ 1+0(6) x...

There are n terms, so

J(A) - 1 + O(n62 ) - I + O(A 2 /n) - 1 as n -.

The equation of motion along this "dynamical" trajectory is explicitly

expressible (through order A2) as:

dx/dt - v (1 + A2#' '/6)

dv/dt- - 4' + A2/12 ( 0'0'' - v 2 '' )

Note that we have given up on dx/dt - v.

-98-



For a second-order equation for x, we find:

d2x/dt - dv/dt (1 + A20' '/6) + vA /6 vo'"

-0' + A'/12 ( v201 '' - 0,0,, ).

We compare this with the harmonic oscillator, for which the analytic solution is:

d'x/dt' 0 -1 ( 1 + A2/12 ' + . .. )

Thus, x and v will agree, to order A , with the leapfrog solution. The
"dynamical" trajectory is synchronized with the numerical one.

It is, in fact, true in general that the motion along the "dynamical"

trajectory is synchronized with the leapfrog motion through at least order A3.
Consider the position as a function of time:

x(A) - x + A: + A2"x'/2 + A3 "k'/6 + ...

- x + Av(l+A20' '/6) .- A','/2 - A3v ' '/6

- x + Av - A20'/2 + o(A4) .

This is the same expression as that for leapfrog. The derivation for v is
similar.
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ABSTRACT

A method to treat particle production and an-

nihilation in paricle code is proposed. This method

does not directly produce particles and hence can be

used with less noise. An example is-given for a beat

wave accelerator. The density change of 0.06 % during

one plasma period can seriously affect the excitation

of plasma waves. In addition, a new method to

economically solve atomic processes is proposed, which

can be coupled with particle codes. Finally, the cou-

pling between non-LTE free and bound electrons is

analyzed with a simple analytical model and its impor-

tance in real systems is pointed out.

I. INTRODUCTION

In fusion plasmas, there exist many application

-100--



fields in which bound electrons inside an atom is not

in LTE(Local Thermodynamic Equilibrium). The non-LTE

treatment needs a solution of coupled rate equations

and hence is extremely difficult in high-Z plasmas.

Recently, we have developed a new atomic model') in

which both charge state distribution and level popula-

tions are economically calculated. This model enables

us to incorpolate the non-LTE calculation into the

hydrodynamic processes and has been applied to the X-

ray production from laser-heated Au plasmas 2 ).

Although the non-LTE treatment of bound electrons

has been addressed in many studies, free electrons

have been assumed to be in LTE-Maxwell-Boltzmann

distribution. However, we find that there exist a

wide parameter range in which the cross section of

free-free binary collision is much less than that of

the electron impact ionization. In such a case, even

free electrons should be described in non-LTE. There

have been an attempt to do this 3 ), but the electron

distribution function was given outside and the

modification of the distribution owing to the atomic

process was not considered.

In this paper, we discuss the possibility to es-

tablish a new particle model to describe non-LTE free

electrons incorpolating interactions with non-LTE

bound electrons ionization and recombination. In

section II, we propose a simple algorithm to treat an-
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nihilation and production of particles. In section

III, this scheme coupled with a relativistic

electromagnetic particle code, which is essentially

the same as ZOHAR 4 ), is applied to a beat wave

accelerator s ,6 ). In section IV, the review of recent

atomic models are given. In section V, the coupling

between the atomic process and the particle distribu-

tion is treated by a simple model and the model is ap-

plied to a problem on heat flux in laser-produced

plasmas.

II. PARTICLE CODES WITH ANNIHILATION AND PRODUCTION

Particle codes have been used in many areas

electromagnetic particles in plasma physics, gas par-

ticle in astrophysics, fluid particles in fluid

mechanics and so forth. The code can be easily imple-

mented and is tolerable in large distortion or

disturbance. In these applications, however, there

have been little attempt to incorpolate the annihila-

tion and production of particles in the codes. This

is because the annihilation and production of par-

ticles require inefficient and tedious caculations and

sometimes cause a serious noise. In this section, we

propose a simple algorithm to incorpolate the above

process into particle codes.

