

EL CONTENIDO DE ESTE ARCHIVO NO PODRÁ SER ALTERADO O MODIFICADO TOTAL O PARCIALMENTE, TODA VEZ QUE PUEDE CONSTITUIR EL DELITO DE FALSIFICACIÓN DE DOCUMENTOS DE CONFORMIDAD CON EL ARTÍCULO 244, FRACCIÓN III DEL CÓDIGO PENAL FEDERAL, QUE PUEDE DAR LUGAR A UNA SANCIÓN DE PENA PRIVATIVA DE LA LIBERTAD DE SEIS MESES A CINCO AÑOS Y DE CIENTO OCHENTA A TRESCIENTOS SESENTA DÍAS MULTA.

IMPACTO Y RIESGO

AMBIENTAL

Manifestación de Impacto Ambiental

MODALIDAD REGIONAL, DEL PROYECTO:

CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE QUECHULTENANGO, EN EL ESTADO DE GUERRERO.

Secretaría de Comunicaciones y Transportes Centro Guerrero (SCT). Dr. Gabriel Leyva Alarcón sin número Burócrata Chilpancingo de los Bravo, Guerrero C.P. 39090. Tel. 01 (747) 116-2742.

SEPTIEMBRE DEL 2020.

Contenido

ESTUDIO DE IMPACTO AMBIENTAL I.1 Datos generales del proyecto 1.1.1. Nombre del proyecto I.1.2 Ubicación del proyecto.
I.1 Datos generales del proyecto 1.1.1. Nombre del proyecto
1.1.1. Nombre del proyecto
I.1.2 Ubicación del proyecto.
1.1.3 Duración del proyecto.
I.2 Datos generales del Promovente
I.2.1 Nombre o razón social
I.2.2 Registro Federal de Contribuyentes del promovente
I.2.3 Nombre y cargo del representante legal
I.2.4 Dirección del promovente o de su representante legal
I.2.5 Nombre del consultor que elaboró el estudio.
I.2.6 Nombre del responsable técnico de la elaboración del estudio
·
I.2.7 Registro Federal de Contribuyentes o CURP
I.2.8 Dirección del responsable técnico del estudio
II. DESCRIPCIÓN DE LAS OBRAS O ACTIVIDADES Y, EN SU CASO, DE LOS
PROGRAMAS O PLANES PARCIALES DE DESARROLLO.
II.1.1. Naturaleza del proyecto, plan o programa
II.1.2. Justificación
II.1.3 Ubicación física.
II.1.4 Inversión requerida.
II.2 Características particulares del proyecto, plan o programa. 50
II.2.1 Programa de trabajo.
II.2.2 Representación gráfica regional 67
II.2.3 Representación gráfica local 68
II.2.4 Preparación del sitio y construcción.
II.2.6 Desmantelamiento y abandono de las instalaciones.
III. VINCULACIÓN CON LOS INSTRUMENTOS DE PLANEACIÓN Y ORDENAMIENTOS
JURÍDICOS APLICABLES 97
III.1. Vinculación Con La Constitución
III.2. El Plan Nacional de Desarrollo 2019-2024
III.3. Plan Estatal de Desarrollo 2016-2021
III.4.Ordenamiento Ecológico del Territorio (POET) del Estado de Guerrero.
III.5. Programa de Ordenamiento Ecológico General del Territorio (POEGT)
III.5.1. Programas de Recuperación y Restablecimiento de las Zonas de Restauración
· · · · · · · · · · · · · · · · · · ·
Ecológica. 12°
III.6. Áreas Naturales Protegidas, Región Terrestre Prioritaria, Región Hidrológica Prioritaria y
Área de Importancia para la Conservación de las Aves.
III.7. ANÁLISIS DE LOS INSTRUMENTOS NORMATIVOS
IV. DESCRIPCIÓN DEL SISTEMA AMBIENTAL REGIONAL Y SEÑALAMIENTO DE
TENDENCIAS DEL DESARROLLO Y DETERIORO DE LA REGIÓN 158
IV.1. Delimitación y justificación del sistema ambiental regional (SAR) donde se pretende
establecer el proyecto.
IV.2 Caracterización y análisis del sistema ambiental regional (SAR).
IV.2.1. Caracterización y análisis retrospectivo de la calidad ambiental del SAR.
IV.2.2. Medio abiótico.
IV.2.2. Medio biótico
IV.2.2.3 Medio socioeconómico.
3.4.2. Vivienda 228
3.4.3 Urbanización
3.4.4 Salud y seguridad social
IV.2.2.3.1 Paisaje. 23

IV.3 Diagnóstico ambiental.	241
V. IDENTIFICACIÓN, CARACTERIZACIÓN Y EVALUACIÓN DE LOS IMPACTOS	
AMBIENTALES, ACUMULATIVOS Y RESIDUALES DEL SISTEMA AMBIENTAL	
REGIONAL.	257
V.1 Identificación de impactos.	257
Posibles impactos ambientales que se generarían al Río La Nopalera por la construcción	del
camino y actividades pretendidas.	276
V.3 Valoración de los impactos.	278
V.6 Impactos residuales	279
V.6 Impactos acumulativos	281
V.6 Conclusiones	284
VI. ESTRATEGIAS PARA LA PREVENCIÓN Y MITIGACIÓN DE IMPACTOS AMBIENTA	LES,
ACUMULATIVOS Y RESIDUALES DEL SISTEMA AMBIENTAL REGIONAL	286
VI.1 Programa de manejo ambiental	286
VI.2 Seguimiento y control (monitoreo)	291
VI.4 Información necesaria para la fijación de montos para fianzas	292
VII. PRONÓSTICOS AMBIENTALES Y EN SU CASO, EVALUACIÓN DE ALTERNATIVA	S331
VII.1 Descripción y análisis del escenario sin proyecto	331
VII.2 Descripción y análisis del escenario con proyecto.	331
VII.3 Descripción y análisis del escenario considerando las medidas de mitigación.	332
VII.4 Pronóstico ambiental.	334
VII.5 Evaluación de alternativas.	334
VII.1 Pronóstico del escenario	335
VIII. IDENTIFICACIÓN DE LOS INSTRUMENTOS METODOLÓGICOS Y ELEMENTOS	
TÉCNICOSQUE SUSTENTAN LA INFORMACIÓN SEÑALADA EN LAS FRACCIONES	
ANTERIORES.	337
VIII.3 Bibliografía _,	338
GLOSARIO DE TÉRMINOS	341

I. DATOS GENERALES DEL PROYECTO, DEL PROMOVENTE Y DEL RESPONSABLE DEL ESTUDIO DE IMPACTO AMBIENTAL

I.1 Datos generales del proyecto

1.1.1. Nombre del proyecto

Estudio de Impacto Ambiental del Camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero.

I.1.2 Ubicación del proyecto.

El presente estudio se localiza en el Municipio de Quechultenango, Estado de Guerrero, en la región Centro del Estado. El cruce existente, cuya modernización proyecta un ancho de corona correspondiente a una carretera tipo D, el camino está ubicado en las coordenadas geográficas UTM X 472179 y Y 1918049 X 475930 y Y 1914945 y comunica a las localidades de Aztatepec, Buenas Vista, Delegación Sur de Aztatepec, El Naranjo, Jalapa, Santa Cruz, Tolixtlahuaca, Pueblo Viejo, entre otras localidades aledañas.

El proyecto de modernización se ubica dentro de la región Centro del Estado de Guerrero. La región Centro, es una de las siete regiones económicas que conforman el Estado de Guerrero. Sus límites territoriales son al norte con la región Norte, al sur con la región de Acapulco y parte de las regiones de Costa Chica y Costa Grande, al oriente con la región de La Montaña y al poniente con la región de Tierra Caliente.

Los municipios que conforman la Región Centro son 13, Ahuacuotzingo, Chilapa de Álvarez, Chilpancingo de los Bravo, Eduardo Neri, General Heliodoro Castillo, José Joaquín de Herrera, Juan R. Escudero, Leonardo Bravo, Mártir de Cuilapan, Mochitlán, Quechultenango, Tixtla de Guerrero, Zitlala.

La construcción del proyecto se ubica en la región Centro del estado de Guerrero. La región Centro, es una de las siete regiones económicas que conforman el estado de Guerrero. El municipio de Quechultenango Colinda al norte con Chilapa de

Álvarez, al sur con Acatepec, Ayutla, Tecoanapa y Juan R. Escudero; al este con Chilapa y Acatepec, y al oeste con Mochitlán.

El municipio se ubica entre las coordenadas 17° 08' 10" y 17° 29' 49" de latitud norte, y los 99° 00' 39" y 99° 19' 26" de longitud oeste. Cuenta con una extensión territorial de 945 km², que representa el 1.49% del total de la entidad.

Las localidades beneficiadas dentro del sistema ambiental regional del proyecto son de Aztatepec, Buenas Vista, Delegación Sur de Aztatepec, El Naranjo, Jalapa, Santa Cruz, Tolixtlahuaca, Pueblo Viejo, entre otras rancherías de menor tamaño.

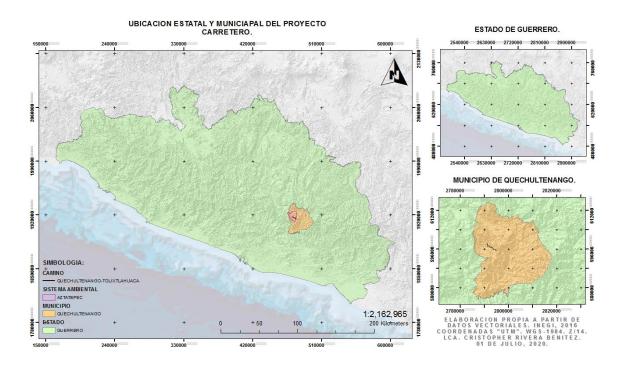


Imagen 1. Ubicación regional del proyecto.

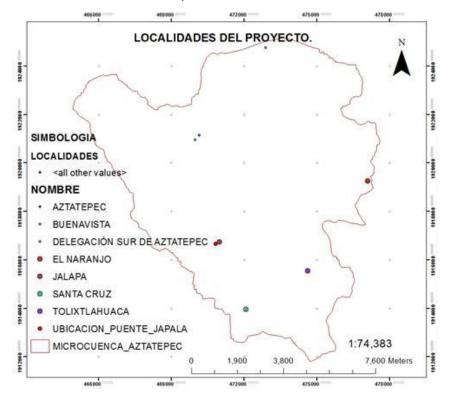


Imagen 2.- Principales localidades beneficiadas con la realización del proyecto.

Tabla 1. Coordenadas geográficas del proyecto por la modernización del camino de terracería.

terracer	iu.				
ın	COORDENADAS DEL CAMINO		10	COORDENADAS DEL CAMINO	
ID	X	Υ	ID	X	Υ
1	472181.029	1918056.543	217	473438.191	1916385
2	472182.633	1918051.59	218	473456.049	1916388.29
3	472183.2295	1918046.977	219	473473.163	1916391.95
4	472183.169	1918042.322	220	473488.753	1916394.63
5	472182.5927	1918038.033	221	473506.767	1916398.83
6	472180.9945	1918033.755	222	473531.654	1916401.88
7	472178.6419	1918030.371	223	473565.018	1916402.78
8	472174.8372	1918024.465	224	473598.974	1916401.72
9	472170.3766	1918018.174	225	473631.849	1916399.95
10	472166.2892	1918011.86	226	473660.047	1916401.38
11	472163.9929	1918005.99	227	473682.703	1916406.06
12	472163.7088	1917999.294	228	473704.695	1916417.97
13	472164.3882	1917995.035	229	473726.713	1916424.34
14	472165.5906	1917990.6	230	473752.11	1916433.95
15	472167.4772	1917987.198	231	473774.413	1916446.02

16	472169.773	1917984.041	232	473791.007	1916454.92
17	472204.2007	1917939.885	233	473812.537	1916459.77
18	472207.7127	1917934.409	234	473829.966	1916462.2
19	472211.2192	1917928.359	235	473852.338	1916459.72
20	472211.9644	1917923.118	236	473873.07	1916453.15
21	472212.2813	1917916.532	237	473894.836	1916443.29
22	472210.2917	1917911.942	238	473918.976	1916431.68
23	472208.0902	1917907.361	239	473953.68	1916415.65
24	472205.9017	1917901.202	240	473982.336	1916397.15
25	472203.565	1917895.832	241	474011.984	1916380.39
26	472202.3151	1917889.023	242	474033.339	1916366.93
27	472203.3155	1917883.13	243	474060.157	1916353.77
28	472205.463	1917878.478	244	474078.104	1916348.88
29	472206.4615	1917872.073	245	474096.947	1916348.95
30	472207.9266	1917864.678	246	474128.461	1916351.65
31	472208.3153	1917859.693	247	474148.575	1916353.43
32	472208.2366	1917855.516	248	474167.702	1916353.88
33	472209.4593	1917851.067	249	474187.982	1916345.47
34	472211.4212	1917843.47	250	474208.244	1916338.26
35	472215.53	1917831.28	251	474224.33	1916338.2
36	472217.4874	1917824.935	252	474243.385	1916337.54
37	472220.9036	1917814.744	253	474262.437	1916335.12
38	472224.8809	1917807.252	254	474279.712	1916329.17
39	472228.98	1917800.152	255	474294.425	1916321.31
40	472231.9502	1917795.193	256	474310.134	1916307.47
41	472238.3908	1917784.564	257	474322.211	1916295.17
42	472243.4751	1917777.571	258	474336.533	1916278.03
43	472248.0678	1917770.497	259	474354.304	1916260.26
44	472251.1012	1917765.347	260	474374.835	1916238.66
45	472252.9988	1917759.009	261	474395.942	1916203.99
46	472255.1583	1917751.027	262	474412.44	1916165.26
47	472256.959	1917740.593	263	474421.927	1916129.81
48	472258.4087	1917731.325	264	474431.339	1916103.83
49	472259.2427	1917722.053	265	474438.516	1916091.95
50	472259.7147	1917715.382	266	474444.375	1916083
51	472260.9032	1917710.018	267	474450.584	1916074.07
52	472263.3971	1917702.359	268	474455.806	1916065.18
53	472267.5194	1917692.056	269	474454.905	1916052.12
54	472277.3186	1917670.312	270	474450.067	1916039.11
55	472281.1019	1917663.439	271	474445.527	1916024.36

56	472284.6411	1917653.397	272	474451.53	1916005.31
57	472286.8287	1917644.223	273	474458.533	1915988.04
58	472289.2179	1917631.282	274	474470.1	1915969.16
59	472291.1907	1917620.288	275	474484.205	1915952.62
60	472292.9547	1917611.153	276	474498.097	1915932.64
61	472298.7867	1917602.181	277	474511.338	1915913.89
62	472303.7328	1917593.434	278	474525.955	1915896.13
63	472314.1902	1917580.697	279	474537.155	1915877.26
64	472321.8627	1917571.08	280	474543.475	1915851.36
65	472327.0902	1917563.67	281	474552.899	1915826
66	472334.6273	1917552.582	282	474562.698	1915796.27
67	472339.3178	1917540.691	283	474569.146	1915771.95
68	472341.5277	1917535.079	284	474576.933	1915737.37
69	472342.5897	1917530.427	285	474581.118	1915711.94
70	472344.1	1917525.441	286	474581.913	1915677.15
71	472346.9977	1917520.495	287	474586.269	1915650.23
72	472350.3862	1917516.168	288	474593.756	1915632.36
73	472356.8315	1917511.111	289	474601.609	1915610.16
74	472361.2345	1917506.86	290	474608.054	1915585.48
75	472367.6887	1917501.795	291	474606.996	1915566.65
76	472375.5396	1917495.333	292	474603.336	1915552.27
77	472383.3167	1917487.976	293	474607.728	1915538.73
78	472389.4605	1917481.807	294	474616.22	1915526.97
79	472393.3639	1917474.155	295	474626.721	1915511.79
80	472395.63	1917466.291	296	474638.214	1915500.97
81	472397.6538	1917458.951	297	474651.56	1915495.48
82	472397.5262	1917448.926	298	474674.974	1915497.21
83	472397.8955	1917441.256	299	474691.988	1915498.98
84	472399.6181	1917432.224	300	474701.727	1915497.43
85	472401.784	1917424.84	301	474713.449	1915488.16
86	472407.8397	1917414.842	302	474729.935	1915480.81
87	472412.0932	1917406.93	303	474745.884	1915471.09
88	472415.8533	1917396.952	304	474764.203	1915457.07
89	472418.8697	1917384.8	305	474780.065	1915438.36
90	472423.0698	1917373.375	306	474793.776	1915424.7
91	472427.0788	1917361.528	307	474810.301	1915408.65
92	472432.0957	1917351.404	308	474828.131	1915401.61
93	472437.6509	1917342.84	309	474846.02	1915399.25
94	472444.1268	1917335.6	310	474864.604	1915397.83
95	472451.1185	1917327.493	311	474877.953	1915394.57

96	472458.9549	1917320.364	312	474896.8	1915388.09
97	472466.5836	1917312.183	313	474914.328	1915381.62
98	472470.8323	1917307.041	314	474930.54	1915377.54
99	472475.4975	1917299.79	315	474948.796	1915374.42
100	472477.2987	1917293.847	316	474973.832	1915374.58
101	472479.0575	1917287.248	317	475002.7	1915377.92
102	472481.4901	1917280.181	318	475024.645	1915378.05
103	472485.8414	1917271.563	319	475052.486	1915376.4
104	472491.672	1917260.359	320	475081.729	1915375.71
105	472499.0577	1917246.435	321	475108.073	1915373.57
106	472505.7859	1917232.147	322	475129.979	1915378.11
107	472507.7125	1917221.68	323	475153.425	1915387.58
108	472510.6281	1917202.997	324	475167.371	1915403.97
109	472512.5346	1917186.804	325	475183.118	1915416.63
110	472515.422	1917174.885	326	475194.654	1915424.37
111	472518.9191	1917163.417	327	475206.627	1915434.63
112	472522.9314	1917153.31	328	475212.691	1915446.3
113	472524.814	1917142.848	329	475211.728	1915454.38
114	472528.7553	1917126.057	330	475212.258	1915459.46
115	472527.6424	1917097.409	331	475217.825	1915461.63
116	472526.9945	1917077.391	332	475224.932	1915463.34
117	472521.9083	1917056.608	333	475235.077	1915459.5
118	472513.9622	1917039.555	334	475244.103	1915453.39
119	472502.5202	1917028.542	335	475251.776	1915444.85
120	472486.7334	1917019.127	336	475252.888	1915434.96
121	472470.1372	1917006.753	337	475246.091	1915423.75
122	472457.6189	1916985.288	338	475241.108	1915414.39
123	472440.4932	1916958.648	339	475243.593	1915408.02
124	472427.1908	1916938.622	340	475250.502	1915400.14
125	472415.3781	1916919.981	341	475257.848	1915399.6
126	472398.1083	1916894.749	342	475263.644	1915397.08
127	472373.2579	1916866.058	343	475272.257	1915396.47
128	472367.8672	1916861.217	344	475285.143	1915389.04
129	472365.346	1916858.09	345	475292.369	1915382.68
130	472362.4806	1916854.628	346	475299.043	1915371
131	472361.0377	1916850.442	347	475303.89	1915359.38
132	472361.0085	1916846.575	348	475308.263	1915354.11
133	472363.4463	1916842.649	349	475311.248	1915349.35
134	472367.6814	1916838.359	350	475320.333	1915348.46
135	472378.2985	1916831.158	351	475342.451	1915350.2

136	472384.311	1916827.198	352	475375.505	1915353.81
137	472390.3339	1916824.641	353	475417.3	1915357.95
138	472397.2236	1916822.262	354	475444.19	1915361.77
139	472407.9674	1916820.285	355	475455.896	1915364.96
140	472421.8833	1916817.128	356	475464.489	1915366.54
141	472437.7711	1916813.734	357	475471.901	1915367.29
142	472450.5409	1916811.927	358	475480.801	1915365.96
143	472458.9547	1916814.904	359	475487.671	1915363
144	472471.2884	1916822.654	360	475495.493	1915356.39
145	472483.9508	1916830.727	361	475500.123	1915348.3
146	472500.4329	1916841.121	362	475507.689	1915339.08
147	472516.1439	1916850.466	363	475512.021	1915329.65
148	472579.804	1916871.026	364	475545.878	1915253.19
149	472599.0363	1916876.236	365	475552.217	1915244.75
150	472613.8624	1916876.877	366	475557.382	1915240.64
151	472620.3041	1916876.898	367	475562.768	1915239.25
152	472627.2269	1916876.921	368	475571.628	1915237.98
153	472645.6607	1916876.266	369	475579.579	1915237.97
154	472655.6207	1916874.872	370	475586.963	1915235.25
155	472664.1984	1916873.169	371	475594.842	1915230.98
156	472676.5099	1916870.594	372	475602.109	1915224.76
157	472700.5607	1916864.951	373	475609.295	1915220.38
158	472725.3867	1916860.023	374	475620.219	1915215.05
159	472747.291	1916857.723	375	475635.938	1915213.65
160	472767.7413	1916858.054	376	475651.217	1915211.57
161	472790.1715	1916858.758	377	475663.753	1915210.24
162	472809.3491	1916861.729	378	475674.487	1915207.36
163	472826.0985	1916871.213	379	475683.355	1915201.56
164	472842.0644	1916878.091	380	475688.95	1915196.54
165	472865.1253	1916885.01	381	475693.878	1915190.13
166	472891.3144	1916889.251	382	475694.978	1915184.28
167	472919.4322	1916893.486	383	475696.73	1915176.3
168	472950.5387	1916894.611	384	475697.173	1915166.4
169	472977.6104	1916893.305	385	475699.314	1915154.91
170	473001.3342	1916890.335	386	475698.208	1915145.72
171	473022.1423	1916887.381	387	475701.376	1915137.95
172	473043.7006	1916887.347	388	475706.527	1915131.78
173	473064.4587	1916885.116	389	475712.008	1915126.11
174	473085.2736	1916886.508	390	475720.743	1915120.28
175	473105.3992	1916890.057	391	475730.612	1915112.25

176	473126.1228	1916893.954	392	475738.785	1915104.47
177	473142.7837	1916899.251	393	475747.554	1915096.19
178	473161.2653	1916903.341	394	475758.313	1915088.37
179	473184.6467	1916897.354	395	475766.413	1915078.55
180	473208.252	1916890.624	396	475777.271	1915069.99
181	473235.598	1916883.876	397	475788.744	1915065.02
182	473253.3064	1916880.949	398	475804.793	1915058.17
183	473260.9901	1916879.65	399	475820.486	1915048.68
184	473266.5821	1916877.792	400	475835.512	1915046.47
185	473269.7968	1916875.971	401	475847.363	1915043.75
186	473274.1152	1916871.48	402	475860.398	1915040.52
187	473273.9451	1916866.186	403	475876.045	1915034.13
188	473268.3866	1916852.835	404	475887.798	1915028.36
189	473258.9736	1916836.42	405	475898.727	1915021.38
190	473253.4077	1916823.93	406	475915.005	1915011.19
191	473268.2363	1916795.669	407	475927.512	1915001.19
192	473273.5636	1916781.918	408	475936.946	1914991.33
193	473277.3126	1916764.704	409	475944.084	1914981.5
194	473280.1565	1916744.996	410	475949.273	1914974.01
195	473280.9818	1916731.048	411	475951.567	1914963.51
196	473281.6578	1916721.437	412	475951.859	1914952.63
197	473283.3234	1916715.894	413	475951.514	1914947.66
198	473287.6117	1916707.681	414	475948.788	1914943.59
199	473292.0609	1916691.613	415	475945.875	1914941.38
200	473297.4106	1916663.326	416	475942.371	1914941.37
201	473297.4756	1916637.336	417	475937.21	1914941.36
202	473296.8946	1916606.101	418	475930.068	1914942.55
203	473298.1743	1916591.51	419	475921.56	1914942.73
204	473300.8201	1916569.664	420	475912.152	1914943.35
205	473309.3609	1916543.004	421	475901.009	1914943.39
206	473318.4668	1916517.927	422	475888.665	1914942.63
207	473330.0667	1916498.62	423	475878.309	1914940.46
208	473345.4856	1916478.148	424	475869.372	1914936.31
209	473360.0426	1916457.669	425	475854.311	1914931.75
210	473366.6842	1916444.389	426	475839.86	1914929.27
211	473370.804	1916428.133	427	475824.022	1914929.2
212	473371.9937	1916417.417	428	475810.066	1914929.44
213	473377.346	1916405.443	429	475793.814	1914930.34
214	473390.7929	1916394.425	430	475778.197	1914931.34
215	473402.0206	1916388.572	431	475764.36	1914931.88

216	473420.5656	1916384.163	432	475751.968	1914928.76
			433	475740.209	1914921.56
			434	475731.384	1914916.07
		·	435	474891.27	1915386.2
			436	474899.198	1915382.97
			437	475772.941	1915070.91
			438	475775.543	1915068.91

1.1.3 Duración del proyecto.

Para la realización del proyecto se solicitan cinco años, considerando tiempos referentes a licitación, trámites ambientales y etapas de construcción del tramo propuesto.

Por lo cual para licitación y trámites ambientales se consideran 12 meses y para las actividades de preparación y construcción del tramo propuesto se considera un periodo de tres años y un año considerando cualquier tipo de retraso, por lo que solicitan cinco años para la presente solicitud.

Una vez realizado la vida útil del mismo dependerá de la calidad de materiales empleados durante su construcción, así como del cumplimiento de las especificaciones que rigen la construcción de este tipo de obras y del mantenimiento. El tiempo estimado de vida útil de la presente obra es de 20 años.

I.2 Datos generales del Promovente
I.2.1 Nombre o razón social Secretaría de Comunicaciones y Transportes Centro Guerrero (SCT).
I.2.2 Registro Federal de Contribuyentes del promovente
I.2.3 Nombre y cargo del representante legal
I.2.4 Dirección del promovente o de su representante legal
I.2.5 Nombre del consultor que elaboró el estudio.
I.2.6 Nombre del responsable técnico de la elaboración del estudio
I.2.7 Registro Federal de Contribuyentes o CURP
1.2.7 Registro Federal de Contribuyentes o Corr
I.2.8 Dirección del responsable técnico del estudio

II. DESCRIPCIÓN DE LAS OBRAS O ACTIVIDADES Y, EN SU CASO, DE LOS PROGRAMAS O PLANES PARCIALES DE DESARROLLO.

II.1. Información general del proyecto, plan o programa

Con el objeto de incrementar la comunicación y la factibilidad del transporte en el Municipio de Quechultenango y las comunidades aledañas. La S. C. T. (Secretaría de Comunicaciones y Transportes), contempla la necesidad de optimizar la infraestructura carretera, lo que facilitara el intercambio comercial, es por ello que se proyectara una estructura capaz de satisfacer las necesidades en tiempos de recorrido y seguridad de los usuarios.

II.1.1. Naturaleza del proyecto, plan o programa

El presente proyecto se trata de la modernización mediante ampliación de terracerías, construcción de obras de drenaje, trabajos diversos, pavimento, señalamiento horizontal y vertical del camino Jalapa- Tolixtlahuaca-Xochitepec, tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero, ubicado en la región Centro del Estado, consiste en un conjunto de obras del mismo tipo y del mismo sector de comunicaciones y transportes, con la meta general de mejorar la infraestructura carretera del Estado.

El trazo no atraviesa directamente ninguna área que afecten ecosistemas costeros, Áreas Naturales Protegidas de competencia de la Federación, humedales, manglares, lagunas, ríos, lagos, esteros conectados con el mar, de acuerdo con lo establecido en los artículos 28 de la Ley General del Equilibrio Ecológico y la Protección al Ambiente (LGEEPA) y 5 de su Reglamento en Materia de Evaluación del Impacto Ambiental.

Considerar que para el tramo ubicado en el kilómetro 1+060 al kilómetro 1+350 se contemplara en lo futuro la construcción de un puente sobre el Rio La Nopalera que será objeto de otro estudio y autorización en su momento por tratarse de una obra de drenaje mayor, en cuanto se elabore y cuente con el proyecto por la SCT, por lo que solo se contempla la pavimentación del tramo propuesto y los usuarios seguirán utilizando el paso existente, también dentro del estudio se contemplan medidas para evitar afectaciones sobre este cauce.

II.1.2. Justificación

Las obras de infraestructura de transporte o vías terrestres, como son por ejemplo: caminos, carreteras o autopistas y sus obras de cruce y empalmes utilizan áreas importantes en el territorio creando en el entorno impactos ambientales importantes, tanto positivos como negativos.

Por ejemplo los beneficios socioeconómicos proporcionados por las vías terrestres incluyen la confiabilidad bajo todas las condiciones climáticas, la reducción de los costos de transporte, el mayor acceso a los mercados para los cultivos y productos locales, el acceso a nuevos centros de empleo, la contratación de trabajadores locales en obras en sí, el mayor acceso a la atención médica y otros servicios sociales y el fortalecimiento de la economía local. En la actualidad el bienestar de las poblaciones está ligado a la calidad de servicios con los que cuente.

La infraestructura carretera siempre se ha considerado una variable que detona el desarrollo y crecimiento de poblaciones aisladas y con deficiencia en su calidad de vida. Es importante reconocer que las carreteras mejoran diversos factores dentro de las poblaciones, pero también afectan de manera negativa el entorno si no se consideran para su construcción las leyes y normativas que rigen su construcción. Tomar en cuenta los impactos ambientales que presenta una obra sobre el entorno es de vital importancia para el desarrollo integral de las poblaciones beneficiadas.

El presente documento de impacto ambiental corresponde a un proyecto de modernización de un camino de terracería ya existente.

El camino fue abierto antes de los años setentas y desde entonces el ecosistema ha quedado fragmentado, en la actualidad se trata de un camino de terracería que presenta 6.81 metros de amplitud en promedio. Las afectaciones que se presentarán con la modernización, de acuerdo al proyecto presentado nuevas aperturas y algunas puntuales y siendo la superficie existen nuevas aperturas, las afectaciones y modificaciones de las variables ambientales son de orden moderadas. Las afectaciones existentes con el desarrollo del proyecto, considerando las nuevas aperturas y la afectación sobre la vegetación existente al borde del camino la cual incluye árboles, arbustos y en mayor porcentaje herbáceas; de acuerdo a la evaluación realizada, su eliminación no pone en riesgo la diversidad de las mismas, la riqueza, densidad, estructura, composición, no provocara desequilibrios ecológicos que causen extinción o destrucción de la comunidad circundante.

La modificación del camino de terracería actual, es resultado de la demanda constante que se ha venido haciendo desde hace varios años al gobierno del estado y a la federación por parte de los pobladores beneficiados, es pues imprescindible que una vez que el recurso este asignado por parte del gobierno federal, se lleve a cabo dicha obra. La presente obra será ejecutada con recursos del ejercicio que desarrolla en el presente año la Secretaria de Comunicaciones y Transportes (SCT), y beneficiará a más de 2,000 habitantes de las localidades de Jalapa, Tolixtlahuaca Y Xochitepec, además de rancherías pequeñas conectadas con el eje del camino.

El proyecto tiene como objetivos principales mejorar el alineamiento horizontal, vertical, el ancho de la corona y la superficie de rodamiento del camino en las partes que existe camino actualmente, a un camino del tipo D, de 7.0 metros de corona, con pavimento flexible (asfáltico), considerando una longitud total 6, 000.00 metros, en las localidades de Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 Al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero, que permita con ello tener una mejor comunicación entre los poblados beneficiados. Por otro lado es necesario que la obra a desarrollar cuente con la aprobación de la SEMARNAT, de acuerdo a lo que se establece en la LGEEPA y su Reglamento, en materia de evaluación del impacto ambiental con la finalidad de que la obra se realice en armonía con el entorno ecológico circundante.

II.1.3 Ubicación física.

EL punto inicial del camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 Al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero, se ubica con las coordenadas UTM X 472179 y Y 1918049 X 475930 y Y 1914945, y comunica a las localidades de Jalapa, Tolixtlahuaca y Xochitepec cercanas al área del proyecto.

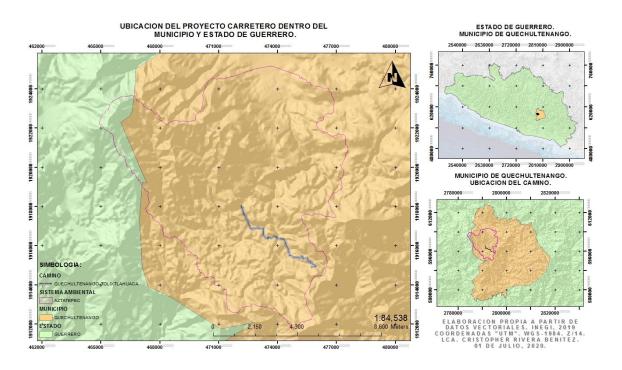


Imagen 3.- Ubicación a nivel estatal y municipal del proyecto.

Las localidades cercanas al proyecto son: Jalapa, Tolixtlahuaca y Xochitepec y rancherías cercanas al área del proyecto, ubicadas en el Municipio de Quechultenango, Estado de Guerrero.

Tabla 2. Resumen de afectaciones y características a lo largo del tramo a modernizar.

Polígo no	Cadenamiento	Tipo de vegetación o uso de suelo	Superficie m2
1	Del KM 0+000 al KM 0+190	Agropecuario	1451
2	Del KM 0+200 al KM 0+700	Vegetación Secundaria Arbórea de selva baja caducifolia	4439
3	Del Km 0+790 al KM 0+974	Vegetación Secundaria Arbórea de selva baja caducifolia	1543
4	Del Km 0+974 al Km 1+040	Agricultura de Temporal	464
5	Del km 1+310 al km2+400	Vegetación secundaria arbórea de selva baja caducifolia	8864
6	Del Km 2+500 al Km 2+980	Vegetación Secundaria Arbórea de selva baja caducifolia	3757
7	Del Km 2+980 al Km 3+300	Pastizal inducido	1640
8	Del Km 3+400 al Km 4+000	Pastizal inducido	4459
9	Del km 4+580 al Km 4+795	Pastizal inducido	367
10	Del km 5+740 al Km 5+970	Vegetación Secundaria Arbórea de Selva Baja Caducifolia.	597
	Total		27581

Uso de suelo	Superficie (m2)	Polígonos
Forestal	19200	2,3,5, 6 y 10
Agropecuario	8381	1,4,7,8 y 9
Total	27581	

Dentro del tramo del camino de terracería: Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 Al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero, con una meta de 6.0 km, ubicado en el Estado de Guerrero, presenta nuevas aperturas del camino, cuyo total es de 10 polígonos de afectación a lo largo de los 6,000 m., propuestos en el proyecto; con un ancho promedio de corona de 6.81 y considerando en los tramos de nuevas aperturas un ancho de 7 metros son de corona.

Con la modernización del camino de terracería se afectará una superficie de **27581** m² en esta superficie se contemplan solo modificaciones y aperturas además de la pavimentación. Esta superficie es de tipo forestal 19200 m2 y de tipo agropecuaria de 8381 m2.

Considerar que para el kilómetro 1+060 al kilómetro 1+350 se contemplará en lo futuro la construcción de un puente sobre el Río La Nopalera que será objeto de otro estudio y autorización en cuanto se cuente con el proyecto por lo que solo se contempla la pavimentación del tramo propuesto y se utilizará la infraestructura existente en el área también dentro del estudio se contemplan medidas para evitar afectaciones sobre este cauce.

Tabla 3. Coordenadas UTM de los polígonos de afectación en las nuevas aperturas o modificaciones.

