

 ARL-TR-9204 ● JUNE 2021

A Primer for Programming and Applying the
Simple Laboratory Integration Platform (SLIP)

by Thomas Kottke and Julian D Fleniken

Approved for public release: distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-9204 ● JUNE 2021

A Primer for Programming and Applying the Simple
Laboratory Integration Platform (SLIP)

Thomas Kottke
Oak Ridge Associated Universities

Julian D Fleniken
Weapons and Materials Research Directorate,
DEVCOM Army Research Laboratory

Approved for public release: distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

June 2021
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

December 2018–December 2020
4. TITLE AND SUBTITLE

A Primer for Programming and Applying the Simple Laboratory Integration
Platform (SLIP)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Thomas Kottke and Julian D Fleniken
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEVCOM Army Research Laboratory
ATTN: FCDD-RLW-TA
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-9204

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The simple laboratory integration platform (SLIP) is a microcontroller-centric single-board processing system designed to
streamline electronic integration efforts. A guide is presented with which programmers can readily access the SLIP system for
application to a wide variety of laboratory automation tasks. The required hardware and software components are listed along
with sources where they can be obtained. A series of obscure, but necessary, housekeeping tasks are presented to streamline
the process of configuring, initializing, and activating the SLIP. Finally, a sample C program is provided and discussed to
demonstrate the workflow process of writing, compiling, downloading, debugging, and executing code on the SLIP.
15. SUBJECT TERMS

microcontroller, single-board, laboratory automation, laboratory integration, programming

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

45

19a. NAME OF RESPONSIBLE PERSON

Thomas Kottke
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-2557
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

Acknowledgments vi

1. Introduction 1

2. Requirements for SLIP Programming 2

2.1 Required Hardware for SLIP Programming 2

2.2 Required Software for SLIP Programming 6

3. Preprogramming Housekeeping Details 7

3.1 Confirming the MPLAB X IDE/ICD 4 Interface 7

3.2 Creating a New MPLAB X IDE Project 8

3.3 Creating a C Program File within the New Project 9

3.4 Loading the PIC24HJ256GP210A Register Definition File into the
Project 9

3.5 Configuring Global Microcontroller Startup Parameters 10

3.6 Configuring the Microcontroller Oscillator Settings 11

3.7 Configuring Individual Microcontroller Port Pins 12

4. A Demonstration of MPLAB X IDE, ICD 4, and SLIP Functionality 13

5. Conclusions and Path Forward 16

6. References and Notes 18

Appendix A. Listing of PIC24HJ256GP210A Power-On Global Parameter
Configuration Code 20

Appendix B. Listing of PIC24HJ256GP210A Run-Time Oscillator
Parameters Configuration Code 23

Appendix C. Listing of PIC24HJ256GP210A Ports Configuration Code 26

iv

Appendix D. Listing of a Simple Laboratory Integration Platform (SLIP)
Demonstration C Code 33

List of Symbols, Abbreviations, and Acronyms 36

Distribution List 37

v

List of Figures

Fig. 1 Hardware required for SLIP programming ... 3

Fig. 2 SLIP PCB, top ... 4

Fig. 3 SLIP PCB, bottom .. 5

Fig. 4 Portion of the SLIP electronic schematic .. 14

Fig. 5 Example of the MPLAB X IDE user interface ... 15

vi

Acknowledgments

The first author would like to thank the second author for the opportunity of an
encore career and the freedom to enjoy it. The authors would like to thank Kenneth
M Kwashnak (Survice Engineering) for technically reviewing this report. And
finally, the authors would like to thank Mark Gatlin of the US Army Combat
Capabilities Development Command Army Research Laboratory Technical
Publishing for editorially reviewing this manuscript and disguising the authors’
illiteracy.

1

1. Introduction

The Simple Laboratory Integration Platform (SLIP) is a microcontroller-centric
single-board processing system developed in the Applied Physics Branch of the
Terminal Effects Division of the Weapons and Materials Research Directorate at
the US Army Combat Capabilities Development Command Army Research
Laboratory. This device was designed to streamline electronic system integration
efforts involving data acquisition, data processing, communication, control, or
power management. The SLIP was originally developed almost a decade ago to
facilitate the testing and evaluation of adaptive/cooperative protection system
sensor and effector components in a variety of configurations and combinations.
However, since that time this device has been used in many other applications
including IR imaging, digital signal processing, ballistic trajectory shot-line
determination, counter-munition activation timing, laser-diode modulation, and
stepper-motor control. To date, the individual who primarily designed and
developed the SLIP has also served as the principle programmer for this device.
While the SLIP appears to be capable of providing many more years of useful
service, the career of the principle programmer is in fact waning. This report is
provided to encourage the continued application of this device by offering future
programmers a clear and concise introduction to the requirements and methods for
programming, using, and improving the SLIP.

The task of highlighting a clear path forward for future SLIP programmers is
addressed by providing three useful sets of information. First, the required hardware
and software components are enumerated and described along with sources where
they can be obtained. Then some necessary, and perhaps obscure, housekeeping
details are presented that will allow the future programmer to initially bring the
SLIP “alive” with a minimal amount of frustration. Finally, an elementary program
is presented that the user can use to demonstrate that the SLIP is functional and
provide a template for future programming efforts.

It is the intention of the authors to generate subsequent reports that will offer
additional software utilities of increasing complexity to assist potential SLIP
programmers in their journey to becoming proficient users of this hardware. This
effort will provide multiple benefits. Primarily, these utilities will spotlight various
useful features of the SLIP and educate future programmers about the device’s
open-ended capabilities. A secondary goal is to effectively develop a hardware
abstraction layer1 between the programmer and the SLIP. Hardware abstractions
are routines in software that provide programs with access to hardware resources
through programming interfaces. In this way, much of the drudgery of using
hardware resources can be alleviated by distancing the programmer from the

2

myriad minutiae. It is not the intention of the authors to hide the inner workings of
this device from potential users. Quite the contrary, every effort is made to suggest
additional references and resources to expand the user’s repertoire of programming
skills and knowledge. Toward that end, each utility will provide all necessary
source code and explanations for user inspection and improvement. The intention
is to provide utilities that can assist novice programmers with a preliminary set of
tools to assist and streamline their initial efforts to create useful applications.

2. Requirements for SLIP Programming

A modest collection of both hardware and software items needs to be collected and
assembled to program and apply the SLIP. These items will be enumerated along
with relevant features and sources where they can be obtained.

2.1 Required Hardware for SLIP Programming

The following hardware items are required for SLIP programming:

• Fully populated SLIP printed circuit board (PCB)
• SLIP PCB power source
• SLIP PCB power cable
• SLIP compatible in-circuit programmer/debugger with adapters and

cables

Figure 1 displays a collection of these hardware items, which are considered
individually in detail in the following.

3

Fig. 1 Hardware required for SLIP programming

The SLIP was developed within the Applied Physics Branch of the DEVCOM
Army Research Laboratory, which currently is the only source for this item. Please
contact the authors for availability. This integration platform was designed around
the Microchip Technology2 PIC24HJ256GP210A microcontroller.3 This device
was selected for its multiple capabilities in addition to its ease of use and extensive,
readily available support documentation.

The PIC24HJ256GP210A is a high-end 16-bit microcontroller with an abundant
supply of program memory and peripheral functionality to allow hardware platform
development for a wide variety of applications. This microcontroller can operate at
central processor unit speeds of up to 40 million instructions per second. In addition
to a multitude of timers, flexible interrupt architecture, analog-to-digital converters,
digital input/output (I/O), and direct memory access support, this microcontroller
also includes a powerful communications module. This module supports multiple
common communication protocols. The PIC24HJ256GP210A is also serviced by a
mature integrated development environment (IDE) that seamlessly enables mixed
language programming, code text editing, machine code compilation, and device
programming.

PC
SLIP

SLIP
Power
Cable

Power Supply
USB

Cable

RJ-11

ICD 4

AC164110

Molex Connecter

4

Details of the SLIP hardware’s design, fabrication, and specific capabilities have
been presented in a previous report.4 Figures 2 and 3 of the current report illustrate
a fully populated SLIP and highlight the locations of some of the major
components.