In most cases, a particle is produced at some
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point having a velocity distribution. Let us define

the production rate of this disctribution by

df(x,v)/dt. In order to replicate this production, a

number of particles must be generated ; velocity dis-

tribution must be replicated. Furthermore, if df/dt

is quite small, a particle will be generated very

rarely or discontinuosly leading to noise because mass

of generated particle cannot be small ; if the par-

ticle mass is taken to be small, number of particles

generated will be extremely large. In the present

scheme, the particle is not directly generated. In-

stead of generating directly the paricles, the

produced particles are stored into a cell as in a form

of a velocity distribution fi(v), which is advanced in

time as

fin* (v)=fin(v)+df(xi,v)/dt.A t, (II-1)

where xi is the location of the i-th cell center and n

CX..ztes the time st~p. and A t is the increment of the

time step. The distribution does not propagate in

space and has no response to forces generated or

imposed. In our algorithm, new particles will not be

produced unless the severe condition described later

is met. Instead of generating new particles, the mass

of existing particles which are in the i-th cell are

increased by the following procedure;

Npne"(xp,vp)=NpOI(xP,vP)+a finG(vp)A v, (11-2)

where xp and vp are the location and velocity of the
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particle, and A v is the velocity volume ; fi is

divided into many cells in velocity space. In turn,

the stored particle decreases according to

finew(vp)=(1-a )filu* (vp), (11-3)

in one time step. In the example given in section III,

a is set to 1 or 0 (see also Eq.(II-4)).

We should impose the maximum and ainimum size,

Nea, and Nsi. on the particles. Nna, avoids too large

particle which may become a source of noise. Then

a =0 if Npmew>Nnax (11-4)

Once the mass increase stops as in Eq.(II-4), f,(vp)

corresponding to this particle may increase

intolerably. This situation is unavoidable, par-

ticularly for cold streaming electrons in uniform ion

background ; some of these beam electrons collide with

bound electrons inside ions and a new "non-drifting"

electron should appear. Since there is no electron in

this velocity range, a new particle must be generated.

However, if fi is used, this procedure can be simply

performed. Thus, if fi(vp)A va Nain, a particle

having vp and Nain is generated inside the i-th cell.

Annihlation of particles is very simple in this

procedure. It should be noticed that a particle will

not disappear even if N<Nu1 3 .

The only problem is how to store this distribu-

tion with less computation memory ; space times

velocity dimensions is required.
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III. APPLICATION TO BEAT WAVE ACCELERATOR

In this section, we give a very simple applica-

tion of the procedure given in the previous section.

That is a beat wave accelerator s , 6 ). There have been

a number of particle simulations on this problem,

while none has incorpolated ionization effects into

the particle code. In some of experiments on the beat

wave accelerator, medium-Z materials are used as a

plasma source. Even in this medium-Z plasmas, ions

may not be fully ionized. During the heating of

plasmas, the ion density gradually increases in time.

Although the rate of density change is very small, it

can affect the excitation of plasma waves. This was

first pointed out by J.P.Matte et al. 7 ).

It is well known that plasma waves excited by

beat wave saturate because of a relativistic

detuning 6 ). This is due to the increase of y =[1-

(v/c) 2]-1 /2 , where v and c are the speeds of a par-

ticle and light, respectively. The idea by J.P.Matte

et al. is to compensate this reduction of plasma

frequency by increasing the ion density through

ionization. This change in 6 u v is approximately

written8 ) as

w p1w p=-l/ 2  (9a,%:./8)2/3 (III-l)

where al, a2 (<<1) are the normalized quiver
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velocities eE,/(mu ,c), eE2/(mw 2C). Hence the den-

sity change a n which compensates for the change given

by Eq.(III-1) should be

6n/n = (9aa2/8)2 /3  (111-2)

Since the time to saturate is

Opr s =(4/3'/ 3 )(ala2/4) - 2 / 3 , (111-3)

the rate of density change is

n/nw pT s=(3 1 /3/4)(9/32) 2 / 3
(aia2)

4 /3. (111-4)

For CO 2 laser (10.6 and 9.6 'Um) at 1014W/cm2, ala2

0.0074 and hence Eq.(III-2) gives 6 n/n = 0.04. This

indicates that this small change of density can affect

the excitation of plasma waves.

Since w Pr .=184 and 6 n/nw Pr s = 2.2x10- 4 , the

density changes by only 0.022% in one plasma period (w

P-1). However, even this small change can be success-

fully described with the algorithm given in section II.