Polígono	Cadena	Tipo de vegetación uso de suelo	Área m2	ID	Coordenada X	Coordenada Y
				1	472170.6649	1918062.492
				2	472179.2512	1918059.795
				3	472176.6268	1918051.44
				4	472170.7592	1918032.758
		Agropecuario	1451 m2	5	472167.3013	1918021.749
	Del km 0+000 al km 0+190			6	472166.1785	1918018.127
				7	472163.0311	1918013.134
Afectación 1				8	472160.6147	1918006.9
Alectacion				9	472160.2538	1917998.742
				10	472160.9332	1917994.484
				11	472161.4584	1917992.471
				12	472162.5311	1917988.903
				13	472164.6475	1917985.141
				14	472166.9433	1917981.984
				15	472169.7001	1917978.517
				16	472176.2294	1917970.07

17	472185.1313	1917958.786
18	472190.4087	1917951.884
19	472197.8088	1917942.669
20	472200.5549	1917938.495
21	472202.2858	1917935.422
22	472203.8387	1917932.255
23	472205.101	1917929.278
24	472206.4798	1917925.402
25	472207.8025	1917920.584
26	472208.5572	1917916.737
27	472207.1089	1917913.396
28	472205.8639	1917910.806
29	472204.7935	1917908.533
30	472202.6454	1917902.487
31	472200.279	1917897.033
32	472200.1239	1917896.463
33	472199.8872	1917899.342
34	472200.2749	1917903.088
35	472200.3942	1917906.853
36	472200.16	1917911.618
37	472199.6719	1917915.352
38	472198.7983	1917919.53
39	472197.343	1917924.336
40	472195.955	1917927.837
41	472194.7805	1917930.337
42	472192.4493	1917934.499
43	472188.9841	1917939.428
44	472178.0765	1917953.198
45	472174.2349	1917958.048
46	472168.9582	1917964.709
47	472164.7437	1917970.03
48	472160.8881	1917975.638
49	472158.3706	1917980.468
50	472156.6519	1917984.767
51	472155.1456	1917990.001
52	472154.4737	1917993.478
53	472153.9092	1917999.168
54	472153.9417	1918004.07
55	472154.4509	1918008.946

				56	472155.0529	1918012.159
				57	472156.1776	1918016.369
				58	472162.1729	1918035.455
				59	472167.7671	1918053.266
Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada Y
				1	472198.8302	1917889.333
				2	472200.0262	1917881.938
				3	472202.0814	1917877.456
				4	472202.7851	1917872.942
				5	472203.4571	1917869.236
				6	472202.132	1917862.35
				7	472201.0981	1917856.855
				8	472200.4024	1917852.112
				9	472200.0373	1917847.599
				10	472199.9502	1917843.872
				11	472200.0717	1917839.879
	Del km 0+200 al km 0+700	Vegetación secundaria arbórea de selva baja caducifolia	4439 m2	12	472200.385	1917836.163
				13	472200.9339	1917832.205
				14	472201.5868	1917828.805
				15	472202.8336	1917823.901
				16	472205.1918	1917817.11
Afectación 2				17	472208.9482	1917809.183
				18	472214.0755	1917799.348
				19	472218.4011	1917791.05
				20	472222.3921	1917783.394
				21	472226.3808	1917775.743
				22	472230.6713	1917767.513
				23	472236.1293	1917756.682
				24	472239.6714	1917748.841
				25	472243.3396	1917739.79
				26	472246.2552	1917731.695
				27	472251.4503	1917715.248
				28	472257.2747	1917696.515
				29	472262.0802	1917681.058
				30	472267.3285	1917664.177
				31	472272.9888	1917645.97
				32	472277.877	1917630.247
				33	472282.8658	1917614.525

		2/	<u> </u>	1917603.523
		34 35	472286.967 472289.8913	1917596.6
		36	472293.0453	1917589.779
		37	472295.9911	1917583.9
		38	472297.7512	1917580.58
		39	472300.7289	1917575.249
		40	472303.6056	1917570.402
		41	472307.1138	1917564.84
		42	472311.8611	1917557.844
		43	472315.1704	1917553.282
		44	472319.1746	1917548.066
		45	472323.5822	1917542.577
		46	472330.6607	1917533.783
		47	472334.5397	1917528.964
		48	472339.3899	1917522.938
		49	472344.0525	1917517.319
		50	472347.7571	1917512.543
		51	472352.7756	1917506.308
		52	472358.4646	1917499.24
		53	472362.5137	1917494.21
		54	472369.1989	1917485.904
		55	472373.7345	1917480.209
		56	472377.7213	1917474.967
		57	472381.3164	1917470.02
		58	472385.3344	1917464.219
		59	472389.2103	1917458.323
		60	472391.9613	1917453.94
		61	472393.9131	1917450.722
		62	472394.4588	1917440.601
		63	472396.2609	1917431.24
		64	472396.6772	1917429.82
		65	472398.6688	1917422.806
		66	472395.4446	1917429.349
		67	472392.0524	1917435.806
		68	472387.5793	1917443.75
		69	472383.5767	1917450.386
		70	472379.6442	1917456.529
		71	472375.0321	1917463.316
		72	472370.2245	1917469.966

	İ	I .
73	472364.3741	1917477.543
74	472354.2937	1917490.069
75	472350.5479	1917494.723
76	472340.1627	1917507.625
77	472323.9013	1917527.827
78	472313.3358	1917540.954
79	472308.5371	1917547.124
80	472303.3893	1917554.252
81	472298.7767	1917561.158
82	472295.1641	1917566.965
83	472292.446	1917571.601
84	472290.3018	1917575.439
85	472288.2302	1917579.317
86	472286.4502	1917582.797
87	472285.1535	1917585.426
88	472280.4914	1917595.648
89	472276.8412	1917604.71
90	472273.4191	1917614.381
91	472269.8772	1917625.663
92	472266.717	1917635.828
93	472263.6502	1917645.692
94	472259.838	1917657.954
95	472256.1978	1917669.663
96	472254.0069	1917676.71
97	472251.5808	1917684.513
98	472248.9577	1917692.95
99	472246.6156	1917700.484
100	472244.7258	1917706.562
101	472242.8594	1917712.566
102	472239.5304	1917723.273
103	472237.0774	1917730.704
104	472233.2956	1917740.747
105	472230.2379	1917747.95
106	472227.3214	1917754.238
107	472224.316	1917760.235
108	472221.4578	1917765.718
109	472218.604	1917771.192
110	472215.1348	1917777.847
i		

		,		112	472201.4034	1917804.187
				113	472200.1121	1917806.664
				114	472199.1664	1917808.536
				115	472197.5405	1917812.077
				116	472196.0869	1917815.692
				117	472194.994	1917818.802
				118	472193.8669	1917822.531
				119	472193.2632	1917824.852
				120	472192.4297	1917828.657
				121	472191.9138	1917831.609
				122	472191.4393	1917835.174
				123	472191.1441	1917838.458
				124	472190.9828	1917841.751
				125	472190.956	1917845.047
				126	472191.0482	1917848.042
				127	472191.3336	1917851.928
				128	472191.6804	1917854.905
				129	472192.3507	1917859.046
				130	472193.9132	1917867.334
				131	472194.8139	1917872.112
				132	472196.0832	1917878.844
				133	472197.7948	1917885.134
				134	472198.8302	1917889.333
Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada Y
				1	472429.1605	1917349.5
				2	472434.7158	1917340.936
				3	472448.7643	1917324.905
				4	472451.1603	1917319.033
				5	472454.0148	1917312.024
				6	472456.5715	1917305.745
	Del km	Vegetación		7	472458.9152	1917299.99
A Sanata at San O	0+790 al	secuandaria	45400	8	472461.1254	1917294.562
Afectación 3	km	arborea de selva baja	1543 m2	9	472463.4683	1917288.809
	0+974	caducifolia		10	472465.6973	1917283.335
				11	472467.027	1917280.07
				12	472469.019	1917275.178
				13	472471.3071	1917269.56
				14	472473.5643	1917264.017

15 472475.1944 1917260 16 472476.9451 1917255 17 472478.7189 1917251 18 472480.3243 1917246 19 472482.2118 1917242 20 472484.5007 1917237 21 472486.3353 1917232 22 472488.2203 1917228 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.715 .359 .975 .781 .161 .655 .026 .986 9.14 .579 .324 .718 .747 3.72
17 472478.7189 1917251 18 472480.3243 1917246 19 472482.2118 1917242 20 472484.5007 1917237 21 472486.3353 1917232 22 472488.2203 1917228 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917203 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.359 .975 .781 .161 .655 .026 .986 9.14 .579 .324 .718 .747 3.72
18 472480.3243 1917246 19 472482.2118 1917242 20 472484.5007 1917237 21 472486.3353 1917232 22 472488.2203 1917228 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917203 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.975 .781 .161 .655 .026 .986 .0.14 .579 .324 .718 .747 3.72
19 472482.2118 1917242 20 472484.5007 1917237 21 472486.3353 1917228 22 472488.2203 1917228 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917203 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.781 .161 .655 .026 .986 9.14 .579 .324 .718 .747 3.72
20 472484.5007 1917237 21 472486.3353 1917232 22 472488.2203 1917228 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.161 .655 .026 .986 .14 .579 .324 .718 .747 3.72
21 472486.3353 1917232 22 472488.2203 1917222 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.655 .026 .986 9.14 .579 .324 .718 .747 3.72
22 472488.2203 1917228 23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.026 .986 .0.14 .579 .324 .718 .747 3.72
23 472490.2731 1917222 24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.986 9.14 .579 .324 .718 .747 3.72
24 472491.8389 1917215 25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	0.14 .579 .324 .718 .747 3.72
25 472493.2893 1917215 26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.579 .324 .718 .747 3.72
26 472495.022 1917211 27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.324 .718 .747 3.72 .398
27 472496.4904 1917207 28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.718 .747 3.72 .398
28 472498.1076 1917203 29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	.747 3.72 .398
29 472500.1544 1917193 30 472502.3218 1917193 31 472504.5277 1917187	3.72 .398
30 472502.3218 1917193 31 472504.5277 1917187	.398
31 472504.5277 1917187	
	.981
20 470507 7650 404740	
32 472507.7656 191718).03
33 472509.3754 1917176	.077
34 472499.1056 1917177	.432
35 472495.7223 191718	5.74
36 472493.2708 1917191	.761
37 472491.0675 1917197	.171
38 472488.8386 1917202	.645
39 472486.3614 1917208	.728
40 472484.0938 1917214	.296
41 472481.7536 1917220	.043
42 472479.5288 1917225	.506
43 472477.796 1917229	.762
44 472476.106 1917233	.912
45 472473.4835 1917240	.352
46 472471.0278 1917246	.382
47 472468.8757 1917251	.667
48 472466.3729 1917257	.813
49 472463.3272 1917265	.292
50 472460.8814 1917271	.298
51 472457.6552 1917279	.221
52 472454.6877 1917286	.508
53 472452.3405 1917292	.272

	·	,				
				54	472449.872	1917298.334
				55	472447.2147	1917304.859
				56	472444.5613	1917311.375
				57	472442.4803	1917316.485
				58	472440.8196	1917320.563
				59	472439.0145	1917324.996
				60	472437.5324	1917328.635
				61	472435.3823	1917333.915
				62	472433.3732	1917338.849
				63	472430.7939	1917345.183
Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada X
				1	472499.1056	1917177.432
				2	472509.3754	1917176.077
				3	472510.6624	1917172.916
				4	472512.2745	1917168.957
				5	472513.7647	1917165.298
		Agricultura de temporal	464 m2	6	472515.4658	1917161.121
				7	472516.9629	1917157.444
				8	472518.2748	1917154.223
				9	472519.8988	1917150.235
				10	472520.6606	1917146.174
				11	472521.4079	1917142.048
				12	472522.2701	1917138.375
	Del km 0+974 al km 1+040			13	472523.7857	1917131.919
Polígono 4				14	472525.2409	1917125.719
				15	472524.7929	1917114.353
				16	472522.6854	1917119.528
				17	472520.4247	1917125.079
				18	472518.1401	1917130.69
				19	472515.7119	1917136.653
				20	472513.648	1917141.721
				21	472511.7834	1917146.3
				22	472509.8975	1917150.931
				23	472508.4073	1917154.59
				24	472506.4905	1917159.297
				25	472504.62	1917163.891
					i	
				26	472502.8865	1917168.148

Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada Y
				1	472626.4935	1916873.438
				2	472639.8342	1916873.019
				3	472641.8583	1916871.457
				4	472643.9555	1916869.994
				5	472646.9496	1916868.153
				6	472650.9266	1916866.104
				7	472654.1643	1916864.735
				8	472656.8767	1916863.777
				9	472660.8771	1916862.657
				10	472664.3221	1916861.958
				11	472667.4882	1916861.522
				12	472672.0654	1916861.085
				13	472675.9768	1916860.715
				14	472680.3471	1916860.302
				15	472687.0652	1916859.666
			8864 m2	16	472696.5394	1916858.77
		Vegetación secundaria arbórea de selva baja caducifolia		17	472704.7866	1916857.99
	Del km			18	472713.1684	1916857.197
Afectación 5	1+310 al km 2+400			19	472722.3964	1916856.324
				20	472730.5	1916855.558
		- Januari - Janu		21	472737.9516	1916854.853
				22	472744.2728	1916854.255
				23	472748.8868	1916853.818
				24	472754.1909	1916853.4
				25	472759.3191	1916853.235
				26	472765.5886	1916853.358
				27	472770.7062	1916853.724
				28	472775.2368	1916854.249
				29	472780.0222	1916855.012
				30	472786.1028	1916855.13
				31	472790.7071	1916855.301
				32	472795.1424	1916855.988
				33	472801.9514	1916857.043
				34	472808.2126	1916858.012
				35	472810.8123	1916858.551
				36	472813.7238	1916860.185
				37	472817.3804	1916862.586

		38	472821.2821	1016964 465
		39		1916864.465
		40	472824.8395	1916866.479
		41	472827.6572	1916868.074
		42	472830.3652	1916869.241
		43	472834.3221	1916870.946
		44	472839.4437	1916873.153
		45	472843.2632	1916874.799
		46	472849.3798	1916876.634
		47	472854.3618	1916878.288
		48	472860.4607	1916879.958
		49	472865.911	1916881.593
		50	472870.8755	1916882.397
		51	472878.1762	1916883.579
		52	472884.5605	1916884.613
		53	472889.9606	1916885.488
		54	472894.8639	1916886.248
			472903.7674	1916887.589
		55 56	472909.8994	1916888.512
		56 57	472916.5516	1916889.584
		57	472922.4982	1916890.096
		58	472931.5627	1916890.424
		59	472938.44	1916890.672
		60 61	472942.0168	1916890.802
			472946.8342	1916890.013
		62 63	472952.4518	1916889.134
		64	472961.7799	1916887.676
		65	472968.0842	1916886.691
		66	472975.4717	1916885.536
		67	472982.3532	1916884.46
		68	472988.5348	1916883.494
		69	472995.5591	1916882.396
			473004.2953	1916881.03
		70	473012.1889	1916879.796
		71	473018.8717	1916878.752
		72	473025.4144	1916877.753
		73	473031.1737	1916877.014
		74	473036.0247	1916876.508
		75 76	473041.8123	1916876.043
		76	473047.3785	1916875.738

	77	473054.3432	1916875.55
	78	473064.5693	1916875.666
	79	473072.1688	1916875.901
	80	473080.7262	1916876.167
	81	473089.8435	1916876.45
	82	473093.9263	1916876.576
	83	473100.2805	1916876.773
	84	473106.8226	1916876.976
	85	473113.2028	1916877.156
	86	473117.8351	1916877.154
	87	473123.6218	1916876.948
	88	473126.7051	1916876.744
	89	473130.5484	1916876.402
	90	473132.8504	1916876.147
	91	473135.1485	1916875.857
	92	473138.5859	1916875.353
	93	473142.0109	1916874.769
	94	473145.421	1916874.105
	95	473148.8148	1916873.361
	96	473151.067	1916872.82
	97	473153.3106	1916872.244
	98	473157.1584	1916871.168
	99	473159.983	1916870.307
	100	473164.3778	1916868.842
	101	473170.0441	1916866.722
	102	473175.1445	1916864.584
	103	473179.3523	1916862.647
	104	473183.4971	1916860.578
	105	473186.5623	1916858.942
	106	473189.5881	1916857.235
	107	473192.5728	1916855.457
	108	473195.515	1916853.609
	109	473199.3685	1916851.038
	110	473202.205	1916849.032
	111	473205.9117	1916846.253
	112	473210.4198	1916842.62
	113	473214.782	1916838.812
	114	473217.3263	1916836.446
	115	473219.8148	1916834.021

116	473221.8357	1916831.964
117	473224.617	1916829
118	473226.928	1916826.406
119	473229.1774	1916823.758
120	473231.0272	1916821.48
121	473232.786	1916819.23
122	473234.1795	1916817.38
123	473235.5438	1916815.508
124	473237.5346	1916812.66
125	473238.8243	1916810.736
126	473240.0837	1916808.792
127	473241.3125	1916806.829
128	473242.5103	1916804.846
129	473243.6769	1916802.845
130	473244.8122	1916800.827
131	473245.9157	1916798.79
132	473246.9868	1916796.736
133	473248.5331	1916793.625
134	473250.4801	1916789.422
135	473251.8534	1916786.23
136	473253.151	1916783.008
137	473254.1732	1916780.3
138	473255.5176	1916776.475
139	473256.238	1916774.273
140	473256.9237	1916772.061
141	473258.0724	1916768.04
142	473258.7714	1916765.363
143	473260.0693	1916759.72
144	473260.3023	1916758.586
145	473261.618	1916751.797
146	473262.9782	1916744.754
147	473264.6629	1916736.031
148	473266.1705	1916728.225
149	473268.3111	1916717.141
150	473270.4366	1916706.136
151	473272.283	1916696.576
152	473274.17	1916686.805
153	473275.8092	1916678.318
154	473277.36	1916670.288

155	473279.0682	1916661.443
156	473281.1595	1916650.614
157	473283.5869	1916638.046
158	473285.9382	1916625.871
159	473288.8394	1916610.849
160	473291.545	1916596.84
161	473293.3339	1916587.577
162	473295.8848	1916576.014
163	473296.9301	1916571.968
164	473297.2032	1916570.959
165	473297.3469	1916569.243
166	473298.6499	1916564.971
167	473302.6933	1916552.35
168	473306.0721	1916541.811
169	473310.1154	1916530.676
170	473314.0486	1916519.844
171	473315.2944	1916516.451
172	473318.1063	1916511.733
173	473322.28	1916504.787
174	473327.2721	1916496.515
175	473329.6227	1916493.394
176	473334.7355	1916486.606
177	473339.3197	1916477.812
178	473345.7376	1916465.171
179	473353.1083	1916450.655
180	473360.4257	1916436.243
181	473364.3891	1916428.437
182	473368.1202	1916421.132
183	473368.6131	1916416.516
184	473369.968	1916413.376
185	473372.0133	1916408.8
186	473374.4775	1916403.44
187	473375.0936	1916402.766
188	473380.5492	1916398.295
189	473386.0154	1916393.817
190	473389.1756	1916391.323
191	473391.5699	1916390.075
192	473396.3306	1916387.593
193	473401.2115	1916385.168

194	473404.5447	1916384.376
195	473408.6896	1916383.39
196	473412.4721	1916382.491
197	473415.6816	1916381.728
198	473418.0748	1916381.138
199	473417.1965	1916381.17
200	473415.6094	1916381.258
201	473412.378	1916381.552
202	473408.4638	1916382.117
203	473404.1613	1916383.011
204	473399.9256	1916384.18
205	473395.3641	1916385.777
206	473390.5308	1916387.884
207	473383.9936	1916391.494
208	473378.2363	1916395.526
209	473372.2952	1916400.743
210	473367.2741	1916406.271
211	473363.6135	1916411.213
212	473359.387	1916418.409
213	473351.8415	1916433.27
214	473344.1404	1916448.437
215	473336.8749	1916462.747
216	473330.0405	1916476.207
217	473322.7119	1916490.641
218	473316.2831	1916503.303
219	473308.7403	1916518.159
220	473303.3303	1916528.936
221	473298.2885	1916540.172
222	473293.9682	1916551.317
223	473289.7066	1916564.404
224	473287.0632	1916574.196
225	473284.4974	1916585.871
226	473282.5595	1916595.904
227	473279.8912	1916609.719
228	473277.0018	1916624.68
229	473274.6292	1916636.965
230	473272.1453	1916649.826
231	473270.1222	1916660.301
232	473268.441	1916669.006

234	 	<u> </u>		•	
235			233	473266.9341	1916676.809
236			234	473265.2377	1916685.592
237			235	473263.3823	1916695.199
238			236	473261.4775	1916705.062
238			237	473259.2276	1916716.712
239 473255.7204 1916734.871 240 473253.9694 1916743.938 241 473252.6303 1916750.872 242 473251.0332 1916758.939 243 473248.9176 1916767.377 244 473247.3283 1916772.577 245 473244.7638 1916779.744 246 473242.2554 1916785.768 247 473239.4668 1916797.467 249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916823.735 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916844.851 257 473181.276 1916848.98 258 473181.276 1916856.054 260 473167.5029 1916858.054 261 473159.35401 1916863.262 263 473145.7228 1916863.262 264 473152.0553 1916863.262 263 473145.7228 1916866.464 265 473128.5473 1916866.464			238		
240 473253.9694 1916743.938 241 473252.6303 1916750.872 242 473251.0332 1916758.939 243 473248.9176 1916767.377 244 473247.3283 1916772.577 245 473244.7638 1916779.744 246 473242.2554 1916785.768 247 473239.4668 1916791.666 248 473236.4035 1916797.427 249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916823.735 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473192.4576 1916844.851 256 473192.4576 1916844.851 257 473186.0115 1916844.891 258 473181.276 1916884.998 260 473167.5029 1916858.045 261 473159.3401 1916865.054 262 473152.0553 1916863.262 263 473145.7228 1916863.262 264 473171.775 1916866.464 265 473128.5473 1916866.454			239		
241 473252.6303 1916750.872 242 473251.0332 1916758.939 243 473248.9176 1916767.377 244 473247.3283 1916772.577 245 473244.7638 1916779.744 246 473242.2554 1916785.768 247 473239.4668 1916791.666 248 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916813.27 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916844.851 256 473192.4576 1916844.851 257 473186.0115 1916844.851 258 473181.276 1916854.98 260 473159.3401 1916865.054 261 473159.3401 1916863.262 263 473145.7228 1916864.834 264 47315.0553 1916863.66 263 473145.7228 1916866.464 <			240	473253.9694	
242 473251.0332 1916758.939 243 473248.9176 1916767.377 244 473247.3283 1916772.577 245 473244.7638 1916779.744 246 473242.2554 1916785.768 247 473239.4668 1916797.427 248 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473159.3401 1916858.045 261 473159.3401 1916863.262 263 473145.7228 1916864.834 264 47315.7228 1916864.834 264 473128.5473 1916866.464			241	473252.6303	
243 473248.9176 1916767.377 244 473247.3283 1916772.577 245 473242.2554 1916785.768 247 473239.4668 1916791.666 248 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			242		
244 473247.3283 1916772.577 245 473244.7638 1916779.744 246 473242.2554 1916785.768 247 473239.4668 1916797.427 249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916844.851 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473159.3401 1916861.054 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			243		
245 473244.7638 1916779.744 246 473242.2554 1916785.768 247 473239.4668 1916791.666 248 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916844.851 256 473192.4576 1916844.851 257 473186.0115 1916844.851 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464			244		
246 473242.2554 1916785.768 247 473239.4668 1916791.666 248 473236.4035 1916797.427 249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916829.927 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916844.98 258 473181.276 1916854.998 260 473167.5029 1916854.998 260 473159.3401 1916861.054 262 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			245		
247 473239.4668 1916791.666 248 473236.4035 1916797.427 249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916844.851 258 473181.276 1916854.998 260 473174.4782 1916854.998 260 473179.3401 1916861.054 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			246		
248 473236.4035 1916797.427 249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916851.573 258 473181.276 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			247		
249 473231.9046 1916804.873 250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			248		
250 473227.5919 1916811.146 251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			249		
251 473223.6261 1916816.327 252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916851.573 258 473181.276 1916854.998 260 473174.4782 1916854.998 260 473159.3401 1916861.054 261 473159.3401 1916863.262 263 473145.7228 1916863.262 263 473145.7228 1916864.834 264 473128.5473 1916867.556			250		
252 473217.2317 1916823.735 253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916844.851 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			251		
253 473211.1215 1916829.927 254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			252		
254 473205.466 1916835.022 255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			253		
255 473198.6718 1916840.455 256 473192.4576 1916844.851 257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			254		
257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			255	473198.6718	1916840.455
257 473186.0115 1916848.9 258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			256		
258 473181.276 1916851.573 259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			257		
259 473174.4782 1916854.998 260 473167.5029 1916858.045 261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			258	473181.276	1916851.573
261 473159.3401 1916861.054 262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			259	473174.4782	1916854.998
262 473152.0553 1916863.262 263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			260	473167.5029	1916858.045
263 473145.7228 1916864.834 264 473137.1775 1916866.464 265 473128.5473 1916867.556			261	473159.3401	1916861.054
264 473137.1775 1916866.464 265 473128.5473 1916867.556			262	473152.0553	1916863.262
265 473128.5473 1916867.556			263	473145.7228	1916864.834
10125.010			264	473137.1775	1916866.464
266 470400 0504 4040000 005			265	473128.5473	1916867.556
			266	473120.9521	1916868.065
			267		1916868.136
			268		1916867.858
			269		1916867.516
			270		1916867.25
			271	473074.5491	1916866.971

272	473065.6676	1916866.696
273	473055.9317	1916866.538
274	473048.6865	1916866.68
275	473041.9313	1916867.016
276	473032.5443	1916867.809
277	473023.197	1916868.979
278	473015.2915	1916870.202
279	473008.3439	1916871.288
280	472999.2558	1916872.709
281	472989.1056	1916874.296
282	472979.4138	1916875.811
283	472971.2167	1916877.092
284	472962.1222	1916878.514
285	472953.1633	1916879.914
286	472944.4658	1916881.273
287	472938.6546	1916882.182
288	472930.9589	1916883.356
289	472924.0977	1916884.111
290	472917.2077	1916884.525
291	472909.4936	1916884.581
292	472902.5979	1916884.267
293	472895.3237	1916883.562
294	472889.297	1916882.682
295	472884.1094	1916881.706
296	472878.5684	1916880.436
297	472871.1412	1916878.35
298	472865.7487	1916876.551
299	472861.9443	1916875.132
300	472852.0574	1916871.277
301	472840.376	1916866.722
302	472831.2373	1916863.159
303	472825.6722	1916860.989
304	472821.7872	1916859.474
305	472817.7746	1916857.91
306	472813.5268	1916856.253
307	472809.4829	1916854.677
308	472806.6489	1916853.572
309	472802.9824	1916852.144
310	472798.9248	1916850.67

Afectación 6 Afectación 6 Afectación 6 Del km 2+980 Del km 2+980 Del km 2+980 Del km 2+980 Afectación 6 Afectación 6 Afectación 6 Afectación 6 Del km 2+980 De			· · · · · · · · · · · · · · · · · · ·			,	
Afectación 6 Del km 2+980 Del					311	472794.8164	1916849.344
Afectación 6 Del km 2+980					312	472790.3645	1916848.089
Afectación 6 Polígono Cadena Tipo de vegetación Afectación 6 Del km 2+980 Del km 2					313	472787.0705	1916847.28
Afectación 6 Del km 2+980 Del					314	472783.1498	1916846.444
Afectación 6 Polígono Cadena Tipo de vegetación Afectación 6 Del km 2+980 Del km 2					315	472778.8987	1916845.693
Afectación 6 Del km 2+980 Polígono Cadena Tipo de vegetación Afectación 6 Del km 2+980 Del km 2					316	472774.6233	1916845.096
Afectación 6 Del km 2+980 Polígono Cadena Tipo de vegetación Afectación 6 Del km 2+980 Del km 2+980 Del km 2+980 Del km 2+980 Afectación 6 Afectaci					317	472770.9433	1916844.708
Afectación 6 Del km 2+980 Polígono Cadena Del km 2+980 Del km 2+980 Afectación 6 Del km 2+980 Del km 3757 m2 Del km 3757					318	472767.8686	1916844.472
Afectación 6 Del km 2+980 De					319	472763.8643	1916844.284
Afectación 6 Polígono Cadena Tipo de vegetación Tipo de vegetación Area m2 Del km 2+980 Del km 2+980 Del km 2+980 Afectación 6 Afectac					320	472758.6225	1916844.242
Poligono Cadena Tipo de vegetación Tipo de vegetación Afrea m2 Del km 2+980 Afrecatación 6 Afrea m2 Tipo de vegetación Afrea m3 Tipo de vegetación Afrea m4 Tipo de vegetación Afrea m5 Tipo de vegetación Afrea m6 Tipo de vegetación Afrea m6 Tipo de vegetación Afrea m6 Tipo de vegetación Afrea m7 Tipo de vegetación Afrea m8 Tipo de vegetación Afrea m6 Tipo de vegetación Afrea m6 Tipo de vegetación Tipo de ve					321	472752.4607	1916844.489
Polígono Cadena Tipo de vegetación Area m2 Del km 2+500 al km 2+980 Del km 2+980 D					322	472740.5945	1916845.563
Polígono Cadena Tipo de vegetación Tipo de vegetación Area m2 Del km 2+500 al km 2+980 Del km 2+9					323		
Afectación 6 Del km 2+980 Del					324	472699.0533	1916849.492
Polígono Cadena Tipo de vegetación Area m2 Del km 2+500 al km 2+980 Polígono Radiucifolia Polígono Radiucifolia Polígono Polígono Radiucifolia Polígono Polí					325	472677.4563	1916851.535
Afectación 6 Del km 2+980 Del					326		
Afectación 6 Del km 2+980 Del					327	472664.305	1916852.852
Afectación 6 Del km 2+980 Del					328	472659.8883	1916853.652
Afectación 6 Del km 2+980 De					329	472655.9002	1916854.665
Afectación 6 Del km 2+980 De					330	472651.6373	1916856.069
Afectación 6 Del km 2+500 al km 2+980 Del km					331	472647.4873	1916857.78
Polígono Cadena Tipo de vegetación Area m2 ID Coordenada X Coordenada Y					332	472643.8015	1916859.609
Polígono Cadena Tipo de vegetación Área m2 ID Coordenada X Coordenada Y Polígono Del km 2+500 al km 2+980 Vegetación secundaria arbórea de selva baja caducifolia Formalis (aducifolia) Afrea m2 (aducifolia) 335 472634.7478 1916865.562 336 472631.3315 1916868.474 337 472628.6523 1916871.084 (b) Coordenada X Coordenada Y (advanta de control of the coordenada X (aducifolia) 1916382.432 (aducifolia) 2473473.8251 1916382.432 (aducifolia) 2473473.8251 1916395.384 (aducifolia) 2473517.4345 1916395.806 (aducifolia) 2473517.4345 1916395.806 (aducifolia) 2473591.2756 1916399.12 (aducifolia) 2473591.2756 1916398.462					333	472640.563	1916861.481
Polígono Cadena Tipo de vegetación Área m2 ID Coordenada X Coordenada Y					334	472637.4437	1916863.546
Polígono Cadena Tipo de vegetación Área m2 ID Coordenada X Coordenada Y Del km 2+500 al km 2+980 Polígono al km 2+980 Polígono Polígono Cadena Polígono Cadena Polígono Polí					335	472634.7478	1916865.562
Polígono Cadena Tipo de vegetación Área m2 ID Coordenada X Coordenada Y 1					336	472631.3315	1916868.474
Afectación 6 Del km 2+500 al km 2+980 Del km 2+980 Afectación Secundaria arbórea de selva baja caducifolia Vegetación Secundaria arbórea de selva baja caducifolia Afectación Secundaria arbórea de selva baja caducifolia Afectación 6 Del km 2+500 al km 2+980 Afectación Secundaria arbórea de selva baja caducifolia Afectación Secundaria de de de selva baja caducifolia Afectación Secundaria de de de de de selva baja caducifolia Afectación Secundaria de					337	472628.6523	1916871.084
Afectación 6 Del km 2+500 al km 2+980 Vegetación secundaria arbórea de selva baja caducifolia Afectación 6 Del km 2+500 al km 2+980 Vegetación secundaria arbórea de selva baja caducifolia 3757 m2 3	Polígono	Cadena		Área m2	ID	Coordenada X	Coordenada Y
Afectación 6 Del km 2+500 al km 2+980 Afectación 6 Secundaria arbórea de selva baja caducifolia Afectación 6 Del km 2+980 Vegetación secundaria arbórea de selva baja caducifolia 3 473495.2474 1916392.551 4 473507.3789 1916395.806 5 473517.4345 1916395.806 6 473531.4234 1916396.641 7 473550.9315 1916397.746 8 473570.237 1916399.12 9 473591.2756 1916398.462					1	473443.5645	1916382.432
Afectación 6 Del km 2+500 al km 2+980 Vegetación secundaria arbórea de selva baja caducifolia Afectación 6 Vegetación secundaria arbórea de selva baja caducifolia 3757 m2 4 473507.3789 1916395.384 5 473517.4345 1916395.806 6 473531.4234 1916396.641 7 473550.9315 1916397.746 8 473570.237 1916399.12 9 473591.2756 1916398.462					2	473473.8251	1916388.515
Afectación 6 Afectación 6 Secundaria arbórea de selva baja caducifolia Secundaria arbórea de selva baja caducif					3	473495.2474	1916392.551
Afectación 6 2+500 al km 2+980 2+980 3757 m2 5 473517.4345 1916395.806 6 473531.4234 1916396.641 7 473550.9315 1916397.746 8 473570.237 1916399.12 9 473591.2756 1916398.462	2+500	Dal km			4	473507.3789	1916395.384
Afectación 6 al km 2+980 al km 2+980 al km 2+980 arborea de selva baja caducifolia 6 473531.4234 1916396.641 7 473550.9315 1916397.746 8 473570.237 1916399.12 9 473591.2756 1916398.462		secundaria	2757 0	5	473517.4345	1916395.806	
caducifolia 7 473550.9315 1916397.746 8 473570.237 1916399.12 9 473591.2756 1916398.462	Alectacion 6			3/5/ M2	6	473531.4234	1916396.641
9 473591.2756 1916398.462		2+980			7	473550.9315	1916397.746
9 473591.2756 1916398.462					8		
					9		
					10	473609.3962	1916397.655

11	 	JO, LIVEL LOTADO	_		
13 473647.7918 1916397.255 14 473660.7554 1916397.956 15 473672.0792 1916400.2968 16 473684.3693 1916402.988 177 473693.9103 1916408.154 18 473706.029 1916414.715 19 473716.3769 1916417.709 20 473727.9055 1916421.051 21 473753.348 1916430.674 22 473762.3193 1916440.218 24 473776.5755 1916443.429 25 473765.3256 1916446.813 26 473794.138 1916452.603 27 473799.6309 1916452.603 28 473804.7264 1916455.247 31 473813.637 1916456.326 32 473814.7035 1916456.326 33 473819.4104 1916457.195 34 47382.8093 1916458.047 35 473839.0358 1916458.047 36 473832.8093 1916456.326 37 473839.0358 1916456.326 38 473839.0358 1916456.326 39 473851.6101 1916456.327 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.326 473839.0358 1916456.97 39 473851.6101 1916456.282 40 473858.3195 1916456.326 41 473858.3195 1916456.326 42 473862.2972 1916456.326 43 473887.5782 1916454.155 44 473886.2787 1916454.155 44 473887.2159 1916447.733 45 473887.2159 1916447.733 45 473887.2159 1916447.733 45 473887.2159 1916447.733 45 473887.2159 1916447.733 45 473887.2159 1916447.733 45 473887.5054 1916437.699 48 473884.2704 1916437.699 48 473884.2704 1916437.699			11	473620.9441	1916397.031
14 473660.7554 1916397.956 15 473672.0792 1916400.296 16 473684.3693 1916402.988 17 473693.9103 1916408.154 18 473706.029 1916417.709 20 473727.9055 1916421.051 21 473753.348 1916430.374 22 47376.3193 1916435.397 23 473771.0393 1916443.429 24 473776.5755 1916443.429 25 473785.3256 1916446.813 26 473794.338 1916435.397 27 473799.6309 1916452.603 28 473802.6241 1916455.247 31 473813.1637 1916455.247 31 473814.7035 1916455.247 31 473819.4104 1916457.195 34 473825.5405 1916458.861 36 473839.0358 1916458.861 37 473839.0358 1916458.861 38 473839.0358 1916458.861 39 473854.904 1916456.283 473845.3782 1916456.283 473854.904 1916456.283 473854.904 1916456.283 473854.904 1916456.283 473854.904 1916456.283 473854.904 1916456.283 40 473854.904 1916456.283 41 473854.904 1916456.283 42 473862.2972 1916456.282 43 473867.1862 1916454.155 44 473867.1862 1916454.155 44 473867.1862 1916454.155 44 473867.1862 1916456.282 43 473867.1862 1916456.282 44 473867.1862 1916456.282 45 473887.5054 1916456.282 46 473887.5054 1916457.853 473887.5054 1916456.282 473887.5054 1916457.853 473887.5054 1916457.853			12	473631.6602	1916396.452
15			13	473647.7918	1916397.255
16			14	473660.7554	1916397.956
16 473684.3693 1916402.988 17 473693.9103 1916408.154 18 473706.029 1916414.715 19 473716.3769 1916417.709 20 473727.9055 1916421.051 21 473753.348 1916430.674 22 473762.3193 1916435.397 23 473771.0393 1916440.218 24 473776.3256 1916443.429 25 473794.138 1916450.303 26 473794.138 1916455.303 27 473799.6309 1916456.303 28 473802.6241 1916456.326 29 473804.7264 1916456.326 30 473803.3761 1916456.326 31 473811.637 1916456.326 32 473814.7035 1916456.326 33 473819.4104 1916457.195 34 473825.5405 1916458.047 35 473830.0154 1916458.67 36 473832.8093 1916458.67 36 473832.8093 1916456.97 39 473			15	473672.0792	1916400.296
17			16		
18 473706.029 1916414.715 19 473716.3769 1916417.709 20 473727.9055 1916421.051 21 473753.348 1916430.674 22 473762.3193 1916440.218 24 473776.5755 1916440.218 24 473796.3256 1916446.813 26 473794.138 1916450.38 27 473799.6309 1916455.2603 28 473802.6241 1916455.247 30 473808.3761 1916455.247 31 473804.7264 1916455.247 31 473813.1637 1916456.54 32 473814.7035 1916456.54 33 473819.4104 1916456.54 34 473825.5405 1916458.047 35 473830.0154 1916458.047 36 473830.0154 1916456.97 36 473830.381 1916456.97 39 473839.382 1916456.97 39 473839.382 1916456.28 40 473858.3195 1916456.28 41 473858.31			17		
19			18		
20			19	473716.3769	
21 473753.348 1916430.674 22 473762.3193 1916435.397 23 473771.0393 1916440.218 24 473776.5755 1916443.429 25 473785.3256 1916446.813 26 473794.138 1916450.38 27 473799.6309 1916452.603 28 473802.6241 1916455.3791 29 473804.7264 1916455.544 31 473803.3761 1916455.247 31 473813.1637 1916456.326 32 473814.7035 1916456.54 33 473819.4104 1916457.95 34 473825.5405 1916458.047 35 473830.0154 1916458.047 36 473832.8093 1916458.67 36 473839.0358 1916456.7671 38 473845.3782 1916456.28 40 473854.904 1916456.28 40 473854.904 1916456.28 41 473853.2159 1916456.28 42 473862.2972 1916456.0607 44 4738			20		
22			21		
23 473771.0393 1916440.218 24 473776.5755 1916443.429 25 473785.3256 1916446.813 26 473794.138 1916450.38 27 473799.6309 1916452.603 28 473804.7264 1916453.791 29 473804.7264 1916454.554 30 473808.3761 1916455.247 31 473813.1637 1916456.326 32 473814.7035 1916456.54 33 473819.4104 1916457.195 34 473825.5405 1916458.647 35 473830.0154 1916458.67 36 473839.0358 1916456.97 39 473845.3782 1916456.97 39 473851.6101 1916456.287 40 473854.904 1916456.287 41 473858.3195 1916455.237 41 473858.3195 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916437.699			22		
24 473776.5755 1916443.429 25 473785.3256 1916446.813 26 473794.138 1916450.38 27 473799.6309 1916452.603 28 473802.6241 1916453.791 29 473804.7264 1916454.554 30 473808.3761 1916455.247 31 473813.1637 1916456.326 32 473814.7035 1916456.54 33 473819.4104 1916457.195 34 473832.8093 1916458.047 35 473832.8093 1916458.67 36 473832.8093 1916458.361 37 473839.0358 1916457.671 38 473845.3782 1916456.28 40 473854.904 1916456.28 40 473854.904 1916455.237 41 473853.3195 1916454.155 42 473862.2972 1916452.822 43 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473			23		
25			24		
26 473794.138 1916450.38 27 473799.6309 1916452.603 28 473802.6241 1916453.791 29 473804.7264 1916454.554 30 473808.3761 1916455.247 31 473813.1637 1916456.326 32 473814.7035 1916456.54 33 473819.4104 1916457.195 34 473825.5405 1916458.047 35 473830.0154 1916458.07 36 473832.8093 1916458.361 37 473839.0358 1916457.671 38 473845.3782 1916456.28 40 473858.3195 1916455.237 41 473858.3195 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916440.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.669			25		
27			26		
28			27		
29			28		
30			29		
31 473813.1637 1916456.326 32 473814.7035 1916456.54 33 473819.4104 1916457.195 34 473825.5405 1916458.047 35 473830.0154 1916458.361 37 473839.0358 1916457.671 38 473845.3782 1916456.97 39 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916444.084 45 473880.8728 1916444.084 46 473887.5054 1916437.699 48 473900.6075 1916434.679			30		
32 473814.7035 1916456.54 33 473819.4104 1916457.195 34 473825.5405 1916458.047 35 473830.0154 1916458.67 36 473832.8093 1916458.361 37 473839.0358 1916457.671 38 473845.3782 1916456.297 39 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			31		
33 473819.4104 1916457.195 34 473825.5405 1916458.047 35 473830.0154 1916458.67 36 473832.8093 1916458.361 37 473839.0358 1916456.97 38 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			32		
34 473825.5405 1916458.047 35 473830.0154 1916458.67 36 473832.8093 1916458.361 37 473839.0358 1916456.97 38 473845.3782 1916456.97 39 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916452.822 42 473862.2972 1916452.822 43 473867.1862 19164450.607 44 473873.2159 1916444.084 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			33	473819.4104	
35			34	473825.5405	1916458.047
36 473832.8093 1916458.361 37 473839.0358 1916457.671 38 473845.3782 1916456.97 39 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916452.822 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473894.2704 1916437.699 48 473900.6075 1916434.679			35	473830.0154	
38			36	473832.8093	
38 473845.3782 1916456.97 39 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 47387.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			37	473839.0358	1916457.671
39 473851.6101 1916456.28 40 473854.904 1916455.237 41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			38	473845.3782	1916456.97
41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			39	473851.6101	
41 473858.3195 1916454.155 42 473862.2972 1916452.822 43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			40	473854.904	1916455.237
43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			41		
43 473867.1862 1916450.607 44 473873.2159 1916447.733 45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			42	473862.2972	1916452.822
45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			43	473867.1862	1916450.607
45 473880.8728 1916444.084 46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			44		
46 473887.5054 1916440.923 47 473894.2704 1916437.699 48 473900.6075 1916434.679			45		
47 473894.2704 1916437.699 48 473900.6075 1916434.679			46		
48 473900.6075 1916434.679			47		
			48		
			49	473910.7982	1916429.822