Fig. 2 SLIP PCB, top

Power
Inter-Board
Connector

Remote
Activation
Connector

Power
Connectors

Voltage
Regulators

16-bit LED
Latches

Parallel Port
Transceivers

Micro-
controller

Communications
Inter-Board
Connector

LCD Display
Latches

ICSP PortOscillator

5

Fig. 3 SLIP PCB, bottom

A suitable power supply for SLIP programming is any unipolar voltage source
capable of providing between 7 and 35 V and 250 mA of current. The laboratory
power supply illustrated in Fig. 1 is ideal. For mobile applications, a two- or three-
cell lithium polymer battery pack is also convenient.

The power cable for SLIP programming is a simple two-wire assembly connecting
the negative and positive terminals of the power supply to the –P and +P pins,
respectively, on the SLIP board. Figure 2 displays the location of the –P and +P
SLIP pins in the highlighted box labeled Power Connectors in the lower right-hand
corner of this figure.

Of course, the connectors on the power supply end of this cable will depend on the
chosen power supply. For the example illustrated in Fig. 1, simple banana plugs are
used. On the SLIP end of the power cable, a two-pin 0.100-inch pitch Molex
connector5 available from Digi-Key Electronics6 provides a convenient and secure
connection. Regardless of the chosen connectors, care should be exercised to
maintain the correct voltage polarity.

The programmer/debugger serves as a hardware interface between the PC, where
code is entered, developed, and compiled, and the SLIP, where the compiled code
will ultimately be executed. When acting as a programmer, this interface device
simply downloads the compiled code from the PC to the program memory of the

LCD
Display

Piezoelectric
Buzzer

Hardwire RS232
Convertor

RF Link
Module

RF Link
Antenna

LED Status
Indicators

Pushbutton
Switches

Hardwire RS232 and
Digital I/O Connectors

16-bit LED Display

6

SLIP’s microcontroller. Following this download, the connection between the
programmer/debugger and the SLIP can be removed. Whenever power is applied
to the SLIP, the downloaded program will automatically be initiated and proceed
to completion.

In contrast, when the programmer/debugger is operating in the debugger mode,
downloads from the PC to the SLIP consist of not only the compiled program code
but additional executive executable code. This executive code allows the PC to
monitor the real-time execution of the compiled code on the microcontroller.
Therefore, the connection between the programmer/debugger and the SLIP board
must be maintained whenever the programmer/debugger is operating in this mode.
The advantage of the debug mode is program execution on the SLIP can be halted
at any time, or at preset breakpoints, and all microcontroller variable and register
values can be examined and altered.

The programmer/debugger must be compatible with the operation of the
microcontroller on the SLIP board. A suitable choice is the Microchip Technology
ICD 47 available from Digi-Key Electronics.8 Figure 1 displays this
programmer/debugger and its connections to both the PC and the SLIP. A standard
USB cable connects the ICD 4 programmer/debugger to the PC. The ICD 4
connects to the SLIP via the in-circuit serial programming port (ICSP) highlighted
in the top of Fig. 2. This connection requires a modular RJ-119 cable and a
Microchip Technology AC164110 RJ-11 to ICSP adapter board10 available from
Digi-Key Electronics.11 The USB cable and the modular RJ-11 cable are included
with the ICD 4.

2.2 Required Software for SLIP Programming

• Conveniently, the two PC software packages required for SLIP
programming are both available online and are free:

o Microchip Technology MPLAB X Integrated Development
Environment

o Microchip Technology XC16 C Programming Language Compiler

The Microchip Technology MPLAB X IDE is a convenient, flexible software
package that combines multiple resources to assist with code configuration, entry,
development, programming, and debugging. This IDE works seamlessly with the
ICD 4 programmer/debugger and most other Microchip Technology MPLAB
development tools and software. To download this IDE software, go to
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-
x-ide.

https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-x-ide

7

One quarter of the way down this page is a click-tab labeled “Downloads” that
brings up additional click-tabs for Windows, Linux, and Apple operating system–
compatible downloads of the MPLAB X IDE. Each of these downloads transfer in
excess of 1 gigabyte of data. Therefore, a high-speed data connection is
recommended.

Use of the Microchip Technology XC16 C Programming Language Compiler
allows the SLIP to be programmed in the high-level C language in addition to the
native, low-level 16-bit assembly language. This will be a welcome advantage for
most new programmers. To download this compiler go to
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-
xc-compilers and click on the “Compiler Download” tab one-third of the way down
the page. Then click on “MPLAB XC16 Compiler” under the PC operating system
of your choice. This compiler download is a more modest 100 megabytes in size.

3. Preprogramming Housekeeping Details

After the necessary hardware and software components have been collected, a
number of housekeeping details need to be addressed before programming the SLIP
can begin. These housekeeping chores include the following:

• Determining the MPLAB X IDE software and ICD 4 hardware are
 interfaced and communicating successfully

• Creating a new project within the MPLAB X IDE environment
• Creating a C program file within this new project
• Loading a file into the new project that defines registers and includes other

 useful information about the PIC24HJ256GP210A microcontroller
• Configuring various microcontroller global power-on parameters
• Configuring the microcontroller oscillator settings
• Configuring the individual microcontroller port pin types, directions, and

initial values

At first introduction, these housekeeping details may appear somewhat onerous.
However, in short order they will become routine. And like all chores, they are
necessary and more palatable after they have been completed. In the following
descriptions, references to specific text items presented within the IDE software
graphical user interface will appear in quotations for clarity.

3.1 Confirming the MPLAB X IDE/ICD 4 Interface

The first housekeeping goal is to ascertain that the MPLAB X IDE program on the
PC and the ICD 4 programmer/debugger hardware are interfacing properly. Begin

https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-xc-compilers
https://www.microchip.com/en-us/development-tools-tools-and-software/mplab-xc-compilers

8

by opening the IDE program. All necessary USB drivers for the ICD 4 were
auto-loaded to the PC at the same time the IDE software was installed. The next
step is to simply connect the ICD 4 to the PC using the supplied USB cable, as
illustrated in Fig. 1. The status bar strip on the ICD 4 will glow purple, change to
blue, blink, and finally remain a steady blue. Plug the supplied RJ-11 modular cable
into the ICD 4 and connect the supplied ICD Test Interface Module AC164113 onto
the other end of the RJ-11 cable. On the PC, click the IDE “Debug” pull-down tab.
Near the bottom of the pull-down list click “Run Debugger/Programmer Self Test”.
A pop-up window will ask the user to “Please select the tool you would like to run
the self test on”. Under “ICD 4” click the serial number that matches the number
on the back of your particular ICD 4 programmer/debugger and click the “OK”
button. After a few moments, the ICD 4 will click and another pop-up window will
ask you to “Please ensure the RJ-11 cable is connected to the test board before
continuing”. Click the “Yes” button. After the ICD 4 finishes clicking again, the
IDE on the PC should display the following:

“Test interface PGC clock line write succeeded.”
“Test interface PGD data line write succeeded.”
“Test interface PGC clock line read succeeded.”
“Test interface PGD data line read succeeded.”
“Test interface LVP control line test succeeded.”
“Test interface MCLR level test succeeded.”
“ICD 4 is functioning properly.”

At this point, the user can be confident that the MPLAB X IDE program on the PC
and the ICD 4 programmer/debugger are interfacing properly.

3.2 Creating a New MPLAB X IDE Project

The next task is for the user to create a new project within the MPLAB X IDE
program on the PC. To create a new project, the IDE needs to know

• Specific type of project to be created
• Specific microcontroller on which the project is meant to execute
• Which, if any, compilers are to be used
• In what directory program files are to be stored

Start this task by creating a new working folder on the PC where the SLIP program
files will be stored. Under the “File” pull-down tab in the IDE program select “New
Project…”. A new “Choose Project” pop-up window will appear where the type of
project can be selected. Under “Categories” select “Microchip Embedded”, under
“Projects:” select “Standalone Project” and click “Next”. A second pop-up window

9

is the “Select Device” window. Under “Family” select “16-bit MCUs (PIC24)”;
under “Device” select “PIC24HJ256GP210A” near the bottom of the list; under
“Tools:” select “No Tools” and click “Next”. The third pop-up window is the
“Select Compiler” window. Under “XC16” select the version of the C compiler
downloaded from the Microchip Technology website and click “Next”. The final
pop-up window allows the user to inform the IDE of the previously created working
folder where the new SLIP project and all related files are to be stored. Under
“Project Name:” enter a suitable, descriptive filename. Under “Project Location:”
browse to and select the previously created project working folder and click
“Open”. The “Project Folder:” textbox will automatically populate with a folder
name consisting of the project location folder, concatenated with the project name,
concatenated with an addition sublevel folder of the same project name with “.X”
suffix. This .X folder is where the MPLAB X IDE will store all the files it generates
to support the newly created project. The user will have little reason to interact with
this .X folder. Click “Finish”. An inspection of the recently created working folder
created for this SLIP project will reveal the addition of a new subfolder with the
supplied “Project Name”. This is where all the code the user generates will reside.
Furthermore, this subfolder will contain an additional .X subfolder of the same
name, which is the working domain of the IDE.