Let us give an example ; al=a2=0.1, C I/CO P=10.9,

(D 2/CO p= 9 .9 , the system size is 6.35c/w p, total spa-

tial meshes 256. The initial electron temperature is

mec 2 /25. The ejected electrons through ionization are

stored into fi(v) as in Eq.(II-1) ; the velocity space

is divided inot 10xlO meshes for the range -1S vx/c,

vy/c 1. Nsa, and N in are set to 2.ONo and 0.5N 0 , No

being the initial particle mass.

Figure III-i shows the time evolution of par-

ticles in phase space (x,ux) ; this is the case

without ionization. Figure 111-2 shows the time
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evolution of the maximum electrostatic potential in-

duced by beat wave ; III-2a and 2b correspond to the

cases without and with ionization, respectively. In

the latter case, ionization rate 4 n/nw pr is 6.25 x

10 - 4 , whereas the value given by Eq.(III-4) is 3.33 x

10-4. As clearly seen from these figures, even this

small change of the density can seriously modify the

beat wave acceleration. This may also be true for the

induced Raman process in laser-produced plasmas.
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IV. ATOMIC PROCESS

In this section, the method to solve atomic

processes is briefly reviewed. The basic equations

for those processes are the rate equation for the

population Nz,n of an ion in charge state Z with an

excited electron in the n-th level;

d~~ld -_zxx+ ,..N~xN, - XRz,,; - l +Jk ,.'zN.1 mN + JRz+ IXk',. N. +i.&N,
m k k'

-. . - . + + .. ,+ , (IV-1 )

This equation is not economical when it is coupled to

other equations which determine the plasma parameters.

In practice, it is better to use an approxima-

tion to this equation and to make it realistic. There

exist three approaches at hand. The first one is the

average ion model9,10), where Nz,n is averaged over Z

and then it is sufficient to solve only the equations

for the level populations of an average atom. The

equation to be solved in this case is

d(NP. )fdt =R4 NNQ,,-I.N.NP. +N ( A,..P,.Q. - YEA..P.Q.-. + YC4D.N.NP..Q.

- .CNQ.,+ Y U N C±N. . (TV- 2)

The derivation of this equation is described in Ref.1

in detail.

As an alternative approach, if a suitable assump-

tion for the populations of the excited level can be
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made, the equations required to be solved are those

for Nz only; Na being the abundance of the ion Z. The

equation for this is

d N. It = - IN .N . - R .N .N , + 1. ,N ._ -N . ( V 3
I ~ ~+R.+,N.+,N., v3

In this direction, Salzmann and Krumbein1 1 ) proposed a

form of the excited-level population such as

N,,a/Nz = NoAexp(-Ez,./kT) for excited levels

NX,a/Ni = No for a ground level

where A is so chosen that the population becomes close

to the value calculated by a detailed rate equation.

Here, No is determined from 2 .N.,./Nz=1 and E*, is

the level energy. However, this is not always pos-

sible for high-Z plasmas, since we have no method to

determine the adjustable parameter A. Busquet

proposed a mixed model where only relatively lower ex-

cited levels are calculated by the rate equation

whereas highly excited levels are assumed to be of the

Boltzmann type. However, he needed a further ap-

proximation in the coronal limit.

The third approach is the hybrid atom model')

developed recently, which is a combination of the

former two methods. The basic principle of this ap-

proximation comes from the fact that transitions be-

tween bound states proceed faster than those between

free and bound states. Hence, the level populations
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of the excited levels can be approximately estimated

by quasisteady equations of bound-bound transitions

for an ion of charge Z:

Nzm/Nxm (A +C N,)/(CuN.) (IV-4)

=(g.g. )F (E. ,E. ,NV.),

Equation (IV-4) shows that the normalized population

N2.,/ga can be estimated if only the level energy En

is known. Although there exist transition processes

which may destroy the above characteristics, Eq.(IV-4)

motivates us to use an energy-functional form of the

normalized population N,,a/g,,n : if N2 ,n/g,,n is only

a function of level energies and does not depend ex-

plicitly on Z, the normalized populations constructed

from the average ion can be rescaled and used for

other ions in a different charge state. It should be

noticed that we do not use Eq.(IV-4) but use Eq.(IV-2)

in the hybrid atome model.