 _		
50	473922.5293	1916424.231
51	473938.0646	1916416.827
52	473951.8751	1916410.245
53	473955.2323	1916408.645
54	473955.0286	1916398.773
55	473947.4897	1916402.366
56	473933.0874	1916409.229
57	473919.1374	1916415.878
58	473905.7164	1916422.274
59	473896.5384	1916426.648
60	473890.5416	1916429.506
61	473882.9531	1916433.123
62	473875.981	1916436.446
63	473871.2468	1916438.702
64	473867.0213	1916440.716
65	473863.0114	1916442.627
66	473859.1474	1916444.384
67	473853.5629	1916446.468
68	473849.1115	1916447.765
69	473844.2598	1916448.833
70	473840.0041	1916449.486
71	473834.0626	1916449.966
72	473829.7574	1916450.006
73	473825.1271	1916449.762
74	473820.85	1916449.267
75	473815.6386	1916448.309
76	473809.5626	1916446.676
77	473802.5652	1916444.082
78	473792.021	1916439.814
79	473779.8854	1916434.902
80	473767.3818	1916429.841
81	473753.6061	1916424.266
82	473740.2238	1916418.849
83	473727.2438	1916413.595
84	473713.0908	1916408.048
85	473706.3093	1916405.715
86	473701.8839	1916404.317
87	473694.5858	1916402.219
88	473688.4543	1916400.653

				89	473681.0441	1916398.994
				90	473674.8304	1916397.795
				91	473667.7519	1916396.641
				92	473661.0605	1916395.754
				93	473656.0265	1916395.216
				94	473647.6144	1916394.561
				95	473640.955	1916394.163
				96	473625.7408	1916393.255
				97	473612.7222	1916392.478
				98	473596.54	1916391.512
				99	473580.9621	1916390.582
				100	473565.5519	1916389.663
				101	473550.0119	1916388.735
				102	473533.6525	1916387.759
				103	473514.9015	1916386.639
				104	473497.4443	1916385.597
				105	473478.4242	1916384.462
				106	473460.6128	1916383.399
	0 - 1	Tipo de	á	i.		
Polígono	Cadena	vegetación	Área m2	ID	Coordenada X	Coordenada Y
Polígono	Cadena		Area m2	1 1	473955.0286	1916398.773
Polígono	Cadena		Area m2			
Polígono	Cadena		Area m2	1	473955.0286	1916398.773
Polígono	Cadena		Area m2	1 2	473955.0286 473955.2323	1916398.773 1916408.645
Polígono	Cadena		Area m2	1 2 3	473955.0286 473955.2323 473960.5785	1916398.773 1916408.645 1916406.097
Polígono	Cadena		Area m2	1 2 3 4	473955.0286 473955.2323 473960.5785 473965.7659	1916398.773 1916408.645 1916406.097 1916403.685
Polígono	Cadena		Area m2	1 2 3 4 5	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004
Polígono			Area m2	1 2 3 4 5 6	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181
Polígono	Del km	vegetación	Area m2	1 2 3 4 5 6 7	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107
Polígono Afectación 7	Del km 2+980	vegetación	Area m2	1 2 3 4 5 6 7	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969
	Del km	vegetación		1 2 3 4 5 6 7 8	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916382.214
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9 10	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464 474010.1888	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916382.214 1916377.384
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9 10 11	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464 474010.1888 474031.798	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916382.214 1916377.384 1916363.787
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9 10 11 12 13	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464 474010.1888 474031.798 474040.5911	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916382.214 1916377.384 1916363.787 1916359.474
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9 10 11 12 13	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464 474010.1888 474031.798 474040.5911 474049.4832	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916387.295 1916387.384 1916363.787 1916359.474
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9 10 11 12 13 14	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464 474010.1888 474031.798 474040.5911 474049.4832 474054.6481	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916387.295 1916377.384 1916363.787 1916359.474 1916355.112
	Del km 2+980 al km	vegetación		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	473955.0286 473955.2323 473960.5785 473965.7659 473969.9194 473974.2921 473980.6137 473986.1628 473992.6608 474001.6464 474010.1888 474031.798 474040.5911 474049.4832 474054.6481 474058.9559	1916398.773 1916408.645 1916406.097 1916403.685 1916401.004 1916398.181 1916394.107 1916390.969 1916387.295 1916382.214 1916363.787 1916359.474 1916355.112 1916350.487

20	474088.196	1916345.419
21	474097.2455	1916345.465
22	474104.4114	1916346.078
23	474113.6327	1916346.867
24	474126.7911	1916347.992
25	474141.2966	1916346.867
26	474153.6625	1916345.933
27	474168.0194	1916344.848
28	474182.9135	1916343.781
29	474187.8367	1916341.804
30	474197.6517	1916338.314
31	474207.3488	1916334.878
32	474217.4353	1916334.725
33	474224.2626	1916334.698
34	474231.0113	1916334.465
35	474243.1038	1916334.046
36	474261.6389	1916331.691
37	474272.1351	1916328.076
38	474278.3097	1916325.95
39	474283.1559	1916323.34
40	474279.7842	1916324.67
41	474276.9787	1916325.63
42	474273.8178	1916326.56
43	474270.2957	1916327.415
44	474266.7352	1916328.091
45	474262.1618	1916328.691
46	474248.5145	1916329.741
47	474239.4644	1916330.425
48	474224.054	1916331.6
49	474204.92	1916333.035
50	474174.1321	1916335.361
51	474150.4168	1916337.153
52	474125.8701	1916339.007
53	474110.1476	1916340.195
54	474095.7675	1916341.326
55	474090.9503	1916341.889
56	474086.7524	1916342.512
57	474083.4676	1916343.086
58	474079.6037	1916343.859

Т		· · . • , — · · •				ı
				59	474075.1723	1916344.879
				60	474071.944	1916345.713
				61	474068.4446	1916346.706
				62	474065.2591	1916347.692
				63	474062.9569	1916348.454
				64	474061.5243	1916348.949
				65	474059.8121	1916349.563
				66	474057.5413	1916350.414
				67	474055.2847	1916351.302
				68	474053.3225	1916352.11
				69	474051.0941	1916353.067
				70	474048.8819	1916354.06
				71	474046.96	1916354.96
				72	474045.2241	1916355.787
				73	474042.5337	1916357.069
				74	474029.7552	1916363.159
				75	474020.5626	1916367.54
				76	474007.2475	1916373.886
				77	473994.2396	1916380.085
				78	473981.1006	1916386.347
				79	473968.4429	1916392.38
				80	473958.6375	1916397.053
Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada Y
				1	474328.1014	1916280.797
				2	474334.059	1916275.561
				3	474340.9195	1916268.7
				4	474349.4834	1916260.136
				5	474356.4319	1916252.945
				6	474360.6256	1916248.532
	Del km			7	474366.1093	1916242.761
I ATACTACION X			4459 m2	8	474372.0413	1916236.519
	ai km 4+000	ilidacido		9	474376.1779	1916229.724
				10	474380.3818	1916222.818
				11	474387.6203	1916210.841
				12	474391.5638	1916202.157
					İ	
				13	474394.4764	1916195.252
				13 14	474394.4764 474399.0419	1916195.252 1916184.401
Afectación 8	3+400 al km	Pastizal inducido	4459 m2	8 9 10 11 12	474372.0413 474376.1779 474380.3818 474387.6203 474391.5638	1916242.761 1916236.519 1916229.724 1916222.818 1916210.841 1916202.157

17 474409.2853 1916 18 474411.8477 1916 19 474414.9595 1916 20 474416.8717 1916 21 474418.5475 1916 22 474420.139 1916 23 474423.7568 19 24 474426.1713 1916 25 474428.1668 191	6164.89 1160.057 1153.967 1142.309 135.164 128.902 1124.472 116114.7 1107.827 6102.36
18	6153.967 6142.309 6135.164 6128.902 6124.472 616114.7 6107.827
19 474414.9595 1916 20 474416.8717 1916 21 474418.5475 1916 22 474420.139 1916 23 474423.7568 19 24 474426.1713 1916 25 474428.1668 191	142.309 135.164 128.902 124.472 16114.7 107.827
20 474416.8717 1916 21 474418.5475 1916 22 474420.139 1916 23 474423.7568 19 24 474426.1713 1916 25 474428.1668 191	6135.164 6128.902 6124.472 616114.7 6107.827
21 474418.5475 1916 22 474420.139 1916 23 474423.7568 19 24 474426.1713 1916 25 474428.1668 191	3128.902 3124.472 316114.7 3107.827
22 474420.139 1916 23 474423.7568 19 24 474426.1713 1916 25 474428.1668 191	3124.472 316114.7 3107.827
23 474423.7568 19 24 474426.1713 1916 25 474428.1668 191	16114.7
24 474426.1713 1916 25 474428.1668 191	107.827
25 474428.1668 191	
	6102.36
26 474433 8012 1016	
-100.0012 1010	092.851
27 474435.3857 191	6082.96
28 474435.9615 1916	077.695
29 474436.8944 1916	069.095
30 474437.9315 1916	059.534
	046.565
32 474440.7495 1916	033.552
33 474441.8687 1916	023.232
34 474442.3688 1916	018.621
35 474442.9516 1916	013.296
36 474443.4309 1916	009.936
37 474444.1517 1916	006.158
38 474444.8856 1916	003.077
39 474445.9455 1915	999.379
40 474447.346 1915	995.315
41 474449.7197 1915	989.687
42 474451.8683 191	5985.45
43 474453.3276 1915	982.896
44 474454.7595 1915	980.589
45 474458.1095 1915	975.792
46 474462.1028 1915	970.368
47 474466.4442 1915	964.471
48 474469.7701 1915	959.953
	955.385
50 474477.4373 1915	949.539
51 474481.6881 1915	943.764
	936.383
	931.468
l	924.531

55	 	<u>*</u>			
57 474509.1635 1915906.389 58 474513.4754 1915900.244 59 474517.668 1915894.018 60 474523.5076 1915884.882 62 474527.8242 1915877.745 63 474533.6064 1915867.601 65 47453.6064 1915867.601 65 47453.6064 1915867.601 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915824.839 69 474559.3426 1915775.112 71 474569.5842 1915771.112 71 474569.5842 191576.077 72 474573.3976 1915736.7 73 474577.3837 1915711.207 74 474567.34276 1915736.7 73 474573.4956 1915736.7 74 474569.5842 1915708.37 75 474573.4956 1915736.7 76 474569.9583 191573.7966 77 474563.346 1915751.396 77 474563.366 191576.314 78 474561.4647 1915771.786 79 474558.366 1915783.52 80 474550.4469 1915808.352 81 474550.4469 1915808.352 82 474544.9404 191582.817 83 474550.4469 1915808.352 84 474529.9468 1915853.686 85 474529.9468 1915883.699 84 474529.9468 1915883.692 86 474529.9468 1915883.692 87 474513.693 1915883.502 88 474513.693 1915883.362 89 474507.883 1915873.872 88 474513.693 1915883.362 89 474507.883 1915873.872 88 474513.693 1915883.372 88 474513.693 1915883.382			 55	474500.9787	1915917.561
58			56	474504.6766	1915912.538
58 474513.4754 1915900.244 59 474517.668 1915894.018 60 474520.8442 1915894.181 61 474523.5076 1915889.118 61 474523.5076 1915889.118 61 474523.5076 1915871.974 62 474527.8242 1915871.974 63 474531.1659 1915871.974 64 474530.6064 1915867.601 65 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915835.794 68 474559.3426 1915795.27 70 474569.5842 1915775.407 71 474569.5842 1915774.077 72 474573.4976 1915736.73 73 474573.3837 1915711.207 74 474569.9583 1915704.937 75 474569.9583 1915771.796 76 474569.9583 1915771.796 77 474565.364 1915771.796			57	474509.1635	1915906.389
60 474520,8442 1915889,118 61 474523,5076 1915884,882 62 474527,8242 1915877,745 63 474531,1659 1915877,97 64 474533,6064 1915867,601 65 474537,933 1915859,51 66 474540,1912 1915850,515 66 474540,1912 1915850,515 67 474545,5267 1915835,794 68 474549,597 1915824,839 69 474559,3426 1915796,27 70 474566,7478 1915771,112 71 474569,5842 1915754,077 72 474573,4976 1915736,7 73 474577,3837 1915711,207 74 474577,5904 1915704,937 75 474573,425 1915724,055 76 474569,9583 1915737,986 77 474565,354 1915783,52 80 474558,366 1915795,228 81 474550,4469 1915803,352 82 474544,9404 191582,817 83 474540,1772 1915834,069 84 474552,9468 1915863,976 86 474525,3274 1915863,976 87 474513,693 1915873,872 88 474513,693 1915873,872 88 474513,693 1915873,872 88 474513,693 1915873,872 88 474513,693 1915873,872 88 474513,693 1915873,872 88 474513,693 1915883,592 89 474507,893 1915873,872 88 474513,693 1915883,592 89 474507,893 1915883,592			58	474513.4754	
60 474520.8442 1915889.118 61 474523.5076 1915884.882 62 474527.8242 1915877.745 63 474531.1659 1915871.97 64 474533.6064 1915867.017 65 474537.33 1915859.51 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915824.839 69 474559.3426 1915795.27 70 474565.7478 1915771.112 71 474569.5842 1915754.077 72 474573.4976 1915736.7 73 474577.3837 1915714.207 74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915771.796 79 474565.366 1915783.52 80 474558.366 1915783.52 80 474559.4469 1915808.352 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474552.9468 1915853.66 86 474525.3274 1915863.976 87 474513.693 1915873.872 88 474513.693 1915873.872 88 474513.693 1915873.872 88 474513.693 1915873.872 88 474513.693 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			59	474517.668	1915894.018
61 474523.5076 1915884.882 62 474527.8242 1915877.745 63 474531.1659 1915871.97 64 474533.6064 1915867.601 65 474537.933 1915859.51 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915824.839 69 474559.3426 1915795.27 70 474566.7478 1915771.112 71 474569.5842 1915754.077 72 474573.4976 1915736.7 73 474577.3837 1915710.207 74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915771.786 78 474564.8678 1915771.796 79 474558.366 1915795.228 80 474554.8678 1915771.796 81 474564.969 191580.352 80 474554.9404 191580.352 81 474549.404 191580.352 82 474544.9404 191580.362 83 474540.1772 1915834.069 84 474552.9468 1915863.976 86 474525.3274 1915863.976 87 474518.685 1915873.872 88 474513.693 1915873.872 88 474513.693 1915873.872 88 474513.693 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453			60		
62 474527.8242 1915877.745 63 474531.1659 1915871.97 64 474533.6064 1915867.601 65 474537.933 1915859.51 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915834.839 69 474559.3426 1915795.27 70 474569.5842 1915795.27 71 474569.5842 1915736.77 72 474573.4976 1915736.77 73 474577.3837 1915711.207 74 474577.5904 1915704.937 75 474573.425 1915774.935 76 474569.9583 1915795.238 77 474565.354 1915775.996 78 474565.354 1915775.996 79 474558.366 1915795.28 80 474554.8678 1915795.228 81 474564.4647 1915771.796 79 474554.8678 1915795.228 81 474544.9404 191582.2817 83 474540.1772 1915834.069 84 474535.052 1915843.69 84 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915883.592			61		
63 474531.1659 1915871.97 64 474533.6064 1915867.601 65 474537.933 1915859.51 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915824.839 69 474559.3426 1915795.27 70 474569.5842 1915771.112 71 474569.5842 1915754.077 72 474573.4976 1915736.7 73 474573.4976 1915704.937 74 474573.425 1915771.207 74 474573.425 1915771.207 74 474569.9583 19157724.055 76 474569.9583 1915737.986 77 474565.354 1915771.796 79 474565.364 1915771.796 79 474554.8678 1915795.228 81 474561.4647 1915771.796 79 474554.8678 1915795.228 81 474550.4469 1915803.352 82 474544.9404 1915822.817 83 474550.4469 1915803.635 84 474555.052 1915845.162 85 474529.9468 1915853.608 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915883.592			62		
64 474533.6064 1915867.601 65 474537.933 1915859.51 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474559.3426 1915795.27 70 474565.7478 1915771.112 71 474569.5842 1915754.077 72 474573.4976 1915704.937 73 474573.4976 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915771.207 78 474563.366 1915735.52 80 474558.366 1915783.52 80 474558.366 1915783.52 81 474501.4647 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915855.36 86 474529.9468 1915865.366 87 47459.9468 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915883.592 89 474507.893 1915892.453 90 474507.893 1915892.453			63		
65 474537.933 1915859.51 66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915824.839 69 474559.3426 1915795.27 70 474565.7478 1915771.112 71 474569.5842 1915754.077 72 474577.3837 1915711.207 74 474577.3837 1915711.207 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915737.986 77 474565.354 1915751.796 79 474558.366 1915783.52 80 474558.366 1915783.52 80 474558.4687 1915795.228 81 474550.4469 1915808.352 82 474544.9404 191582.817 83 474544.9404 191582.817 83 474540.1772 1915834.069 84 474555.52 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474507.893 1915892.453			64		
66 474540.1912 1915850.153 67 474545.5267 1915835.794 68 474549.597 1915824.839 69 474559.3426 1915795.27 70 474565.7478 1915771.112 71 474569.5842 1915754.077 72 474573.4976 1915736.7 73 474577.3837 1915711.207 74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.5843 1915775.314 78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915783.52 80 474554.8678 1915783.52 81 474550.4469 1915808.352 81 474535.052 1915808.366 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915863.976 87 474513.693 1915873.872 88 474513.693 1915883.592 89 474507.893 1915883.592 89 474507.893 1915883.592 89 474507.893 1915883.592 89 474507.893 1915883.592 89 474507.893 1915883.592			65		
67			66		
68			67		
69 474559.3426 1915795.27 70 474565.7478 1915771.112 71 474569.5842 1915754.077 72 474573.4976 1915736.7 73 474577.3837 1915711.207 74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915756.314 78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 191582.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915883.592			68		
70			69		
71			70		
72 474573.4976 1915736.7 73 474577.3837 1915711.207 74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915763.314 78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915863.976 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915883.592			71		
73 474577.3837 1915711.207 74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915775.314 78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474513.693 1915883.592 88 474507.893 1915892.453 90 474501.8471 1915901.148			72		
74 474577.5904 1915704.937 75 474573.425 1915724.055 76 474569.9583 1915737.986 77 474565.354 1915756.314 78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915863.976 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			73		
75			74		
76			75		
77 474565.354 1915756.314 78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			76		
78 474561.4647 1915771.796 79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			77		
79 474558.366 1915783.52 80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474507.893 1915892.453 90 474501.8471 1915901.148			78		
80 474554.8678 1915795.228 81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			79		
81 474550.4469 1915808.352 82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474507.893 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			80		
82 474544.9404 1915822.817 83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			81		1915808.352
83 474540.1772 1915834.069 84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			82		1915822.817
84 474535.052 1915845.162 85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			83		
85 474529.9468 1915855.36 86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			84	474535.052	
86 474525.3274 1915863.976 87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			85		
87 474519.6585 1915873.872 88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			86		
88 474513.693 1915883.592 89 474507.893 1915892.453 90 474501.8471 1915901.148			87	474519.6585	
89 474507.893 1915892.453 90 474501.8471 1915901.148			88		
90 474501.8471 1915901.148			89		
			90		
			91		
92 474488.5996 1915919.195			92		1915919.195
			93		1915929.939

	 -		
	94	474474.2408	1915938.7
	95	474469.1415	1915945.626
	96	474465.5048	1915950.567
	97	474461.2883	1915956.294
	98	474458.9935	1915960.187
	99	474455.2429	1915964.506
	100	474450.2098	1915971.342
	101	474447.3352	1915975.496
	102	474444.4598	1915980.251
	103	474442.4511	1915984.046
	104	474439.9414	1915989.563
	105	474437.7452	1915995.482
	106	474436.0493	1916001.302
	107	474434.8111	1916006.977
	108	474433.9013	1916013.225
	109	474433.1113	1916020.509
	110	474431.7983	1916032.615
	111	474430.3792	1916045.7
	112	474428.9981	1916058.434
	113	474427.9218	1916068.357
	114	474427.0674	1916076.234
	115	474426.2844	1916083.25
	116	474425.2428	1916090.105
	117	474423.8101	1916097.118
	118	474422.3208	1916102.971
	119	474420.3693	1916109.392
	120	474418.2698	1916115.293
	121	474414.8946	1916123.519
	122	474411.9321	1916130.56
	123	474407.5199	1916141.046
	124	474403.0163	1916151.749
	125	474398.7158	1916161.97
	126	474394.4711	1916172.058
	127	474390.7463	1916180.911
	128	474386.0054	1916192.179
	129	474382.3446	1916200.783
	130	474377.8616	1916210.309
	131	474373.5971	1916218.427
	132	474369.1808	1916226.074

				133	474364.6542	1916233.258
				134	474361.1718	1916239.428
				135	474357.0594	1916244.108
				136	474352.92	1916249.494
				137	474346.1146	1916258.078
				138	474340.3197	1916265.387
				139	474334.7773	1916272.377
Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada Y
				1	474891.2699	1915386.203
				2	474895.127	1915385.019
				3	474899.4589	1915383.357
				4	474905.959	1915381.035
				5	474913.151	1915378.4
				6	474921.1801	1915376.251
				7	474928.6249	1915374.465
				8	474930.3052	1915374.012
				9	474933.4603	1915373.403
				10	474937.2483	1915372.809
				11	474940.4506	1915372.23
		Pastizal	367.04	12	474942.8501	1915371.889
				13	474945.8207	1915371.27
	Del km			14	474948.572	1915370.941
Afectación 9	4+580			15	474950.4233	1915370.891
Alectacion 9	al km	inducido	307.04	16	474953.6238	1915370.902
	4+795			17	474957.7791	1915371.027
				18	474961.9619	1915370.986
				19	474965.8472	1915370.999
				20	474972.2133	1915371.02
				21	474973.1948	1915371.024
				22	474974.4803	1915371.133
				23	474981.1982	1915371.882
				24	474989.5407	1915372.864
				25	474996.3359	1915373.708
				26	475002.9045	1915374.421
				27	475011.3614	1915374.415
				28	475018.642	1915374.51
				29	475024.8424	1915374.555
				30	475026.8191	1915374.373

31 475034,2618 1915373,93 32 475040,6651 1915373,655 33 475045,4703 1915373,29 34 475050,0633 1915372,275 35 475051,558 1915372,81 36 475061,8071 1915372,501 38 475067,276 1915372,501 38 475081,6064 1915372,184 40 475083,6841 1915372,184 40 475083,6841 1915371,577 42 475095,1276 1915371,091 43 475099,491 1915370,757 44 475102,6854 1915370,757 44 475102,6854 1915370,157 46 475102,6512 1915369,97 47 475099,4787 1915369,905 48 475099,4787 1915369,905 48 475099,4787 1915370,356 50 475082,7255 1915370,356 51 475082,7255 1915370,356 52 475069,2627 1915371,091 53 475061,7711 1915371,612 54 475040,5018 1915371,625 55 475040,5018 1915372,264 57 475040,5018 1915372,264 58 475043,3113 1915372,264 58 475043,3113 1915372,264 58 475043,3113 1915372,266 60 475018,6318 1915372,266 61 47501,5208 1915372,766 61 47501,5208 1915372,766 61 47501,5208 1915372,766 61 474980,4709 1915371,044 63 474996,6138 1915372,766 64 474980,4709 1915371,064 65 474981,3537 1915372,665 66 474949,357,899 1915371,064 66 474949,357,899 1915371,064 66 474949,357,899 1915371,064 66 474949,357,899 1915371,064 66 474948,3537 1915369,432 67 474965,7869 1915368,765 66 474961,8665 1915368,488		۱		,,,_,_,
33 475045.4703 1915373.29 34 475050.0633 1915372.975 35 475050.558 1915372.81 36 475061.8071 1915372.601 37 475089.3477 1915372.501 38 475076.7276 1915372.501 38 475081.6064 1915372.184 40 475083.6841 1915372.184 40 475089.4861 1915371.577 42 475089.4861 1915371.577 42 475089.4861 1915370.757 44 475102.6854 1915370.457 45 475102.6854 1915370.457 46 475102.6512 1915369.997 47 475089.4787 1915370.028 49 475089.2594 1915370.028 49 475089.2594 1915370.091 52 475089.2627 1915370.901 52 475069.2627 1915370.901 52 475069.2627 1915370.1079 53 475041.711 1915371.612 55 475049.9245 1915372.346 56 475045.3747 1915372.045 57 475045.3747 1915372.045 58 475045.3747 1915372.265 60 47501.508 1915372.665 61 47501.508 1915372.665 62 475003.2006 1915372.665 62 475003.2006 1915372.665 64 474961.865 1915370.004 65 474961.865 1915370.004 66 4749481.3537 1915371.004 67 474965.7869 1915371.004 67 474965.7869 1915371.004 67 474965.7869 1915371.004				
34 475050.0633 1915372.975 35 475055.558 1915372.81 36 475061.8071 1915372.88 37 475069.3477 1915372.263 38 475076.7276 1915372.201 38 475080.3477 1915372.203 39 475081.6064 1915372.184 40 475083.8841 1915372.03 41 475089.4861 1915371.577 42 475099.491 1915370.757 44 475102.6854 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.457 46 475102.6854 1915370.356 475092.7255 1915370.356 50 475082.7255 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.074 52 475069.2627 1915370.001 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475040.5018 1915372.345 56 475043.3113 1915372.345 57 475040.5018 1915372.345 58 475034.3113 1915372.345 59 475026.7988 1915372.645 61 475018.6318 1915372.665 62 475003.2006 1915372.764 61 474998.4709 1915371.694 63 474998.6135 1915371.644 66 474998.3709 1915371.064 65 474981.3537 1915370.665 66 474972.1331 1915370.665 66 474981.3537 1915370.665 66 474981.3537 1915370.665				
35 475055.558 1915372.81 36 475061.8071 1915372.68 37 475069.3477 1915372.501 38 475061.7276 1915372.297 39 475081.6064 1915372.184 40 475083.6841 1915372.03 41 475089.4861 1915371.577 42 475095.1276 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.157 46 475102.6854 1915370.157 46 475102.6512 1915369.97 47 475099.4787 1915369.905 48 475092.1286 1915370.356 50 475082.7255 1915370.028 49 475082.7255 1915370.356 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 47505.541 1915371.612 55 475049.9245 1915372.2645 56 475049.9245 1915372.2645 57 475040.5018 1915372.346 58 475034.3113 1915372.366 59 475012.6798 1915372.265 60 475018.6318 1915372.265 61 474996.6135 1915371.684 61 474996.6135 1915371.684 64 474998.4709 1915371.684 65 474981.3537 1915370.666 66 474972.1331 1915371.064 65 474981.3537 1915370.665 66 474972.1331 1915370.665 66 474966.7869 1915368.488		33	475045.4703	1915373.29
36		34	475050.0633	1915372.975
37 475069.3477 1915372.501 38 475076.7276 1915372.297 39 475081.6064 1915372.184 40 475083.6841 1915372.03 41 475089.4861 1915371.577 42 475095.1276 1915371.091 43 475099.491 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.457 46 475107.1193 1915370.157 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.425 55 475049.9245 1915371.845 56 475045.3747 1915372.346 58 475034.3113 1915372.837 59 475026.7988 1915372.836 58 475034.3113 1915372.867 60 475018.6318 1915372.866 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.065 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474981.3537 1915370.265		35	475055.558	1915372.81
38		36	475061.8071	1915372.68
39 475081.6064 1915372.184 40 475083.6841 1915372.03 41 475089.4861 1915371.577 42 475095.1276 1915377.091 43 47509.491 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.457 46 475102.6512 1915369.97 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475089.2594 1915370.564 50 475082.7255 1915370.574 51 475076.6728 1915370.594 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475045.541 1915371.425 55 475049.9245 1915372.045 56 475049.9245 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.656 60 475018.6318 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.864 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474981.3537 1915371.064 65 474981.3537 1915371.064		37	475069.3477	1915372.501
40 475083.6841 1915372.03 41 475089.4861 1915371.577 42 475095.1276 1915371.091 43 475099.491 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.457 46 475102.6512 1915369.907 47 475099.4787 1915369.905 48 475099.2594 1915370.288 49 475089.2594 1915370.288 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.425 54 475055.541 1915371.425 55 475049.9245 1915371.845 56 475049.9245 1915371.845 56 475045.018 1915372.246 57 475040.5018 1915372.346 58 475034.3113 1915372.865 60 475018.6318 1915372.865 60 475018.6318 1915372.865 61 475001.5088 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.064 66 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474981.3537 1915370.265 66 474992.1331 1915368.488		38	475076.7276	1915372.297
41 475089.4861 1915371.577 42 475095.1276 1915371.091 43 475099.491 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.457 46 475102.6512 1915369.907 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475082.7255 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.574 51 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915372.045 56 475049.9245 1915372.045 57 475040.5018 1915372.346 58 475045.0518 1915372.865 59 475026.7988 1915372.865 60 475011.5208 1915372.665 61 475001.5208 1915372.066 62 475003.2006 1915371.064 63 <		39	475081.6064	1915372.184
42 475095.1276 1915371.091 43 475099.491 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.157 46 475102.6512 1915369.97 47 475099.4787 1915369.905 48 475089.2594 1915370.356 50 475082.7255 1915370.356 51 475061.7711 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915372.045 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.346 58 475018.6318 1915372.665 60 475018.6318 1915372.665 61 475003.2006 1915372.174 63 474989.4709 1915371.064 66 474981.3537 1915370.265 66 474965.7869 1915368.488		40	475083.6841	1915372.03
43 475099.491 1915370.757 44 475102.6854 1915370.457 45 475107.1193 1915370.157 46 475102.6512 1915369.97 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475082.7255 1915370.356 50 475082.7255 1915370.901 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475069.2627 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.064 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 <t< td=""><td></td><td>41</td><td>475089.4861</td><td>1915371.577</td></t<>		41	475089.4861	1915371.577
44 475102.6854 1915370.457 45 475107.1193 1915370.157 46 475102.6512 1915369.905 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475043.3113 1915372.825 60 475018.6318 1915372.825 60 475018.6318 1915372.764 61 475003.2006 1915372.174 63 47496.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474981.3537 1915368.488 67 <td></td> <td>42</td> <td>475095.1276</td> <td>1915371.091</td>		42	475095.1276	1915371.091
45 475107.1193 1915370.157 46 475102.6512 1915369.905 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915372.045 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.346 58 475034.3113 1915372.825 60 475018.6318 1915372.665 61 47503.2006 1915372.174 63 47496.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		43	475099.491	1915370.757
46 475102.6512 1915369.97 47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915371.079 52 475069.2627 1915371.425 54 475055.541 1915371.425 54 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.385 59 475026.7988 1915372.825 60 475018.6318 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.488		44	475102.6854	1915370.457
47 475099.4787 1915369.905 48 475095.1158 1915370.028 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915371.079 52 475069.2627 1915371.425 54 475065.541 1915371.425 54 475049.9245 1915371.845 56 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915368.488 67 474965.7869 1915368.488		45	475107.1193	1915370.157
48 475095.1158 1915370.028 49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.764 61 475003.2006 1915372.174 63 47496.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		46	475102.6512	1915369.97
49 475089.2594 1915370.356 50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.845 56 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.665 62 475003.2006 1915372.764 61 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.488		47	475099.4787	1915369.905
50 475082.7255 1915370.574 51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.845 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.665 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.064 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.488		48	475095.1158	1915370.028
51 475076.6728 1915370.901 52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.845 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		49	475089.2594	1915370.356
52 475069.2627 1915371.079 53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		50	475082.7255	1915370.574
53 475061.7711 1915371.425 54 475055.541 1915371.612 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.064 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		51	475076.6728	1915370.901
54 475055.541 1915371.612 55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		52	475069.2627	1915371.079
55 475049.9245 1915371.845 56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		53	475061.7711	1915371.425
56 475045.3747 1915372.045 57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		54	475055.541	1915371.612
57 475040.5018 1915372.346 58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		55	475049.9245	1915371.845
58 475034.3113 1915372.587 59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		56	475045.3747	1915372.045
59 475026.7988 1915372.825 60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		57	475040.5018	1915372.346
60 475018.6318 1915372.764 61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		58	475034.3113	1915372.587
61 475011.5208 1915372.665 62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		59	475026.7988	1915372.825
62 475003.2006 1915372.174 63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		60	475018.6318	1915372.764
63 474996.6135 1915371.845 64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		61	475011.5208	1915372.665
64 474989.4709 1915371.064 65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		62	475003.2006	1915372.174
65 474981.3537 1915370.265 66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		63	474996.6135	1915371.845
66 474972.1331 1915369.432 67 474965.7869 1915368.765 68 474961.8665 1915368.488		64	474989.4709	1915371.064
67 474965.7869 1915368.765 68 474961.8665 1915368.488		65	474981.3537	1915370.265
68 474961.8665 1915368.488		66	474972.1331	1915369.432
		67	474965.7869	1915368.765
		68	474961.8665	1915368.488
69 474957.9643 1915367.987		69	474957.9643	1915367.987

				Ì		
				70	474953.4822	1915367.767
				71	474949.9209	1915367.859
				72	474946.6998	1915367.883
				73	474943.3927	1915368.313
				74	474940.5105	1915368.682
				75	474936.8864	1915369.219
				76	474933.0212	1915370.134
				77	474929.6359	1915371.203
				78	474927.8351	1915371.771
				79	474920.6234	1915374.532
				80	474912.9822	1915377.471
				81	474905.8262	1915380.4
				82	474899.1982	1915382.967
Polígono	Cadena	Tipo de vegetación	Área m2	ID	Coordenada X	Coordenada Y
				1	475772.9406	1915070.915
				2	475780.1211	1915067.405
		Vegetación		3	475788.7466	1915063.278
				4	475793.9081	1915061.139
				5	475798.8816	1915058.244
				6	475807.5583	1915053.082
				7	475811.3942	1915051.202
				8	475815.0725	1915049.438
				9	475818.6815	1915047.872
				10	475821.9894	1915046.159
	Del km			11	475825.1407	1915044.806
Afectación 10	5+740	secundaria arbórea de	597.52	12	475828.9509	1915043.305
Alectacion io	al km	selva baja	397.32	13	475831.8947	1915042.729
	5+970	caducifolia.		14	475835.4203	1915041.831
				15	475839.9784	1915041.515
				16	475845.4113	1915040.641
				17	475849.2881	1915040.253
				18	475853.5319	1915039.32
				19	475857.9501	1915038.406
				20	475861.5783	1915037.269
				21	475867.6138	1915035.51
				22	475871.9773	1915033.785
				23	475878.394	1915030.769
				24	475885.2165	1915026.899

1	1	1	1	
		25	475889.9045	1915024.134
		26	475895.3658	1915020.474
		27	475902.407	1915015.312
		28	475909.1436	1915010.953
		29	475917.2944	1915005.883
		30	475921.4907	1915003.133
		31	475923.7679	1915001.176
		32	475927.1422	1914998.886
		33	475929.8884	1914995.8
		34	475931.6481	1914993.229
		35	475933.3186	1914990.687
		36	475935.9459	1914988.4
		37	475939.6315	1914984.026
		38	475941.3129	1914982.228
		39	475943.7147	1914979.119
		40	475945.6362	1914976.553
		41	475946.8227	1914974.168
		42	475947.7215	1914971.555
		43	475948.3839	1914968.395
		44	475949.3136	1914959.476
		45	475949.5731	1914953.949
		46	475949.0704	1914952.012
		47	475948.2806	1914950.017
		48	475946.3397	1914948.17
		49	475944.3094	1914947.177
		50	475945.7796	1914948.685
		51	475946.6688	1914950.38
		52	475947.0667	1914951.73
		53	475947.3316	1914953.382
		54	475946.8651	1914958.873
		55	475946.1032	1914968.604
		56	475945.6419	1914971.04
		57	475945.0617	1914972.441
		58	475944.0932	1914973.991
		59	475942.3648	1914976.451
		60	475939.8288	1914979.376
		61	475937.5163	1914982.199
		62	475933.4438	1914987.32
		63	475930.6095	1914990.795

		64	475928.7845	1914993.052
		65	475926.4526	1914995.335
		66		
		67	475923.8864	1914997.572
		68	475921.4894	1914999.214
		69	475914.7029	1915003.778
			475907.5958	1915008.698
		70	475900.9911	1915013.133
		71	475894.1086	1915017.904
		72	475888.9498	1915021.116
		73	475884.3938	1915024.359
		74	475880.8042	1915026.719
		75	475877.2709	1915028.898
		76	475874.0894	1915030.655
		77	475869.9437	1915032.596
		78	475866.0862	1915034.095
		79	475861.8268	1915035.373
		80	475857.6224	1915036.591
		81	475853.2906	1915037.432
		82	475849.0457	1915037.955
		83	475844.9904	1915038.399
		84	475839.901	1915038.689
		85	475835.5924	1915038.723
		86	475831.893	1915039.052
		87	475828.1683	1915039.939
		88	475825.0016	1915040.886
		89	475821.7509	1915042.317
		90	475817.9769	1915044.079
		91	475813.7376	1915046.188
		92	475810.2577	1915047.935
		93	475806.8844	1915049.294
		94	475803.4801	1915051.176
		95	475796.25	1915055.815
		96	475788.1342	1915061.131
		97	475779.4484	1915066.568
		98		
		50	475775.5425	1915068.913

II.1.4 Inversión requerida.