3.3 Creating a C Program File within the New Project

Creating a C program file within the new project is straightforward. The upper left-
hand window of the IDE displays tabs labeled “Projects”, “Files”, and “Services”.
Click the “Projects” tab. The displayed file hierarchy shows the project folder at
the top with the selected project name. One of the underlying subfolders is labeled
“Source Files”. Right-click this folder and select “New” followed by “C Main
File…”. A pop-up window requests the desired C filename. Enter a descriptive
filename, leave all the other fields in this pop-up with their default values, and click
“Finish”. The user will see the newly created C program file consisting of a very
rudimentary main C program template with documenting remarks at the top, a
couple of #include statements, and an empty C function named “main” at the
bottom. At this point, check to see where the newly created C program file has been
created. If it has been located in the .X subfolder of the project file, cut it and paste
it into the project file itself.

3.4 Loading the PIC24HJ256GP210A Register Definition File into
the Project

The next housekeeping detail is to load a pre-existing file into the project that
contains multiple types of information required by the C language compiler.

10

Primarily, this file contains the defined names of the registers and bit locations of
the specified microcontroller that the IDE will use to access the information
contained within them. Conveniently, these names match the Microchip
Technology data sheets as closely as possible. In addition, this file contains
configuration name definitions and other useful information. To retrieve this file,
go to the C:\Program Files\Microchip\xc16\vX.XX\support\PIC24H\h folder, copy
the file named p24HJ256GP210A.h, and paste this file into the newly created
project folder. Note that “vX.XX” refers to the current version number of the
downloaded XC16 C programming language compiler. As of January 2021 the
current version was v1.61, but this will certainly change with time. Substitute the
version number of the C compiler that you are currently using. Returning to the
project window in the IDE, right-click on the “Important Files” subfolder and select
“Add Item to Important Files”. Select the p24HJ256GP210A.h file recently added
to the project file and click “Select”. The p24HJ256GP210A.h filename is added to
the “Important Files” subfolder. By right-clicking on this filename and selecting
“Open”, the contents of this file can be examined. The remaining step in this task
is to include the contents of file p24HJ256GP210A.h during compilation. This is
accomplished by adding the following line of code

#include “p24HJ256GP210A.h”

to the newly created C program file below the preexisting include statements.
Statements that begin with a “#” are compiler directives. All compiler directives
are executed by the compiler before any C language statements are considered.

3.5 Configuring Global Microcontroller Startup Parameters

The MPLAB ICD 4 In-Circuit Debugger Quick Start Guide12 specifies
recommended microcontroller global settings that need to be configured to ensure
proper communication between the microcontroller on the target SLIP board and
the ICD 4. Appendix A of this report lists a header file that will properly configure
the specified microcontroller settings. The details of this header file are not
particularly important for the novice SLIP programmer at this time. However,
inspection of this appendix reveals another collection of compiler directives.
Among other tasks, these compiler directives select an initial clock source for the
microcontroller on the target SLIP board. This task cannot be accomplished using
straight C code because the clock source must be correctly configured before any
code can be executed. Specifically, the 10-MHz oscillator on the SLIP, which is
external to the microcontroller, is selected as the clock source and phase-lock loop13
modification of this time base within which the microcontroller is enabled.
Programmers with specific concerns about this configuration setting process should

11

consult the PIC24HJXXXGPX06A/X08A/X10A data sheet14 Section 21.1. The
procedures for loading the header file of Appendix A into the program file and how
to associate it with the project via the C code is as follows.

In the upper left-hand window of the IDE, click the “Projects” tab as before and
then right-click the subfolder “Header Files”, select “New”, and select “C Header
Files…”. In the resulting pop-up window, enter “Config_PIC24.h” as the filename.
This new file will appear within the “Header Files” folder. Right-click the new file
listing and select “Open”. The contents of the new header file will be listed in the
IDE. Erase the current contents of this newly created header file, copy the contents
of Appendix A, and paste them into the header file. Finally, open the C program
file and enter the following

#include “Config_PIC24.h”

below the pre-existing include statements. This statement allows the project to
access the contents of the “Config_PIC24.h” header file for global settings
configuration.

3.6 Configuring the Microcontroller Oscillator Settings

Like so many faunal systems, without a good “heart beat”, the SLIP cannot
function. The global settings of the previous section ensure the microcontroller will
have access to a valid initial clock signal. However, this initial timing source uses
power-on default values that generate a clock frequency less than the maximum
allowed 40-MHz clock speed. The next housekeeping task is to maximize the
timing signal to the microcontroller by adjusting the phase-lock loop modification
parameters. Appendix B of this report lists a header file that will properly set these
phase-lock loop parameters for maximum microcontroller clock speed. Details
relating to specifics of the phase-lock loop clock modification process are available
in Section 7 of the Microchip Technology PIC24H Family Reference Manual.15
The procedure for loading the header file of Appendix B into the program file and
accessing it within the C code is very similar to the process used to load Appendix
A, with one small addition at the end. Create a new header file named
Config_oscill.h. Open this header file and replace the preexisting contents with the
contents of Appendix B. Next, open the C program file and enter the following

#include “Config_oscill.h”

below the preexisting include statements. One additional new step is to add the
statement

“config_osc()”

12

inside the “main” function of the C code. This line of code calls the function located
in the associated header file.

3.7 Configuring Individual Microcontroller Port Pins

The PIC24HJ256GP210A microcontroller on the SLIP has 100 pins. Many of these
pins are included in general-purpose I/O ports. Most of these I/O port pins are
multiplexed with alternate functions to add flexibility and allow different functions
to be performed at various times. The final housekeeping task is to configure many
of these individual pins with respect to function type, direction, and initial value.
To utilize a pin for a specific application, it is generally necessary to specify three
characteristics about the pin:

1. Whether the pin will perform an analog or a digital function
2. Whether the pin will function as an input device or an output device
3. If the pin is configured as a digital output device, whether the output state
 at power-on will be high or low

This is accomplished by accessing and defining several registers within the
microcontroller that control these settings. A tutorial explaining I/O port
configuration details is available online.16

Some of the multiplexed microcontroller pins are routed to internal locations on the
SLIP board that are not intended for external access. These pins that perform a
single, static, internal function can be preconfigured to a static state that allows
them to perform that function as required at any time. Other microcontroller pins
are routed to external connection points, such as the inter-board header arrays. It
may not be known in advance what sort of external devices will be attached to these
external SLIP connections. Therefore, to avoid conflicting signal levels at power-
on that may detrimentally affect the microcontroller or the external device, these
pins generally are configured as high-impedance digital inputs. This benign power-
on configuration ensures minimal interaction between the quiescent SLIP state and
external devices. These initial pin configurations can be adjusted at a later time as
external SLIP connections are required to interact with specific devices with known
characteristics.

Appendix C of this report lists a header file that will properly configure the initial
microcontroller pin settings. The procedures for loading the header file of Appendix
C into the program file and accessing it within the C code should now be familiar.
Create a new header file named Config_ports.h. Open this header file and replace
the pre-existing contents with the contents of Appendix C. Next, Open the C
program file and enter

13

#include “Config_ports.h”

below the preexisting include statements. Finally, add the statement

“config_ports()”

inside the “main” function of the C code to call the function located in the
associated header file.