In order to clarify the idea in detail, let us

examine the level dynamics of various ions by solving

the full rate equation (IV-l) for an aluminum plasma ;

it is possible to solve (IV-l) in such a low-Z plasma.

In Fig.IV-l, the reduced population probability

Wz,/g,.n (= Nz,s/gz,,uN, I ,kWZ, 3=1) is plotted versus

the excitation energy, which means the level energy

measured from the ground-state level. For N1=1020

cm -3 , the probability is close to the Boltzmann type
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Wz,,gz,.exp(-En/kTe). Although for Ni=10
1 8 cm-3 it

is also close to the Boltzmann type, the temperature

of the bound electrons is much lower than the free

electron temperature Te. In each case, the reduced

probability for various ions of +3 to +10 can be well

characterized universally by one curve, although this

curve depends on the physical parameters as shown by

two curves in Fig.(IV-la).

If this characteristic is taken into account, the

common behavior appearing in Fig.(IV-la) can be satis-

factorily described by the average-ion model.

Actually, the reduced electron population probability

defined later shows the same characteristics as shown

in Fig.(IV-Ib). Accordingly, once the electron

population P. of the average ion is obtained from

Eq.(IV-2), the function Ya(E) (the reduced electron-

population probability) is constructed from P. as fol-

lows ; at some discrete points

Ya(E.a) = Pa/g.a .n (n=1,2,--na.) (IV-5)

and in other regions Ya(E) is exponentially interpo-

lated from Eq.(IV-5) : this exponential interpolation

is justified by the characteristics appearing in

Fig.(IV-1). In Eq.(IV-5) E,, is the excitation energy

of the average ion and the summation is taken over the

ionizing shells. This energy-functional form can be

used to generate the population probability even for

the ion in a charge state Z different from Ze of the
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average ion

W'z,o:Ya(E)gz,*. (IV-6)

It should be noticed that the physical meaning of

W'z,, in Eq.(IV-6) differs from Wz,n in Fig.(IV-la)

the former is derived from the electron population but

the latter from the ion population Nz,n. However,

both characteristics are similar as seen from

Figs.(IV-la) and (IV-lb). This can be justified by

remembering the nature of the average ion model and CR

(Collisional-Radiative) model. In the CR model, only

one electron is excited in some level. Accordingly,

if ions in various charge states are collected

together into a fictitious ion, the electron popula-

tion Po in the n-th level of this ion will reflect the

ion population of the original "real" ions Nz,n with

an electron in the n-th level.

In the next step, the ionization and recombina-

tion rate coefficients are summed up with respect to n

using Nz and Wz,n=W'z,n. Then Eq.(IV-3) for Nz is

solved. With this model, all regions including LTE,

corona, and those intermediate to them can be

described without any adjustable parameter.

Since Eq.(IV-3) is in a tridiagonal form, the

numerical procedure to solve it is quite easy. In the

present model the main computation time becomes the

time to solve only Eq.(IV-2) and is computationally as

fast as the average-ion model. If the ionic charge
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becomes large, then the validity of the present model

is much improved because the range of Z that satisfies

E =:Z-Za /Za (< 1 becomes wider and the fractional

energy change (A E/E) for these ions is on the order of

; this small change of energy justifies the inter-

polation in constructing the energy funcion Ya.

In order to justify the model, let us give an

example. Figure (IV-2) shows the relative abundance

of the charge state of aluminum at a steady state for

Ni = 1020 cm- 3 and various electron temperatures.

Here, the rate equation [Eq.(IV-3)] for Nz includes

radiative, three-body, and dielectric recombinations,

and collsional ionization. In addition, collisional

excitations and deexcitations, and radiative

deexcitations, are also included in the average-ion

model [Eq.(IV-2)]. The results predicted by the

hybrid atom model [Eqs.(IV-2) and (IV-3)1(solid line)

agree quite well with those given by Duston et al.'
3 )

(CR model shown by the dashed line) for ZZ 10. In

Ref.13, only levels for Za 10 were calculated by the

rate equation, whereas for Z<10 ions only the ground-

state levels were taken into account. The small dif-

ference (about 40% at most) between the CR model and

our hybrid-atom model is within difference caused by

the different rate coefficients.