La inversión estimada para la construcción de la obra es de \$34, 786,569.57 (Treinta un millones setecientos ochenta y seis mil, quinientos sesenta y nueve pesos) dicha inversión incluye hasta la etapa de señalamiento y medidas de mitigación propuestas.

La inversión es proporcionada por la SCT (Secretaria de Comunicaciones y Transportes).

Tabla 4. Inversión requerida para ejecución del proyecto.

Catálogo De Conceptos Del Proyecto Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 Al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero			
Terracerías	\$16,619,699.68		
Drenaje	\$631,659.18		
Pavimentos	\$13,210,544.79		
Señalamiento	\$940,311.50		
Costo Directo	\$27,402,215.15		
Iva (16%)	\$4,384,354.42		
Total	\$31,786,569.57		

La inversión estimada para las medidas de mitigación propuestas en esta MIA-R es de \$ 310,600.00 (Trescientos diez mil, seiscientos pesos M.N.).

La empresa constructora deberá considerar en su presupuesto el monto para medidas de mitigación, bajo los siguientes conceptos básicos:

Tabla 5. Inversión para medidas de mitigación.

Nombre de la obra	
Modernización del camino de terracería	
Documentos, acciones y actividades a realizar en la obra	
Plan de manejo ambiental	8,000.00
Programa de rescate de flora y fauna silvestre	4,000.00
Programa de restitución de suelos en campamentos y parque de maquinaria	4,000.00
Programa de reforestación en tramo a conservar incluyendo bancos de material	4,000.00

Planta para la reforestación, incluye preparación del sitio con empalizadas o muros de piedra donde así lo requiera, reforestación y sustitución de las muertas por un	80,000.00
año (hasta 200 muertas se podrán restituir).	
Plan y procedimiento de atención de emergencia y restauración de suelos contaminados por derrame de combustibles, grasas y/o aceites lubricantes	4,000.00
Programa de muros	50,000.00
Conocimiento y concientización al personal de campo con respecto a la normatividad en materia ambiental	4,000.00
Letreros alusivos a la protección del medio ambiente	4,000.00
Elaboración de los informes de impacto ambiental (según las bases son mensuales)	140,000.00
Colocación de 2 letrinas. 1 en campamento de hacerlo, 1 en zona de trabajo del camino, por año.	8,000.00
Total:	310,000.00

II.2 Características particulares del proyecto, plan o programa.

El proyecto contempla un camino tipo "D", el cual tendrá 7 m de corona, de los cuales 6 m son de calzada y 0.50 m de acotamiento a ambos lados, tendrá dos carriles de 3 m de ancho en los tramos, sumando una longitud total de **6 km**. La pendiente gobernadora será de 8% con pendiente máxima de 12% y un grado de curvatura máximo de 60°, el tránsito (TDPA) es de 100 a 500 Vehículos, en el presente estudio, se emiten las recomendaciones necesarias para la construcción del pavimento requerido, especificando los tratamientos que requerirán las capas del pavimento existente; aprovechando los materiales naturales y del lugar, además de las capas que conformarán tanto las terracerías, como la estructura del pavimento. Así también como el estudio de posibles bancos de materiales más cercanos a la obra, que cuenten con la calidad requerida para cada capa, aplicando los tratamientos necesarios para cada caso, de acuerdo con la Normativa de la SCT vigente. El proyecto contará con las siguientes características:

Tabla 6. Características del proyecto.

Carretera tipo	D
TDPA en el horizonte de proyecto	100 A 500
Velocidad de proyecto	30 km/hrs
Grado de curvatura máximo	60°

Pendiente gobernadora	8.0 %
Pendiente máxima	12.0 %
Ancho de calzada	6.0 m
Ancho de corona	7.0 m
Espesor de pavimento	0.35 m

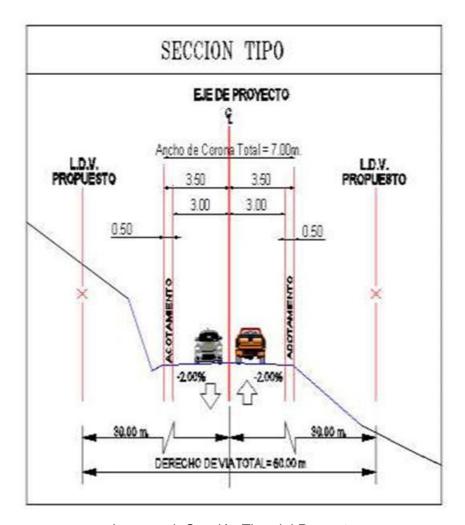


Imagen. 4. Sección Tipo del Proyecto.

ESPECIFICACIONES GEOMETRICAS	CAMINO ACTUAL	PROYECTO
Tipo de camino	Terraceria	Tipo d
Cadenamientos: inicio		0+000
Final		4+000
Ancho de derecho de vía		20 m
Longitud		4000 m
Ancho de línea entre ceros		17.8 m
Ancho de corona	Variable	7 m

Ancho de calzada	Variable	7 m
Número de carriles y ancho de carriles		2 de 3 m
Número y ancho de acotamientos		2 de 0.5 m
Superficie del derecho de vía		16.727 ha
Superficie de total de afectación		7.29 ha
Superficie de la línea entre ceros		7.29 ha
Superficie de obras permanentes		0.767416 ha
Superficie de obras provisionales		No aplica
Superficie de obras complementarias		0.5994 ha
Superficie del camino actual		2.591 ha
Superficie adicional que requiere el proyecto	_	No aplica

Tabla 7. Comparativo de trazos.

La información descrita en la tabla anterior, fue extraído del proyecto ejecutivo, a continuación se describe como se recabaron dichos datos.

- Tipo de camino, cadenamiento y longitud se identificaron en el archivo de generalidades y la planta del proyecto dentro de las carpetas del Tramo del proyecto (0+000 al km. 4+000).
- Ancho de líneas entre ceros y superficie de la línea entre ceros se obtuvo a partir planos-secciones, promediando y sumando las áreas de corte y terraplén observados en el archivo adjunto (capitulo II (G)/línea cero.xls)
- Ancho de corona, ancho de calzada, número y ancho de carriles, número y ancho de acotamientos se extrajeron del documento antecedentes alacad.40-80.doc en la sección aspectos generales.
- Superficie de derecho de vía de acuerdo a ley número 41 que establece el derecho de vía de carreteras o caminos locales. artículo 3o.- la franja que determine el derecho de vía de un camino local, tendrá una amplitud mínima absoluta de 20 mts., a cada lado del eje del camino, la cual podrá ampliarse en los lugares en que esto resulte indicado por las necesidades técnicas de los mismos caminos, por la densidad del tránsito o por otras causas. por lo cual el resultado es el producto de la diferencia entre cadenamientos por 40 m de derecho de vía.
- Superficie total de afectación se obtuvo de producto de ancho promedio de línea entre ceros y distancia total del tramo.
- Superficie de la línea entre ceros se obtuvo a partir de ancho promedio de la línea entre ceros y la distancia total del tramo.
- Superficie de obras permanentes se obtuvo de la suma total de obra de pavimentación y obras complementarias.

- Superficie de obras complementarias de obtuvo de la suma de áreas abarcadas por obras complementaras (cuneta, bordillo, lavaderos, muros y obras de drenaje).
- Superficie del camino actual se obtuvo a partir de los datos de la planta en la capa caminos.
- Superficie adicional que requiere el proyecto se obtuvo de la diferencia entre el área de obras permanente y el área del camino actual.

Tabla 8. Comparativo entre proyecto y camino actual.

Especificaciones geométricas	Camino Actual	Proyecto	
Camino tipo	Е	D	
Longitud total	6000	6000	
Ancho de derecho de vía (m)	-	40	
Ancho de línea de ceros (m)	-	8.21	
Ancho de corona (m)	Variable 6 a 12 m	7	
Ancho de calzada (m)	Variable 6 a 12 m	7	
Número y ancho de carriles (m)	-	2 carriles de 3.5m	
Número y ancho de acotamientos (m)	-	-	
Superficie del derecho de vía Ha	-	24 Ha	
Superficie línea de ceros (m)	-	7 m	
Superficie de obras permanentes (Ha)	-	4.2 Ha	

La infraestructura carretera siempre se ha considerado una variable que detona el desarrollo y crecimiento de poblaciones aisladas y con deficiencia en su calidad de vida. Es importante reconocer que las carreteras mejoran diversos factores dentro de las poblaciones, pero también afectan de manera negativa el entorno si no se consideran para su construcción las leyes y normativas que rigen su construcción. Es importante tomar en cuenta los impactos ambientales que presenta una obra sobre el entorno para el desarrollo integral de las poblaciones beneficiadas.

El presente proyecto corresponde a la modernización de la terracería actual por la cual atravesara el camino. Esto debido a la demanda constante que se ha venido haciendo desde hace varios años al gobierno del estado y a la federación por parte de los pobladores beneficiados. La presente obra será ejecutada con recursos federales.

Superficie total requerida.

El proyecto es de tipo lineal con una longitud total de 6,000 m., la superficie que se afectará por la modernización debido al desmonte es **de 27581m²**, debido a la ampliación y enderezamiento de curvas necesarias para la pavimentación del camino.

Desmonte: El desmonte se ejecutará a mano o con máquina hasta la línea de ceros de los cortes y los terraplenes, respetando el ancho limitado por las edificaciones rurales y urbanas.

Cortes: Las excavaciones en corte se ejecutarán sobre el camino a construir, se realizarán desde 30 cm abajo del nivel de la cota subrasante hasta +10 m por debajo- encima de la misma, de proyecto y para ello se han determinado los conceptos de obra.

Recompactación: En la cama de los cortes donde el proyecto no indique excavación adicional para alojar la capa subrasante, se escarificara y disgregara un espesor de 20 cm, acamellonando por alas el material de la capa superior de la subrasante existente en cortes y terraplenes construidos con anterioridad incorporándole la humedad cercana a la óptima de laboratorio, se extenderá y compactara hasta alcanzar el 95% de su P.V.S.M.

Canales: Se construirán los canales a cielo abierto para encausar las corrientes naturales a la entrada y salida de las obras de drenaje o donde lo indique la supervisión, los que podrán construirse a mano o con máquina, al encausar las corrientes los canales deberán quedar afinados con las bermas necesarias y la pendiente que fije el proyecto.

Estructuras y obras de drenaje

Dentro del proyecto se debe tomar en cuenta las obras de drenaje menor y obras de drenaje mayor y ubicarlas en todos y cada uno de los escurrimientos que crucen el camino, se recomienda en este caso apegarse a la geometría de los cauces, a fin de no provocar alteraciones al escurrimiento, cuando se presenten lluvias fuertes, ya que se corre el riesgo de que impacte a los terraplenes y a la estructura del pavimento en general, llegando a provocar daños muy severos.

Será necesario que la ampliación o construcción de las obras de drenaje menor (alcantarillas) y las obras de drenaje menor (lavaderos) que indique el proyecto geométrico, se realice de forma paralela a las terracerías, y al finalizar la pavimentación, las obras complementarias, como son bordillos lavaderos, cunetas o guarniciones, utilizando para estas concreto hidráulico simple de f°c = 150 Kg./cm².

Tabla 9. Lista de obras de drenaje.

No.	COORDEN	ADAS UTM	CADENAMIENTO Y UBICACIÓN	TIPO DE OBRA (TUBO, LOSA, CUNETA, ETC.)	CARACTERISTICAS GENERALES	LONGITUD Y ANCHO	NOMBRE Y TIPO DE CUERPO DE AGUA
1	472200.183	1917876.093	0+198.00	LOSA	3.00 X 2.00	30.01	CUENCA
2	472292.088	1917579.563	0+515.04	TUBO	1.50	18 mts	ALIVIO
3	472341.5099	1917512.367	0+600.87	TUBO	1.50	10.00	ALIVIO
4	472399.554	1917432.919	0+698.42	LOSA	3.00 X 2.00	30.01	CUENCA
5	472452.0111	1917297.998	0+844.44	LOSA	3.00 X 2.00	30.01	CUENCA
6	472779.2658	1916848.885	1+456.78	TUBO	1.50	20.00	ALIVIO
7	472894.049	1916880.667	1+577.36	TUBO	1.50	20.00	ALIVIO
8	473129.432	1916875.119	1+815.26	TUBO	1.50	34.00	ALIVIO
9	473295.398	1916557.211	2+180.00	TUBO	1.50	22.00	ALIVIO
10	473598.997	1916396.213	2+602.02	TUBO	1.50	12.60	ALIVIO
11	474067.4303	1916351.63	3+102.81	boveda	4.00 X 2.00	30.01	CUENCA
12	474437.4082	1916011.273	3+685.21	TUBO	1.50	18.00	ALIVIO
13	474573.326	1915736.833	3+996.88	LOSA	4.00 X 2.00	30.01	CUENCA

En el trazo del proyecto, no se contempla la construcción de algún puente vehicular considerada obra de drenaje mayor.

El estudio no contempla la construcción de obras hidráulicas mayores como la renovación o restitución del puente que pasa sobre el Rio La Nopalera, por lo que no se contemplaron en los presupuestos y en el diseño, las obras corresponden únicamente la modernización del camino. El estudio dice que se consideran obras de drenaje menor como colocación de alcantarillas, tubos de 60 cm a 1.2 m lavaderos o vados.

Tabla 10. Características del puente.

Concepto	Obra existente	Puente proyectado
Cadenamientos de ubicación	4+092	
Longitud total del puente a ejes	62 metros	
(incluye accesos)		
Ancho de corona.	5 metros	
Ancho de calzada	0.5 metros	
Número de carriles	1	
Ancho de cada carril	5 metros	
Acotamientos	0	
Camellón y/0 banquetas	0.50 metros cada lado	
Número de claros	2 claros	
Longitud de cada claro	19.50 y 23.00 metros	
No. de pilotes y diámetro de cada	0	
uno		
Distancia entre pilas	19.50 y 23.00 metros	
Número de trabes	3	
Tipo de trabe	SUPERESTRUCTURA	
	SECCION EN CAJON	
Ancho del derecho de vía	VARIABLE	
Superficie total por emplear	560 M2	
Superficie a ocupar en la zona	560 M2	
federal del cuerpo de agua ¹		

Considerar que para el kilómetro 1+060 al kilómetro 1+350 se contemplara en lo futuro la construcción de un puente sobre el Rio La Nopalera que será objeto de otro estudio y autorización en cuanto se cuente con el proyecto por lo que para el presente estudio solo se contempla la pavimentación del tramo propuesto y se utilizará el puente existente en el área, también dentro del estudio se contemplan medidas para evitar afectaciones sobre este cauce.

Excavación para estructuras: Las excavaciones para las estructuras de obra de drenaje se ejecutaran hasta el nivel de desplante que se indica en el proyecto o el que se indica a juicio de la supervisión con una capacidad de fatiga del terreno natural de 1.80 Km. /cm2; para ello deberá afinarse la excavación para recibir los elementos estructurales del proyecto ejecutivo. El material producto de la excavación se aprovechara para la protección de las alcantarillas o se desperdiciara depositándolo en los sitios a juicio de lo indique la supervisión.

Rellenos: Los rellenos que se ejecuten para la protección de las alcantarillas de tubo circular, bóvedas y losas apoyadas en estribos podrán construirse con materiales procedentes de las excavaciones y/o de los bancos para la construcción de las terracerías, compactando por capas de 20 cm, en ambos lados de la obra hasta alcanzar como mínimo el 90% de su P.V. S. M. de laboratorio.

Zampeados: El zampeado se construirá de mampostería de 3ª clase juntando la piedra con el mortero de arena-cemento 1:5 de 30cm de espesor y se utilizara para la construcción de alcantarillas de losa, entre los estribos, entre los aleros de entrada y salida de estas obras, en el recubrimiento de cunetas y/o donde lo indique la supervisión.

Obras complementarias

Con la finalidad de proteger adecuadamente la estructura de las terracerías y el pavimento se hace necesario construir obras complementarias como son: bordillos, cunetas, canales y lavaderos que permitan el fácil y rápido desalojo del agua pluvial que se concreta en la superficie de rodamiento de acuerdo con los datos climatológicos observados de la región donde se ubica esta obra.

Bordillos de concreto hidráulico: Los bordillos se construirán en los lugares que se indican en el proyecto y serán de concreto hidráulico de F´c= 150 Kg/cm2 con

sección de 144cm² como se indica en el proyecto utilizando los agregados que cumplan con la normas de calidad especificadas.

Cunetas revestidas de concreto hidráulicos: Las cunetas que se ubican a la derecha o izquierda de los cortes, se construirán de concreto hidráulico de una resistencia a la compresión de F´c= 150 Kg/cm2 y 10cm de espesor según se indica en el proyecto utilizando los agregados grava y arena del banco u otros que proponga la empresa ejecutora.

Lavaderos y Canales de Concreto hidráulico: Los lavaderos sobre los taludes de los terraplenes, canales revestidos de concreto y los que se requieran proteger y canalizar el agua pluvial en la superficie de rodamiento y salida de las obras de drenaje, se construirán de concreto hidráulico con fatiga a la compresión de F´c= 150 Kg/cm2 utilizando los agregados grava y arena de los bancos autorizados por la supervisión.

Bancos de material

En caso de ser necesaria la utilización de bancos de materiales, la empresa realizará las gestiones necesarias para su autorización con la autoridad competente.

En el siguiente cuadro se muestran los Bancos de Material propuestos para la formación de las capas de Pavimento del camino Jalapa - Tolixtlahuaca; con una meta de 4.0 Km, ubicado en el Municipio de Quechultenango, en el Estado de Guerrero.

Tabla 10. Características de áreas propuestas para bancos.

No. Nombre del banco	Localización	Clasificación
panco		

1	Banco km 0+900	El banco se encuentra a 11 km del centroide de la obra sobre la carretera de Quechultenango- Jalapa	Arena gravosa con limo color rojizo
2	Rio Tlanicuilulco	El banco se encuentra a 22 km del centrado de la obra en la localidad de Colotlipa	
3	Rio Limpio	El banco se encuentra ubicado sobre la margen del rio a 500 m del centro de la obra, sobre el mismo camino	Grava arenosa con limo
4	Ниасара	Carretera Chilpancingo- Quechultenango a km 15 del centro de sobre la margen del rio	Grava arenosa con limo

No se consideran para el presente estudio.

Polígonos de afectación.

Se realizaran algunas aperturas nuevas en el camino actual, también se realizaran modificaciones de curva. Y aperturas nuevas por lo que los impactos se proyectan al cambio de uso de suelo. Con la modernización del camino de terracería se afectará una superficie de <u>27581 m²</u>, los cuales corresponden a 10 polígonos de afectación algunos polígonos se subdividieron ya que presentan diferentes uso de suelo o tipo de vegetación quedando de la siguiente manera:

Se afectará **19200 m2 de** vegetación forestal de Vegetación Secundaría arbórea de Selva Baja Caducifolia.

Tabla 11. Polígonos de afectación sobre vegetación forestal.

Polígono	Cadenamiento		
1	Del KM 0+000 al KM 0+190	Agropecuario	1451
2	Del KM 0+200 al KM 0+700	Vegetación Secundaria Arbórea de selva baja caducifolia	4439
3	Del Km 0+790 al KM 0+974	Vegetación Secundaria Arbórea de selva baja caducifolia	1543
4	Del Km 0+974 al Km 1+040	Agricultura de Temporal	464
5	Del km 1+310 al km2+400	Vegetación secundaria arbórea de selva baja caducifolia	8864

6	Del Km 2+500 al Km 2+980	Vegetación Secundaria Arbórea de selva baja caducifolia	3757
7	Del Km 2+980 al Km 3+300	Pastizal inducido	1640
8	Del Km 3+400 al Km 4+000	Pastizal inducido	4459
9	Del km 4+580 al Km 4+795	Pastizal inducido	367
10	Del km 5+740 al Km 5+970	Vegetación Secundaria Arbórea de Selva Baja Caducifolia.	597
	Total		27581

Se afectará **8381 m2** de vegetación de agropecuaria inducido que resulto de la modificación del ecosistema cambiando su uso de suelo.

Tabla 12. Polígonos de afectación sobre vegetación de pastizal inducido.

Uso de suelo	Superficie (m2)	Polígonos
Forestal	19200	2,3,5, 6 y 10
Agropecuario	8381	1,4,7,8 y 9
Total	27581	

No se cuenta con el proyecto del puente por lo que será objeto de otro estudio de impacto por lo que se considera únicamente evitar afectaciones sobre el **Rio La Nopalera** y esto será objeto de otra solicitud y estudio independientes.

A continuación se presentan los polígonos de afectación a lo largo del trazo propuesto.

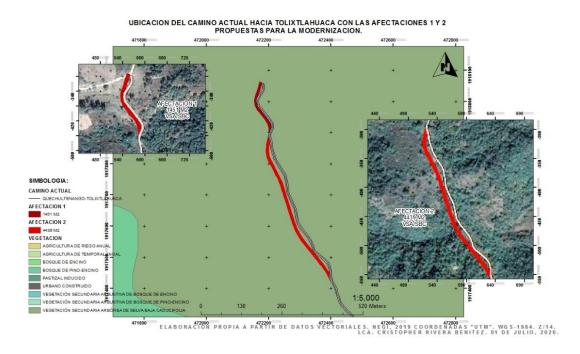


Imagen 5. Sitios de afectación 1 y 2

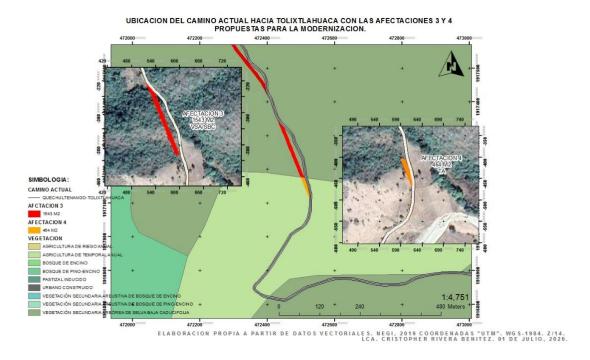


Imagen 6. Sitios de afectación 3 y 4

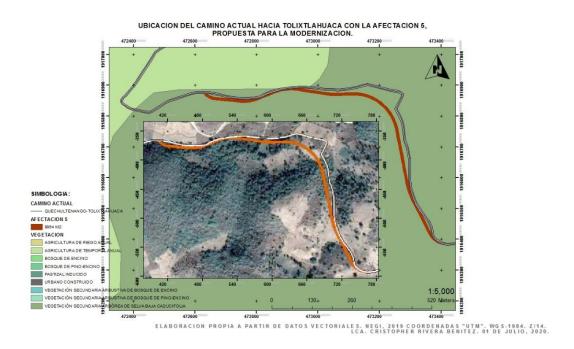


Imagen 7. Sitios de afectación 5

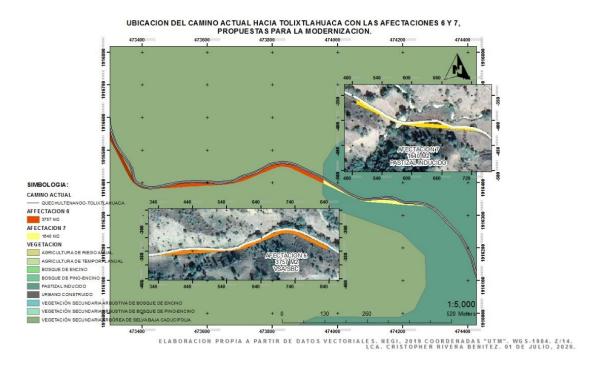


Imagen 8. Sitios de afectación 6 y 7

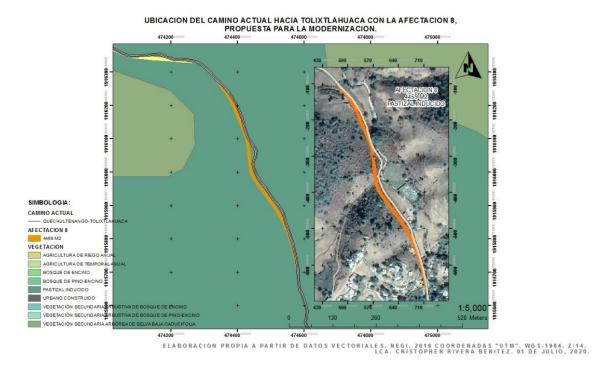


Imagen 9. Sitios de afectación 8

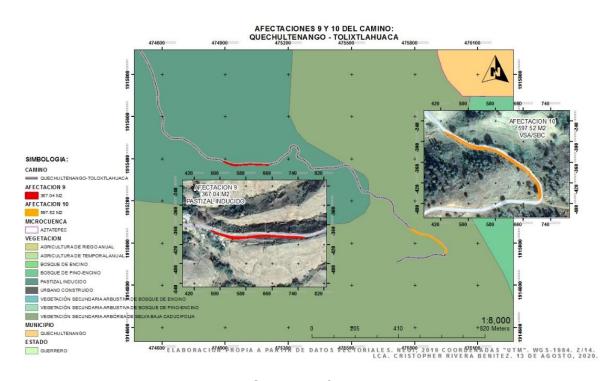


Imagen 10. Sitios de afectación 9 y 10

De acuerdo a la cartografía de INEGI, serie VI, los tipos de vegetación presentes en el SAR del proyecto corresponden a Urbano construido, Bosque de pino-encino, Bosque de encino, Pastizal inducido, Agricultura de riego anual, Agricultura de temporal anual, Vegetación secundaria arbustiva de bosque de pino-encino, Vegetación secundaria arbustiva de bosque de encino y Vegetación secundaria arbórea de selva baja caducifolia, durante los recorridos de campo se pudo observar que el área del proyecto se caracteriza por tener zonas desmontadas con vegetación que crece al margen del camino, individuos que han crecido al margen del camino, la vegetación conservada se encuentra en zonas aisladas en la mayoría de los polígonos los individuos son aislados y no forman zonas densas.

De la misma manera estas zonas se encuentran dominadas en superficie por pastos que crecen o se favorecen para el forrajeo, también se observan polígonos de afectación con zonas desmontadas totalmente.

Las zonas con vegetación conservada corresponden a laderas con la mayor pendiente donde se realizaran actividades de desmonte.

Las afectaciones que se presentarán con la modernización, de acuerdo al proyecto presentado en su mayoría serán puntuales, sin embargo existen aperturas nuevas, las afectaciones y modificaciones ambientales las modificaciones son prácticamente sobre dos tipos de vegetación: pastizal inducido con algunos árboles o arbustos utilizados como cercos, Vegetación Secundaria arbórea de Selva Baja Caducifolia, sin embargo existen áreas al inicio del camino que se pueden considerar una zona de transición entre vegetación de zonas cálidas con climas templados como bosque de pino encino, así que la composición muestra una mezcla de ambos en tipos de vegetación en algunas zonas del proyecto.

Uso de suelo	SUP (ha)
Bosque de encino	0.37
Urbano construido	4.16
Bosque de pino-encino	2359.22
Pastizal inducido	1297.65
Agricultura de riego anual	991.87
Agricultura de temporal anual	278.92
Vegetación secundaria arbustiva de bosque de pino-encino	7.27
Vegetación secundaria arbustiva de bosque de encino	113.74
Vegetación secundaria arbórea de selva baja caducifolia	4756.89
Total	9810.09

Tabla 13. superficies por uso de suelo en el SAR. Fuente: Serie VI INEGI 2020.

II.2.1 Programa de trabajo.

El proyecto solicita autorización por 4 años, dependiendo de disponibilidad de los recursos estatales o federales los cautro años se desglosan de la siguiente manera, 1 año para obtención de recursos, liberación de recursos, licitación y trámites y tres años para la construcción.

La duración calculada por la proyectista para las actividades de preparación y construcción el proyecto se realizará en una etapa, la cual durará **36** meses a partir de la liberación de los recursos. Por lo tanto abarcaría desde mediados del año 2020 a mediados del año 2025. Por lo cual se solicita a la DGIRA considere dicho periodo de cinco años para emitir la vigencia en caso de ser aprobada el presente estudio. Programa general de trabajo (Grafica de Gantt): (Henry L. Gantt). La gráfica permite programar cada una de las actividades, es decir, su distribución en el tiempo, y se observa el periodo de duración de cada actividad, sus fechas de iniciación y terminación e igualmente el tiempo total requerido para la ejecución de las actividades del proyecto.

Tabla 14. Cronograma de actividades.

Tabla 14. Cronograma de actividades.													
Años			1 2 3 4 1 2 3 4 1							3			
Trimestre		1	2	3	4	1	2	3	4	1	2	3	4
		Etapa previa											
Tramites y	permisos												
						Missal	ación y	. 4					
Ohras pro	visionales.					Nivei	acion y	trazo		1			
0.0.00 p. 0													
Desm	nonte												
Desp	almo												
Desp	aiiie												
		Construcción											
-	Excavaciones en corte												
Terracerías.	Formación y												
	compactación de terraplenes												
	Subyacente.												
	Subrasante												
	Excavación para estructuras												
	Rellenos												
	Mampostería de tercera clase												
Estructuras y obras de drenaje	Mampostería seca												
	Zampeado de mampostería												
	Tubería de concreto												
	Concreto hidráulico												
	Acero de refuerzo												
	Recubrimiento de cunetas de concreto hidráulico												
Pavimentos	Material asfaltico para riego de impregnación, sello y carpeta.												
	Carpeta de concreto asfaltico												
	Colocación de sello premezclado												
	Acarreo para pavimento.												
	Fabricación y colocación de señales,												

Señalamiento vertical y horizontal.	preventivas, restrictivas e informativos.						
	Señal kilometraje de ruta						
	Defensas laterales						
	Marca en el pavimento.						
Medidas de prevención y mitigación por impacto ambiental. Y programas a aplicar.							

II.2.2 Representación gráfica regional

El total del tramo a construir se encuentra dentro de Municipio de Quechultenango en la región Centro del Estado de Guerrero.

El sistema ambiental regional, está definido con base a la cuenca del Río Papagayo, Microcuenca Aztatepec, con base en los parteaguas se redibujo el área de influencia del proyecto y sistema ambiental regional.

Para el presente estudio se consideran una cuenca y una microcuenca como partes que integran el sistema ambiental regional.

La delimitación de SAR en donde se ubica el proyecto se encuentra inmerso en la Región Hidrológica RH20: Costa Chica – Río Verde, la cuenca corresponde a R. Papagayo, Subcuenca Chilpancingo, microcuenca Aztatepec.

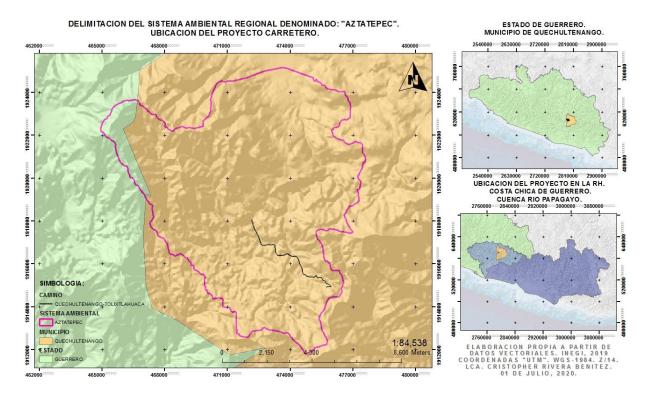
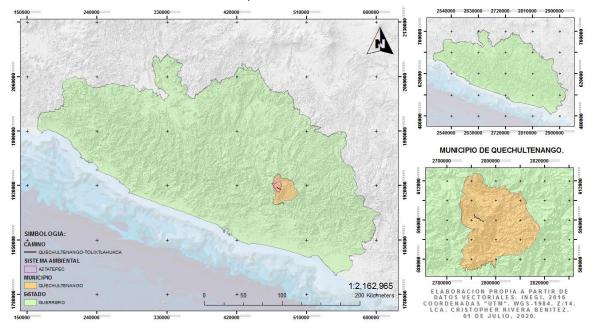



Imagen 11.- Delimitación Sistema Ambiental Regional del proyecto.

II.2.3 Representación gráfica local

El proyecto se encuentra ubicado en el Municipio de Quechultenango, Gro., las localidades que serán beneficiadas con la realización del proyecto son: Jalapa, Tolixtlahuaca y Xochitepec y rancherías cercanas al proyecto.

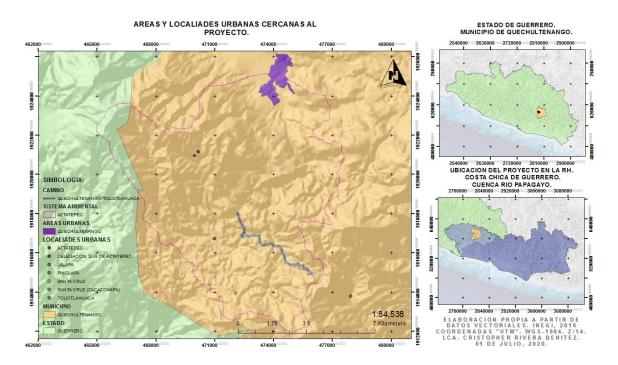


Imagen 12.- Mapa cartográfico, en donde se muestran las localidades beneficiadas con el proyecto.

II.2.4 Preparación del sitio y construcción.

Como antecedente tenemos que en las partes de los terrenos del proyecto, existen zonas de terracería que ya habían sido desmontados con anterioridad, sin embargo se advierte nuevo crecimiento de vegetación. Se trata de una superficie con cerros y pendientes, desprovisto de vegetación de interés en los términos de la **NOM-059-SEMARNAT-2010**, y son del tipo gobernadora, pastos anuales y perennes. No obstante, habrá actividades de preparación del terreno, tales como remoción de vegetación existente, relleno, nivelación y compactación causando impactos temporales que más adelante se abordarán, mismos que los agrupamos en lo que denominamos terracerías. En los trabajos de remoción de vegetación y relleno se utilizara machete, azadón, carretillas, hachas, y un cargador frontal (trascabo) para mover el material y traslado en camiones de volteo en el interior de la obra, el material para rellenos es material de la misma obra, así como también material pétreo para relleno y nivelación adquirido de un banco de material autorizado, el cual se trasladara en camiones de volteo hasta la obra y se manejará con medios mecánicos (moto conformadora) para dar acomodo y niveles.

Desmonte: El desmonte se ejecutará a mano o con máquina hasta la línea de ceros de los cortes y los terraplenes, respetando el ancho limitado por las edificaciones rurales y urbanas. Los trabajos se realizarán asegurando que toda la materia vegetal quede fuera de las zonas destinadas a la construcción, evitando dañar árboles fuera del área indicada en el proyecto o aprobada por la secretaría; cualquier daño a la vegetación fuera de dicha área, será responsabilidad del contratista de obra y deberá restituirla por su cuenta y costo, de acuerdo con las leyes y reglamentos de protección ecológica vigentes.

Despalme: Se desalojara la capa superficial del terreno natural que contenga materia orgánica y vegetal. El espesor mínimo de esta capa será el que indique el proyecto y el producto del despalme se colocara cerca de la línea de ceros de la sección de Terraplén para ser utilizado en el arrope de los taludes.

Una vez hecho el desmonte y el despalme (la remoción del material superficial del terreno con objeto de evitar la mezcla del material de las tercerías con materia orgánica o con depósitos de material no utilizable), y estos se acarreen a no más de 5 km o en el lugar que indique la secretaria donde no afecte el paisaje, se procederá a hacer el corte a cielo abierto por medios mecánicos en el terreno natural, en ampliación de taludes, en rebajes en la corona de cortes o terraplenes existentes y en derrumbes, con objeto de preparar y formar la sección de la obra de acuerdo con lo indicado en el proyecto geométrico sin alterar las áreas fuera de los límites de la construcción.

Desmonte:

El desmonte se ejecutará a mano o con maquinaria hasta la línea de ceros de los cortes y los terraplenes, se contempla una superficie total de **27581** m².

 Uso de suelo
 Superficie (m2)
 Polígonos

 Forestal
 19200
 2,3,5, 6 y 10

 Agropecuario
 8381
 1,4,7,8 y 9

 Total
 27581

Tabla 15. Usos de suelo por superficie.

La delimitación de los polígonos de afectación que corresponden a la superficie de desmonte se calculó sobreponiendo el camino proyectado sobre el camino actual, la diferencia entre las áreas da como resultado la superficie a afectar. Como resultado se obtuvo la delimitación de **10 polígonos de afectación**, que suman una superficie **27581 m²** de desmonte, principalmente corresponde a vegetación Secundaría Arbustiva de Selva Baja Caducifolia y áreas de pastizal de acuerdo a la cartografía de INEGI, serie VI.

De acuerdo a la cartografía de INEGI, serie VI, los tipos de vegetación presentes en el SAR del proyecto corresponden a Urbano construido, Bosque de pino-encino, Bosque de encino, Pastizal inducido, Agricultura de riego anual, Agricultura de temporal anual, Vegetación secundaria arbustiva de bosque de pino-encino, Vegetación secundaria arbustiva de bosque de encino y Vegetación secundaria arbórea de selva baja caducifolia, durante los recorridos de campo se pudo observar que el área del proyecto se caracteriza por tener zonas desmontadas con vegetación que crece al margen del camino, individuos que han crecido al margen del camino, la vegetación conservada se encuentra en zonas aisladas en la mayoría de los polígonos los individuos son aislados y no forman zonas densas.

Cortes

Los cortes se ejecutarán de acuerdo con las líneas de proyecto y sin alterar las áreas fuera de los límites de la construcción, indicados por las líneas de ceros en el proyecto o aprobadas por la secretaría.

Los cortes se ejecutarán de manera que se permita el drenaje natural del corte. Los cortes se ejecutaran con el talud establecido en el proyecto y en caso de que estos resulten fragmentados o la superficie irregular o inestable, el material en estas condiciones será removido. Los materiales producto del corte se utilizaran para construir terraplenes o arroparlos reduciendo la inclinación de sus taludes, los materiales provenientes de derrumbes o deslizamientos recientes se retiraran del sitio de los trabajos para aprovecharse en el abatimiento de taludes o se depositaran al igual que el material sobrante de los cortes en el sitio y forma que indique el proyecto o apruebe el organismo y donde el proyecto lo requiera se hará la debida compensación de acuerdo al proyecto geométrico e inmediatamente la escarificación, nivelación y compactación al 90% de su P.V.S.M. según la prueba de AASHTO ESTANDAR por lo menos a 20 cm de profundidad del terreno o del

afirmado en donde haya de colocarse el terraplén nuevo (previa ejecución del drenaje y sub-drenaje, así como el humedecimiento o secamiento que se requiera).