4. A Demonstration of MPLAB X IDE, ICD 4, and SLIP
Functionality

With all housekeeping chores completed, the IDE can now be used to construct and
compile a C program to yield executable code, this code can be downloaded to the
target SLIP using the ICD 4 programmer/debugger, and finally executed. This
exercise will serve two purposes. First, it will highlight a few of the SLIP’s more
elementary features. Second, it will demonstrate the workflow process of writing,
compiling, downloading, debugging, and executing code.

This demonstration program will access the piezoelectric buzzer, pushbutton
switches, and LED status indicators on the SLIP board. Figure 3 illustrates the
locations of all these devices. Figure 4 presents the portion of the SLIP schematic
that displays the electrical connections between the microcontroller and these three
device types. From this figure, it can be seen that the piezoelectric buzzer is
controlled by microcontroller pin RD7; the 3-bit LED status indicators are
controlled by pins RE0, RE1, and RE2; and the pushbutton switches are controlled
by pins RE3 and RE4. All these pins are routed to internal locations on the SLIP
board that are not intended for external access. Therefore, these pins are
preconfigured to a static state in header file “Config_ports.h” that allows them to
perform their function as required at any time.

A simple program that accesses these devices on the target SLIP board is listed in
Appendix D. This code can be cut from this appendix and pasted into the IDE C
code source file replacing whatever is currently there. Figure 5 illustrates the
MPLAB X IDE with this code inserted. Pertinent features of the IDE user interface
are labeled.

14

Fig. 4 Portion of the SLIP electronic schematic

Extensive comments in this code describe the program’s operation. A very general
description follows. The program begins with remarks specifying the origin and
purpose of the code. This is followed by a listing of the included header files as
discussed in the previous housekeeping section. Required variables are then
declared. The “main” program begins by calling the functions contained in some of
the included header files. This is followed by an infinite loop that first checks the
status of the pushbutton switches and turns the piezoelectric buzzer on or off
depending on which pushbutton switch is depressed. The program then branches to
a small section of code determined by the value of the state variable “state_leds”.
In this snippet of code, the state variable is incremented to the next allowed value,
and the 3-bit LED status indicators are updated appropriately in a four-step process.
First, the current Port E value is read and stored in the variable “port_value”. The
three lowest bits of this stored value are then effectively stripped by ANDing the
read value with the bit mask 0b1111111111111000. Next, the new 3-bit LED
pattern is inserted by ORing the stripped value with 0b0000000000000XXX, where

Buzzer

Pushbutton
Switches

LEDs

PB1

PB2

15

XXX is the new desired LED pattern. Finally, the modified Port E value is reloaded
into the latch register associated with this port.

Project File

Header Files
C Code File

Microcontroller

Compile
Run

Debug

Exit
Debug

Pause
Debug

Reset
Debug Run

Debug

Program
Memory
Counter

Operation
Status BarProgramming/Debugging Tool

Compiler
File Window

Fig. 5 Example of the MPLAB X IDE user interface

The admittedly modest result on the SLIP is the flashing of the LED status indicator
and the ability to turn the buzzer on and off using the pushbutton switches. Clocking
at 40 MHz, the previously described section of the while loop will execute in less
than a microsecond. At this update rate, the blinking of the LEDs is imperceptible.
The final task of the while loop is to effectively count up to 1,024,000. This busy
work slows the execution time of the while loop down to almost 200 ms, which
allows the blinking of the LEDS to be observed.

The first step toward running this C code on the target SLIP is to simply determine
if it will compile successfully in the IDE environment on the PC. Clicking a compile
icon in the IDE should generate a listing of compilation information ending with a
“BUILD SUCCESSFUL” notification. To purposely force a compilation error,
remove the semicolon from the end of any C statement in the while loop and
recompile. Now the result is the listing of error code information ending with
“BUILD FAILED”. Clicking on the error code statement will highlight the vicinity
of the C code where the compilation failed. Reinsert the semicolon and recompile.

16

A next logical step might be to simply execute this code on the target SLIP without
debugging capability. To program the SLIP with the executable code requires the
ICD 4 to be connected between the PC and the SLIP with power supplied to the
SLIP. Clicking the run icon in the IDE will program the SLIP and begin execution.
The SLIP can now be disconnected from the ICD 4. Whenever power is applied to
the SLIP the downloaded code will be executed. The only way to halt execution is
by removing power.

If the execution of the code programmed into the SLIP is not as expected or the
details of the execution process wish to be studied, then the debugging capability
of the ICD 4 can be employed. With the SLIP reconnected to the ICD 4 and
powered, click the debug icon in the IDE. The first line of C code to be executed
will be highlighted. Execution of the code can now be initiated by clicking the run
debug icon, and temporarily halted by clicking the pause debug icon. In the paused
state, the current value of any variable can be inspected by clicking on any white
space in the program listing file window and hovering the cursor over the desired
variable name. Execution can be restarted from the point where it was halted by
again clicking the run debug icon. To start execution from the beginning, click the
reset debug icon followed by the run debug icon. Note that any changes made to
the C code in the paused state will not take effect until the debugger is exited using
the exit debug icon and reentered using the debug icon.

Another useful feature of the debugger is the capability to set breakpoints at any
point in the code. Breakpoints are set by clicking the line number in the left-hand
gutter in the file window. The specified line will be highlighted and a pink square
will be added to the gutter. Execution of the code will automatically be paused
when the breakpoint is reached. Breakpoints are removed by clicking the pink
square in the gutter.

5. Conclusions and Path Forward

A guide has been presented by which programmers can readily access the SLIP
system for application to a wide variety of laboratory tasks. The required hardware
and software components have been listed along with sources where they can be
obtained. A series of obscure, but necessary housekeeping tasks were presented to
streamline the process of configuring, initializing, and activating the SLIP. Finally,
a sample C program was provided and discussed to demonstrate the workflow
process of writing, compiling, downloading, debugging, and executing code.

The details presented in this report are introductory. A successful SLIP programmer
will require additional reference material. Additional information about the SLIP

17

hardware can be obtained from the authors and the following ARL Technical
Report:

Kottke T. An Integration Platform for Adaptive/Cooperative Protection Systems;
2015 Sep. Report No.: ARL-TR-7422.

An overview and specific details regarding the PIC24HJ256GP210A
microcontroller on the SLIP are available at the following:

https://www.microchip.com/wwwproducts/en/PIC24HJ256GP210A

https://ww1.microchip.com/downloads/en/DeviceDoc/70592d.pdf

General information concerning applicable programmer/debuggers and the ICD 4
in particular are available at the following:

https://www.microchip.com/en-us/development-tools-tools-and-
software/programmers-and-debuggers

https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DV16404
5

Extensive information about using the MPLAB X Integrated Development
Environment can be found at

https://www.microchip.com/content/dam/mchp/documents/MCU08/ProductDocu
ments/UserGuides/50002027E.pdf

The MPLAB XC16 C Compiler User’s Guide is available at

https://ww1.microchip.com/downloads/en/DeviceDoc/50002071K.pdf

https://www.microchip.com/wwwproducts/en/PIC24HJ256GP210A
https://www.microchip.com/en-us/development-tools-tools-and-software/programmers-and-debuggers
https://www.microchip.com/en-us/development-tools-tools-and-software/programmers-and-debuggers
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DV164045
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DV164045
https://www.microchip.com/content/dam/mchp/documents/MCU08/ProductDocuments/UserGuides/50002027E.pdf
https://www.microchip.com/content/dam/mchp/documents/MCU08/ProductDocuments/UserGuides/50002027E.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/50002071K.pdf

18

6. References and Notes

1. Wikipedia. Hardware abstraction site [accessed 2021 Jan].
https://en.wikipedia.org/wiki/Hardware_abstraction.

2. Microchip Technology. Contact information site [accessed 2021 Jan].
https://www.microchip.com/about-us/contact-us.

3. Microchip Technology. Product information page [accessed 2021 Jan].
https://www.microchip.com/wwwproducts/en/PIC24HJ256GP210A.

4. Kottke T. An integration platform for adaptive/cooperative protection systems.
Army Research Laboratory (US); 2015 Sep. Report No.: ARL-TR-7422.

5. Molex Corporation. Product information page [accessed 2021 Jan].
https://www.molex.com/molex/products/part-
detail/crimp_housings/0022012027.