The superiority of the hybrid atom over the

average atom appears in the calculation of radiation
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transport in high-Z plasmas. Figure IV-3 illustrates

the main feature of this process. Let us consider x-

ray emission at some spatial point x, and absorption

at x2. In the average-ion model, only one fictitious

ion having Za exists at each space point, so that the

level energy and hence the x-ray spectral energy

changes from space point to space point depending on

the average charge Za which follows physical

parameters, the density and the temperature.

Consequently, the line radiation emitted in one region

can not be absorbed by the same spectral line in

another region as shown in Fig.IV-3(a). In actual

plasmas, however, there exists an ion having the same

charge Z in all regions although the abundance N, may

change from space point to space point. This means

that a spectral line emitted in one region is always

absorbed by the same line in any other region of space

as shown in Fig.IV-3(b). The hybrid-atom model can

describe this process.

The line shift due to change of Z is significant

in high-Z material because the energy difference be-

tween Z and Z+1 ions is about 21oZ/n 2 and hence is

about 50 eV for Z=30 and n=4, In being 13.6 eV. This

value is far beyond the line width broadening. The

result') with the hybrid-atom model indicates that the

charge state of Au plasmas distributes over a rela-

tively large width in Z (A Z=5). This result also
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agrees with the experimental data
s1 4 ). The real lines

may spread over 300-400 eV (n=4) in spectral range ;

the line of the average ion may locate at the center

of this group of lines.

As a simple example, we solve line transfer equa-

tion as well as the atomic process. We use exponen-

tial profiles for the density and temperature in space

making the pressure uniform : the density and tempera-

ture ranges from 16x10 z0  to lxI0 1 0 cm- 3 and 100 to

1600 eV. The scale length of these plasmas is 10 / m.

Figures IV-4(a) and 4(b) are obtained from the

average-ion model and the hybrid-atom model,

respectively. In addition to the atomic processes

given above, photoexcitations and radiation transport

are included'). In the figure, the solid curves are

the results in which the energy space is divided into

groups of 5 eV width and line broadenings by various

processes are neglected for simplicity : one curve is

the direct data and another is further averaged over

50 eV for an illustrative purpose. In Fig.IV-4(a), in

addition to the above curves, we draw the dashed curve

that is the result using the groups of 50 eV width

broadened artificially. The comparison between the

solid curves in Fig.IV-4(a) and 4(b) shows that the

emission intensities and hence opacities with the

hybrid-atom model are larger than those with the

average-ion model. The difference is concluded to
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arise from the charge-state distribution illustrated

in Fig.IV-3. It is possible to approximately incorpo-

late this effect into the average-ion model. If the

line width is artificially broadened over the range

determined from the charge state distribution as in

Fig.IV-4(a) (dashed curve), the result comes closer to

that with the hybrid-atom model.
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V. COUPLING BETWEEN NON-LTE FREE AND BOUND ELECTRONS

In this section, we will describe an example of

coupling between free and bound electrons both in non-

LTE state. In order to clarify the physics, the model

is largely simplified. However, its basic principle

can be used in the particle code described in section

II.

In the formulation of section IV and Ref.1, free

electrons are assumed to be in LTE. This assumption

appears in the rate coefficient R as follows;

R:<a v>= a vfv2dv, (V-l)

where ( is the cross-section and f the velocity dis-

tribution function of free electrons ; f is normalized

to satisfy

fvzdv = 1, (V-2)

and is taken to be the Maxwell distribution in LTE.

In this section, however, we determine this distribu-

tion function.

It is easy to derive the rate of change in the

number of free electrons owing to radiative capture

the number of free electrons captured within a

velocity width A v at v is given by (a R/6 v)A vNNe

a Rfv 3A vNNe. On the contrary, the expression for the

impact ionization is more complicated because there

are three terms in this process ; 1) velocity change
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from v to v' of a projectile electron , 2) from v' to

v of the same electron, and 3) the birth of a free

electron with v (ionization). If we denote the ini-

tial and final velocities of the free electron, and an

emerging electron velocity by vi, vg, and Vb,

respectively, the energy conservation requires

vit = 21/mo + vf2 + VbZ, (V-3)

where I is the ionization energy. Since the cross

section of binary collision between free electrons is

much larger than that of impact ionization at low

energy (close to ionization energy I, see Fig.V-l),

we need not to take into account the third process

(birth of an electron) ; the ejected electron may

quickly thermalize through binary collision which can

be described as -v (f-fm), where fm is the equilibrium

Maxwell distribution. v is given by , eevN* where a

ee is the cross section of free-free collision.