Formación de terraplenes: Los terraplenes que se formarán con materiales producto de los cortes y/o provenientes de préstamos de bancos y que corresponden a este proyecto se ejecutarán conforme a los conceptos de trabajo.

Compactación del Terreno Natural: Donde lo indique el proyecto se compactará el terreno natural en el área de desplante de los terraplenes, se escarificará un espesor de 20 centímetros acamellonando el material incorporándole la humedad cercana a la óptima de laboratorio, se extenderá y compactará hasta alcanzar el 90% de su P.V.S.M.

Cada capa de material compactable, tendida y conformada, se compactará hasta alcanzar el grado indicado en el proyecto o aprobado por la secretaría.

La compactación se hará longitudinalmente, de las orillas hacia el centro en las tangentes y del interior al exterior en las curvas, con un traslape de cuando menos la mitad del ancho del compactador en cada pasada.

Ampliación de la corona en los Terraplenes existentes: Considerando que los trabajos se ejecutan en un camino de terracería y que cumple con el ancho propuesto, no será necesario realizar ampliaciones considerables de los terraplenes existentes a uno o ambos lados, y en los puntos que se haga, se construirán primero donde lo indique el proyecto, los escalones de liga en los taludes de estos terraplenes para posteriormente con los materiales provenientes de los cortes préstamos de bancos se formen los terraplenes que indica el proyecto. Los materiales producto de los cortes o préstamos de bancos utilizados en la formación de las cajas, y de los escalones de liga para ampliar los terraplenes existentes, se aprovecharan o desperdiciaran en los lugares de depósito que indique en el proyecto o la supervisión.

Acarreos para terracerías: Los acarreos que corresponden al movimiento a tierras para la construcción de las terracerías, se realizaran de acuerdo como se indican en el diagrama de masas en los planos del "PERFIL ESTIMATIVO" del proyecto ejecutivo; en lo particular se hace notar, que el material de desperdicio se colocara en los depósitos que para esta finalidad fije la supervisión y en los perfiles mencionados se han fijado distancias de acarreo estimativas para incluir este sobreacarreo que se ejecutara en el proceso de construcción, por lo que deberán considerarse en el costo de la obra.

Se hace notar que los bancos donde se obtendrán los materiales para la capa subrasante la supervisión deberá determinar a la empresa ejecutora el lugar donde se extraerá el material que se vaya a utilizar previendo que la extracción se realice en forma razonada para que no provoque impactos ambientales negativos en la zona de explotación, por lo que se recomienda dejar bermas con pendientes longitudinales y transversales para el buen drenaje pluvial y extender el material de despalme en las zonas atacadas con la finalidad de cubrir esta con material vegetal que proteja las superficies aprovechadas provocando con ello el nacimiento de pastos y arbustos de la región.

Estructuras y obras de drenaje (Excavación para estructuras, rellenos y zampeados).

Por tratarse de un camino ya existente, y algunas áreas construidas con anterioridad que se modernizara y el cual cumple con el ancho de corona propuesto, en el cual las ampliaciones son casi inexistentes, que las alcantarillas existentes se sustituirán por alcantarillas de tubo de concreto armado con un diámetro de 120 cm. que se indican en el proyecto.

Obras de drenaje

Excavación para estructuras:

La excavación se efectuará de acuerdo a las dimensiones y niveles establecidos en el proyecto o aprobados por la secretaría.

Con el fin de proteger la excavación, si la estructura para la cual se ejecute no se inicia de manera inmediata y el fondo de dicha excavación está formado por materiales altamente erosionables o que puedan ser afectados rápidamente por el intemperismo, se suspenderá la excavación arriba del nivel de desplante, hasta que esté por iniciarse la construcción de la estructura.

Durante la ejecución de la excavación, ésta se protegerá de inundaciones y se asegurará su estabilidad, para evitar derrumbes, drenando toda el agua que afecte a la excavación.

El material suelto o inestable, así como toda la materia vegetal, se removerá para asegurar la estabilidad de la excavación.

Cuando el proyecto indique o la secretaría apruebe que las paredes de la excavación sirvan de molde a un colado, sus dimensiones no deberán excederse en más de diez (10) centímetros respecto a las fijadas en el proyecto. Si se excede dicho límite, se deberán poner moldes.

El material sobrante de la excavación se depositará en el sitio o banco de desperdicios que indique el proyecto o que apruebe la secretaría o se distribuirá uniformemente en áreas donde no impida el drenaje natural del terreno o que no

invada cuerpos de agua, para favorecer el desarrollo de vegetación, según lo indique el proyecto o apruebe la secretaria.

Las obras de drenaje se construirán de acuerdo a las Normas para Construcción e Instalaciones, del Libro Estructuras y Obras de Drenaje N CTR CAR 1.03.001.00 - N CTR CAR 1.03.013.00 de la SCT.

Para garantizar la durabilidad y buen comportamiento del pavimento por construirse, será muy importante construir y/o ampliar las obras de drenaje que se señalen en el proyecto. A los puntos en los cuales existen este tipo de escurrimientos, de tal manera que los cauces de agua sean salvados sin mayores afectaciones y por otro lado no perjudiquen el camino de terracería actual. Será necesario que la construcción de las obras menores de drenaje que indique el proyecto geométrico, se realice de forma paralela a las terracerías, y al finalizar la pavimentación. (Ver diseño de obras en Planta General, anexos).

Durante la modernización no se alterarán las escorrentías ya que se conservarán algunas obras de drenaje y otras se mejorarán con base a lo que dictaminan las normas constructivas. De los recursos hídricos con los que cuenta las comunidades **Rio La Nopalera**, y en otros que no se encuentran tan cerca del proyecto pero están en la delimitación del SAR se destaca principalmente **el Río Jalapa y Huacapa**. En época de lluvias se forman varios escurrimientos en barrancos y arroyos con escurrimientos anuales, durante la modernización no se alterará su cauce porque se construirán diversas obras de drenaje.

Alcantarillas de concreto armado: Como se indica en el proyecto, se construirán alcantarillas de tubo de concreto armado del diámetro que se indica en el proyecto ejecutivo las que se desplantaran sobre el terreno natural o rellenos de las oquedades compactadas al 90% de P.V.S.M de laboratorio

Rellenos: Los rellenos que se ejecuten para la protección de las alcantarillas de tubo circular, bóvedas y losas apoyadas en estribos podrán construirse con materiales procedentes de las excavaciones y/o de los bancos para la construcción de las terracerías, compactando por capas de 20cm, en ambos lados de la obra hasta alcanzar como mínimo el 90% de su P.V. S. M. de laboratorio.

Zampeados: El zampeado se construirá de mampostería de 3ª clase juntando la piedra con el mortero de arena-cemento 1:5 de 30cm de espesor y se utilizara para la construcción de alcantarillas de losa, entre los estribos, entre los aleros de entrada y salida de estas obras, en el recubrimiento de cunetas y/o donde lo indique la supervisión.

Concreto Hidráulico: El concreto hidráulico se fabricara de diferentes fatigas a la compresión como se indica en el proyecto ejecutivo para cada obra particular según el elemento estructural donde se utilice como se describe a continuación:

- 1. Concreto hidráulico de F`c=200 Kg/cm² que será utilizado para la construcción de las losas armadas apoyadas en estribos.
- Concreto hidráulico de 100 Kg./cm² que será fabricado para utilizarse en claves de las bóvedas, bordillos, lavaderos, cunetas y otros elementos estructurales que se indique en el proyecto.
- 3. Los agregados para la fabricación del concreto hidráulico se obtendrán del banco indicado y deberá cumplir con las normas de calidad especificadas.

Acero para Concreto Hidráulico: El acero de refuerzo que se utilizara para el armado de los tubos para alcantarillas, en las losas apoyadas en estribos serán de un Le= 400 Kg. /cm² y antes de utilizar deberán estar totalmente limpias libres de oxidación y grasas.

Demolición de mampostería y concreto armado de las obras de drenaje existentes: Los tubos de concreto o lamina de las obras de drenaje existentes que serán sustituidos por tubos de concreto armado de los diámetros indicados en el proyecto se extraerán del lugar cuidando de no destruirlos, mismos que serán transportados, almacenados y estibados en el lugar que indique la supervisión a quien se le entregara un reporte del número y diámetro de tubos extraídos medidos en obra y los que fueron almacenados.

Pavimento (Base hidráulica, carpeta asfáltica)

Para la producción del material de la Base hidráulica, se utilizara el equipo adecuado acarreándolo al sitio de la obra acamellonándolo, extendiéndolo para incorporar el cemento Portland a razón del 2.5% en peso, revolviéndolo en seco y durante el proceso se le incorporara la humedad cercana a la óptima de laboratorio y cuando se haya homogenizado se extenderá con el equipo adecuado y se compactara el espesor de proyecto al 100% de su P.V.S.M.

La empresa ejecutora verificara e informara para efecto de recepción de la capa de Base los reportes de la calidad del material pétreo, los espesores, la geometría de proyecto, el grado de compactación alcanzado y la textura de la superficie.

Materiales asfálticos: Los materiales asfálticos, emulsiones catiónicas de rompimiento medio y rápido para los Riegos de Impregnación, de Liga y el Cemento asfáltico del tipo AC-20 dará cumplimiento con las Normas de Calidad vigentes determinadas por la S.C.T.

Utilizado en Riego de impregnación: Sobre la base hidráulica barrida y limpia de impurezas, se aplicara un riego de impregnación con emulsión asfáltica de rompimiento medio a razón de 2lts por metro cuadrado en promedio, incluyendo el talud formado por el espesor de la base.

Considerando el volumen de transito existente se protegerá el riego de impregnación con arena que cubrirá la superficie impregnada dejándola reposar cuando menos 24 horas para abrirla al tránsito que deberá controlarse a una velocidad no mayor de 40 km/hr.

Utilizado en riego de liga para carpeta y sello: Sobre la base impregnada después de haber verificado su calidad, se procederá a barrer con barredora mecánica la superficie para retirar la arena suelta y posteriormente se aplicara con petrolizadora el Riego de Liga con emulsión asfáltica del tipo catiónica de rompimiento rápido, razón de 0.8 lts/m² aproximadamente lo que indique la supervisión que se utilizara tanto para la liga en la construcción de la carpeta asfáltica como para el riego de sello.

Riego de arena sobre la impregnación: Con el objeto de cubrir el riego de impregnación y abrir el transito los tramos en construcción impregnados se procederá a cubrir la superficie impregnando con un material arenoso considerando aproximadamente de 6 a 8 lts por m², abriendo el tránsito a las 24 horas después de ejecutado.

Sello premezclado: Sobre la carpeta asfáltica se hará un riego de liga con emulsión asfáltica de tipo catiónica de rompimiento rápido e inmediatamente se colocara el sello premezclado con emulsión asfáltica catiónica de rompimiento medio con una dosificación promedio de 40 litros por metro cúbico que se verificará en pruebas de laboratorio y se incorporara al material pétreo de sello del tipo 3-A, después de

tendido el material se aplicara una plancha metálica tándem de 8 a 10 ton, se abrirá el transito después de 24 horas y posteriormente se retirara el material suelto depositándolo en el lugar que indique la supervisión.

Base hidráulica: Estabilizada con cemento Portland utilizando material pétreo de banco: Sobre la subrasante terminada y recibida por la supervisión de acuerdo con el proyecto geométrico y verificado el grado de compactación (95%) indicado se construirá la capa de Base Hidráulica estabilizada con cemento Portland con la proporción indicada (1.5%) y con el espesor que se indique en el proyecto, compactados al 100% de su P.V.S.M. de laboratorio con el material procedente de banco (los materiales que se utilizarán, serán adquiridos en plantas productoras de este material que cumpla con las respectivas especificaciones del proyecto).

Carpeta de concreto asfáltico: El concreto asfáltico será transportado de la planta que sea proveedora, cumpliendo con la granulometría indicada en las normas de calidad vigentes de la S.C.T y utilizando para la mezcla cemento asfáltico del tipo AC-20 a razón aproximada de 150lts/m³ o lo que indique el diseño del contenido asfáltico elaborado por el laboratorio.

La mezcla fabricada sobre el riego de liga procederá a aplicar con extendedora mecánica la mezcla asfáltica fabricada con temperatura entre los 130 a 150 °C, para obtener 5 cm de espesor compactados al 95% confinados en prueba de laboratorio utilizando el equipo adecuado, cumpliendo con la granulometría indicada en las normas de calidad CTR, CAL Y MMT vigentes de la S.C.T y utilizando para la mezcla cemento asfáltico del tipo AC- 20 a razón aproximada de 150 lts/m³ o lo que indique el diseño del contenido asfáltico elaborado por el laboratorio.

La empresa entregara a la supervisión los reportes de la calidad de la mezcla asfáltica mediante la prueba de laboratorio correspondiente, los grados de

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE

QUECHULTENANGO, EN EL ESTADO DE GUERRERO.

compactación alcanzados, la textura de la superficie para efectuar la recepción de este concepto de trabajo con base en las normas en vigencia de la S.C.T.

Obras complementarias

Con la finalidad de proteger adecuadamente la estructura de las terracerías y el pavimento se hace necesario construir obras complementarias como son: bordillos, cunetas, canales y lavaderos que permitan el fácil y rápido desalojo del agua pluvial que se concreta en la superficie de rodamiento de acuerdo con los datos climatológicos observados de la región donde se ubica esta obra.

Bordillos de concreto hidráulico: Los bordillos se construirán en los lugares que se indican en el proyecto y serán de concreto hidráulico de F'c= 150 Kg/cm² con sección de 144cm² como se indica en el proyecto utilizando los agregados que cumplan con la normas de calidad especificadas.

Cunetas revestidas de concreto hidráulicos: Las cunetas que se ubican a la derecha o izquierda de los cortes, se construirán de concreto hidráulico de una resistencia a la compresión de F´c= 150 Kg/cm² y 10cm de espesor según se indica en el proyecto utilizando los agregados grava y arena del banco u otros que proponga la empresa ejecutora.

Lavaderos y Canales de Concreto hidráulico: Los lavaderos sobre los taludes de los terraplenes, canales revestidos de concreto y los que se requieran proteger y canalizar el agua pluvial en la superficie de rodamiento y salida de las obras de drenaje, se construirán de concreto hidráulico con fatiga a la compresión de F´c= 150 Kg/cm² utilizando los agregados grava y arena de los bancos autorizados por la supervisión.

Señalamiento horizontal y vertical de seguridad: En el desarrollo de la construcción del camino y donde indique la supervisión, se colocara el Señalamiento Horizontal y Vertical Preventivo, Restrictivo e Informativo que dará seguridad al usuario y personal y equipo de la empresa ejecutora en el movimiento vehicular y el equipo de construcción. El señalamiento Horizontal y Vertical que se utilizará y colocará en el camino se subdivide en:

Señalamiento de seguridad durante el proceso de construcción: Señalamiento Preventivo, Restrictivo e Informativo durante el proceso de construcción. La empresa ejecutora se obliga y la supervisión verificará que se cumpla con la instalación de las señales preventivas, restrictivas e informativas verticales y marcas en el pavimento con funcionamiento diurno y nocturno que se requieran para la protección de la maquinaria,, equipo y personal en los tramos que se encuentren en proceso de construcción, así como la inducción del tránsito a peatones y ciclistas que circulen en las zonas urbanas y por la carretera; por lo tanto deberá de incluir dentro de sus costos indirectos la instalación del señalamiento nuevo suficiente y necesario que se colocará en el camino durante el proceso de construcción.

Antes de iniciar la obra la empresa ejecutora deberá presentar a la supervisión para su aprobación el proyecto de señalamiento diurno y nocturno. El señalamiento que se coloque durante el proceso de construcción deberá ser nuevo y permanente incluyendo el servicio de los bandereros que se requieran y cumplirán totalmente con las especificaciones y normas que se indican en el Manual de Dispositivos para el Control del Tránsito de Calles y Carreteras editado por la S. C. T.

La supervisión no dará trámite a ninguna de las estimaciones presentadas por la empresa ejecutora si esta no cumple con el señalamiento diurno y nocturno necesario en el o los tramos en proceso de ejecución, considerando el volumen de tránsito existente en el camino actual, y se hace de su conocimiento que deberá

considerar que los accidentes viales y a peatones que se presenten por no haber instalado el señalamiento indicado quedarán bajo su total y estricta responsabilidad.

Señalamiento horizontal y vertical operativo del proyecto: Señalamiento Horizontal y Vertical Preventivo, Restrictivo e Informativo Definitivo.

En el proyecto de la Planta de Señalamiento se indica la ubicación y tipo de señales verticales y marcas en el pavimento que se colocarán en el desarrollo del camino y en el informe técnico del proyecto se anexa la relación del número, ubicación y tipo de señales que corresponden al proyecto, además se señalan en este documento las Especificaciones Particulares correspondientes para su fabricación y colocación que deberá cumplir las Normas indicadas en el Manual de Dispositivos para el Control del Tránsito de Calles y Carreteras edición 1984 de la S. C. T.

Señalamiento horizontal y vertical (Especificaciones particulares): La fabricación y colocación de las señales está sujeta a los lineamientos marcados en el Manual de Dispositivos para el Control del Tránsito en Calles y Carreteras, última Edición de la S. C. T. y en lo que no existiera norma alguna a lo indicado en las presentes especificaciones particulares.

Señalamiento de protección de la obra: Deberá contarse en la obra en cada uno de los frentes de trabajo con el señalamiento de protección de la obra con la cantidad y calidad suficiente para garantizar la seguridad del personal de construcción, supervisión así como de los conductores que transitan por el camino durante el proceso de construcción.

Obras y servicios de apoyo: no aplica para este proyecto, no es necesario la construcción de campamentos dentro de la obra, en virtud de existir centros de poblaciones (Jalapa, Tolixtlahuaca y Xochitepec), en donde podrán pernoctar

durante el desarrollo del Proyecto, las comunidades cuentan con los servicios básicos.

Vías de acceso al área donde se desarrollarán las obras o actividades

No se habilitara vías de acceso para el sitio propuesto para el desarrollo del proyecto se utilizaran los accesos existentes.

Descripción de los servicios requeridos

El agua utilizada en la obra podrá ser obtenida de la cercanías de las comunidades, se utilizara una pipa para su traslado al lugar del proyecto, para el tratamiento de material y que el material obtenga el punto deseado de compactación.

El proyecto se encuentra en una zona cercana a la población **Jalapa, Tolixtlahuaca y Xochitepec,** mismas que cuenta con todos los servicios de comunicación y de suministro de energía eléctrica, agua potable y drenaje, asimismo se contratará servicios de suministro y manejo de sanitarios portátiles (letrinas).

Hospedaje: La mayor parte del personal que se contrate será de la región, de tal manera que se aprovecharán los servicios de hospedaje que se ofrecen en los poblados cercanos al proyecto, evitando con esto la instalación de **campamentos**.

Campamentos: Para este proyecto, no es necesario la construcción de Campamentos dentro de la Obra, en virtud de existir un Centros de Poblaciones muy cercanos a la obra, en donde podrán pernoctar durante el desarrollo del Proyecto.

Patios de maquinaria: Los patios de maquinaria se ubicaran fuera del perímetro del centro de las comunidades, su ubicación definitiva será en patio de la casa rentada o de preferencia en terrenos con vocación agrícola, para no derribar o afectar la escasa flora del lugar y además será el resultado de la negociación entre el dueño del predio y la empresa ejecutora del Proyecto.

Comedores: Se requerirá para el personal que no provenga de la región, buscar al interior de las Comunidades, algunas personas que se dediquen a la venta de alimentos, por lo cual se tendrán que establecer obligaciones contractuales entre la empresa ejecutora del proyecto y la comunidad a fin de asegurar una remuneración por los servicios y facilidades prestadas.

Combustible: Se requerirá gasolina y diésel para los vehículos y maquinaria que se utilicen durante el desarrollo del proyecto. Dicho combustible se adquirirá en las Estaciones de Servicios autorizadas.

Mantenimiento al equipo y/o maquinaría: El mantenimiento al Equipo y/o Maquinaría que será utilizada en las diversas fases del proyecto, se realizará en Talleres Mecánicos autorizados por la Secretaría de Medio Ambiente y Recursos Naturales, ubicados dentro de los núcleos poblacionales.

Uso de Mano de Obra de la Comunidad: Durante las diversas fases del Proyecto, se contratará gente de las comunidades inmersas en el mismo, por lo cual serán debidamente remunerados de acuerdo al tipo de trabajo requerido. Así mismo se tomarán las medidas necesarias a fin de evitar interferencias, abusos, falta de respeto hacia los miembros de la comunidad y sus prácticas y/o creencias culturales o sus modos de conducta, con la finalidad de que exista un ambiente de trabajo bueno.

II.2.5 Operación y mantenimiento.

Al planear, programar y ejecutar este tipo de obras que sus años e índices de servicio satisfactorio dependen de la calidad que se obtenga en el proceso y procedimientos de construcción y de la aplicación de un programa racional de mantenimiento durante su vida útil; guardada tal proporción, se reduce considerablemente el costo de la propia conservación y se garantiza su durabilidad manteniendo con ello un índice de servicio adecuado debe considerarse que cuando en un camino secundario como el que nos ocupa llega a una calificación de dos (2) (bajo la norma del índice de servicio de la S.C.T.). El transito tiene bastantes problemas y la comodidad del servicio llega al mínimo, iniciándose en este momento la falla funcional de la carretera y si el camino sigue en servicio alcanzara la falla estructural y por tal motivo no se podrá lograr alcanzar el tránsito de diseño.

Para que un camino deteriorado con el tiempo no llegue a la falla estructural es necesario rehabilitar la vía cuando alcance la falla funcional y su calificación sea de 2 a 3 para los caminos de segundo orden.

Dos aspectos son esenciales que deben cuidarse en una vía dentro de su mantenimiento; la superficie de rodamiento y las obras de drenaje tanto longitudinal como transversal de la superficie de rodamiento es recomendable sistematizar la aplicación de riegos de sello o tratamientos superficiales cada tres años en toda su longitud, vigilando con especial cuidado que se lleven a cabo antes del inicio de la temporada de lluvias, además, el personal directivo involucrado en la toma de decisiones sobre el programa de mantenimiento debe tener muy presente en todo momento la edad de la obra a efecto de prever los recursos necesarios para un reforzamiento estructural adecuado antes de alcanzar el período de diseño señalado en el proyecto.

Se realizan dos propuestas para la utilización de los recursos hídricos en la obra:

1.- Se recomienda que el agua sea suministrada por pipas y sea de reúso. Es una propuesta viable y favorable para el cuidado de las corrientes superficiales. Al utilizar agua de reusó se garantiza que los recursos hídricos de la zona sigan proporcionando la misma cantidad y calidad hacia los diferentes ecosistemas, con base a esto se evita la disminución de estos afluentes.

2.-Se recomienda que el agua a utilizar en la obra sea obtenida de la cercanías del camino del **Río La Nopalera** con la autorización de las autoridades correspondientes y se utilizara una pipa para su traslado al lugar del proyecto, para el tratamiento de material y que el material obtenga el punto deseado de compactación.

El proyecto se encuentra en una zona cercana a un conjunto de poblaciones mismas que cuenta con todos los servicios de comunicación y de suministro de energía eléctrica, agua potable y cuentan con fosas sépticas, Asimismo se contratará servicios de suministro y manejo de sanitarios portátiles (letrinas).

Mano de obra. (Técnicos de mantenimiento)

Un técnico se quedara de encargado en el almacén, el cual estará capacitado para supervisar las diferentes medidas de mitigación propuestas en esta MIA, para evitar cualquier impacto negativo que se presente al ambiente sobre el área del proyecto. La empresa que ejecutará las medidas de mitigación debe tener personas capacitadas o una persona capacitada en la materia ambiental. De preferencia un biólogo para poder Prevenir y corregir cualquier alteración ambiental.

Almacenes.

Se colocara un almacén para prevenir cualquier tipo de impacto negativo sobre el ambiente, los residuos sólidos se recolectarán, se trasladarán y se depositarán, en diferentes tipos de contenedores ubicados en el almacén.

Posteriormente serán trasladados a las Instancias correspondientes cómo será el Municipio de **Quechultenango**, para destinarlos a plantas de tratamiento de residuos sólidos o de relleno sanitario.

Se propone que el almacén se ubique en el patio de una casa rentada o de preferencia en terrenos con vocación agrícola, para no derribar o afectar flora del lugar.

Mantenimiento de la obra

El mantenimiento preventivo y correctivo rutinario consistirá en el bacheo y recarpeteo de algunos tramos de carpeta asfáltica, barreras, bordillos, limpieza del derecho de vía, limpieza y desazolve de las obras de drenaje, reposición y repintado de defensas, postes y fantasmas y conservación de las áreas en el derecho de vía y zonas aledañas. Las actividades de mantenimiento rutinario, se ejecutará programada para cada año, con el objeto de preservarlas y propiciar una operación económica, eficiente y segura de los vehículos: re nivelación de carpeta y reparación de pavimentos y obras de drenaje, cuyos daños se deben fundamentalmente al paso repetido de vehículos pesados, la acción degradante del medio ambiente, la socavación producida por las corrientes naturales, así como a su antigüedad. También el mantenimiento y reposición del señalamiento tanto vertical como horizontal.

La conservación de la carpeta asfáltica, requerirá de reparaciones periódicas de la misma en mayor o menor medida según sea el caso, por lo que será necesario realizar bacheo, calavereo o repavimentación de carriles.

Como todas las obras, las carreteras federales libres requieren permanentemente de conservación y mantenimiento para soportar las cargas repetidas impuestas por el tránsito de vehículos, que es creciente, y por los agentes climatológicos. En este sentido la SCT, a través de la DGCC, realiza un esfuerzo importante, no obstante que los recursos han sido insuficientes para mantener en condiciones de viabilidad a las carreteras.

Con el mantenimiento preventivo, se deben realizar inspecciones y hacer ajustes y/o calibraciones, o cambiar partes en base a frecuencia y o análisis de aceite de la maquinaria a utilizar. Los aceites, filtros, refacciones especiales, refacciones comunes, y otros artículos de almacén normalmente usados durante la etapa de operación y construcción serán tratados de forma especial y depositados a las instancias correspondientes para evitar cualquier daño o derrame de aceites al ambiente.

La empresa constructora ganadora de la obra, deberá contratar a una empresa dedicada a realizar estudios ambientales para ejecutar las medidas de mitigación propuestas y evitar cualquier impacto negativo al ambiente.

Cada una de las medidas propuestas también están contempladas dentro de las bases de licitación de SCT, por lo que a cada empresa ganadora de una modernización del camino se le exige que las debe acatar y llevar a cabo, en caso de no hacerlo la SCT puede revocarle el contrato o no pagarle las estimaciones correspondientes, a medidas de mitigación y llevarlas a cabo directamente la SCT.

II.2.6 Desmantelamiento y abandono de las instalaciones.

La selección del período de diseño en el proyecto es de suma importancia en virtud de que dicho período representa el número de años que el pavimento prestará servicio antes de requerir la primera sobre carpeta o reforzamiento y en consecuencia, también regula las estrategias de la conservación durante ese período, por lo anterior se propone con carácter intermedio para el concepto económico y estructural. El camino tendrá mantenimiento por lo cual el periodo de vida útil se prolongara, por tal motivo no se prevé abandono del sitio.

Desmantelamiento de infraestructura temporal para la realización de la obra

Abandono y Restauración de la infraestructura temporal (Campamentos, Talleres, Almacenes, etc.)

Comprende la implementación de medidas de cierre, abandono y restauración de las facilidades que forman parte de la infraestructura temporal en el ámbito de influencia del proyecto.

Dentro de las medidas de cierre de la infraestructura, podemos mencionar a las siguientes:

Elaboración de expediente de cierre: El ejecutor, en base a la información adquirida sobre el entorno ambiental y de las actividades del proyecto, elaborará el Plan de Cierre para las facilidades del proyecto, teniendo en cuenta los siguientes aspectos:

Desmantelamiento del lugar

Limpieza del lugar

Disposición de residuos

Perfilado

Cobertura

Revegetación

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-

XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE

QUECHULTENANGO, EN EL ESTADO DE GUERRERO.

Inspección del lugar: Esta visita se hará para determinar las labores que son

necesarias así como identificar el volumen de residuos que tendrán que ser

retirados de la instalación.

Desmantelamiento de Infraestructura Temporal: Las instalaciones que hayan

sido construidas para la etapa de construcción, serán demolidas, y posteriormente

ubicada en forma ordenada en el área específica del área de los frentes de trabajo.

Las piezas, productos, subproductos o residuos que se generen por el

desmantelamiento, serán dispuestos de acuerdo al plan de manejo de residuos del

proyecto.

Limpieza del lugar: Luego de haber dispuesto los materiales, equipos y otros que

tengan un reúso, o sean trasladados para su explotación en otras zonas distintas,

se procederá a hacer una limpieza general del lugar, debiendo acopiar los residuos

de manera segregada, para proceder al traslado a su disposición final.

Perfilado: El terreno que haya sufrido modificaciones en su relieve original para la

construcción de instalaciones necesarias en el proyecto debe ser reconformado

para lograr una superficie topográfica acorde con el entorno ambiental circundante.

En esta actividad se buscará la estabilidad física de los taludes que puedan quedar

expuestos.

II.2.7 Residuos.

Durante la operación y el mantenimiento que se le pudiera proporcionar a la

maquinaría y/o equipo en campo, se tomará en cuenta que todas la grasas, aceites,

solventes y cualquier residuo peligroso sean acopiados en contenedores especiales

91

y manejados conforme a lo estipulado en los Reglamentos de Residuos Peligrosos y demás normativas aplicables.

Para evitar el derrame de aceites y grasas en la zona, el mantenimiento de los vehículos se realizará en talleres especializados.

Tabla 16. Combustible utilizado en el proyecto.

Producto	Característica CRETIB
Gasolina	Inflamable
Diésel	Inflamable
Lubricantes	Inflamable

Explosivos

El uso de explosivos no será necesario dado que el terreno donde se llevara a cabo la apertura en su totalidad son terrenos con material A y B, suelo arcillo-limo-arenoso y roca que será cortada con maquinaria.

Energía y combustibles

La energía eléctrica necesaria en campo para el funcionamiento de algún tipo de maquinaria puede ser suministrada a base de plantas portátiles generadoras de electricidad de 500 KW.

Los combustibles como gasolina y diésel necesarios para la operación de la maquinaria pesada y vehículos ligeros, podrán ser suministrados por las estaciones de servicio que se encuentren más cercanas. Su traslado se hará en camiones pipa

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-

XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE

QUECHULTENANGO, EN EL ESTADO DE GUERRERO.

con capacidad de 7 m³ y se almacenará en los patios de maquinaria en tanques

metálicos, se estima se realice un viaje a la semana de cada combustible.

Residuos Vegetales

Durante la etapa de desmonte y despalme de la carretera se generaran residuos

vegetales que serán almacenados de manera temporal al costado del camino para

su uso en reforestación de taludes y zonas potenciales a reforestar.

Y en caso de que los ejidatarios o dueños de los predios deseen hacer uso de este

recurso para cercas o combustible se les tratará de convencer que es mejor usarlo

como medida compensatoria.

Residuos sólidos

Durante el proyecto se acumulara lo restante de material de construcción, envases

de plástico, lata, etc. para los que se colocaran tambos para su almacenamiento en

lugares específicos. En esta etapa los trabajadores generan desechos orgánicos

sanitarios para lo cual se instalaran letrinas.

Manejo de residuos sólidos peligrosos, no peligrosos y su disposición final

Residuos Peligrosos

Residuo es aquel material y/o sustancia que se origina posterior a un proceso y el

cual no tiene una utilización. Tomando como base este concepto podemos

mencionar que dentro de todo el proceso del proyecto no se generaran residuos

considerados como peligrosos, los únicos residuos peligrosos provienen del

mantenimiento de la máquina, equipo y vehículos utilizados en las actividades del

proyecto. Para ello se dará aviso a todo el personal de la prohibición de efectuar

93

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE

QUECHULTENANGO, EN EL ESTADO DE GUERRERO.

algún mantenimiento en el sitio del proyecto, estableciendo que éste se efectuara en los talleres autorizados de las poblaciones aledañas. Por lo anterior no se considera generar residuos peligrosos sólidos y evidentemente los prestadores de los servicios de mantenimiento serán los responsables del manejo de los residuos peligrosos que generen por motivo de su actividad.

En caso de que se llegará almacenar algunos lubricantes, diésel, gasolina, grasas o aceites serán en proporciones minoritarias para disminuir los riesgos en su manejo, estos tendrán que ser almacenados en tambos metálicos junto a los residuos de lubricantes que lleguen a generarse y serán entregados a una empresa especializada que cuente con permiso por parte de la Secretaría de Medio Ambiente y Recursos Naturales para llevar a cabo estas actividades.

No peligrosos

Para evitar que la gente que labora en las diferentes actividades del proyecto defeque al aire libre, se colocarán letrinas móviles las cuales deberán ser suministradas por la empresa encargada de ejecutar la obra o en su caso por alguna empresa subcontratada que dé seguimiento a la mitigación de impactos negativos. El retiro de las letrinas lo realizará la empresa autorizada para llevar a cabo estas actividades por lo que el manejo y la disposición final de los residuos sanitarios será responsabilidad del prestador del servicio.

En el caso de los residuos sólidos no peligrosos como lo son las latas, envases de plástico, vidrio, cartón, etc., serán recolectados para su disposición final en un centro

de acopio o en su caso serán recolectados para su disposición final en tiraderos oficiales del Municipio.

Tabla 17. Residuos peligrosos y no peligrosos generados de acuerdo a lo proyectado.

Fuente	Residuo peligrosos y no peligrosos	
Aceites y grasas	Los aceites, grasas que sean utilizadas en el mantenimiento de los vehículos se realizarán en zonas apropiadas para realizar estas actividades.	
Fuente	Residuo peligrosos y no peligrosos	
Emisiones a la atmósfera.	Los humos generados por la maquinaria, así como de alguna fogata que se haga para la preparación de alimentos. No son cuantificables pero se mantendrán los vehículos en óptimo estado para reducirlas al mínimo.	
Descargas de agua residuales.	Las resultantes del lavado de utensilios y el aseo del personal.	
Residuos sólidos no peligrosos	Aunque se indicará al personal que eviten dejar residuos, pudieran encontrarse algunos envases rotos, bolsas de plástico o latas.	
Emisiones de ruido.	Los ocasionados por la maquinaria y los camiones de transporte. Se mantendrán los vehículos en óptimo estado para reducirlas al mínimo.	

Fuentes emisoras de ruido

Las fuentes generadoras de ruido, son las maquinas como la motoconformadora, compactador vibratorio, retroexcavadora, mezcladora de concreto, equipo de trituración y diversas herramientas.

En virtud de que todas las fases del proyecto, se realiza a cielo abierto y alejado de los centros de población, los niveles de ruido que se generan no afectarán tanto, ni rebasan los niveles permitidos por las Normas aplicables en la materia.

Infraestructura para el manejo y la disposición adecuada de los residuos.

Los residuos biodegradables serán reincorporados al suelo como materia orgánica y aquellos residuos no biodegradables serán depositados en contenedores para su

posterior traslado y disposición en el basurero más próximo, ubicado en el Municipio de Quechultenango, Gro.

Cabe mencionar que en el proyecto no es necesaria la utilización de rellenos sanitarios, plantas de tratamiento de aguas residuales, servicios de separación, manejo, tratamiento, reciclamiento o confinamiento de residuos, ya que no es trascendente la generación que se realiza en las actividades de modernización del camino, los pocos residuos resultantes se depositaran en tiraderos de basura del Municipio.

Contaminación por vibraciones y ruido.

Como ya se había mencionado las únicas fuentes generadoras de vibraciones, son los compactadores vibratorios que se utilizan para compactar el terreno, sin embargo no se considera como contaminación en virtud de que no son por tiempo prolongados.

III. VINCULACIÓN CON LOS INSTRUMENTOS DE PLANEACIÓN Y ORDENAMIENTOS JURÍDICOS APLICABLES

III.1. Vinculación Con La Constitución

Tabla 18. Vinculación con la constitución y vinculación con el proyecto.

Constitución p	olítica de los Estados Unidos Mexicanos	Vinculación
ARTICULO 4	Toda persona tiene derecho a un medio ambiente adecuado para su desarrollo y bienestar.	La evaluación de impacto ambiental, es el principal instrumento de la política ambiental, y por lo tanto elemento primordial de la sustentabilidad, por lo que es indispensable presentar esta MIA-R referente a la Modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: Del km 0+000 al km 6+000, en el Municipio De Quechultenango, en el Estado de Guerrero, manifestación que da a conocer en sus respectivos apartados, los Impactos ambientales que se generarían por la construcción del
ARTICULO 25	El desarrollo se debe dar de forma sustentable, sujetando al sector público y privado a las modalidades que dicte el interés público y al uso, en beneficio general, de los recursos productivos, cuidando su conservación y el medio ambiente.	
ARTICULO 27	Se dictarán las medidas necesarias para ordenar los asentamientos humanos y establecer adecuadas provisiones, usos, reservas y destinos de tierras, aguas y bosques, a efecto de ejecutar obras públicas, para preservar y restaurar el equilibrio ecológico, evitando la destrucción de los elementos naturales y los daños que la propiedad pudiera sufrir en perjuicio de la sociedad.	camino señalado; asimismo se establecen los procedimientos para prevenir y mitigar tales impactos, aunado a que dicha manifestación se realiza bajo las pautas de los Instrumentos normativos que aplican en el área del proyecto, como lo son, la Ley General del Equilibrio Ecológico y la Protección al Ambiente, además de Normas Oficiales Mexicanas entre otras, esto para coadyuvar a la protección y preservación del medio ambiente manteniendo un equilibrio ecológico, logrando un desarrollo equilibrado y el mejoramiento de las condiciones de vida de la población, evitando la destrucción de los elementos naturales.

III.2. El Plan Nacional de Desarrollo 2019-2024

La Estrategia Nacional de Seguridad Pública, aprobada recientemente por el senado de la República, establece entre sus objetivos:

Garantizar empleo, educación, salud y bienestar mediante la creación de puestos de trabajo, el cumplimiento del derecho de todos los jóvenes del país a la educación superior, la inversión en infraestructura y servicios de salud y por medio de los programas regionales, sectoriales y coyunturales de desarrollo: Jóvenes Construyendo el Futuro, Instituto Nacional de Salud para el Bienestar, Universidades para el Bienestar, Pensión Universal para Personas Adultas Mayores, Becas "Benito Juárez", Crédito Ganadero a la Palabra, Producción para el Bienestar, Precios de Garantía a Productos Alimentarios Básicos, programas de Comunidades Sustentables "Sembrando Vida", de Infraestructura Carretera, Zona Libre de la Frontera Norte, Tren Maya, Corredor Multimodal Interoceánico y Aeropuerto "Felipe Ángeles" en Santa Lucía.