6. Digi-Key Electronics. Product information page [accessed 2021 Jan].
https://www.digikey.com/en/products/detail/molex/0022012027/171991.

7. Microchip Technology. Product information page [accessed 2021 Jan].
https://www.microchip.com/developmenttools/ProductDetails/DV164045.

8. Digi-Key Electronics. Product information page [accessed 2021 Jan].
https://www.digikey.com/en/products/detail/microchip-
technology/DV164045/7595436?s=N4IgTCBcDaIJYGMAmACALCAugXy
A.

9. Wikipedia. Registered jack site [accessed 2021 Jan].
https://en.wikipedia.org/wiki/Registered_jack.

10. Microchip Technology. Product information page [accessed 2021 Jan].
https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DV1
64045.

11. Digi-Key Electronics. Product information page [accessed 2021 Jan].
https://www.digikey.com/en/products/detail/microchip-
technology/AC164110/1212490?s=N4IgTCBcDaIIYGMCMA2ALEpAGEB
dAvkA.

12. Microchip Technology. Product information page [accessed 2021 Jan].
https://ww1.microchip.com/downloads/en/DeviceDoc/50002538B.pdf.

13. Wikipedia. Information page [accessed 2021 Feb]. https://en.widipedia.org
/wiki/Phase-locked_loop.

https://en.wikipedia.org/wiki/Hardware_abstraction
https://www.microchip.com/about-us/contact-us
https://www.microchip.com/wwwproducts/en/PIC24HJ256GP210A
https://www.digikey.com/en/products/detail/molex/0022012027/171991
https://www.microchip.com/developmenttools/ProductDetails/DV164045
https://en.wikipedia.org/wiki/Registered_jack
https://www.digikey.com/en/products/detail/microchip-technology/AC164110/1212490?s=N4IgTCBcDaIIYGMCMA2ALEpAGEBdAvkA
https://www.digikey.com/en/products/detail/microchip-technology/AC164110/1212490?s=N4IgTCBcDaIIYGMCMA2ALEpAGEBdAvkA
https://www.digikey.com/en/products/detail/microchip-technology/AC164110/1212490?s=N4IgTCBcDaIIYGMCMA2ALEpAGEBdAvkA
https://ww1.microchip.com/downloads/en/DeviceDoc/50002538B.pdf
https://en.wikipedia.org/wiki/Phase-locked_loop

19

14. Microchip Technology. Product information page [accessed 2021 Jan].
https://ww1.microchip.com/downloads/en/DeviceDoc/70592d.pdf.

15. Microchip Technology. Product information page [accessed 2021 Feb].
http://ww1.microchip.com/downloads/en/DeviceDoc/DS70227E.pdf.

16. Microchip Technology. Developer help page [accessed 2021 Feb].
https://microchipdeveloper.com/16bit:io-ports.

https://ww1.microchip.com/downloads/en/DeviceDoc/70592d.pdf

20

Appendix A. Listing of PIC24HJ256GP210A Power-On Global
Parameter Configuration Code

21

//<<<<< ----------------- 77 CHARACTER WIDTH TEMPLATE -----------------
>>>>>

/*
File: Config_PIC24.h
Date: Jan 2021
Language: MPLAB XC16 C Compiler V1.61
Microprocessor: PIC24HJ256GP210A
Author: Tom Kottke
E-Mail: lambiniboy@hotmail.com
Phone: 443-504-5201
/*

// For a listing of device configuration registers, allowed values, and
// descriptions see section 21.1 of PIC24HJXXXGPX06A/X08A/X10A Data Sheet
// Microchip Technology document DS70592B

// C code must include header include statement:
// #include "p24HJ256GP210A.h"

//Boot Segment Write Protect
#pragma config BWRP = WRPROTECT_OFF

//Boot Segment Program Flash Code Protection
#pragma config BSS = NO_FLASH

//Boot Segment RAM Protection
#pragma config RBS = NO_RAM

//Secure Segment Program Write Protect
#pragma config SWRP = WRPROTECT_OFF

//Secure Segment Program Flash Code Protection
#pragma config SSS = NO_FLASH

//Secure Segment Data RAM Protection
#pragma config RSS = NO_RAM

//General Code Segment Write Protect
#pragma config GWRP = OFF

//General Segment Code Protect
#pragma config GSS = OFF

//PLL Lock Enable Bit
#pragma config PLLKEN = ON

//Oscillator Mode
#pragma config FNOSC = PRIPLL

//Two-speed Oscillator Start-Up Enable
#pragma config IESO = ON

//Primary Oscillator Source
#pragma config POSCMD = EC

//OSC2 Pin Function
#pragma config OSCIOFNC = OFF

mailto:lambiniboy@hotmail.com

22

//Clock Switching and Monitor
#pragma config FCKSM = CSDCMD

//Watchdog Timer Postscaler
#pragma config WDTPOST = PS3276

//Watchdog Timer Prescaler
#pragma config WDTPRE = PR128

//Watchdog Timer Enable
#pragma config FWDTEN = OFF

//Power On Reset Timer Value
#pragma config FPWRT = PWR128

//ICSP Communication Channel Select
#pragma config ICS = PGD2

//JTAG Port Enable
#pragma config JTAGEN = OFF

23

Appendix B. Listing of PIC24HJ256GP210A Run-Time Oscillator
Parameters Configuration Code

24

//<<<<< ----------------- 77 CHARACTER WIDTH TEMPLATE ----------------- >>>>>

File: Config_oscill.h
Date: Jan 2021
Language: MPLAB XC16 C Compiler V1.61
Microprocessor: PIC24HJ256GP210A
Author: Tom Kottke
E-Mail: lambiniboy@hotmail.com
Phone: 443-504-5201
*/

// PROGRAM DESCRIPTION --
-
/*
 This file is used to set run-time oscillator parameters. Power-on reset
 global oscillator configurations must be previously set using
 configuration macros in code_Config_PIC24.h.

 C code must include header include statement:
 #include "Config_oscill.h"

 C code must include the following call to function defined in this header
 at the beginning of the "main" function:
 config_osc();

 Fosc is the frequency of the selected oscillator.

 Fcy is the device instruction clock, which for the PIC24HJX10 is Fosc/2.

 For the PIC24HJ256GP210A, Fcy up to 40MHz is supported.

 The selected oscillator can optionally use an on-chip PLL to obtain
 different speeds of operation. First, the input to the PLL unit goes
 through a division, a multiplication, and another division. The first
 division factor N1 has a value from 2 to 33. The resulting frequency
 Fin/N1 must be between 0.8MHz and 8MHz. Therefore, Fin must be greater
 than 1.6MHz. The multiplication factor M has a value from 2 to 513 and
 must generate a frequency between 100MHz and 200MHz. Finally, the second
 division factor N2 is 2, 4, or 8 and must produce a final frequency in
 the range 12.5MHz to 80MHz.

 Example: Fin = 10MHz, N1 = 2, M = 32, N2 = 2 => Fosc=80MhZ, Fcy=40MHz
*/

void __attribute__((__no_auto_psv__)) config_osc(void); // declare func

void config_osc(void)
{
 PLLFBDbits.PLLDIV = 30; //set M PLL multiplication factor to 32
 CLKDIVbits.PLLPOST = 0; //set N2 PLL division factor to 2
 CLKDIVbits.PLLPRE = 0; //set N1 PLL division factor to 2

25

 while (OSCCONbits.COSC != 0b011); //wait for clock switch

 while (OSCCONbits.LOCK != 1); //wait for PLL to lock
}

26

Appendix C. Listing of PIC24HJ256GP210A Ports Configuration
Code

27

//<<<<< ----------------- 77 CHARACTER WIDTH TEMPLATE ----------------- >>>>>

/* Config_ports.h

File: Config_ports.h
Date: Jan 2021
Language: XC16 C Compiler
Microprocessor: PIC24HJXXXGPX10
Author: Tom Kottke
E-Mail: lambiniboy@hotmail.com
Phone: 443-504-5201

*/

/* PROGRAM DESCRIPTION --
-

 This file is used to configure the data direction, initial state, and
 analog or digital nature of the individual pins of the microcontroller
 ports. For each pin a listing of the multiplexed functions is provided
 along with the pin number and function description.