Furthermore, we can also assume I/me << Vi
2
, Vf

2 .

Thus, we get an approximate equation ;

df/dt=-a nvNef(v)+a iv'Nef(v')-a ivNf(v)

-V (v)(f-fm) (V-4)

where v' is the initial velocity of a projectile

electron. If we set v'=v + <A v> and expand Eq.(V-4)

in <A v> << v, v', then we get

df/dt=-a 3vNef+a i<& v>Ne D(fv)/ v

-a evNe(f-fM). (V-5)

where <A v> can be approximately given by I/mv.
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As inferred from the relative magnitude of y in

Fig.V-1, the electrons having high energy may be much

affected by ionization L j. Figure V-2 shows the

nearly quasi-steady solution of Eq.(V-5) for Au plas-

mas at T=lkeV, Z'=41. This change of velocity dis-

tribution is quite serious in calculating the thermal

flux and other transport coefficients.

Acknowledgement

The author would like to thank Dr.K.Mima at ILE

and Dr.T.Kamimura for valuable suggestions and

discussions.

-119-



REFERENCES

1) M.Itoh, T.Yabe, and S.Kiyokawa, Phys.Rev.A35

(1987) 233.

2) T.Mochizuki et al.,IAEA-CN-47/B-I-3,Kyoto, Japan,

Nov. (1986).

3) M.Lamoureux, C.Moller, and P.Jaegle, Phys.Rev. A30

(1984) 429.

4) A.B.Langdon and B.F.Lasinski, in "M'ethods in Corn

putational Physics" Vol.16(19??)327.

5) T.Tajima and J.M.Dawson,Phys.Rev.Lett.43(1979)267.

6) M.N.Rosenbluth and C.S.Liu, Phys.Rev.Lett. 29

(1972)701.

7) J.P.Matte, private communication.

8) C.M.Tang, P.Sprangle, andR.N.Sudan, Phys.Fluids 28

(1985)1974.

9) W.A.Lokke and W.H.Grasberger, Lawrence Livermore

National Laboratory Report, UCRL-52276, 1977.

10) S.Kiyokawa, T.Yabe, and T.Mochizuki, Jpn.J.Appl.

Phys. 22(1983)L772.

11) D.Salzmann and A.Krumbein, J.Appl.Phys. 49(1978)

3229.

12) M.Busquet, Phys.Rev. A25 (1982) 2302.

13) D.Duston and J.Davis, Phys.Rev. A21 (1980) 1664.

14) S.Kiyokawa, T.Yabe, N.Miyanaga, K.Okada, H.

Hasegawa, T.Mochizuki, T.Yamanaka, C.Yamanaka,

-120-



and T.Kagawa, Phys.Rev.Lett. 54(1985)1999.

FIGURE CAPTIONS

Fig.III-1 : Phase space plot of particles at w pt

0(top), 100(middle), and 200(bottom).

Fig.III-2 Time evolution of electrostatic potential

(a) without and (b) with ionization.

Fig.IV-1 The reduced population probability vs the

excitation energy for T=50 eV and (i) N=10 2 0 cm - 3 and

(ii) N=1018 cm- 3 . (a) The reduced ion population

probability vs the excitation energy with CR model for

different charge states of ions. (b) The reduced

electron population probability vs the excitation

energy with the average-ion model.

Fig.IV-2 The dependence of aluminum abundance in

various charge states on electron temperature for an

ion density of 1020 cm- 3 . The solid and dashed lines

are the results from the hybrid-atom model and

collisional-radiative model, respectively.

Fig.IV-3 The difference between the radiation

transport in (a) average-ion model and (b) hybrid-atom
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model.

Fig.IV-4 The emitted x-ray intensity vs photon

energy from a typical laser-produced Au plasma.

(a) average-ion model, (b) hybrid-atom model.

Fig.V-1 : Comparison between free-free and bound-

free collisions ; here T:I is assumed. When T<I,

free-free cross section becomes steeper and shifts

towards left. C is the number of bound electrons.