Desarrollo sostenible

El gobierno de México está comprometido a impulsar el desarrollo sostenible, que en la época presente se ha evidenciado como un factor indispensable del bienestar. Se le define como la satisfacción de las necesidades de la generación presente sin comprometer la capacidad de las generaciones futuras para satisfacer sus propias necesidades. Esta fórmula resume insoslayables mandatos éticos, sociales, ambientales y económicos que deben ser aplicados en el presente para garantizar un futuro mínimamente habitable y armónico. El hacer caso omiso de este paradigma no sólo conduce a la gestación de desequilibrios de toda suerte en el corto plazo, sino que conlleva una severa violación a los derechos de quienes no han nacido. Por ello, el Ejecutivo Federal considerará en toda circunstancia los

impactos que tendrán sus políticas y programas en el tejido social, en la ecología y en los horizontes políticos y económicos del país. Además, se guiará por una idea de desarrollo que subsane las injusticias sociales e impulse el crecimiento económico sin provocar afectaciones a la convivencia pacífica, a los lazos de solidaridad, a la diversidad cultural ni al entorno.

El Programa Nacional de Reconstrucción está orientado a la atención de la población afectada por los sismos de septiembre de 2017 y febrero de 2018, con un enfoque de derechos humanos, y se aplica en Chiapas, México, Guerrero, Hidalgo, Michoacán, Morelos, Oaxaca, Puebla, Tabasco, Tlaxcala, Veracruz y Ciudad de México. Se prioriza la atención a quienes habiten en zonas con mayor grado de marginación, con población mayoritariamente indígena o con altos índices de violencia, y considerando las localidades con mayor concentración de daños materiales, la proporcionalidad de la afectación por el número de inmuebles en la localidad, y el mayor daño en la infraestructura y las viviendas. El programa es operado por la Comisión Intersecretarial para la Reconstrucción, creada mediante decreto presidencial, es encabezada por la Secretaría de Desarrollo Agrario, Territorial y Urbano y participan en ella las Secretarías de Hacienda y Crédito Público, Educación Pública, Salud, Cultura, Seguridad Pública y Protección Ciudadana. Está a cargo de la reconstrucción, reparación, reubicación, acondicionamiento, equipamiento, restauración, rehabilitación, mantenimiento y capacitación para la prevención y la conservación de los bienes afectados por los sismos en los sectores de vivienda, educación, salud y cultura. Para la realización de los proyectos y acciones se promoverá la participación de profesionistas, instituciones académicas, pequeñas empresas, cooperativas, trabajadores de la construcción y de servicios, privilegiando la participación de empresas y profesionistas de la entidad correspondiente, así como de la mano de obra de las localidades en las que se llevarán a cabo los proyectos y acciones del programa, cuando no se trate de actividades de alta especialización para recuperar y preservar el patrimonio cultural de la Nación. En todos los casos se buscará contribuir al

fortalecimiento de la economía local. Este programa tiene un presupuesto de ocho mil millones de pesos que serán ejercidos por las secretarías de Desarrollo Agrario, Territorial y Urbano (cinco mil 600 millones) y Educación Pública, Salud, y Cultura (800 millones cada una).

8. Desarrollo Urbano y Vivienda. Hemos comenzado el Programa de Mejoramiento Urbano y Vivienda en 14 municipios del país, tanto en ciudades de la frontera norte como en polos de desarrollo turístico, para aminorar el contraste entre zonas con hoteles de gran lujo, desarrollos urbanos exclusivos y colonias marginadas. Se realizarán obras de rehabilitación y/o mejoramiento de espacios públicos.

El programa abarca ciudades fronterizas como Tijuana, Mexicali, San Luis Río Colorado, Nogales, Ciudad Juárez, Acuña, Piedras Negras, Nuevo Laredo, Reynosa y Matamoros; así como colonias marginadas de cuatro turísticos: Los Cabos, Bahía de Banderas, Acapulco y Solidaridad.

ECONOMÍA

Detonar el crecimiento

Impulsar la reactivación económica, el mercado interno y el empleo

Una de las tareas centrales del actual gobierno federal es impulsar la reactivación económica y lograr que la economía vuelva a crecer a tasas aceptables. Para ello se requiere, en primer lugar, del fortalecimiento del mercado interno, lo que se conseguirá con una política de recuperación salarial y una estrategia de creación masiva de empleos productivos, permanentes y bien remunerados. Hoy en día más de la mitad de la población económicamente activa permanece en el sector informal, la mayor parte con ingresos por debajo de la línea de pobreza y sin prestaciones laborales. Esa situación resulta inaceptable desde cualquier perspectiva ética y perniciosa para cualquier perspectiva económica: para los propios informales, que viven en un entorno que les niega derechos básicos, para los productores, que no pueden colocar sus productos por falta de consumidores, y para el fisco, que no puede considerarlos causantes.

El sector público fomentará la creación de empleos mediante programas sectoriales, proyectos regionales y obras de infraestructura, pero también facilitando el acceso al crédito a las pequeñas y medianas empresas (que constituyen el 93 por ciento y que general la mayor parte de los empleos) y reduciendo y simplificando los requisitos para la creación de empresas nuevas.

El gobierno federal impulsará las modalidades de comercio justo y economía social y solidaria.

Construcción de caminos rurales

Este programa, ya en curso, permitirá comunicar 350 cabeceras municipales de Oaxaca y Guerrero con carreteras de concreto; generará empleos, reactivará las economías locales y desalentará la migración.

III.3. Plan Estatal de Desarrollo 2016-2021

Contexto.

Guerrero ha sido, de manera histórica, una entidad caracterizada por su pobreza extrema y su carencia de condiciones para el desarrollo económico y humano. La falta de empleos de calidad, bien remunerados, ha sido una barrera para alcanzar mejor calidad de vida entre los guerrerenses.

Pobreza extrema

La pobreza extrema está presente en toda la entidad, aunque su impacto es mayor en las zonas rurales. No solo se debe impulsar el desarrollo de las ciudades con más densidad poblacional, sino también, el de las localidades rurales. Los sectores

agropecuario y pesquero radican en zonas poco urbanizadas, por las características inherentes a sus actividades económicas. Los campesinos y los pescadores son población vulnerable de la pobreza extrema. Si bien durante décadas se ha inyectado recursos públicos a estos sectores, los resultados no han sido satisfactorios. El reto de la Administración actual es la asignación eficiente de apoyo económico para impactar de manera significativa sobre la calidad de vida de quienes pertenecen a estos sectores. La primera acción a realizar por el Gobierno de Guerrero será eliminar los programas que se ha demostrado que no funcionan y diseñar nuevas políticas públicas que sí lo hagan. Las condiciones laborales de campesinos y pescadores distan, en muchos de los casos, de ser las mínimas para su buen desempeño. Muchos niños se ven forzados a trabajar para contribuir al ingreso familiar, lo cual les imposibilita tener acceso a la educación y mejorar su vida en el futuro. La tierra y los mares surianos son de riqueza invaluable. Es momento de generar con ella riqueza para quienes los trabajan.

Telecomunicaciones

Nuestra entidad presenta un atraso en cuanto al tema de telecomunicaciones. Un gran porcentaje de los habitantes siguen aún incomunicados. Este fenómeno es mayor en las zonas rurales y las regiones con mayor pobreza y marginación. Si bien la radio y la televisión tienen una cobertura amplia, en temas como telefonía celular y acceso a la Internet, hay mucho por hacer. El desarrollo en las telecomunicaciones fomentará una sociedad más informada, que permitirá que los ciudadanos tomen decisiones políticas, económicas y sociales de manera responsable y asertiva. Estos canales de comunicación también favorecerán y nutrirán la interacción entre Sociedad y Gobierno, al promover la participación activa de la sociedad civil en las políticas públicas y las acciones del Gobierno. La nuestra es la era de las telecomunicaciones. Para poder ser competitivos debemos fomentar una cultura de uso de nuevas tecnologías en las telecomunicaciones como la Internet para estar informados y a la par con la globalización mundial. El rezago en las comunicaciones

es un obstáculo para el desarrollo de Guerrero, por lo que la actual Administración invertirá en infraestructura para generar mayor cobertura de información.

Desarrollo económico

La finalidad de fomentar la producción de los diversos sectores del Estado es impulsar el desarrollo económico en beneficio de los guerrerenses. Sin embargo, esto no será posible si no hay comercialización y abastecimiento eficientes. La producción económica de Guerrero, a pesar de ser exitosa, en muchos casos enfrenta grandes problemas para la comercialización de sus productos. La falta de competitividad y la posición de marcas impiden su crecimiento; también se han desaprovechado las áreas de oportunidad que ofrece nuestra entidad. Es el momento de romper barreras comerciales y generar el desarrollo que tanta falta hace a los guerrerenses.

El sector comercio y abasto es la cadena final para completar de manera exitosa el ciclo de mercado. El Gobierno del Estado de Guerrero dirigirá recursos para revitalizar estos sectores y coadyuvar con los empresarios para hacer de sus productos, marcas posicionadas con posibilidades de venta a los mercados local, nacional e internacional. Para lograr los objetivos, se necesita la coordinación de los tres niveles de Gobierno con el propósito de impulsar la producción del Estado, mitigando así el rezago que ahora padece la industria en la entidad.

Comunicaciones y transporte

La economía mundial nos obliga a estar en la vanguardia en vías de comunicaciones y transporte. Una de las estrategias principales del Gobierno Estatal es crear una conectividad eficiente entre Guerrero y el resto del país y del

mundo; solo así se podrá detonar el desarrollo económico. Reactivar las comunicaciones y mejorar el servicio de transporte inyectará dinamismo a las industrias locales y detonará el desarrollo estatal para las familias guerrerenses mediante la generación de empleos y la modernización de industrias y de la infraestructura carretera. Mover los indicadores económicos será tarea ardua, pero no imposible.

La coordinación de los tres niveles de Gobierno será vital para cumplir con los objetivos. Deben articularse políticas públicas y acciones gubernamentales eficientes, que respondan a las necesidades de las personas y a la realidad estatal. La modernización del transporte público es una demanda que las autoridades municipales y estatales no pueden ignorar. Es urgente hacer una reingeniería en este rubro para tomar decisiones acertadas en beneficio de todos. La diseminación de recursos públicos y el establecimiento de políticas sociales responsables abrirán la ruta hacia el éxito. El uso de nuevas tecnologías que disminuyan los costos de movilidad y sean protectoras del medio ambiente es una necesidad innegable en Guerrero, al igual que la integración de la entidad a nuevas formas de comunicación.

Necesidades y recursos

Las necesidades de Guerrero son innumerables y los recursos económicos y humanos, limitados. Por tal motivo, la asignación correcta de financiamiento público a proyectos estratégicos para el desarrollo del Estado será, sin duda, una condición necesaria en la presente Administración. En el pasado, la distribución de recursos fue desorganizada, sin planeación, evaluación de resultados y proyección a largo plazo, lo que contribuyó a la pobreza y la marginación de Guerrero. El Ejecutivo Estatal pondrá en el centro de su plan de Gobierno la planeación de acciones gubernamentales, el seguimiento y la medición de los resultados del desempeño de su Gobierno. Sin planeación es imposible el desarrollo de Guerrero. No habrá ocurrencias ni improvisaciones.

Segundo proyecto

Turismo, Gran Palanca para el Desarrollo: "Proyecto Estratégico para la Promoción y el Fomento Turístico del Estado de Guerrero"

Históricamente, el turismo ha sido la principal actividad económica para el Estado de Guerrero. Según el Instituto Nacional de Geografía y Estadística, en 2015, las actividades terciarias, entre las que se encuentran el comercio, los transportes, los servicios inmobiliarios y de alquiler de bienes muebles e intangibles, la hotelería y la gastronomía, aportaron el 74% del PIB del Estado. Durante 2016 aportaron el 69.44% del Producto Interno Bruto del Estado. De acuerdo con la Secretaría de Fomento al Turismo del Estado de Guerrero, entre 2010 y 2015, la derrama económica que esta actividad aportó fue variable. El nivel más alto se alcanzó en 2010, con 4 662.9 miles de millones de dólares, y el más bajo durante 2015, con 3 097.2 miles de millones de dólares. Según datos de la misma secretaría, durante 2019 se prevé que la derrama será de 42 136 millones. Tradicionalmente se ha reconocido como el principal punto de atracción y actividad turística al Puerto de Acapulco, el cual, junto con Ixtapa-Zihuatanejo, son los municipios parcialmente autosuficientes por esta actividad. En menor proporción, pero también con gran reconocimiento, se encuentra el municipio de Taxco de Alarcón. Sin embargo, además de estos tres destinos hay otros 46 municipios que por su patrimonio natural, cultural e histórico tienen vocación turística y, además de su potencial para desarrollarse por sí mismos o a través de corredores estratégicos, pueden aportar algún valor agregado a los tres destinos ya consolidados.

Otras zonas cuentan con el potencial y la vocación para promover nuevos polos de desarrollo de importancia, como los corredores turísticos que parten de Acapulco: por un lado, hacia el Estado de Oaxaca en la Costa Chica hasta Punta Maldonado, y por el otro, hacia el Estado de Michoacán en la Costa Grande hasta la localidad de Petacalco. Además de la relevante función económica que la actividad turística cumple para el Estado de Guerrero, también desempeña una función esencial para promover y difundir la cultura, desarrollar mercado interno y dar a conocer el

patrimonio tangible e intangible del Estado. Con lo anterior se busca recuperar la posición que Guerrero llegó a ocupar a nivel nacional e internacional en materia turística, mediante: a) la promoción de sus atractivos, valores y cultura, y b) su reconversión en una de las principales palancas para el desarrollo de los guerrerenses. Así se apoyará la generación de más y mejores empleos, la reducción de la pobreza y la mejora de las condiciones de vida de la población.

Quinto proyecto

Infraestructura y conectividad: "Mejoramiento, Modernización y Ampliación de la Red Carretera del Estado"

Para el Gobierno Estatal, la infraestructura de comunicaciones es un elemento fundamental para el desarrollo de las regiones. Con la creación de más infraestructura, se sientan las bases para generar bienestar y desarrollo comunitario, mejorar el ingreso e incrementar el acceso a los servicios básicos en las diferentes localidades de la entidad. En Guerrero tenemos municipios y localidades que no cuentan con una comunicación adecuada, por lo que es indispensable fortalecer la infraestructura carretera estatal y rural, con el fin de favorecer la conectividad y los servicios locales y propiciar una mejor calidad de vida.

Cualquier estrategia para el desarrollo requiere una adecuada infraestructura de comunicaciones. Una carretera, un camino, un puente, significa integración y modernidad; de ahí la trascendencia de realizar las obras necesarias para que los guerrerenses puedan transitar por el Estado con mejores vías de comunicación y mayor seguridad. A lo largo y ancho del Estado de Guerrero todavía hay localidades que no cuentan con un camino pavimentado o una brecha. Algunos que sí existen, dada su antigüedad, demandan grandes inversiones para mantener sus condiciones de transitabilidad, en especial en las localidades con una población

menor a 500 habitantes. Este problema persiste, sobre todo, debido a la dispersión geográfica de las comunidades, principalmente en las regiones de La Montaña, de Tierra Caliente, de la Sierra. Como resultado del crecimiento poblacional y de la demanda de bienes y servicios requeridos para ofrecer mayores oportunidades de desarrollo y mejorar la calidad de vida de los guerrerenses, es necesario conservar, rehabilitar y modernizar las principales carreteras federales y estatales, a efecto de contar con una red carretera completa y segura, que conecte a las regiones estratégicas del Estado.

De igual manera, es necesario modernizar y rehabilitar las carreteras y los caminos que conectan a las comunidades del medio rural, así como dotar de infraestructura a las más aisladas, facilitando así su integración al desarrollo económico y sustentable del Estado. Es momento de hacer fructificar la disposición que ha mostrado el Gobierno Federal, al establecer como una de sus prioridades el impulso a inversiones en el sector infraestructura de comunicaciones.

III.4.Ordenamiento Ecológico del Territorio (POET) del Estado de Guerrero.

El Ordenamiento Territorial es definido como un proceso de planeación dirigido a evaluar y programar los usos del suelo así como el manejo de los recursos naturales. En el territorio estatal, esta información se combina con referencia a las características socioeconómicas de la población y las tendencias de ocupación del territorio por los asentamientos humanos y el desarrollo de las actividades productivas para así establecer un planteamiento que contribuya al desarrollo integral del territorio.

El modelo de Ordenamiento Territorial que se define para el Estado de Guerrero cuenta con los siguientes objetivos:

Un potencial económico aprovechado en forma sustentable.

- Zonas de alto potencial para el desarrollo de actividades productivas adecuadamente aprovechadas para el desarrollo sustentable, de acuerdo con las aptitudes del suelo y la conservación de sus recursos naturales.
- Un potencial económico restructurado y sustentablemente aprovechado en las zonas actualmente con escasas actividades económicas o inadecuadamente explotadas.
- Un patrimonio económico representado por los actuales sitios de sol y playa, que conservan sus atractivos y continúan siendo importante fuente de empleo e ingresos.

- Nuevos destinos de turismo sustentable en la Costa Grande y en la Costa Chica, son fuentes importantes de empleo que, además, contribuyen a controlar el crecimiento excesivo de los tradicionales centros turísticos en la costa.
- Hacia el interior del Estado los recursos naturales, culturales, arqueológicos e históricos de alto atractivo para el turismo alternativo, son aprovechados en forma sustentable.
- Una población rural con niveles satisfactorios de desarrollo social.
- Un mayor arraigo de la población en el medio rural, principalmente en las zonas serranas, como consecuencia de la satisfacción de las demandas sociales, y el mejoramiento de los índices de desarrollo humano. Por consiguiente el proyecto de "Modernización del Camino Jalapa-Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero, es congruente con el objetivo antes referido.
- Preservación de áreas naturales y protección en zonas de riesgos naturales y creados.

- Zonas de riesgo y de preservación ecológica sujetas a programas de manejo que logran, por una parte, la de protección de la población frente a fenómenos naturales y, por otro, la conservación de los recursos bióticos que garantizan la conservación de la biodiversidad.
- Las cuencas hidrográficas del Estado son integralmente manejadas.
- Un nuevo orden espacial que facilita el desarrollo sustentable del Estado.
- Las ciudades de mayor concentración de población han moderado su crecimiento y mejorado sustancialmente las condiciones ambientales de aire, suelo y agua.
- Un sistema de centros urbanos adaptado funcionalmente a los propósitos del desarrollo sustentable a largo plazo.
- Un equipamiento y servicios adecuadamente emplazados para atender a la población rural en todo el territorio del Estado. El Ordenamiento Territorial es definido como un proceso de planeación dirigido a evaluar y programar los usos del suelo así como el manejo de los recursos naturales. En el territorio estatal, esta información se combina con referencia a las características socioeconómicas de la población y las tendencias de ocupación del territorio por los asentamientos humanos y el desarrollo de las actividades productivas para así establecer un planteamiento que contribuya al desarrollo integral del territorio.

El modelo de Ordenamiento Territorial que se define para el Estado de Guerrero cuenta con los siguientes objetivos:

Un potencial económico aprovechado en forma sustentable.

 Zonas de alto potencial para el desarrollo de actividades productivas adecuadamente aprovechadas para el desarrollo sustentable, de acuerdo con las aptitudes del suelo y la conservación de sus recursos naturales.

- Un potencial económico restructurado y sustentablemente aprovechado en las zonas actualmente con escasas actividades económicas o inadecuadamente explotadas.
- Un patrimonio económico representado por los actuales sitios de sol y playa, que conservan sus atractivos y continúan siendo importante fuente de empleo e ingresos.
- Nuevos destinos de turismo sustentable en la Costa Grande y en la Costa Chica, son fuentes importantes de empleo que, además, contribuyen a controlar el crecimiento excesivo de los tradicionales centros turísticos en la costa.
- Hacia el interior del Estado los recursos naturales, culturales, arqueológicos e históricos de alto atractivo para el turismo alternativo, son aprovechados en forma sustentable.

•

Una población rural con niveles satisfactorios de desarrollo social.

Un mayor arraigo de la población en el medio rural, principalmente en las zonas serranas, como consecuencia de la satisfacción de las demandas sociales, y el mejoramiento de los índices de desarrollo humano. Por consiguiente el proyecto "Modernización del Modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero" es congruente con el objetivo antes referido.

Preservación de áreas naturales y protección en zonas de riesgos naturales y creados.

- Zonas de riesgo y de preservación ecológica sujetas a programas de manejo que logran, por una parte, la de protección de la población frente a fenómenos naturales y, por otro, la conservación de los recursos bióticos que garantizan la conservación de la biodiversidad.
- Las cuencas hidrográficas del Estado son integralmente manejadas.

Un nuevo orden espacial que facilita el desarrollo sustentable del Estado.

- Las ciudades de mayor concentración de población han moderado su crecimiento y mejorado sustancialmente las condiciones ambientales de aire, suelo y agua.
- Un sistema de centros urbanos adaptado funcionalmente a los propósitos del desarrollo sustentable a largo plazo.
- Un equipamiento y servicios adecuadamente emplazados para atender a la población rural en todo el territorio del Estado.

ORDENAMIENTO ECOLÓGICO

El Plan Nacional de Desarrollo 2000-2006, enfocado a la planeación y desarrollo Territorial con una visión 2030 promovido por parte de la Secretaria de Desarrollo Social (SEDESOL) Federal realizó el Programa Mesoregional de la región sursureste de ordenamiento del territorio que comprendió 9 Estados del país, el cual fue elaborado por el Instituto de Geografía de la UNAM estos estudios se hicieron en función al detonador económico y el corredor biológico que existe entre estos estados del país, así como de los polos de desarrollo que se verán involucrados en el Plan Puebla - Panamá, del cual se desprende el Programa Estatal de Ordenamiento Territorial de nuestro Estado (PEOT) en sus fases I (Caracterización) y II (Diagnostico); este Programa se dividió en tres variables importantes: Natural, Urbano-Social y Económico. Las actividades relativas a los estudios de las fases I y II se proponen obtener un diagnóstico de la realidad estatal, así como establecer

las acciones a emprender para modificar inercias o revertir procesos, perfilándolo hacia un marco acorde con un esquema de desarrollo equilibrado y sustentable en la entidad.

Un Instrumento de coordinación multisectorial y gubernamental que promueven y regulan las estrategias del desarrollo regional en la actualidad es Programa de ordenamiento territorial del Estado de Guerrero por parte de la SEMAREN y que nos presenta un modelo de OET como se observa en la siguiente figura.

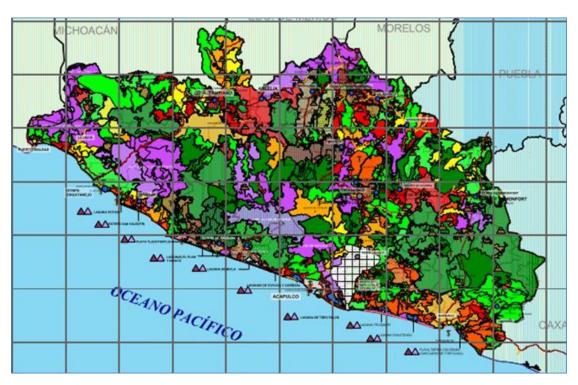


Imagen 13.- Mapa del POET Guerrero

El proyecto se encuentra en la Unidad Territorial de Gestión Ambiental 16 (UTGA– 16) Chilapa de Álvarez del Programa Estatal de Ordenamiento Territorial de Guerrero.

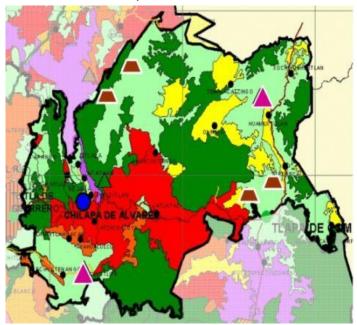


Imagen 14. Mapa del POET donde se encuentra el proyecto en cuestión dentro del Municipio de Quechultenango, parte inferior izquierda.

Las política ambiental que aplican para la región donde se localiza el proyecto es la de aprovechamiento con impulso para la agricultura de temporal por lo que la construcción del camino ayudara a dar este impulso a la agricultura del lugar por lo que este proyecto no se contrapone a las políticas de ordenamiento territorial por el contrario ensambla de manera positiva.

DESCRIPCION DE LA POLÍTICAS TERRITORIALES DE LA UTGA 16

1.- Política de Protección Uso Activo

Se propone esta política, por el alto valor excepcional de los recursos naturales existentes y los servicios ambientales que proporciona el Parque Nacional Juan Álvarez del Municipio de Zitlala para conservar el equilibrio ecológico de la región, así como por la presencia de vestigios arqueológicos del Preclásico, Clásico, y Postclásico que pueden propiciar actividades económicas sustentadas en circuitos turísticos de bajo impacto, como el turismo rural, arqueológico, el ecológico, o de naturaleza y para controlar el acceso a los sitios y no rebasar su capacidad de carga.

2.- Política de Aprovechamiento con Impulso para las Actividades Primarias

Se permiten y fomentan las actividades forestales en las zonas con amplitud forestal y de conservación de la vida silvestre, bajo explotaciones en condiciones sustentables, que se ubican en una porción Oriente de la unidad territorial y que colindan con el estado de Puebla y otra porción al Poniente y Sur de la Unidad Territorial.

3.- Se permite y fomentan las actividades agrícolas de riesgo y pecuario intensivo en las zonas con la aptitud agrícola y ganadera bajo condiciones sustentables, que se localizan en la parte central de la Unidad Territorial.

4.- Politica de Aprovechamiento con Impulso urbano

Con el propósito de favorecer el crecimiento ordenado en la cabecera municipal de Chilapa de Álvarez y previendo el desarrollo de la actividad forestal, agrícola y de servicios de la región, se promueve su equipamiento urbano para facilitar el establecimiento de áreas habitacionales y de servicios para la población y la industria; así como para la instalación de empresas que proporcionen los servicios que demanden las actividades económicas de la región; los servicios de educación y salud.

ÁREAS PROPUESTAS Y ESTABLECIDAS	POLITICAS DE PROTECCIÓN		POLÍTICA ESPECIAL DE	POLITICAS DE APROVECHAMIENTO		
	USO ACTIVO	USO PASIVO	CONSERVACION	IMPULSO	CONSOLIDACIÓN	REGULACIÓN
AREA DE PROTECCIÓN NATURAL		45				
AREA NATURAL PROTEGIDA	A	Δ				
PATRIMONIO HISTÓRICO CULTURAL						
AGRICULTURA INTENSIVA						
AGRICULTURA DE TEMPORAL						
PECUARIO INTENSIVO						
PECUARIO EXTENSIVO						
FORESTAL COMERCIAL						
MINERÍA						
ECOTURISMO						
TURISMO MASIVO						
URBANO						0

Imagen 15.- Tabla donde muestra las Políticas ambientales y el impulso a estas.

Tabla 19. Vinculación del proyecto con las políticas ambientales del POETG:

	POLÍTICAS	VINCULACIÓN
1	Política de protección uso	El proyecto no atraviesa por algún núcleos
	activo.	establecidos y propuestos como ANP's ni sitios con
		presencia de vestigios arqueológicos del Preclásico,
		Clásico y Postclásico.
2	Política de	El proyecto ayudará al desarrollo económico de la
	Aprovechamiento con	zona con el impulso en actividades primarias,
	Impulso para las	siempre y cuando se haga apegándose a la
	Actividades Primarias	normatividad ambiental y restituyendo los impactos
		negativos a la naturaleza.
3	Política de	En este caso la construcción del proyecto contribuirá
	Aprovechamiento con	a la realización de actividades compatibles a la
	Regulación	región facilitando las actividades en los distintos
		sectores.

III.5. Programa de Ordenamiento Ecológico General del Territorio (POEGT) Introducción

Introducción

La planeación ambiental en México, se lleva a cabo mediante diferentes instrumentos entre los que se encuentra el ordenamiento ecológico, que es considerado uno de los principales instrumentos con los que cuenta la política ambiental mexicana. Tiene sustento en la LGEEPA y su Reglamento en Materia de Ordenamiento Ecológico (ROE). Se lleva a cabo a través de programas en diferentes niveles de aplicación y con diferentes alcances, así tenemos: el General, los Marinos, los Regionales y los Locales. La formulación, aplicación y evaluación del Programa de Ordenamiento Ecológico General del Territorio (POEGT) y de los Marinos, es facultad de la Federación, la cual se ejerce a través de la Secretaría de Medio Ambiente y Recursos Naturales, específicamente, a través de la Dirección General de Política Ambiental e Integración Regional y Sectorial de la Subsecretaría de Planeación y Política Ambiental, en coordinación con la Dirección General de Investigación de Ordenamiento Ecológico y Conservación de los Ecosistemas del Instituto Nacional de Ecología.

El ROE establece que el objeto del POEGT es llevar a cabo una regionalización ecológica del territorio nacional y de las zonas sobre las cuales la nación ejerce soberanía y jurisdicción, identificando áreas de atención prioritaria y áreas de aptitud sectorial. Asimismo, tiene por objeto establecer los lineamientos y estrategias ecológicas necesarias para, entre otras, promover la preservación, protección, restauración y aprovechamiento sustentable de los recursos naturales; promover medidas de mitigación de los posibles impactos ambientales causados por las acciones, programas y proyectos de las dependencias y entidades de la Administración Pública Federal (APF); orientar la ubicación de las actividades productivas y de los asentamientos humanos; fomentar el mantenimiento de los bienes y servicios ambientales; promover la protección y conservación de los ecosistemas y la biodiversidad; fortalecer el Sistema Nacional de Áreas Naturales

Protegidas; apoyar la resolución de los conflictos ambientales, así como promover la sustentabilidad e incorporar la variable ambiental en los programas, proyectos y acciones de los sectores de la APF.

Regionalización Ecológica

La base para la regionalización ecológica, comprende unidades territoriales sintéticas que se integran a partir de los principales factores del medio biofísico: clima, relieve, vegetación y suelo. La interacción de estos factores determina la homogeneidad relativa del territorio hacia el interior de cada unidad y la heterogeneidad con el resto de las unidades. Con este principio se obtuvo como resultado la diferenciación del territorio nacional en 145 unidades denominadas unidades ambientales biofísicas (UAB), representadas a escala 1:2,000,000, empleadas como base para el análisis de las etapas de diagnóstico y pronóstico, y para construir la propuesta del POEGT.

Así, las regiones ecológicas se integran por un conjunto de UAB que comparten la misma prioridad de atención, de aptitud sectorial y de política ambiental. Con base en lo anterior, a cada UAB le fueron asignados lineamientos y estrategias ecológicas específicas, de la misma manera que ocurre con las Unidades de Gestión Ambiental (UGA) previstas en los Programas de Ordenamiento Ecológico Regionales y Locales.

D. Infraestructura y equipamiento urbano y regional.

Estrategia 30: Construir y modernizar la red carretera a fin de ofrecer mayor seguridad y accesibilidad a la población y así contribuir a la integración inter e intrarregional.

Acciones:

 Modernizar los corredores troncales transversales y longitudinales que comunican a las principales ciudades, puertos, fronteras y centros turísticos del territorio.

- Llevar a cabo un amplio programa de construcción de libramientos y accesos carreteros a ciudades principales a fin de mejorar la conexión de la infraestructura carretera con la infraestructura urbana.
- Intensificar los trabajos de reconstrucción, conservación periódica y rutinaria de la red federal libre de peaje, con el apoyo de sistemas de gestión de conservación a fin de optimizar los recursos y mejorar la calidad de los trabajos.
- Construir y modernizar la infraestructura carretera para las comunidades rurales, en especial en las más alejadas de los centros urbanos. Se vincula con la Modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero.
- Promover que en el diseño, construcción y operación de carreteras y caminos, se evite interrumpir corredores biológicos y cauces de ríos, cruzar áreas naturales protegidas, así como, atravesar áreas susceptibles a derrumbes o deslizamientos.

La delimitación del SAR en donde se ubica el proyecto de acuerdo al **Programa de Ordenamiento Ecológico General del Territorio (POEGT)** y la regionalización ecológica, se ubica en la unidad ambiental biofísica (UAB) 98, la cual presenta las siguientes características:

Tabla 20. Identificación de POEGT.

FID	137
Shape	Polygon
ORD_REG	127
REGION	18.17
UAB	98
NOM	CORDILLERA COSTERA DEL CENTRO ESTE DE GUERRERO
POLIT_CVE	18
POLITICA	RESTAURACION Y APROVECHAMIENTO SUSTENTABLE
AAP_CVE	3
AAP_NOM	MEDIA
CVE_RECTOR	17
RECTOR	FORESTAL
COADYUVANT	PRESERVACION DE FLORA Y FAUNA

ASOCIADOS	AGRICULTURA – POBLACIONAL
OTROS_SECT	GANADERIA – MINERIA – SCT
POB_2010	569,573
REG_INDIG	MONTAÑA DE GUERRERO
ZFA_PORC	66.519104
EDO_ACTUAL	INESTABLE
CTO_PLA_20	INESTABLE
MED_PLA_20	INESTABLE A CRITICO
LAR_PLA_20	CRITICO
ESTRATEGIA	1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 15BIS, 24, 25, 26, 27, 30, 33, 34, 35, 36,
	37, 38, 40, 41, 42, 43, 44
HAS	965016

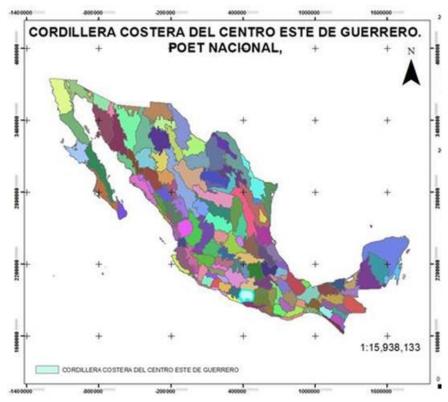


Imagen 16.- Región ecológica: 18.17. Unidad Ambiental Biofísica 98.

Superficie en km²: 9,650.16

Estado Actual del Medio Ambiente 2008.

98. <u>Inestable. Conflicto Sectorial Nulo</u>. No presenta superficie de ANP's. Media degradación de los Suelos. Alta degradación de la Vegetación. Sin degradación por Desertificación. La modificación antropogénica es muy baja. Longitud de Carreteras (km): Baja. Porcentaje de Zonas Urbanas: Muy baja. Porcentaje de Cuerpos de

agua: Muy baja. Densidad de población (hab/km2): Baja. El uso de suelo es Forestal y Agrícola. Con disponibilidad de agua superficial. Con disponibilidad de agua subterránea. Porcentaje de Zona Funcional Alta: 66.5. Alta marginación social. Muy bajo índice medio de educación. Medio índice medio de salud. Alto hacinamiento en la vivienda. Bajo indicador de consolidación de la vivienda. Muy bajo indicador de capitalización industrial. Muy alto porcentaje de la tasa de dependencia económica municipal. Muy bajo porcentaje de trabajadores por actividades remuneradas por municipios. Actividad agrícola: Sin información. Media importancia de la actividad minera. Media importancia de la actividad ganadera.

Tabla 21. Características de la UAB.

A) Preservación	stentabilidad ambiental del Territorio 1. Conservación <i>in situ</i> de los ecosistemas y su biodiversidad.
A) I Teser vacion	Recuperación de especies en riesgo.
	Conocimiento, análisis y monitoreo de los ecosistemas y su biodiversidad.
B) Aprovechamiento	Aprovechamiento sustentable de ecosistemas, especies, genes y recursos
sustentable	naturales.
	5. Aprovechamiento sustentable de los suelos agrícolas y pecuarios.
	6. Modernizar la infraestructura hidroagrícola y tecnificar las superficies agrícolas.
	7. Aprovechamiento sustentable de los recursos forestales.
	8. Valoración de los servicios ambientales.
C) Protección de los	12. Protección de los ecosistemas.
Recursos Naturales	13. Racionalizar el uso de agroquímicos y promover el uso de biofertilizantes.
D) Restauración	14. Restauración de ecosistemas forestales y suelos agrícolas.
E) Aprovechamiento	15. Aplicación de los productos del Servicio Geológico Mexicano al desarrollo
sustentable de recursos	económico y social y al aprovechamiento sustentable de los recursos naturales no
naturales no renovables y	renovables.
actividades	15 bis. Consolidar el marco normativo ambiental aplicable a las actividades mineras,
económicas de producción y	a fin de promover una minería sustentable.
servicios	
	ento del sistema social e infraestructura urbana
A) Suelo urbano y	24. Mejorar las condiciones de vivienda y entorno de los hogares en condiciones de
vivienda	pobreza para fortalecer su patrimonio.
B) Zonas de riesgo y	25. Prevenir y atender los riesgos naturales en acciones coordinadas con la sociedad
prevención de contingencias	civil.
	26. Promover la Reducción de la Vulnerabilidad Física.
C) Agua y Saneamiento	27. Incrementar el acceso y calidad de los servicios de agua potable,
	alcantarillado y saneamiento de la región.
	28. Consolidar la calidad del agua en la gestión integral del recurso hídrico.
5) 1.5	29. Posicionar el tema del agua como un recurso estratégico y de seguridad nacional
D) Infraestructura y	30. Construir y modernizar la red carretera a fin de ofrecer mayor seguridad y
equipamiento urbano y regional	accesibilidad a la población y así contribuir a la integración de la región.
E) Desarrollo social	33. Apoyar el desarrollo de capacidades para la participación social en las
2, 2004110110 000141	actividades económicas.
	Convergencia y optimización de programas y recursos para incrementar las
	oportunidades de acceso a servicios en el medio rural y reducir la pobreza.
	34. Integración de las zonas rurales de alta y muy alta marginación a la dinámica del
	desarrollo nacional.
	35. Inducir acciones de mejora de la seguridad social en la población rural para
	apoyar la producción rural ante impactos climatológicos adversos.