 In the main C program an include statement should be added:

 #include path + Config_ports.h

 and the included function should be called:

 config_ports();

*/

void __attribute__((__no_auto_psv__)) config_ports(void); // declare func

void config_ports(void)
{
// PORT A ---
-
 TRISAbits.TRISA0 = 0; //TMS/RA0 17 LAT_16LED TUTA
 LATAbits.LATA0 = 0; //TMS/RA0 17 latch on high

 TRISAbits.TRISA1 = 0; //TCK/RA1 38 EN_16LED TUTA
 LATAbits.LATA1 = 1; //TCK/RA1 38 enable on low

 TRISAbits.TRISA2 = 1; //SCL2/RA2 58 SCL2 header Left 5 DAUG
 LATAbits.LATA2 = 0; //SCL2/RA2 58

 TRISAbits.TRISA3 = 1; //SDA2/RA3 59 SDA2 header Right 5
DAUG
 LATAbits.LATA3 = 0; //SDA2/RA3 59

 TRISAbits.TRISA4 = 0; //TDI/RA4 60 EN_LCD_DISP TUTA
 LATAbits.LATA4 = 1; //TDI/RA4 60 enable on low

 TRISAbits.TRISA5 = 0; //TDO/RA5 61 LAT_LCD_DISP TUTA

28

 LATAbits.LATA5 = 0; //TDO/RA5 61 latch on high

 TRISAbits.TRISA6 = 1; //AN22/CN22/RA6 91 ADC monitor +3.3V_D TUTA
 LATAbits.LATA6 = 0; //AN22/CN22/RA6 91 xxxx
 AD1PCFGHbits.PCFG22 = 0;//AN22/CN22/RA6 91 analog

 TRISAbits.TRISA7 = 1; //AN23/CN23/RA7 92 ADC monitor of bat TUTA
 LATAbits.LATA7 = 0; //AN23/CN23/RA7 92 xxxx
 AD1PCFGHbits.PCFG23 = 0;////AN23/CN23/RA7 92 analog

 TRISAbits.TRISA9 = 1; //VREF-/RA9 28 not used
 LATAbits.LATA9 = 0; //VREF-/RA9 28 xxxx

 TRISAbits.TRISA10 = 1; //VREF+/RA10 29 ADC +3V reference TUTA
 LATAbits.LATA10 = 0; //VREF+/RA10 29 xxxx

 TRISAbits.TRISA12 = 1; //AN20/INT1/RA12 18 INT1 header Right 11 DAUG
 LATAbits.LATA12 = 0; //AN20/INT1/RA12 18 xxxx
 AD1PCFGHbits.PCFG20 = 1;//AN20/INT1/RA12 18 digital

 TRISAbits.TRISA13 = 1; //AN21/INT2/RA13 19 INT2 header Left 11 DAUG
 LATAbits.LATA13 = 0; //AN21/INT2/RA13 19 xxxx
 AD1PCFGHbits.PCFG21 = 1;//AN21/INT2/RA13 19 digital

 TRISAbits.TRISA14 = 1; //INT3/RA14 66 INT3 header Right 2 DAUG
 LATAbits.LATA14 = 0; //INT3/RA14 66 xxxx

 TRISAbits.TRISA15 = 1; //INT4/RA15 67 INT4 header Left 2 DAUG
 LATAbits.LATA15 = 0; //INT4/RA15 67 xxxx

// PORT B ---
 TRISBbits.TRISB0 = 1; //PGED3/AN0/CN2/RB0 25 P00 TUTA
 LATBbits.LATB0 = 0; //PGED3/AN0/CN2/RB0 25 xxxx
 AD1PCFGLbits.PCFG0 = 1; //PGED3/AN0/CN2/RB0 25 digital

 TRISBbits.TRISB1 = 1; //PGEC3/AN1/CN3/RB1 24 P01 TUTA
 LATBbits.LATB1 = 0; //PGEC3/AN1/CN3/RB1 24 xxxx
 AD1PCFGLbits.PCFG1 = 1; //PGEC3/AN1/CN3/RB1 24 digital

 TRISBbits.TRISB2 = 1; //AN2/SS1/CN4/RB2 23 P02 TUTA
 LATBbits.LATB2 = 0; //AN2/SS1/CN4/RB2 23 xxxx
 AD1PCFGLbits.PCFG2 = 1; //AN2/SS1/CN4/RB2 23 digital

 TRISBbits.TRISB3 = 1; //AN3/CN5/RB3 22 P03 TUTA
 LATBbits.LATB3 = 0; //AN3/CN5/RB3 22 xxxx
 AD1PCFGLbits.PCFG3 = 1; //AN3/CN5/RB3 22 digital

 TRISBbits.TRISB4 = 1; //AN4/CN6/RB4 21 P04 TUTA
 LATBbits.LATB4 = 0; //AN4/CN6/RB4 21 xxxx
 AD1PCFGLbits.PCFG4 = 1; //AN4/CN6/RB4 21 digital

 TRISBbits.TRISB5 = 1; //AN5/CN7/RB5 20 P05 TUTA
 LATBbits.LATB5 = 0; //AN5/CN7/RB5 20 xxxx
 AD1PCFGLbits.PCFG5 = 1; //AN5/CN7/RB5 20 digital

 TRISBbits.TRISB6 = 1; //PGEC1/AN6/OCFA/RB6 26 P06 TUTA
 LATBbits.LATB6 = 0; //PGEC1/AN6/OCFA/RB6 26 xxxx
 AD1PCFGLbits.PCFG6 = 1; //PGEC1/AN6/OCFA/RB6 26 digital

29

 TRISBbits.TRISB7 = 1; //PGED1/AN7/RB7 27 P07 TUTA
 LATBbits.LATB7 = 0; //PGED1/AN7/RB7 27 xxxx
 AD1PCFGLbits.PCFG7 = 1; //PGED1/AN7/RB7 27 digital

 TRISBbits.TRISB8 = 1; //AN8/RB8 32 P08 TUTA
 LATBbits.LATB8 = 0; //AN8/RB8 32 xxxx
 AD1PCFGLbits.PCFG8 = 1; //AN8/RB8 32 digital

 TRISBbits.TRISB9 = 1; //AN9/RB9 33 P09 TUTA
 LATBbits.LATB9 = 0; //AN9/RB9 33 xxxx
 AD1PCFGLbits.PCFG9 = 1; //AN9/RB9 33 digital

 TRISBbits.TRISB10 = 1; //AN10/RB10 34 P10 TUTA
 LATBbits.LATB10 = 0; //AN10/RB10 34 xxxx
 AD1PCFGLbits.PCFG10 = 1;//AN10/RB10 34 digital

 TRISBbits.TRISB11 = 1; //AN11/RB11 35 P11 TUTA
 LATBbits.LATB11 = 0; //AN11/RB11 35 xxxx
 AD1PCFGLbits.PCFG11 = 1;//AN11/RB11 35 digital

 TRISBbits.TRISB12 = 1; //AN12/RB12 41 P12 TUTA
 LATBbits.LATB12 = 0; //AN12/RB12 41 xxxx
 AD1PCFGLbits.PCFG12 = 1;//AN12/RB12 41 digital

 TRISBbits.TRISB13 = 1; //AN13/RB13 42 P13 TUTA
 LATBbits.LATB13 = 0; //AN13/RB13 42 xxxx
 AD1PCFGLbits.PCFG13 = 1;//AN13/RB13 42 digital

 TRISBbits.TRISB14 = 1; //AN14/RB14 43 P14 TUTA
 LATBbits.LATB14 = 0; //AN14/RB14 43 xxxx
 AD1PCFGLbits.PCFG14 = 1;//AN14/RB14 43 digital

 TRISBbits.TRISB15 = 1; //AN15/OCFB/CN12/RB15 44 P15 TUTA
 LATBbits.LATB15 = 0; //AN15/OCFB/CN12/RB15 44 xxxx
 AD1PCFGLbits.PCFG15 = 1;//AN15/OCFB/CN12/RB15 44 digital

// PORT C ---
-
 TRISCbits.TRISC1 = 1; //AN16/T2CK/T7CK/RC1 6 not used
 LATCbits.LATC1 = 0; //AN16/T2CK/T7CK/RC1 6 xxxx
 AD1PCFGHbits.PCFG16 = 1;//AN16/T2CK/T7CK/RC1 6 digital