Fig.V-2 : Quasi-steady solution of Eq.(V-5) for Au

plasmas at T=I keV, Z'=41. Dashed line shows the Max-

well distribution at T=I keV.
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INDEPENDENT PARTICLE TIMESTEPS
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A long-standing goal in plasma simulation has been a method which could
treat both detailed kinetic physics and smooth large-scale physics in an
efficient and natural way. Until recently, particle simulations were applied
almost exclusively to problems of "microscopic" physics, where only a small
part of the plasma was modeled. With the advent of implicit particle

simulation techniques, 1-5 one can now treat systems of many Debye lengths and
follow them for many plasma oscillation times. However, the price paid for
this capability is a restriction on the allowed spatial resolution (an accuracy
constraint). Thus, at the current state-of-the-art (e.g., in codes such as

TESS or AVANTI 7 ) a small timustep is still necessary uhenever :he system
incorporates a physically-important small spatial or temporal scale anywhere
within its domain.

We are working to develop a new particle-in-cell plasma simulation
technique which relaxes these restrictions and would be suitable for strongly
inhomogeneous problems involving a wide range of space and time scales. The
plasma in any part of phase space would be advanced on its own natural scales.
Of course, it seems only natural to advance each particle with its own,
independent, series of timesteps; one could imagine using (for example) an ODE
solver such as LSODE. The major difficulty in doing this has been the
necessity of processing the particles in synchrony due to the requirement of a
self-consistent field. We have developed in outline an algorithm which may
overcome this difficulty. The code would advance the particles in blocks k,
each with an associated timestep Atk. For each region of phase space, the

nominal timestep (and possibly the mesh spacing) could be chosen in an adaptive
manner. A major improvement in economy comes about because the majority of the
particles are not processed during any given step; for suitable problems this
gain may be two orders of magnitude.

There are many areas of plasma physics where such a capability would be
highly desirable, including sheaths at the interface of a plasma with a probe
or wall, collisionless shocks, double layers, and a wide variety of astro-
physical problems. Even in a relatively tractable problem such as the bump-on-
tail instability, significant gains might be realized by pushing only the fast
particles with a small timestep; the more numerous bulk particles would be
advanced less frequently. Similar methods might prove applicable to problems
of gravitating systems and to particle-in-cell fluid modeling.

In the scheme we are testing, particles are advanced only every j . 2m
steps (for some integer m > 0) if they reside in a region of phase space where
there are no large-amplitude short-wavelength tields (kvAt and wtrapft are

moderate). In such a region we may additionally employ a coarse mesh or strong
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spatial filtering. The large timestep used in such a region should help avoid

the finite-grid instability common to explicit- coder with coarse meshes.

The direct-implicit field equation is: V.(l+x)VO _ p, with X(X) = --At2

and p(x) a free-streaming density. It is solved over the entire domain every

step. In this way, the deposition of charge occurs implicitly, one step earlier

than in an explicit code. We allow a block to deposit its information j time

levels ahead of the current one; this information is then interpolated backward
in time to yield the data needed to produce the field a single time level ahead.

As particles move about in phase space, it is necessary to change their
timesteps (move them from block to block). We allow changes in At by no more
than a factor of 2, no matter where the particle is; we'll catch up on the next

step anyhow, and the logic is simpler this way. To facilitate doubling or
halving the step size "between steps", we employ a variant of the "dl" implicit

particle advance with all key quantities defined at integral (not staggered)
time levels. This should allow us to preserve second order accuracy in time.

A typical grid might look like:

I I I I i I I i i I I 1 l11 l
I I I I I I i i I i I 11 ll1 l

(for electrons) At - 46t (nominally) At - 26t At =6t
j -4 j -2 j =

For each value of j there are j blocks:

Block el: Electrons: push every step

Block e2: Electrons: push on even-numbered steps

Block e3: Electrons: push on odd-numbered steps

Block e4: Electrons: push on steps with (step number mod 4) - 0
Block e5: Electrons: push on steps with (step number mod 4) = 1

Block e6: Electrons: push on steps with (step number mod 4) = 2
Block e7: Electrons: push on steps with (step number mod 4) = 3

Blocks il-i7 are similar, but contain ions.