	 36. Promover la diversificación de las actividades productivas en el sector agroalimentario y el aprovechamiento integral de la biomasa. Llevar a cabo una política alimentaria integral que permita mejorar la nutrición de las personas en situación de pobreza. 37. Integrar a mujeres, indígenas y grupos vulnerables al sector económico-productivo en núcleos agrarios y localidades rurales vinculadas. 38. Fomentar el desarrollo de capacidades básicas de las personas en condición de pobreza. 40. Atender desde el ámbito del desarrollo social, las necesidades de los adultos mayores mediante la integración social y la igualdad de oportunidades. Promover la asistencia social a los adultos mayores en condiciones de pobreza o vulnerabilidad, dando prioridad a la población de 70 años y más, que habita en comunidades rurales con los mayores índices de marginación. 41. Procurar el acceso a instancias de protección social a personas en situación de
	vulnerabilidad.
Grupo III. Dirigidas al Fortaleci	miento de la gestión y la coordinación institucional
A) Marco Jurídico	42. Asegurar la definición y el respeto a los derechos de propiedad rural.
B) Planeación del	43. Integrar, modernizar y mejorar el acceso al catastro rural y la información agraria
Ordenamiento Territorial	para impulsar proyectos productivos.
	44. Impulsar el ordenamiento territorial estatal y municipal y el desarrollo regional mediante
	·

Imagen 17.- Ubicación del proyecto en la unidad ambiental biofísica (UAB) 98, Cordillera Costera del Centro Este de Guerrero, en el Programa de Ordenamiento Ecológico General del Territorio.

Programas de Recuperación y Restablecimiento de las Zonas de Restauración Ecológica.

Dentro de la jurisdicción que abarca el proyecto, no existen programas de este tipo, ya sean públicos o privados, así como tampoco restablecimiento de zonas de restauración ecológica.

III.5.1. Programas de Recuperación y Restablecimiento de las Zonas de Restauración Ecológica.

Dentro de la jurisdicción que abarca el proyecto Modernización del Camino Jalapa-Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero no existen programas de este tipo, ya sean públicos o privados, así como tampoco restablecimiento de zonas de restauración ecológica.

III.6. Áreas Naturales Protegidas, Región Terrestre Prioritaria, Región Hidrológica Prioritaria y Área de Importancia para la Conservación de las Aves.

Áreas naturales protegidas (ANP'S)

En un país como México que ocupa el segundo lugar en número de ecosistemas y el cuarto en número de especies que habitan en él, la relevancia de la conservación se convierte en un asunto de importancia para todo el planeta. La conservación y protección del patrimonio natural compete a todos aquellos que se beneficien directa o indirectamente de los servicios que proveen los ecosistemas y sus procesos ecológicos dentro del Estado.

En la actualidad, la integridad de los ecosistemas que conforman este patrimonio se ve amenazada por diversos problemas derivados de los asentamientos humanos irregulares, así como de la falta de ordenamiento y regulación en el cambio del uso de suelo; la tala ilegal de árboles y la extracción comercial clandestina de recursos vegetales; la cacería furtiva de fauna silvestre, en muchos de los casos endémica; la ocurrencia de incendios forestales ocasionados por factores antropogénicos; el establecimiento de sitios de disposición final de residuos clandestinos, tanto cerca de cuerpos de agua, como dentro de áreas con fragilidad ambiental; y las perturbaciones del ecosistema ocasionadas por fenómenos naturales cíclicos, agravados por el deterioro del equilibrio ambiental a nivel mundial (huracanes, nortes, mareas rojas, etc.).

El presente proyecto de modernización no afecta ninguna de las áreas naturales decretadas hasta la fecha.

La importancia de la excepcional diversidad biológica de México, es por todos reconocida; sin embargo, por años, la biodiversidad del país ha estado sometida a fuertes presiones asociadas al desarrollo de la agricultura, el aprovechamiento forestal, la ganadería y la pesca, así como por la realización de obras de infraestructura hidráulica, de comunicaciones y de servicios, y por la expansión continua de los asentamientos humanos.

A través de la política ambiental nacional, se asumió con una gran responsabilidad que el desarrollo del país no puede continuar a costa de su patrimonio natural, por lo que la protección y conservación de su riqueza biológica se convirtió en una de las estrategias centrales, orientadas a contener y revertir su deterioro mediante la instauración de áreas naturales protegidas (ANP´s).

La creación de estas áreas en México tiene una amplia tradición inscrita en la gestión de diversos gobiernos de la historia del país durante el Siglo XX. Hasta fines de 1994 se habían decretado en el país una gran cantidad de áreas naturales de jurisdicción federal, con diversas categorías o estatus de protección. Importantes áreas con bosques templados y tropicales, montañas y paisajes relevantes y en las que se encontraba abundancia de animales silvestres quedaron sujetas a un régimen jurídico y normativo que trataba de garantizar su resguardo y protección ante el desarrollo de actividades que tuvieran un fuerte impacto sobre sus ecosistemas y recursos naturales.

Según Flores y Gerez, "Guerrero tiene protegida una mínima parte de su territorio bajo áreas protegidas decretadas, alcanzando apenas el 0.16%. Bajo áreas propuestas, el porcentaje también es pequeño (0.20%). La mayor proporción se las áreas corresponde a parques nacionales y a áreas de protección de flora y fauna; éstas últimas corresponden a playas de anidación de tortuga marina".

De las áreas naturales existentes ninguna de ellas será perturbada por la modernización del presente camino de terracería.

Actualmente Guerrero cuenta con 5 áreas naturales protegidas de carácter federal con un total de 5,828 ha, lo cual está constituido por 3 parques nacionales como son: El Veladero (Municipio de Acapulco), General Juan N. Álvarez (Municipio de Chilapa), Las Grutas de Cacahuamilpa (Pilcaya y Taxco de Alarcón) y 2 santuarios naturales: Playa de Tierra Colorada, Playa Piedra de Tlacoyunque, estos últimos son áreas establecidas en zonas caracterizadas por una considerable riqueza de

flora o fauna o por la presencia de especies subespecies o hábitat de distribución restringida. Esto representa solo el 0.09% del total de la superficie en el Estado.

Cabe resaltar que en Guerrero aún no han sido decretadas áreas naturales protegidas de interés estatal o municipal.

A continuación mencionamos las Áreas Naturales Protegidas en el estado:

Parque Nacional El Veladero

Se encuentra ubicado en el Municipio de Acapulco.

Superficie 3, 159 hectáreas.

Parque Nacional Gral. Juan Álvarez

Se encuentra ubicado al este de la capital del estado, Chilpancingo, en el Municipio de Chilapa de Álvarez.

Superficie 528 Hectáreas

Parque Nacional Grutas de Cacahuamilpa

Ubicación Política

Se encuentra la mayor parte del parque en el estado de Guerrero y una pequeña porción en el de Morelos. Ubicado al norte de la capital del Estado, Chilpancingo. En los municipios de Pilcaya, Tetipac y Taxco en el estado de Guerrero, y El municipio de Coatlán del Río en el estado de Morelos. Comprendido la mayor parte del parque en el municipio de Pilcaya (FVM con base en INEGI).

Superficie 1 600 hectáreas, de acuerdo a lo que estipula el decreto de creación. González y Sánchez (1961) mencionan que tienen 1 232 hectáreas.

Playa de Tierra Colorada

Se encuentra ubicado en el Municipio de Cuajinicuilapa. Superficie 54.00 hectáreas.

Playa Piedra de Tlacoyunque

Se encuentra ubicado en el Municipio de Técpan de Galeana. Superficie 29.00 hectáreas.

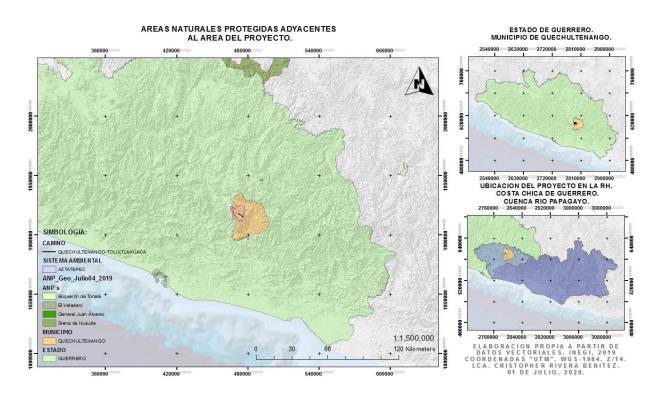


Imagen 17.- Ubicación del proyecto respecto a las Áreas Naturales en el Estado de Guerrero.

Ninguna de las Áreas Naturales Protegidas existentes en el Estado, se encuentra dentro del trazo del proyecto.

Regiones Prioritarias.

En México, la CONABIO ha impulsado un programa de identificación de regiones prioritarias para la biodiversidad, considerando los ámbitos terrestre, acuático epicontinental, marino y protección de aves, para los cuales se definieron las áreas de mayor relevancia en cuanto a la riqueza de especies, presencia de organismos endémicos y áreas con un mayor nivel de integridad ecológica, así como aquéllas

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
con mayores posibilidades de conservación en función de aspectos sociales,
económicos y ecológicos presentes en nuestro país (CONABIO, 2007).

Regiones Terrestres Prioritarias (RTP)

Las Regiones Terrestre Prioritarias corresponden a unidades físico-temporales estables desde el punto de vista ambiental en la parte continental del territorio nacional, que destacan por la presencia de una riqueza en el ecosistema y de especies endémicas comparativamente mayor que en el resto del país, así como por una integridad biológica significativa y una oportunidad real de conservación (CONABIO, 2008).

En México existen 152 regiones prioritarias que cubren una superficie de 515.55 km², 6 de estas se encuentran sobre el Estado de Guerrero las cuales son: El Cañon del Zopilote, Infiernillo, Sierra Madre del Sur de Guerrero, Sierra Nanchititla, Sierras de Taxco – Huautla, Sierras Triqui – Mixteca (Laura Arriaga Cabrera, et al., 2009). El Sistema Ambiental Regional del proyecto no se encuentra dentro de ninguna de las regiones terrestres prioritarias.

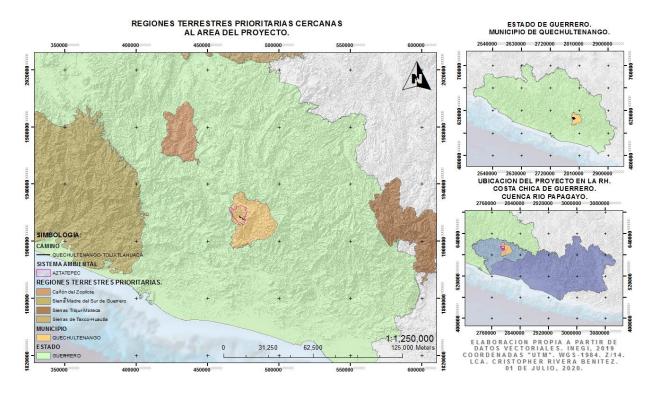


Imagen 18.- Ubicación del proyecto, respecto a las Regiones Terrestres prioritarias en el Estado de Guerrero.

Regiones Hidrológicas Prioritarias (RHP)

La preocupación creciente sobre el mantenimiento de la biodiversidad de las aguas epicontinental y los esfuerzos por reducir los riesgos que enfrentan muchas especies están basados en evidencias sobre la pérdida de hábitats (degradación, cambios en la calidad y fragmentación), de especies, así como en la sobreexplotación e introducción de especies exóticas. Las tasas de extinción para estos ecosistemas provienen principalmente de lagos y ríos (WCMC, 1992). Aunque la evidencia prevalece, en general es muy dispersa y, desde la perspectiva geográfica, sin continuidad. El hecho de que haya muchas especies en franca declinación o enfrentando la extinción en los pocos países en donde se cuenta con conocimiento de campo razonable, justifica la preocupación real por el estado de la biodiversidad de las aguas epicontinentales. Un hecho alarmante es que, aunque los humanos siempre han hecho uso de los sistemas dulceacuícolas y sus especies, en los últimos 200 años, a través de la Revolución Industrial, el desarrollo económico acelerado y el crecimiento poblacional, han generado transformaciones en estos ecosistemas a una escala sin precedente.

Es así como surge la necesidad de revisar el estatus de la información sobre la diversidad y el valor biológico de las cuencas hidrológicas, además de evaluar las amenazas directas e indirectas sobre los recursos y el potencial para su conservación y manejo adecuado. Para esto, se realizaron dos talleres interdisciplinarios sobre regiones hidrológicas prioritarias y biodiversidad de México en abril y mayo de 1998, con la participación de especialistas y personal académico con la finalidad de desarrollar un marco de referencia para contribuir a la conservación y manejo sostenido de los ambientes acuáticos epicontinentales.

La determinación del patrón de uso en las diferentes áreas prioritarias, a través de un análisis de conglomerados, dio como resultado 75 áreas de alta biodiversidad y 82 áreas de uso por sectores, de entre las cuales 75 presentaron algún tipo de amenaza Finalmente, también se identificaron 29 áreas que son importantes biológicamente pero no se cuenta con suficiente información científica.

En relación con la problemática identificada, se citan a continuación algunos de los aspectos más sobresalientes:

Sobreexplotación de los acuíferos superficiales y subterráneos lo que ocasiona una notable disminución en la cantidad de agua disponible, intrusión salina, desertificación y deterioro de los sistemas acuáticos.

Contaminación de los acuíferos superficiales y subterráneos principalmente por descargas urbanas, industriales, agrícolas y mineras que provocan disminución en la calidad del agua, eutroficación y deterioro de los sistemas acuáticos.

Cambio de uso de suelo para agricultura, ganadería, silvicultura y crecimiento urbano e industrial mediante actividades que modifican el entorno como desforestación, alteración de cuencas y construcción de presas, desecación o relleno de áreas inundables, modificación de la vegetación natural, pérdida de suelo, obras de ingeniería, contaminación e incendios.

Introducción de especies exóticas a los cuerpos de agua y el consiguiente desplazamiento de especies nativas y disminución de la biodiversidad.

En el estado de Guerrero se localizan 5 Regiones Hidrológicas Prioritarias, que son: Cuenca Alta del Río Ometepec, Cuenca Baja del Río Balsas, Río Amacuzac – Lagunas de Zempoala, Río Atoyac – Laguna de Coyuca, Río Papagayo – Acapulco.

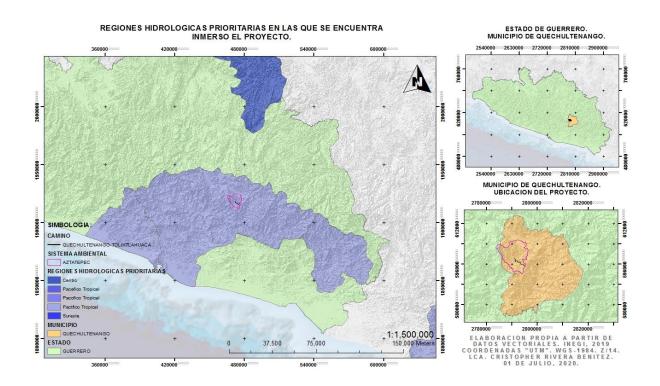


Imagen 19.- Ubicación del proyecto, respecto las Regiones Hidrológicas Prioritarias en el Estado de Guerrero.

Con base a las características Hidrológicas superficiales el proyecto Modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero.

El SAR se encuentra dentro de la Región Hidrológica Prioritaria Rio Papagayo Acapulco.

29. RÍO PAPAGAYO - ACAPULCO

Estado(s): Guerrero **Extensión:** 8,501.81 km²

Polígono: Latitud 17°36'36" - 16°41'24" N

Longitud 100°04'48" - 98°35'54" W

Recursos hídricos principales

Iénticos: Lagunas Negra, La Sabana y Tres Palos

Ióticos: ríos Papagayo, La Sabana y Omitlán

Limnología básica:ND

Geología/Edafología: lomeríos y planicies aluviales en la boca de los ríos; rocas metamórficas. Suelos someros poco desarrollados, con predominio de Regosol, Cambisol y Feozem.

Características varias: climas cálido subhúmedo con lluvias en verano. Temperatura media anual de 16-28°C. Precipitación total anual de 1000-2000 mm y evaporación del 80-90%.

Principales poblados: Acapulco, Tierra Colorada

Actividad económica principal: turismo, agricultura (copra), ganadería y pesca

Indicadores de calidad de agua: ND

Biodiversidad: tipos de vegetación: selva baja caducifolia, selva mediana subcaducifolia, bosques de pino-encino, de encino-pino, de encino, mesófilo de montaña y pastizal inducido. Moluscos característicos: Anachis vexillum (litoral rocoso), Balcis falcata, Calyptraea spirata (zona rocosa expuesta), Calliostoma aequisculptum (zona litoral rocosa), Chiton articulatus (zonas expuestas), Crassinella skoglundae, Cyathodonta lucasana, Entodesma lucasanum (zona litoral), Fissurella (Cremides) decemcostata (zonas rocosas), Fissurella (Cremides) gemmata (zona rocosa), Lucina (Callucina) lampra, Lucina lingualis, Nassarina (Zanassarina) atella, Opalia mexicana, Pilsbryspira amathea (zona rocosa de marea), P. garciacubasi (fondos rocosos de litoral), Pseudochama inermis (zona litoral), Semele (Amphidesma) verrucosa pacifica, Serpulorbis oryzata, Tegula globulus (litoral), Tripsycha (Eualetes) centiquadra (litoral rocoso). Endemismo de anfibios Rana omiltemana, R. sierramadrensis y R. zweifeli; de aves Amazilia Aulacorhynchus wagleri, Cyanolyca mirabilis, flammulatus, Dendrocolaptes certhia shefferi, Dendrortyx macroura, Eupherusa poliocerca, Lepidocolaptes leucogaster, Nyctiphrynus mcleodii, Piculus auricularis, Pipilo ocai guerrerensis, Piranga erythrocephala, Rhodinocichla rosea, Ridgwayia

pinicola, Streptoprocne semicollaris, Vireo nelsoni. Especies amenazadas: de aves Accipiter gentilis, Amazona oratrix, Eupherusa poliocerca, Vireo atricapillus, V. nelsoni.

Aspectos económicos: turismo, ganadería, agricultura y pesca. Pesca de crustáceos *Macrobrachium acanthochirus, M. americanum, M. occidentale y M. tenellum.*

Problemática:

- Modificación del entorno: alta modificación en la parte baja de la cuenca por desforestación, desecación, sobreexplotación de pozos, contaminación; transformación de muchas zonas en pastizales. Hábitat muy deteriorado por influencia de la zona turística.
- Contaminación: por sedimentos en suspensión, materia orgánica, basura y descargas de la zona hotelera. Laguna Tres Palos: hipertrófica; Laguna La Sabana: O₂D=cero, sobrecarga de materia orgánica y basura.
- Uso de recursos: no hay control sobre la pesca ni tratamiento adecuado de las aguas residuales. Uso de suelo urbano, ganadero y agrícola.

Conservación: la cuenca alta está relativamente bien conservada; Chilpancingo se encuentra en la cuenca alta, sin embargo, un crecimiento urbano grande puede generar serios problemas hacia la cuenca baja. Se necesitan restaurar las corrientes superficiales, las lagunas costeras y su biodiversidad. Comprende el Parque Ecológico Estatal Omiltemi.

Vinculación con el proyecto:

El proyecto considera obras menores de drenaje para evitar la erosión y contaminación del agua, además un adecuado manejo de residuos sólidos y peligrosos. Además de un programa de reforestación y de reubicación de fauna para conservar la biodiversidad.

Áreas de Importancia para la Conservación de las Aves (AICA's)

A partir de la necesidad de preservar a las aves, surgió el programa de las AICA's, el cual se enfocó a la creación de una red regional de áreas importantes para su

conservación de las aves. La CONABIO tiene registrada en su base de datos 230 AICA's, la cual incluye para cada una de ellas, una descripción técnica sobre aspectos bióticos y abióticos, un listado de aves (especies registradas en la zona), su abundancia (en forma de categorías) y su estacionalidad en el área.

En México existen 230 AICAS, de las cuales 10 se encuentran en el Estado de Guerrero, los cuales son: Acahuizotla – Agua de Obispo, Cañón del Zopilote, Cuenca Baja del Balsas, Grutas de Cacahuamilpa, Lagunas Costeras de Guerrero, Omiltemi, Sierra de Atoyac, Sierra de Huautla, Sierra de Taxco – Nevado de Toluca, Vallecitos de Zaragoza.

El SAR no se encuentra ubicado en ninguna de las Áreas de Importancia de la Conservación de las Aves del Estado de Guerrero.

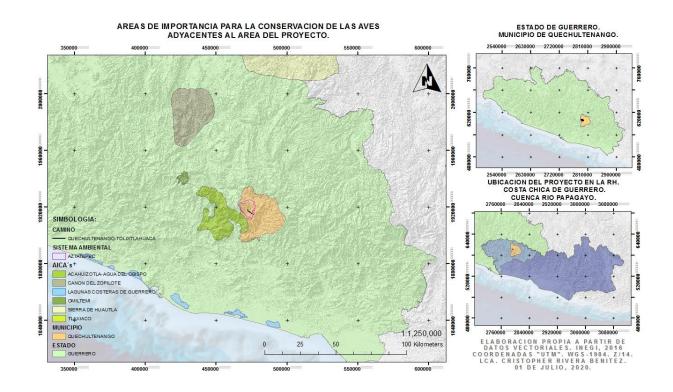


Imagen 20.- Ubicación del SAR en el mapa de Área de Importancia para la Conservación de las Aves del Edo. De Gro.

III.7. ANÁLISIS DE LOS INSTRUMENTOS NORMATIVOS

El proyecto de Modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, Tramo: del Km 0+000 al Km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero, se vincula con diferentes disposiciones jurídicas, constructivas, de asentamientos humanos y ambientales que le resultan aplicables.

- Constitución Política de los Estados Unidos Mexicanos.
- Ley de Obras Publicas y Servicios relacionados con las mismas.
- Ley General del equilibrio ecológico y la protección al ambiente.
- Ley Forestal: El artículo 40 del capítulo II de esta ley indica que serán las autoridades competentes las que vigilaran que la construcción de los caminos en terrenos forestales causen el menor daño al medio ambiente.
- Ley Federal de comunicaciones y transportes.
- Leyes estatales del equilibrio ecológico y la protección al ambiente.
- Ley general de vida silvestre.
- Ley de aguas nacionales.
- Ley agraria.
- Ley de bienes nacionales
- Reglamento de residuos peligrosos

El proyecto es congruente con las disposiciones que en materia urbana existen en la entidad considerando que:

El Artículo 27 Constitucional establece que la Nación tendrá en todo tiempo el derecho de dictar las medidas necesarias para ordenar los asentamientos humanos y establecer adecuadas provisiones, usos, reservas y destinos de tierras, a efecto de ejecutar obras públicas y de planear y regular la fundación, conservación, mejoramiento y crecimiento de los centros de población; para preservar y restaurar el equilibrio ecológico.

Legislación aplicable

Las actividades del presente proyecto están sujetas a la Evaluación de Impacto Ambiental de acuerdo con lo estipulado en el Artículo 28 de la Ley General del Equilibrio Ecológico y la Protección al Ambiente (LGEEPA), la cual a su letra dice: La evaluación del impacto ambiental es el procedimiento a través del cual la Secretaría establece las condiciones a que se sujetará la realización de obras y actividades que puedan causar desequilibrio ecológico o rebasar los límites y condiciones establecidos en las disposiciones aplicables para proteger el ambiente y preservar y restaurar los ecosistemas, a fin de evitar o reducir al mínimo sus efectos negativos sobre el ambiente.

La presente Manifestación de Impacto Ambiental, tiene su fundamento legal en la Ley General del Equilibrio y Protección al Ambiente (LGEEPA), artículo 28, fracción I y VII; Así como en el capítulo II, artículo 5º, inciso B del Reglamento de la LGEEPA.

Reglamento de la Ley General Del Equilibrio Ecológico y Protección al Ambiente en Materia de Impacto Ambiental Capítulo II Artículo 5

El Reglamento de la LGGEPA en Materia de Evaluación de Impacto Ambiental, es un instrumento jurídico complementario de la Ley mencionada; determina la

regulación y tipificación de las obras o actividades competencia de la federación en materia de impacto ambiental.

Establece en su Artículo 5º que, quienes pretendan llevar a cabo alguna de las siguientes obras o actividades, requerirán previamente la autorización de la Secretaría en materia de impacto ambiental, señalando específicamente en su inciso o) el concepto del cambio de uso del suelo y sus excepciones.

- O) CAMBIOS DE USO DEL SUELO DE ÁREAS FORESTALES, ASÍ COMO EN SELVAS Y ZONAS ÁRIDAS:
- I. Cambio de uso del suelo para actividades agropecuarias, acuícolas, de desarrollo inmobiliario, de infraestructura urbana, de vías generales de comunicación o para el establecimiento de instalaciones comerciales, industriales o de servicios en predios con vegetación forestal, con excepción de la construcción de vivienda unifamiliar y del establecimiento de instalaciones comerciales o de servicios en predios menores a 1000 metros cuadrados, cuando su construcción no implique el derribo de arbolado en una superficie mayor a 500 metros cuadrados, o la eliminación o fragmentación del hábitat de ejemplares de flora o fauna sujetos a un régimen de protección especial de conformidad con las normas oficiales mexicanas y otros instrumentos jurídicos aplicables;

Vinculación con el Proyecto: El Proyecto la pavimentacion de una vialidad, el cual en su superficie cuenta con vegetación forestal correspondiente vegetación de tipo sabanoide, por lo que contempla el uso de áreas con vegetación forestal. En congruencia con la fracción y artículo citado anteriormente, se someterá al proceso de evaluación en materia de impacto ambiental ante la SEMARNAT.

Con este documento (MIA) el interesado (promovente) cumple con la disposición vinculante e inicia el procedimiento para obtener la autorización ante la SEMARNAT en materia de Impacto Ambiental.

Ley General De Desarrollo Forestal Sustentable (LGDFS) y su Reglamento

La Ley General de Desarrollo Forestal Sustentable, reglamentaria del artículo 27 de la Constitución Política de los Estados Unidos Mexicanos, tiene por objeto regular y

fomentar la conservación, protección, restauración, producción, ordenación, el cultivo, manejo y aprovechamiento de los ecosistemas forestales del país y sus recursos.

De conformidad con su Artículo 117, las autorizaciones de cambio de uso del suelo en terrenos forestales sólo pueden otorgarse por excepción, cuando es solicitada y se demuestre con base en estudios técnicos justificativos que el nuevo uso del suelo no comprometerá la biodiversidad, ni ocasionará erosión del suelo, el deterioro de la calidad del agua, ni la disminución de su captación, al mismo tiempo que el uso propuesto sea a largo plazo más productivo.

También establece que las autorizaciones que se emitan deberán atender lo que, en su caso, dispongan los programas de ordenamiento ecológico correspondiente, las normas oficiales mexicanas y demás disposiciones legales y reglamentarias aplicables.

Debido a que el proyecto a ejecutar se sitúa en parte en terrenos considerados forestales por la ley, es indispensable que previo a su ejecución se obtenga la autorización de la SEMARNAT para realizar el cambio de uso del suelo en las superficies donde se requerirá la remoción de la vegetación natural para la construcción del proyecto.

El Reglamento de la Ley General de Desarrollo Forestal Sustentable, es un instrumento jurídico complementario de la LGDFS, contiene entro otros aspectos normativos, la guía para la elaboración del estudio técnico justificativo para cambio de uso de suelo, documento indispensable a realizar este proyecto, en particular en las áreas en los que se ha presentado vegetación forestal. Por lo que al presentar de manera paralela el Estudio Técnico Justificativo de este proyecto, se da cumplimiento a este precepto.

Artículo 120. "Para solicitar la autorización de cambio de uso del suelo en terrenos forestales, el interesado deberá solicitarlo mediante el formato que expida la Secretaría, el cual contendrá lo siguiente:"

- "I. Nombre, denominación o razón social y domicilio del solicitante;"
- "II. Lugar y fecha; "
- "III. Datos y ubicación del predio o conjunto de predios, y"
- "IV. Superficie forestal solicitada para el cambio de uso de suelo y el tipo de vegetación por afectar."

"Junto con la solicitud deberá presentarse el estudio técnico justificativo, así como copia simple de la identificación oficial del solicitante y original o copia certificada del título de propiedad, debidamente inscrito en el registro público que corresponda o, en su caso, del documento que acredite la posesión o el derecho para realizar actividades que impliquen el cambio de uso del suelo en terrenos forestales, así como copia simple para su cotejo. Tratándose de ejidos o comunidades agrarias, deberá presentarse original o copia certificada del acta de asamblea en la que conste el acuerdo de cambio del uso del suelo en el terreno respectivo, así como copia simple para su cotejo."

Artículo 121.-En este artículo se menciona el tipo de información que deberán tener los estudios técnicos justificativos.

Vinculación con el Proyecto: La legislación forestal establece las especificaciones para que se dé la autorización por excepción para el cambio de uso de suelo; establece además los criterios que deben reunir los Estudios Técnicos Justificativos para demostrar que no se compromete la biodiversidad, ni se ocasiona la erosión del suelo, ni deteriora la calidad del agua o su captación, el proyecto propuesto incluye actividades de cambio de uso de suelo forestal, razón por la cual se presenta de manera conjunta con el presente documento el correspondiente Estudio Técnico Justificativo para el Cambio de Uso de Suelo en Terrenos Forestales (ETJCUSTF) para su evaluación, y autorización correspondiente en materia forestal.

Los apartados que se mencionan en el Artículo 28 que se relacionan con las actividades objeto de este estudio son las siguientes:

I.- Obras hidráulicas, vías generales de comunicación, oleoductos, gaseoductos, carboductos y poliductos;

VII.- Cambio de uso de suelo de áreas forestales, así como en selvas y zonas áridas.

Otros artículos

Artículo 30. Para obtener la autorización a que se refiere el artículo 28 de esta Ley, se deberá presentar a la Secretaría de Medio Ambiente y Recursos Naturales una manifestación de impacto ambiental, la cual deberá contener, por lo menos, una descripción de los posibles efectos en el ecosistema que pudieran ser afectados por la obra o actividad de que se trate, considerando el conjunto de los elementos que conforman dichos ecosistemas, así como las medidas preventivas, de mitigación y las demás necesarias para evitar y reducir al mínimo los efectos negativos sobre el ambiente.

Artículo 5º del Reglamento de la LGEEPA en Materia de Impacto Ambiental en los apartados:

Artículo 5o.- Quienes pretendan llevar a cabo alguno de las siguientes obras o actividades, requerirán previamente la autorización de la Secretaría en materia de impacto ambiental:

Vías generales de comunicación:

I. La instalación de hilos, cables o fibra óptica para la transmisión de señales electrónicas sobre la franja que corresponde al derecho de vía, siempre que se aproveche la infraestructura existente, y

II. Las obras de mantenimiento y rehabilitación cuando se realicen en la franja del derecho de vía correspondiente.

Artículo 14. Cuando la realización de una obra o actividad que requiera sujetarse al procedimiento de evaluación de impacto ambiental involucre, además, el cambio de uso del suelo de áreas forestales y en selvas y zonas áridas, los promoventes podrán presentar una sola manifestación de impacto ambiental que incluya la información relativa a ambos proyectos.

El artículo 115, Fracción V de la Constitución Política de los Estados Unidos Mexicanos, Faculta a los Municipios en los términos de las Leyes Federales y estatales relativas para formular, aprobar y administrar la zonificación y planes de desarrollo urbano municipal participar en la creación y administración de sus reservas territoriales, controlar y vigilar la utilización del suelo en su jurisdicción territorial, intervenir en la regularización de la tenencia de la tierra urbana, otorgar licencias y permisos para construcciones y participar en la creación y administración de zonas de reserva ecológica.

La Ley general del equilibrio ecológico y la protección al ambiente, esta Ley es reglamentaria de las disposiciones de la Constitución Política de los Estados Unidos Mexicanos que se refieren a la preservación y restauración del equilibrio ecológico, así como a la protección al ambiente, en el territorio nacional y las zonas sobre las que la nación ejerce su soberanía y jurisdicción. Sus disposiciones son de orden público e interés social y tienen por objeto propiciar el desarrollo sustentable. Este ordenamiento establece las bases para el ejercicio de las atribuciones que en materia ambiental corresponde a la Federación, los Estados, el Distrito Federal y los Municipios, bajo el principio de concurrencia previsto en el artículo 73 fracción XXIX-G de la Constitución.

Que de conformidad con el artículo 38 de la Ley de Desarrollo Urbano del Estado de Guerrero, los lineamiento son congruentes con el plan Estatal de Desarrollo Urbano, así mismo, los lineamientos citados consideran los criterios Generales del Plan Nacional de Desarrollo Urbano, y cumple con lo que establece la Ley de Equilibrio Ecológico y Protección al Ambiente del estado de Guerrero y en las Normas Oficiales Mexicanas en Materia Ecológica.

El proyecto cumple con los lineamientos que se contemplan en el artículo 40 de la Ley de Desarrollo Urbano del estado de Guerrero, por lo que en consecuencia el proyecto cumple con todos los requisitos exigidos por la ley.

Por otra parte, la Ley General del Equilibrio Ecológico y la Protección al Ambiente en el Artículo 120 mencionan, que para evitar la contaminación del agua, quedarán sujetos a regulación federal o local, el vertimiento de residuos sólidos, materiales peligrosos y lodos provenientes del tratamiento de aguas residuales, en cuerpos y corrientes de agua. Para el caso que nos ocupa, se da cumplimiento a referido artículo al evitar la posible contaminación de cuerpos de agua, se rentarán baños portátiles (Letrinas) para uso de los obreros durante la construcción, el cual tendrá una recolección y limpieza de residuos por parte de la empresa prestadora del servicio.

En el Capítulo IV, artículo 134, de la Ley General del Equilibrio Ecológico y la Protección al Ambiente, establece la prevención y control de la contaminación del suelo, indica que es necesario prevenir y reducir la generación de residuos sólidos municipales e incorporar técnicas y procedimientos para su reutilización o reciclaje, así como regular su manejo y disposición final eficiente. En este sentido, la empresa constructora, pretende incorporar un manejo integral de los residuos sólidos generados en la operación del proyecto, evitando con ello la contaminación del suelo.

Leyes Estatales Relacionadas al Proyecto Ley de Equilibrio Ecológico y Protección al Ambiente del Estado de Guerrero

Tiene por objeto principal, regular las acciones para la conservación, la preservación y la restauración del equilibrio ecológico, la protección al ambiente y la procuración del desarrollo sustentable, de conformidad con las facultades que se derivan de la Ley General del Equilibrio Ecológico y la Protección al Ambiente Federal y disposiciones que de ella emanan.

Los artículos de esta Ley que se relacionan con el proyecto son:

Artículo 6º Corresponde al Gobierno del Estado:

II. La preservación y restauración del equilibrio ecológico y la protección al ambiente que se realice en el territorio del Estado, salvo cuando se refieran a asuntos reservados a la Federación por la Ley General del Equilibrio Ecológico y la Protección al Ambiente;

VII. La regulación, prevención y control de la contaminación del suelo, su erosión y cambio de uso;

IX. La regulación con fines ecológicos, del aprovechamiento de los minerales o sustancias no reservadas a la Federación, que constituyan depósitos de naturaleza semejante a los componentes de los terrenos, tales como rocas o productos de su descomposición que sólo puedan utilizarse para la fabricación de materiales para la construcción u ornamento.

Todas las actividades relacionadas a las etapas de preparación del sitio, construcción y mantenimiento deberán respetar los lineamientos jurídicos ambientales correspondientes. Para ello, se requerirá que durante cada una de las etapas anteriormente mencionadas, se encuentre en los frentes de trabajo un "vigilante ambiental", que se dedicará a verificar el grado de impacto sobre la flora,

la fauna, suelo, atmósfera, agua. Dichas incidencias deberán apuntarse en una bitácora de campo, y entregar una copia a los encargados de obra para que de esta manera se vean obligados a cumplir con las disposiciones ambientales. Esta bitácora también servirá de apoyo (deberá estar actualizada y disponible) para cuando la autoridad ambiental realice las supervisiones de inspección que considere convenientes a la obra.

ARTICULO 36º Cuando se trate de la evaluación del impacto ambiental por la realización de obras o actividades que tengan por objeto el aprovechamiento de recursos naturales, se requerirá a los interesados que en la manifestación del impacto ambiental correspondiente, se incluya la descripción de los posibles efectos de dichas actividades en el ecosistema de que se trate, considerando el conjunto de elementos que lo conforman y no únicamente los recursos que serían sujetos de aprovechamiento.

Para el caso de la explotación de los bancos de materiales existentes para la extracción de materiales para la construcción, debe especificarse con detalle el grado de impacto ambiental generado, lo cual incluye en este caso, flora y fauna asociada.

Lo anterior también es aplicable para la explotación de bancos de materiales nuevos.

ARTICULO 93 ° Son atribuciones de los Municipios:

III. Autorizar el establecimiento de los sitios destinados a la disposición final de los residuos sólidos, y no peligrosos.

Durante cada una de las etapas de la construcción del proyecto se generarán diferentes tipos de residuos sólidos no peligrosos, los cuales se depositarán temporalmente en los lugares previamente establecidos donde se haya verificado

que no representen riesgo para la calidad del aire, el mismo suelo y el agua. Para el transporte de los frentes de trabajo de obra hasta el sitio de deposición final, el municipio será el encargado de dictar las pautas a seguir al respecto; bien sea con el propio servicio de recolección municipal, o bien, por contrato de una empresa trasportadora de residuos sólidos no peligrosos.

Ley aguas del Estado de Guerrero

Artículo 161º. Se promoverá la prevención y control de la contaminación de las agua evitar su disponibilidad y para protección de los ecosistemas acuáticos y terrestres que dependan de ella. Además todo vertimiento a cualquier cuerpo receptor, debe ir precedido de un tratamiento, ante el cual se aplicará la normatividad estatal vigente para el tratamiento, uso y disposición de las aguas residuales con el fin de evitar riesgo y daños a la salud pública.

Artículo 169°. Menciona los tipos de acciones para el manejo del recurso agua que merecen ser sancionados; donde el inciso XII es el que especifica que las descargas de aguas residuales con aguas residuales, basura, desechos materiales y sustancias toxicas o lodos producto de los tratamientos de aguas residuales, a los sistemas de drenaje o alcantarillado en contravención con la legislación en materia de equilibrio ecológico y protección al ambiente y demás disposiciones aplicables será causal de sanción.

Artículo 172º. Menciona las condicionantes para determinar el tipo y monto de la sanción.

Artículo 173º. Menciona la cantidad en salarios mínimos de multa a pagar conforme a las acciones de detrimento al ambiente.

Ley de protección a los animales en el Estado de Guerrero

La presente Ley tiene por objeto fijar las bases y las condiciones para el desarrollo y protección de la fauna en el Estado de Guerrero.

Artículo 5º. Menciona que bajo esta ley queda amparada la fauna doméstica, la que se encuentra en cautiverio y la acuática en los términos de las disposiciones federales aplicables.

Artículo 6º. Indica los criterios de protección a la fauna que aplican en la Ley General de Equilibrio Ecológico y Protección al Ambiente y que también son de jurisdicción de las autoridades estatales, incluyendo: preservación del hábitat, protección de especies endémicas o con algún estatus en categoría de riesgo, la prohibición y castigo con el tráfico ilegal de especies, entre otras.