 TRISCbits.TRISC2 = 1; //AN17/T3CK/T6CK/RC2 7 not used
 LATCbits.LATC2 = 0; //AN17/T3CK/T6CK/RC2 7 xxxx
 AD1PCFGHbits.PCFG17 = 1;//AN17/T3CK/T6CK/RC2 7 digital

 TRISCbits.TRISC3 = 1; //AN18/T4CK/T9CK/RC3 8 ADC monitor +5V_D TUTA
 LATCbits.LATC3 = 0; //AN18/T4CK/T9CK/RC3 8 xxxx
 AD1PCFGHbits.PCFG18 = 0;//AN18/T4CK/T9CK/RC3 8 analog

 TRISCbits.TRISC4 = 1; //AN19/T5CK/T8CK/RC4 9 ADC monitor +3.3V_A TUTA
 LATCbits.LATC4 = 0; //AN19/T5CK/T8CK/RC4 9 xxxx
 AD1PCFGHbits.PCFG19 = 0;//analog

 TRISCbits.TRISC12 = 1; //OSC1/CLKIN/RC12 63 OSC input TUTA
 LATCbits.LATC12 = 0; //OSC1/CLKIN/RC12 63 xxxx

30

 TRISCbits.TRISC13 = 1; //PGED2/SOSCI/CN1/RC13 73 ICSP data TUTA
 LATCbits.LATC13 = 0; //PGED2/SOSCI/CN1/RC13 73 xxxx

 TRISCbits.TRISC14 = 1; //PGEC2/SOSCO/T1CK/CN0/RC14 74 ICSP clock TUTA
 LATCbits.LATC14 = 0; //PGEC2/SOSCO/T1CK/CN0/RC14 74 xxxx

 TRISCbits.TRISC15 = 1; //OSC2/CLKO/RC15 64 not used
 LATCbits.LATC15 = 0; //OSC2/CLKO/RC15 64 xxxx

// PORT D ---
-
 TRISDbits.TRISD0 = 1; //OC1/RD0 72 OC1 header Right 4 DAUG
 LATDbits.LATD0 = 0; //OC1/RD0 72

 TRISDbits.TRISD1 = 1; //OC2/RD1 76 OC2 header Left 4 DAUG
 LATDbits.LATD1 = 0; //OC2/RD1 76

 TRISDbits.TRISD2 = 0; //OC3/RD2 77 r/f link power down TUTA
 LATDbits.LATD2 = 0; //OC3/RD2 77 low output => powered
down

 TRISDbits.TRISD3 = 0; //OC4/RD3 78 r/f link trans/recv TUTA
 LATDbits.LATD3 = 0; //OC4/RD3 78 low output => receive

 TRISDbits.TRISD4 = 1; //OC5/CN13/RD4 81 not used
 LATDbits.LATD4 = 0; //OC5/CN13/RD4 81 xxxx

 TRISDbits.TRISD5 = 1; //OC6/CN14/RD5 82 not used
 LATDbits.LATD5 = 0; //OC6/CN14/RD5 82 xxxx

 TRISDbits.TRISD6 = 1; //OC7/CN15/RD6 83 not used
 LATDbits.LATD6 = 0; //OC7/CN15/RD6 83 xxxx

 TRISDbits.TRISD7 = 0; //OC8/CN16/RD7 84 BUZZER TUTA
 LATDbits.LATD7 = 0; //OC8/CN16/RD7 84 low output => OFF

 TRISDbits.TRISD8 = 1; //IC1/RD8 68 IC1 header Right 3 DAUG
 LATDbits.LATD8 = 0; //IC1/RD8 68

 TRISDbits.TRISD9 = 1; //IC2/RD9 69 IC2 header Left 3 DAUG
 LATDbits.LATD9 = 0; //IC2/RD9 69 low output => high FIRE

 TRISDbits.TRISD10 = 1; //IC3/RD10 70 not used
 LATDbits.LATD10 = 0; //IC3/RD10 70 xxxx

 TRISDbits.TRISD11 = 1; //IC4/RD11 71 not used
 LATDbits.LATD11 = 0; //IC4/RD11 71 xxxx

 TRISDbits.TRISD12 = 1; //IC5/RD12 79 not used
 LATDbits.LATD12 = 0; //IC5/RD12 79 xxxx

 TRISDbits.TRISD13 = 1; //IC6/CN19/RD13 80 CN1 header Right 9 DAUG
 LATDbits.LATD13 = 0; //IC6/CN19/RD13 80

 TRISDbits.TRISD14 = 1; //IC7/U1CTS/CN20/RD14 47 not used
 LATDbits.LATD14 = 0; //IC7/U1CTS/CN20/RD14 47 xxxx

 TRISDbits.TRISD15 = 1; //IC8/U1RTS/CN21/RD15 48 REMote_ACTivation TUTA

31

 LATDbits.LATD15 = 0; //IC8/U1RTS/CN21/RD15 48 high output => ON

// PORT E ---
-
 TRISEbits.TRISE0 = 0; //AN24/RE0 93 Bit 3 LED TUTA
 LATEbits.LATE0 = 0; //AN24/RE0 93 low output => OFF
 AD1PCFGHbits.PCFG24 = 1;//AN24/RE0 93 digital

 TRISEbits.TRISE1 = 0; //AN25/RE1 94 Bit 2 LED TUTA
 LATEbits.LATE1 = 0; //AN25/RE1 94 low output => OFF
 AD1PCFGHbits.PCFG25 = 1;//AN25/RE1 94 digital

 TRISEbits.TRISE2 = 0; //AN26/RE2 98 Bit 1 LED TUTA
 LATEbits.LATE2 = 0; //AN26/RE2 98 low output => OFF
 AD1PCFGHbits.PCFG26 = 1;//AN26/RE2 98 digital

 TRISEbits.TRISE3 = 1; //AN27/RE3 99 SWitch 1 input TUTA
 LATEbits.LATE3 = 0; //AN27/RE3 99 xxxx
 AD1PCFGHbits.PCFG27 = 1;//AN27/RE3 99 digital

 TRISEbits.TRISE4 = 1; //AN28/RE4 100 SWitch 2 input TUTA
 LATEbits.LATE4 = 0; //AN28/RE4 100 xxxx
 AD1PCFGHbits.PCFG28 = 1;//AN28/RE4 100 digital

 TRISEbits.TRISE5 = 0; //AN29/RE5 3 Fire 3 output TUTA
 LATEbits.LATE5 = 0; //AN29/RE5 3 low output
 AD1PCFGHbits.PCFG29 = 1;//AN29/RE5 3 digital

 TRISEbits.TRISE6 = 0; //AN30/RE6 4 Fire 2 output TUTA
 LATEbits.LATE6 = 0; //AN30/RE6 4 low output
 AD1PCFGHbits.PCFG30 = 1;//AN30/RE6 4 digital

 TRISEbits.TRISE7 = 0; //AN31/RE7 5 Fire 1 output TUTA
 LATEbits.LATE7 = 0; //AN31/RE7 5 low output
 AD1PCFGHbits.PCFG31 = 1;//AN31/RE7 5 digital

// PORT F ---
-
 TRISFbits.TRISF0 = 0; //RF0 87 Par Port Output En TUTA
 LATFbits.LATF0 = 1; //RF0 87 high output => disable

 TRISFbits.TRISF1 = 0; //RF1 88 Par Port Direction TUTA
 LATFbits.LATF1 = 0; //RF1 88 low output => B -> A

 TRISFbits.TRISF2 = 1; //U1RX/RF2 52 Uart 1 RX, r/f link TUTA
 LATFbits.LATF2 = 0; //U1RX/RF2 52 header Right 7 DAUG

 TRISFbits.TRISF3 = 0; //U1TX/RF3 51 Uart 1 TX, r/f link TUTA
 LATFbits.LATF3 = 1; //U1TX/RF3 51 header Left 7 DAUG

 TRISFbits.TRISF4 = 1; //U2RX/CN17/RF4 49 Uart 2 RX, hardwire TUTA
 LATFbits.LATF4 = 0; //U2RX/CN17/RF4 49 header Left 8 DAUG