Let us abbreviate "time-level" by "tl;" then the code at timestep 7

processes the active blocks (dots denote interpolation in time of p and X):

Time level -- 3 4 5 6 7 8 9 10 11

Blocks 1

3 xv

7 x,v \ , ..
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The other blocks were advanced on earlier steps, and we need only interpolate

their contributions to P,X back to tl 8 befor_ the field-solve:

Time level -- 3 4 5 6 7 8 9 10 11

2 \ p ,Ix_\

4 .1 X

5 px

6 P X (..........

After the active particles have been pushed to tl 7 (and before their X-

contributions have been accumulated), they are moved if their (x,v) so dictate
into new blocks. The re-distribution moves particles only into blocks that
will be "pre-pushed" on the current step. Then the pre-push to tl 8 (or
beyond) is performed. Finally, p and X iare nterpolated to tl 8 (for all

blocks, both active and inactive, pre-pushed beyond 8), and the field equation
is solved for E8.

We also must specify what At to use in the definition of the contribution

to X from a block; assuming linear interpolation of both p and X, it is correct
to use the At associated with that block (roughly, also asssociated with a

region of (phase) space or a grid spacing). Thus the At that goes into the
formula for X is not a constant.

The algorithm may subsume explicit ion-subcycling schemes; ions would

normally be processed only at the longest interval. However, initialization is
simplified if all particles are placed in blocks el or il at the start, to
avoid referencing a negative time-level. During the first few steps some delay
in "promoting" particles into highinu ner LI..:... st be imposed, so that
(e.g.) blocks i4-7 are uniformly populated. After a few steps, blocks il-3

will be empty.

The Revised DI Particle-Advance Algorithm

We seek a variant of the Dl scheme with x,v defined at the same (integer)

time level, to facilitate changing the timestep size. We start with the scheme

as it is usually written. The "final push" is:

.- + (q/m) En(-xn)]an- 2 n-2

V.-1/2 - V1 1 2 + (At/2)(q/m)F((5n)

Xn - R + (At2/2)(q/m)En(Rn)

Then, the "pre-push" is:

Vn+112 "v-n- 1 1 2 + (At/2)an-l

-,,+l " x, + At4+ 112
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We move the computation of xn+1 to the beginning of the "final push", where it

becomes: R. - x,-, + Atv--/ 2. We then relabel 7n+112, calling it vn (it's

actually centered at tl n, formally, so this is a notational improvement).

Then, we can write:

vn -Vn 11 2 + (At/2)a_

-_ + (At/2)i-n1 + (At/2)(q/m)En(-xn )

The Algorithm in its Entirety

We enter a timestep with the particle data x,_1 , v,,-, and an-2,

and with En on the mesh. Strictly speaking, we should write a trivial

generalization of the following, with incoming x defined at time level n-j,

etc., but we write the algorithm as if j were unity for clarity. In the

following, time-subscripted quantities are stored in the particle arrays, while

unsubscripted quantities are used only as scratch within the particle loops.

Explicitly, the algorithm is:

BEGIN THE "FINAL-PUSH" LOOP OVER BLOCKS AND !ARTICLES:

0) At - At (current block)

1) R - x1 I + Atv._1

2) aold - &.-2

3) a = (q/m)En(3) (interpolation of field from mesh)

4) nil = 1 [a + "n-21

5) v n - v 1 + (At/2)&n-1 + (At/2)a

6) x" _ 5E + (At2/2)a

7) Enforce particle b.c.'s; reflect or absorb or shift by one period.

8) If particle has moved to a point in phase space where At(Xn,vn) _< Athlock/2 ,

set an-1- [a + an-1 ], and set "new block" flag.

9) If particle has moved to a point in phase space where At(xn,v ) > 2A thlck,

set an-1 - old, and set "new block" flag.

At this point we EXIT THE "FINAL-PUSH" LOOP.

We then treat the special cases:

10) Sort flagged particles into new blocks.

11) Inject any new particles by adding them to the appropriate blocks.
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At this point we BEGIN THE "PRE-PUSH" LOOP OVER BLOCKS AND PARTICLES:

12) Update p, X arrays associated with the current block at tl n, using data

from the individual particles which change blocks.

13) R - X. + Atblock V.

14) Using R, compute p, X arrays associated with the current block at tl n+l.

At this point we EXIT THE "PRE-PUSH" LOOP. We then:

15) Interpolate p,X from all necessary blocks to tl n+l.

16) Execute the field-solve to obtain En+l.
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