 TRISFbits.TRISF5 = 0; //U2TX/CN18/RF5 50 Uart 2 TX, hardwire TUTA
 LATFbits.LATF5 = 1; //U2TX/CN18/RF5 50 header Right 8 DAUG

 TRISFbits.TRISF6 = 1; //SCK1/INT0/RF6 55 SCK1 header Left 1 DAUG
 LATFbits.LATF6 = 0; //SCK1/INT0/RF6 55

32

 TRISFbits.TRISF7 = 1; //SDI1/RF7 54 SDI1 header Right 1 DAUG
 LATFbits.LATF7 = 0; //SDI1/RF7 54

 TRISFbits.TRISF8 = 1; //SDO1/RF8 53 SDO1 header Left 0 DAUG
 LATFbits.LATF8 = 0; //SDO1/RF8 53

 TRISFbits.TRISF12 = 1; //U2CTS/RF12 40 not used
 LATFbits.LATF12 = 0; //U2CTS/RF12 40 xxxx

 TRISFbits.TRISF13 = 1; //U2RTS/RF13 39 not used
 LATFbits.LATF13 = 0; //U2RTS/RF13 39 xxxx

// PORT G ---
-
 TRISGbits.TRISG0 = 1; //RG0 90 not used
 LATGbits.LATG0 = 0; //RG0 90 xxxx

 TRISGbits.TRISG1 = 1; //RG1 89 not used
 LATGbits.LATG1 = 0; //RG1 89 xxxx

 TRISGbits.TRISG2 = 1; //SCL1/RG2 57 SCL1 header Right 6 DAUG
 LATGbits.LATG2 = 0; //SCL1/RG2 57

 TRISGbits.TRISG3 = 1; //SDA1/RG3 56 SDA1 header Left 6 DAUG
 LATGbits.LATG3 = 0; //SDA1/RG3 56

 TRISGbits.TRISG6 = 1; //SCK2/CN8/RG6 10 SCK2 header Left 9 DAUG
 LATGbits.LATG6 = 0; //SCK2/CN8/RG6 10

 TRISGbits.TRISG7 = 1; //SDI2/CN9/RG7 11 SDI2 header Right 10 DAUG
 LATGbits.LATG7 = 0; //SDI2/CN9/RG7 11

 TRISGbits.TRISG8 = 1; //SDO2/CN10/RG8 12 SDO2 header Left 10 DAUG
 LATGbits.LATG8 = 0; //SDO2/CN10/RG8 12

 TRISGbits.TRISG9 = 1; //SS2/CN11/RG9 14 not used
 LATGbits.LATG9 = 0; //SS2/CN11/RG9 14 xxxx

 TRISGbits.TRISG12 = 1; //RG12 96 not used
 LATGbits.LATG12 = 0; //RG12 96 xxxx

 TRISGbits.TRISG13 = 1; //RG13 97 not used
 LATGbits.LATG13 = 0; //RG13 97 xxxx

 TRISGbits.TRISG14 = 1; //RG14 95 not used
 LATGbits.LATG14 = 0; //RG14 95 xxxx

 TRISGbits.TRISG15 = 1; //RG15 1 not used
 LATGbits.LATG15 = 0; //RG15 1 xxxx
}

33

Appendix D. Listing of a Simple Laboratory Integration Platform
(SLIP) Demonstration C Code

34

//<<<<< ----------------- 77 CHARACTER WIDTH TEMPLATE ----------------- >>>>>

/*
File: C_code.c
Date: Jan 2021
Language: XC16 C Compiler
Microprocessor: PIC24HJXXXGPX10
Author: Tom Kottke
E-Mail: lambiniboy@hotmail.com
Phone: 443-504-5201
*/
// This is the C code for the demonstration program presented in "A Primer
// for Programming and Applying the Simple Laboratory Integration Platform
// (SLIP)"

// Specify header files to be included during compilation
#include "p24HJ256GP210A.h" //microcontroller register definition header
#include "Config_PIC24.h" //microcontroller global configuration header
#include "Config_oscill.h" //clock PLL parameter definition header
#include "Config_ports.h" //define port characteristics header

// Declare variables
char state_leds = 0; //state variable for 3-bit led display
int port_value; //read value of port
int i_count; //counter variable
int j_count; //counter variable

int main(void)
{
 config_osc(); //call function in associated header
 config_ports(); //call function in associated header

 while (1) //beginning of infinite loop...
 {
 if (PORTEbits.RE4) //if pushbutton switch PB1 is pressed...
 {
 LATDbits.LATD7 = 1; //...then turn on audio buzzer
 }

 if (PORTEbits.RE3) //if pushbutton switch PB2 is pressed...
 {
 LATDbits.LATD7 = 0; //...then turn off audio buzzer
 }

 switch (state_leds) //switch branching on state of leds
 {
 case 0: //if state of leds is zero...
 state_leds = 1; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000000; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 1: //if state of leds is one...
 state_leds = 2; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits

35

 port_value |= 0b0000000000000001; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 2: //if state of leds is two...
 state_leds = 3; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000010; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 3: //if state of leds is three...
 state_leds = 4; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000011; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 4: //if state of leds is four...
 state_leds = 5; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000100; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 5: //if state of leds is five...
 state_leds = 6; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000101; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 6: //if state of leds is six...
 state_leds = 7; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000110; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 case 7: //if state of leds is seven...
 state_leds = 0; //increment led state variable
 port_value = PORTE; //read current port value
 port_value &= 0b1111111111111000; //strip last 3 bits
 port_value |= 0b0000000000000111; //replace last 3 bits
 LATE = port_value; //output modified port value
 break;
 } //end of switch branch

 for(i_count=0;i_count<32000;i_count++) //super crude time delay
 {
 for(j_count=0;j_count<32;j_count++)
 {

 }
 } //end of time delay routine
 } //end of infinite while loop
} //end of main C function

36

List of Symbols, Abbreviations, and Acronyms

ARL Army Research Laboratory

DEVCOM US Army Combat Capabilities Development Command

ICSP in-circuit serial programming port

IDE integrated development environment

I/O input/output

IR infrared

LED light-emitting diode

PC personal computer

PCB printed circuit board

SLIP Simple Laboratory Integration Platform

USB Universal Serial Bus

37

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DEVCOM ARL
 (PDF) FCDD RLD DCI
 TECH LIB

 24 DEVCOM ARL
 (PDF) FCDD RLW TA
 T KOTTKE
 J FLENIKEN
 S BILYK
 P BERNING
 M COPPINGER
 STEVEN DAVIS
 K KWASHNAK
 M MCNEIR
 D MALONE
 J NESTA
 W UHLIG
 L VANDERHOEF
 A VALENZUELA
 B WILMER
 C WOLFE
 FCDD RLW
 S SCHOENFELD
 FCDD RLW B
 C HOPPEL
 FCDD RLW C
 D LYON
 FCDD RLW TB
 M KLEINBERGER
 R KARGUS
 FCDD RLW TG
 N GNIAZDOWSKI
 E FIORAVANTE
 S TROMBETTA
 J PRITCHETT

	List of Figures
	Acknowledgments
	1. Introduction
	2. Requirements for SLIP Programming
	2.1 Required Hardware for SLIP Programming
	2.2 Required Software for SLIP Programming

	3. Preprogramming Housekeeping Details
	3.1 Confirming the MPLAB X IDE/ICD 4 Interface
	3.2 Creating a New MPLAB X IDE Project
	3.3 Creating a C Program File within the New Project
	3.4 Loading the PIC24HJ256GP210A Register Definition File into the Project
	3.5 Configuring Global Microcontroller Startup Parameters
	3.6 Configuring the Microcontroller Oscillator Settings
	3.7 Configuring Individual Microcontroller Port Pins

	4. A Demonstration of MPLAB X IDE, ICD 4, and SLIP Functionality
	5. Conclusions and Path Forward
	6. References and Notes
	Appendix A. Listing of PIC24HJ256GP210A Power-On Global Parameter Configuration Code
	Appendix B. Listing of PIC24HJ256GP210A Run-Time Oscillator Parameters Configuration Code
	Appendix C. Listing of PIC24HJ256GP210A Ports Configuration Code
	Appendix D. Listing of a Simple Laboratory Integration Platform (SLIP) Demonstration C Code
	List of Symbols, Abbreviations, and Acronyms