Artículo 24º. Prohíbe adquirir fauna silvestre como mascota o para cautiverio, a menos que se realicen los trámites correspondientes para su posesión legal.

Artículo 26°. Prohíbe totalmente la caza de fauna silvestre a excepción de las cantidades fijen como cuota para actividades deportivas, con previa autorización.

Artículo 46º. Prohíbe la venta de animales en la vía pública, los cuales serán requisitados y puestos a disposición de albergues de asistencia social *ex profeso*.

Artículo 47º. No se exportarán de manera clandestina piezas de caza viva y/o muerta así como sus productos derivados.

Artículo 71º. Se impondrán de 3-6 años de prisión y de 500-1000 veces el salario mínimo de la región a quien atente con la integridad física de animales vertebrados.

Artículo 72º. Se impondrán de 6-12 años de prisión y de 250 a 500 veces el salario mínimo de la región a quien atente con la integridad física de animales en estado silvestre.

Normas Oficiales Mexicanas en Materia de Agua

NOM-001-SEMARNAT-1996. Establece los límites máximos permisibles de contaminantes en las descargas residuales en aguas y bienes nacionales (DOF, 6 de enero de 1997).

NOM-002-SEMARNAT-1996. Que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a los sistemas de alcantarillado urbano o municipal (DOF, 3 de junio de 1998).

Vinculación con el proyecto en materia de agua

El agua residual generada por las diversas actividades del proyecto deberá estar totalmente libre de basura, materiales sedimentarios, grasas y aceites (parámetros

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE QUECHULTENANGO, EN EL ESTADO DE GUERRERO. notorios a simple vista); y debe evitarse su vertimiento en cuerpos de agua cercanos

como ríos y manantiales.

Normas oficiales mexicanas en materia de emisiones de fuentes móviles (atmósfera).

NOM-041-SEMARNAT-2015. Que establece los límites máximos permisibles de emisión de gases contaminantes provenientes del escape de los vehículos automotores en circulación que usan gasolina como combustible.

Esta Norma Oficial Mexicana establece los límites máximos permisibles de emisión de hidrocarburos, monóxido de carbono, oxígeno y óxido de nitrógeno; así como el nivel mínimo y máximo de la suma de monóxido y bióxido de carbono y el Factor Lambda. Es de observancia obligatoria para el propietario, o legal poseedor de los vehículos automotores que circulan en el país o sean importados definitivamente al mismo, que usan gasolina como combustible, así como para los responsables de los Centros de Verificación, y en su caso Unidades de Verificación Vehicular, a excepción de vehículos con peso bruto vehicular menor de 400 kg (kilogramos), motocicletas, tractores agrícolas, maquinaria dedicada a las industrias de la construcción y de la minería.

a) Verificar que la maquinaria que se utilice para las actividades de preparación y construcción del proyecto cumpla y se ajuste a un programa de mantenimiento periódico con la finalidad de disminuir las partículas contaminantes a la atmósfera por la operación de la maquinaria.

- b) La afinación de motores de la maquinaria pesada, previo a su utilización, asimismo es necesario la utilización de combustible más limpio (diésel sin plomo).
- c) El que todas las unidades usadas cuenten con su verificación vehicular vigente.

NOM-045-SEMARNAT-2017. Vehículos en circulación que usan diésel como combustible.

Esta Norma Oficial Mexicana establece Límites Máximos Permisibles de Opacidad del Humo (LMPOH), en cuanto al nivel de absorción de luz y porcentaje de opacidad del humo proveniente del escape de los vehículos que circulan con diésel como combustible, más estrictos en comparación con la norma que le precede. Controlar las emisiones de contaminantes provenientes de los vehículos en circulación que utilizan diésel como combustible, mediante los mantenimientos preventivos o correctivos a su vehículos.

Al reducirse las emisiones de contaminantes, se esperaría una disminución en la contaminación en el país y en consecuencia, la disminución en la morbilidad o mortalidad, por la presencia de contaminantes, es decir, se esperaría una mejora de la salud de la población

NOM-048-SEMARNAT-1993. Que establece los niveles máximos permisibles de emisión de hidrocarburos, monóxido de carbono y humo, provenientes del escape de motocicletas en circulación que utilizan gasolina o mezcla de gasolina-aceite como combustible (DOF, 18 de octubre de 1993).

NOM-050-SEMARNAT-1993. Que establece los niveles máximos permisibles de emisión de gases contaminantes provenientes del escape de los vehículos automotores en circulación que usan gas licuados de petróleo, gas natural u otros combustibles alternos como combustible (DOF, 18 de octubre de 1993).

Vinculación con el proyecto en materia de emisiones de fuentes móviles (atmósfera)

Todo vehículo automotor que funcione a base de gasolina y diésel (maquinaria de construcción) presente durante las diferentes etapas del proyecto, debe ajustarse a los límites de emisiones contaminantes, por lo cual se deberá mantener vigilancia estrecha sobre el funcionamiento del motor, verificándolo y afinándolo en caso de necesitarse.

Estas normas también restringen las actividades de la obra para efectuarse únicamente en horario diurno.

Normas oficiales mexicanas en materia de calidad de combustibles (atmósfera)

NOM-086-SEMARNAT-1994. Contaminación atmosférica-especificaciones sobre protección ambiental que deben reunir los combustibles fósiles líquidos y gaseosos que se usan en fuentes móviles (2 de diciembre de 1994).

Vinculación con el proyecto en materia de calidad de combustibles (atmósfera).

Los combustibles a emplear, deben carecer en su composición de sustancias tóxicas como el plomo y aditivos de alto peso molecular, que tienen alta persistencia y labilidad ambiental, y que a su vez, suelen tener elevada afinidad a tejidos y órganos específicos, por lo que representan un riesgo para la salud ambiental.

Normas oficiales mexicanas en materia de emisiones de fuentes fijas

NOM-085-SEMARNAT-1994. La contaminación atmosférica- fuentes fijas – para fuentes fijas que utilizan combustibles fósiles sólidos, líquidos o gaseosos o cualquiera de sus combinaciones, que establece los límites máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, bióxidos de azufre y óxidos de nitrógeno y los requisitos y condiciones para la operación de los equipos de calentamiento indirecto por combustión, así como los niveles máximos permisibles de emisión de bióxido de azufre en los equipos de calentamiento directo por combustión (DOF, 02 de diciembre de 1994)

Vinculación con el proyecto en materia de emisiones de fuentes fijas (atmosfera)

Las emisiones de gases producto de la combustión interna deben ser controladas a través de afinaciones de los motores. Esta norma también restringen las actividades de la obra para efectuarse únicamente en horario diurno.

Normas oficiales mexicanas en materia de residuos municipales

NOM-083-SEMARNAT-1996. Establece las condiciones que debe reunir los sitios destinados a la disposición final de residuos sólidos municipales (DOF, 25 de noviembre de 1996).

NOM-083-SEMARNAT-2003. Especificaciones de protección ambiental para la selección del sitio, diseño, construcción, operación, monitoreo, clausura y obras complementarias de un sitio de disposición final de residuos sólidos municipales (20 de octubre de 2004).

Vinculación con el proyecto en materia de residuos municipales

Para evitar que la gente que labora en las diferentes actividades del proyecto defeque al aire libre, se colocarán letrinas móviles las cuales deberán ser suministradas por la empresa encargada de ejecutar la obra o en su caso por alguna empresa subcontratada que dé seguimiento a la mitigación de impactos negativos. El retiro de las letrinas lo realizará la empresa autorizada para llevar a cabo estas actividades por lo que el manejo y la disposición final de los residuos sanitarios será responsabilidad del prestador del servicio.

En el caso de los residuos sólidos no peligrosos como lo son las latas, envases de plástico, vidrio, cartón, etc., serán recolectados para su disposición final en un centro de acopio o en su caso serán recolectados para su disposición final en tiraderos oficiales del municipio.

Normas oficiales mexicanas en materia de residuos peligrosos

NOM-052-SEMARNAT-2005. Que establece las características, el procedimiento de identificación, clasificación y los listados de los residuos peligrosos (DOF, 23 de junio de 2006).

NOM-053-SEMARNAT-1993 Que establece el procedimiento para llevar a cabo la prueba de extracción para determinar los constituyentes que hacen a un residuo peligroso por su toxicidad al ambiente (DOF, 22 de octubre de 1993).

NOM-054-SEMARNAT-1993 Que establece el procedimiento para determinar la incompatibilidad entre dos o más residuos considerados como peligrosos por la Norma Oficial Mexicana NOM-052-SEMARNAT-1993 (DOF, 22 de octubre de 1993).

NOM-055-SEMARNAT-1993 Que establece los requisitos que deben reunir los sitios destinados al confinamiento controlado de residuos peligrosos, excepto de los radiactivos (DOF, 3 de noviembre de 2004).

NOM-057-SEMARNAT-1993 Que establece los requisitos que deben observarse en el diseño, construcción y operación de celdas de un confinamiento controlado para residuos peligrosos (DOF, 22 de octubre de 1993)

Vinculación con el proyecto en materia de residuos peligrosos

Residuo es aquel material y/o sustancia que se origina posterior a un proceso y el cual no tiene una utilización. Tomando como base este concepto podemos mencionar que dentro de todo el proceso del proyecto no se generaran residuos considerados como peligrosos, los únicos residuos peligrosos provienen del mantenimiento de la maquinaria, equipo y vehículos utilizados en las actividades del proyecto. Para ello se dará aviso a todo el personal de la prohibición de efectuar algún mantenimiento en el sitio del proyecto, estableciendo que éste se efectuara en los talleres autorizados de las poblaciones aledañas. Por lo anterior no se considera generar residuos peligrosos sólidos y evidentemente los prestadores de los servicios de mantenimiento serán los responsables del manejo de los residuos peligrosos que generen por motivo de su actividad.

En caso de que se llegará almacenar algunos lubricantes, diésel, gasolina, grasas o aceites serán en proporciones minoritarias para disminuir los riesgos en su manejo, estos tendrán que ser almacenados en tambos metálicos junto a los residuos de lubricantes que lleguen a generarse y serán entregados a una empresa especializada que cuente con permiso por parte de la Secretaría de Medio Ambiente v Recursos Naturales para llevar a cabo estas actividades.

Normas oficiales mexicanas en materia de ruido

NOM-080-SEMARNAT-1994. Establece los límites máximos permisibles de emisión de ruido provenientes del escape de los vehículos automotores, motocicletas y triciclos motorizados en circulación y su método de edición (DOF, 13 de enero de 1995)

NOM-081-SEMARNAT-1994. Establece los límites máximos permisibles de emisión de ruido de las fuentes fijas y su método de medición (DOF, 13 de enero de 1995) (incluye aclaración a esta norma, publicada en el DOF el día 3 de marzo de 1995).

Vinculación con el proyecto en materia de ruido

Las fuentes generadoras de ruido son la motoconformadora, compactador vibratorio, retroexcavadora, mezcladora de concreto, equipo de trituración y diversas herramientas. En virtud de que todas las fases del proyecto, se realiza a cielo abierto y fuera de los centros de población, los niveles de ruido que se generan no afectarán tanto, ni rebasan los niveles permitidos por las Normas aplicables en la materia.

Normas oficiales mexicanas relacionadas con el manejo de los recursos naturales (forestales)

NOM-001-SEMARNAT-1995. Establece las características que debe tener los medios de marqueo de la madera en rollo, así como los lineamientos para su uso y control. (DOF, 01 de diciembre de 1995).

NOM-003-SEMARNAT-1996. Establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de tierra del monte (DOF, 5 de junio de 1996).

NOM-004-SEMARNAT-1996. Establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de raíces y rizomas de vegetación forestal (DOF, 24 de junio de 1996).

NOM-005-SEMARNAT-1997. Establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de corteza, tallos y plantas completas de vegetación forestal (DOF, 20 de mayo de 1997).

NOM-007-SEMARNAT-1997. Establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de ramas, hojas o pencas, flores, frutos y semillas (DOF, 30 de junio de 1997).

NOM-008-SEMARNAT-1996. Establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento, transporte y almacenamiento de cogollos (DOF, 24 de junio de 1996)

NOM-012-SEMARNAT-1996. Establece los procedimientos, criterios y especificaciones para realizar el aprovechamiento de leña para uso doméstico (DOF, 26 de junio de 1996).

Vinculación con el proyecto en materia del manejo de los recursos naturales (forestales)

Durante todas las etapas del proyecto, la comunidad natural más afectada será la vegetal, por lo que las normas anteriormente referidas deberán aplicarse en los casos correspondientes, para así, poder mitigar, en la medida de lo posible, los impactos que inevitablemente se generarán sobre los recursos forestales.

Normas oficiales mexicanas relacionadas con la calidad del suelo

NOM-020-SEMARNAT-2001 Que establece los procedimientos y lineamientos que deberán observarse para la rehabilitación, mejoramiento y conservación de los terrenos forestales de pastoreo (DOF, 10 de diciembre de 2001).

NOM-021-SEMARNAT-2000 Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios muestreo y análisis (DOF, 31 de diciembre de 2002).

NOM-023-SEMARNAT-2001 Que establece las especificaciones técnicas que deberán contener la cartografía y la clasificación para la elaboración de los inventarios de suelos (DOF, 10 de diciembre de 2001).

NOM-060-SEMARNAT-1994 Que establece las especificaciones para mitigar los efectos adversos ocasionados en los suelos y cuerpos de agua por el aprovechamiento forestal (DOF, 13 de mayo de 1994).

NOM -138-SEMARNAT/SS-2003. Que establece los límites máximos permisibles de contaminación en suelos afectados por hidrocarburos (DOF, 29 de marzo de 2005).

Vinculación con el proyecto en materia de la calidad del suelo

Su aplicación se dará durante todas las etapas del muestreo, para procurar que la remoción de la capa orgánica del suelo no se dé en su totalidad y así permitir su rehabilitación. También se emplearán para vigilar que no existan derrames accidentales de hidrocarburos durante las etapas de mantenimiento de equipo y maquinaria.

El material sobrante producto de los cortes deberá trasladarse a sitios de tiro previamente seleccionados. El transporte de los materiales de corte se hará en vehículos adecuados, los cuales usarán lonas húmedas que retengan los polvos que pudieran desprenderse.

Normas oficiales mexicanas relacionadas con comunicaciones y transportes

NOM-003-SCT2–1994. Para el transporte terrestre de materiales y residuos peligrosos. Características de las etiquetas de envases y embalajes destinadas al transporte de materiales y residuos peligrosos (DOF, 20 de septiembre de 2000).

NOM-006-SCT2-1994. Aspectos básicos para la revisión ocular diaria de la unidad destinada al auto transporte de materiales y residuos peligrosos (DOF, 9 de noviembre de 2000).

NOM-011-SCT2-1994. Condiciones para el transporte de las sustancias, materiales y residuos peligrosos en cantidades limitadas (DOF, 25 de noviembre de 2005).

NOM-019-SCT2-1994. Disposiciones generales para la limpieza y control de remanentes de sustancias y residuos peligrosos en las unidades que transportan materiales y residuos peligrosos (DOF, 25 de noviembre de 2005).

Vinculación con el proyecto en materia de comunicaciones y transporte

La aplicación de estas normas se realizará de manera indirecta a través de la constructora a cargo, en caso de generarse residuos peligrosos durante la construcción, pues se requerirá contratar a una empresa autorizada por la SEMARNAT y la SCT para el transporte y deposición final de residuos peligrosos; sin embargo, se debe verificar que dichas empresas cumplan con todos los requisitos necesarios para la realización de esta actividad.

IV. DESCRIPCIÓN DEL SISTEMA AMBIENTAL REGIONAL Y SEÑALAMIENTO DE TENDENCIAS DEL DESARROLLO Y DETERIORO DE LA REGIÓN

IV.1. Delimitación y justificación del sistema ambiental regional (SAR) donde se pretende establecer el proyecto.

Para los fines de la descripción ambiental del presente estudio, se ha delimitado al Sistema Ambiental Regional con criterios orográficos, hidrográficos y bióticos, además se identificaron los escurrimientos de tipo intermitente y perenne, que se desplazan desde el norte y al sur como tributarios.

Criterios Técnicos: Se incluye la totalidad de la superficie del proyecto áreas de afectación donde se pretende desarrollar el proyecto y el área de influencia directa de los impactos potenciales del proyecto durante su construcción (predios colindantes).

Delimitación y área del proyecto.

La Microcuenca es el área de delimitación natural que nos permite valorar los posibles impactos que se producirán, en este caso, por la construcción e implementación de servicios de vías de comunicación, así como analizar la planeación, el manejo y el uso de los recursos naturales que se encuentran en el entorno e identificar los posibles impactos que pudiera generar la ejecución de la obra.

El SAR consta de una superficie de 9810 ha y forma parte de la microcuenca **Aztatapec**. Para los fines de la descripción ambiental del presente estudio, se presenta el SAR delimitado con criterios orográficos, hidrológicos y ambientales, además se identificaron los escurrimientos de tipo intermitente y perenne como lo es el principal cuerpo de agua en la microcuenca el rio **La Nopalera**.

El SAR se deriva de la presencia de la cuenca Río Balsas. Cabe mencionar que en la delimitación se respetó gran parte de la Microcuenca **Aztatepec** por su tamaño y representa los procesos ambientales mismos que está delimitada por elevaciones e hidrográficamente con base en los cuerpos de agua **La Nopalera y Rio la Fundición**.

De esta manera se delimitó el SAR, con el objeto de obtener una unidad de manejo puntual, para determinar la interacción del medio biótico y abiótico del lugar, principalmente sus características físicas (climatológicas, geológicas, edáficas, fisiográficas, hidrológicas, etc.) resaltando la importancia biológica del territorio.

Dentro del Sistema Ambiental. Con base en lo anterior se comparten procesos ecológicos y de deterioro dentro de las microcuencas utilizadas para la creación del SAR todo esto a comparten y se presentan las mismas presiones, componentes ambientales, presiones antropogénicas y causas de deterioro.

De acuerdo con INEGI las principales causas de la perdida y deterioro de suelos son:

- Perdida por deforestación tala clandestina el área es de vocación forestal así
 que es común los aprovechamientos clandestinos y autorizados por lo que
 es la principal causa de pérdida o degradación de los suelos.
- Extracción de madera para autoconsumo el área por ser de clima cálido y los altos grados de marginación los habitantes de la región utilizan madera para leña o construcción para autoconsumo lo cual a menor escala pero deteriora la vegetación y los suelos.
- Cambio de uso de suelo para actividades agrícolas o ganaderas como resultados de las actividades económicas primarias y de subsistencia en algunos casos los predios son desmontados para su aprovechamiento maderable y posterior siembra de pastos para la introducción de ganado.

Se delimita el área de influencia directa e indirecta cartográficamente con límites concretos y con base en criterios relevantes. Para una caracterización más detallada de la zona de estudio se delimitó el Sistema Ambiental Regional con criterios hidrológicos superficiales y de relieve, identificando además los escurrimientos de tipo perenne que se desplazan de Norte a Sur y del tipo intermitentes que se dispersan dentro del SAR hacia el norte y sur del mismo, como tributarios hasta la intersección con corrientes aguas abajo. En este sentido, se establece la importancia de la permanencia y continuidad de estos elementos hídricos en el ámbito regional y de manera local en la afectación que se pueda causar a estas corrientes con las diferentes actividades de la obra.

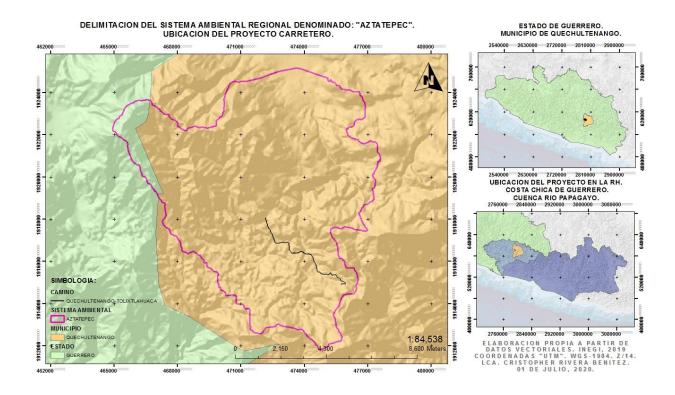


Imagen 21.- Delimitación del SAR con base a la microcuenca en la cual se localiza el proyecto a modernizar.

El SAR consta de una superficie de 9810 ha, para su delimitación se tomó como referencia la Región Hidrológica Balsas, Microcuenca Aztatepec con base en los parteaguas se redibujo el área de influencia del proyecto y el sistema ambiental regional. De esta manera se determinó una escala representativa para el proyecto, con el objeto de obtener una unidad de manejo puntual, para determinar la interacción del medio biótico y abiótico del lugar, principalmente sus características físicas (climatológicas, geológicas, edáficas, fisiográficas, hidrológicas, etc.) resaltando la importancia biológica del SAR.

Dentro de la delimitación del SAR se encuentran las localidades beneficiadas como son: la cabecera municipal de **Quechultenago**, **Tolixtlahuaca y Xochitepec**, las cuales se encuentran al margen del camino, con lo que se cubre la interrelación de los componentes ambientales y sociales.

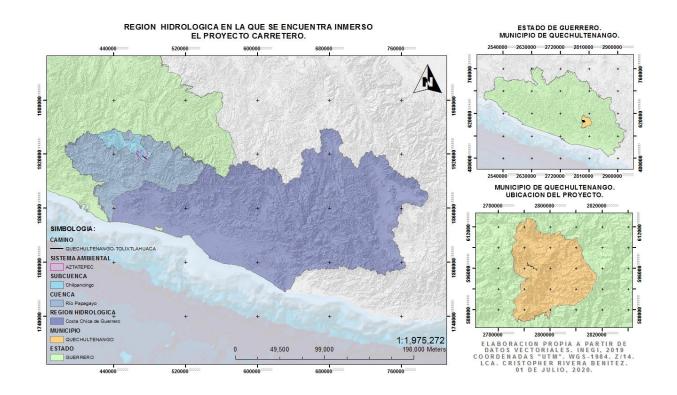


Imagen 22.- Delimitación del SAR con respecto a la Región Hidrológica Costa Chica de Guerrero.

El sitio de estudio se encuentra sobre las Región Hidrológica N° 20, Región Hidrológica N° 20: Costa Chica: Cuenta con un 26.4% tiene una extensión de 43,930 km2 del territorio de Guerrero, se ubica al sureste de la entidad y se extiende hasta el estado de Oaxaca. La hidrología está constituida por ríos y arroyos que en su mayoría son perennes y que se encuentran distribuidos por toda la zona. Como parte de la metodología empleada para la asignación del Sistema Ambiental Regional; se consideraron las variables: geomorfología, vegetación e hidrología. Los límites que se ubican al norte del SAR fueron delimitados en base a la hidrología, tomando como base los parteaguas.

IV.2 Caracterización y análisis del sistema ambiental regional (SAR).

Las características que definen el SAR, para efectos del presente estudio se determinan como las unidades que componen los diversos usos de suelo y vegetación que prevalecen en la región. Se ha tomado a éstos como parámetros de evaluación por resultar claramente definibles dentro del enfoque utilizado para la delimitación del SAR y por poseer cualidades propias que al ser analizados a nivel individual y en la interacción que tienen entre ellos, reflejan la condición actual del sistema que se estudia. Ello nos da un panorama objetivo sobre su calidad ambiental, la presión a la que ha estado sometido y una referencia sobre la afectación directa o indirecta que éstos pudieran tener por la ejecución del proyecto. De este modo definiremos los siguientes usos de suelo y vegetación: bosque de encino, urbano construido, bosque de pino-encino, pastizal inducido, agricultura de riego anual, agricultura de temporal anual, vegetación secundaria arbustiva de bosque de pino-encino, vegetación secundaria

arbustiva de bosque de encino, y vegetación secundaria arbórea de selva baja caducifolia, además de áreas desprovistas de vegetación como los asentamientos humanos.

Tabla 22. Superficies por tipo de vegetación.

Uso de suelo	SUP (ha)
Bosque de encino	0.37
Urbano construido	4.16
Bosque de pino-encino	2359.22
Pastizal inducido	1297.65
Agricultura de riego anual	991.87
Agricultura de temporal anual	278.92
Vegetación secundaria arbustiva de bosque de pino-encino	7.27
Vegetación secundaria arbustiva de bosque de encino	113.74
Vegetación secundaria arbórea de selva baja caducifolia	4756.89
Total	9810.09

La calidad ambiental de un ecosistema es el conjunto de propiedades inherentes del mismo, que nos permite compararlo con otros, en función de su estado de conservación. Esta calidad se puede apreciar desde distintas perspectivas relacionadas. Desde un punto de vista económico o productivo, puede estar referida a la calidad y cantidad de los recursos aprovechables para el hombre que genera el ecosistema.

Por otra parte, la presión que ejercen los distintos usos de suelo y las actividades humanas sobre ellos, generan impactos adversos que van deteriorando su calidad ambiental generalmente. Esto hace imprescindible que cualquier actividad a realizar sea evaluada y considere un manejo adecuado en función de la calidad ambiental determinada para esa región.

Área de influencia indirecta por el posible arrastre de sedimentos que podrá ser causado por la pavimentación del camino sobre las corrientes intermitentes se presenta de dos formas:

- Los sedimentos que están constituidos por las partículas más finas mantenidas en suspensión por los remolinos de la corriente sólo se asientan cuando la velocidad de la corriente disminuye, o cuando el lecho se hace más liso o la corriente descarga en un pozo o lago.
- 2. Y las partículas sólidas de mayor tamaño que son arrastradas a lo largo del lecho de la corriente y se designan con el nombre de arrastre de fondo. Existe un tipo intermedio de movimiento en el que las partículas se mueven aguas abajo dando rebotes o saltos, a veces tocando el fondo y a veces avanzando en suspensión hasta que vuelven a caer al fondo.

Son estas las afectaciones que causarán el asolvamiento de los cauces de arroyos y ríos impidiendo el flujo natural de las corrientes de agua, de no ejecutar debidamente las medidas de mitigación necesarias.

IV.2.1. Caracterización y análisis retrospectivo de la calidad ambiental del SAR.

Se puede caracterizar al SAR presente en la región del proyecto como un espacio geográfico donde actualmente prevalece una condición claramente definida por el uso de suelo al que se destina parte del territorio que lo compone, es decir, las superficies que en algún momento fueron destinadas a la agricultura de temporal, pastizales, asentamientos humanos y caminos rurales.

De acuerdo a un análisis retrospectivo basado en las carta de uso de suelo y vegetación de INEGI en su serie III, las características que presenta la delimitación del SAR en la región del proyecto, se ubica con un espacio geográfico donde actualmente prevalece una condición claramente definida por el uso de suelo y vegetación al que se destina parte del territorio que lo compone, es decir, las superficies que han sido destinadas a la agricultura de temporal, pastizales, asentamientos humanos y caminos rurales como factores de alteración del equilibrio ecológico.

El ecosistema ha sido fragmentado desde los asentamientos de la Localidades inmersas en la delimitación del SAR, desde sus inicios han generado un impacto antrópico sobre la cobertura vegetal y los recursos Naturales Existentes (Flora, Fauna, Agua, entre otros) los cuales han sido los más susceptibles por el aprovechamiento irracional. Otro factor muy Importante ha sido la apertura de la brecha para comunicar a las localidades, la brecha ya se había convertido en uno de los factores de amenaza para el mantenimiento de la biodiversidad de la región.

Como consecuencia del aprovechamiento irracional de los recursos naturales el SAR se ha impactado, sufriendo cambios en los tipos de vegetación Natural (Bosque de Encino, Bosque de Encino, Bosque de Pino-Encino, Pastizal Inducido, Vegetación Secundaría Arbustiva de Bosque de Encino, Vegetación Secundaría Arbustiva de Bosque de Pino-Encino, Vegetación Secundaría Arbustiva de Selva Baja Caducifolia, Vegetación Secundaría Arbórea de Bosque de Pino-Encino, Vegetación Secundaría Arbórea de Bosque de Pino-Encino, Vegetación Secundaría Arbórea de Selva Baja Caducifolia), estas zonas se encuentran dominadas en superficie por pastos que crecen o se favorecen para el forrajeo, también se observan polígonos de afectación con zonas desmontadas totalmente. Las zonas con vegetación conservada corresponden a laderas con la mayor pendiente donde se realizaran actividades de desmonte.

Imagen 23. Zonas fragmentadas y áreas de pastizal inducido.

El ecosistema ha sido fragmentado con las aperturas para caminos; la brecha actual se aprecia como un elemento de fragmentación, uno de los factores más importantes de amenaza para el mantenimiento de la biodiversidad de la región, sobre todo para especies que necesitan amplia distribución territorial. Dicha brecha fue abierta antes de los años setentas sin contar con la debida autorización ambiental y en años recientes se ha ido ampliando por la necesidad de mantenerla transitable.

Las diferentes formas del relieve que conforman el SAR han permitido que prevalezca la vegetación original en zonas aisladas al área de influencia del proyecto, sobre todo en las áreas con pendientes moderadas, en cambio largas

áreas situadas al margen del camino han sido perturbadas, debido a que la vegetación original fue modificada en su mayoría por cultivos de maíz y pastizal.

En este sentido, los componentes bióticos y abióticos del SAR responden de manera proporcional a los cambios que sufre el ecosistema por actividades de aprovechamiento de los recursos naturales, crecimiento de la mancha urbana, actividades agropecuarias y apertura de caminos y brechas.

Imagen 24. Se puede observar los diferentes mosaicos zonas desmotadas dedicadas al pastoreo.

IV.2.2. Medio abiótico.

Aspectos abióticos

Clima

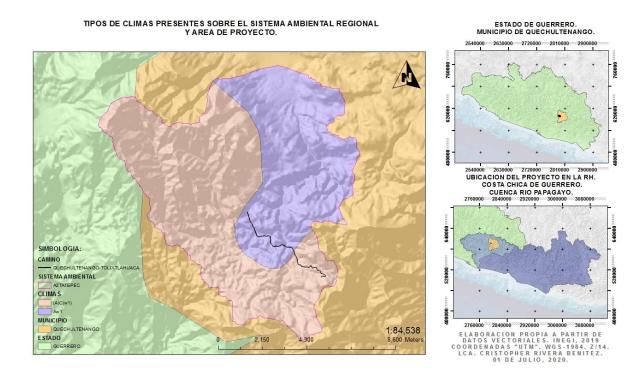


Imagen 25.-Climas presentes en el SAR del proyecto.

Dentro del Sistema Ambiental se localizan 2 tipos de climas:

(A)C(w1): Semicálido Subhúmedo con temperatura media anual mayor de 18 °C temperatura del mes más frio menor de 18 °C, precipitación del mes más seco menor de 40 mm; lluvias de verano con índice P/T (Precipitaciones mensuales / Temperaturas mensuales), entre 43.2 y 55.0 y porcentaje de lluvia invernal del 5% al 10.2 % del total anual.

Aw1: Cálido Subhúmedo con temperatura media anual mayor de 22°C y temperatura del mes más frío mayor de 18°C, precipitación del mes más seco entre 0 y 60 mm; lluvias de verano con un índice P/T (Precipitaciones mensuales /

Temperaturas mensuales), mayor de 55.3 y porcentaje de lluvia invernal del 5% al 10-2% del total anual.

Dentro de la localización del proyecto y abarcando un 100% el área de proyecto se localiza el tipo de clima (A)C(w1) Semicálido Subhúmedo, basado en el Sistema de clasificación climática de Köppen modificado por Enriqueta García.

Temperatura

El SAR del proyecto presenta un Clima Semicálido Subhúmedo, lo que representa temperaturas medias anuales, sin grandes variaciones estacionales.

La estación climatológica en la zona del proyecto es la Estación 00012096 Colotlipa (CFE), Quechultenango, Guerrero que se ubica en las coordenadas geográficas 17° 24' 32" Latitud Norte, 099° 10' 05" Longitud Oeste, Servicio Meteorológico Nacional, Periodo 1951-2010, altura 769.0 msnm.

El SAR cuenta con una temperatura media anual de 24.4°C, rangos de temperatura máxima anual de 31.7 °C y una temperatura mínima anual de 30.2 °C. La distribución de la dinámica de temperaturas se muestra en la siguiente tabla:

Tabla 23.- Temperatura máxima presente en el SAR del proyecto en °C. Estación climatológica Colotlipa (CFE), Quechultenango, Gro.

TEMPERATURA MÁXIMA	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	ANUAL
NORMAL	31.0	31.7	33.0	34.0	33.8	31.8	31.0	30.6	30.2	31.0	31.5	31.3	
MÁXIMA MENSUAL	34.1	34.1	34.6	35.3	35.8	34.9	33.3	33.3	33.6	34.6	33.9	33.1	31.7
MÁXIMA DIARIA	36.0	37.0	39.0	39.0	39.5	39.0	36.0	38.0	36.5	37.0	37.0	36.0	
TEMPERATURA MEDIA	22.6	23.1	24.2	25.6	26.4	25.6	24.9	24.6	24.4	24.5	24.0	23.2	24.4

Precipitación

Con respecto a los datos de precipitación; se tiene que la precipitación promedio anual para el municipio de Quechultenango es de 1,202.8 mm, estableciendo una precipitación máxima mensual de 482.1 mm y una máxima diaria de 120.3 mm.

Tabla 24.- Precipitación promedio registrada en el municipio de Quechultenango.

PRECIPITACION	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ANUAL
NORMAL	9.3	4.3	3.0	11.4	51.9	198.6	263.8	258.8	246.6	121.9	26.6	6.6	
MAXIMA MENSUAL	78.6	34.1	42.0	58.4	151.5	430.8	452.7	482.1	455.2	347.3	259.8	56.3	1,202.8
MAXIMA DIARIA	41.4	20.7	22.0	43.8	102.2	120.3	79.0	114.0	117.4	83.3	94.2	36.4	

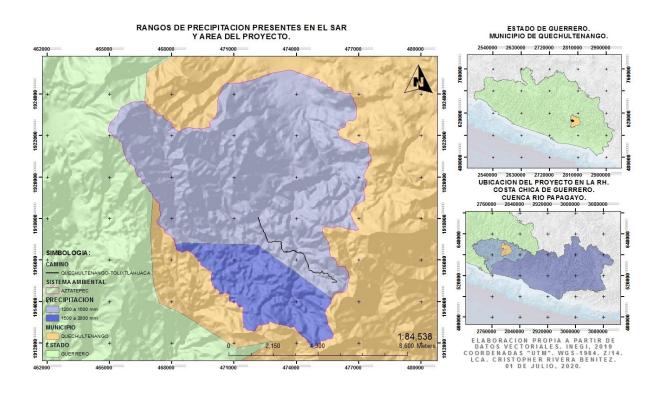


Imagen 26.- Ubicación del proyecto dentro del Mapa de rango de precipitación.

Dentro del Sistema Ambiental Regional (SAR), La precipitación promedio en la zona corresponde a un rango de entre 1200 a 2000 mm. La distribución de la dinámica de precipitación se muestra en el mapa.

Geomorfología

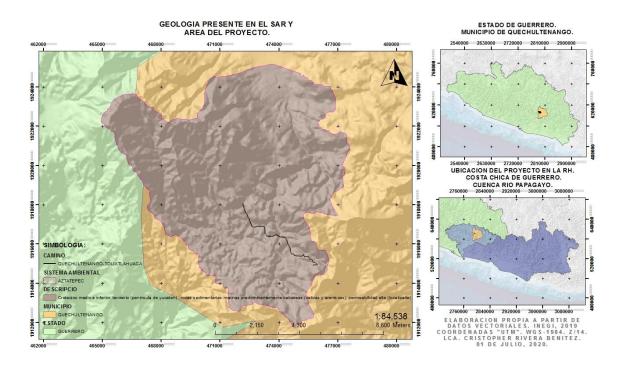


Imagen 27.- Geología dentro del SAR.

Dentro del SAR (Sistema Ambiental Regional) prevalece una unidad de material geológico, perteneciente al periodo Cretácico medio e inferior terciario con un grado de permeabilidad alta, este periodo se caracteriza por la presencia de calizas, tizas, esquistos y las cretas, constituidas por la deposición de conchas de invertebrados marinos, principalmente cocolitos.

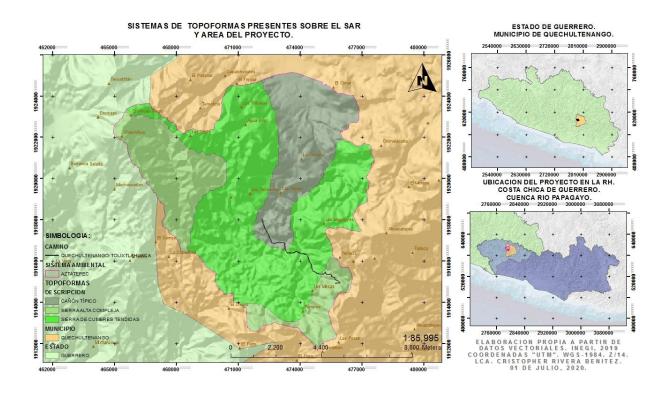


Imagen 28.- Mapa de topoformas dentro del SAR.

Debido a esta variedad de topoformas presentes, la entidad se caracteriza por presentar un paisaje accidentado y de contraste que forma un complejo mosaico de climas, suelos y vegetación local.

Dentro del Sistema Ambiental Regional (SAR) se encuentran las siguientes Topoformas: Cañón Típico, Sierra Alta Compleja y Sierra de Cumbre estrechas. El sistema de topoformas donde se pretende llevar a cabo el proyecto corresponde a Sierra Alta Compleja.

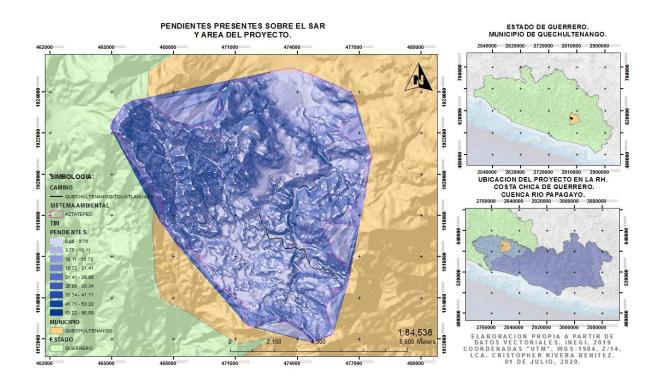


Imagen 29.- Mapa de pendientes dentro del SAR.

El SAR presenta diferentes pendientes que van desde planas hasta pendientes abruptas, el área donde se ejecutará el proyecto tiene pendientes Planas, Muy Suavemente Inclinadas, Suavemente inclinadas y pendientes Ligeramente Inclinadas con intervalos de 6.38° a 27.10°.

Tipo de Material Existente

Suelos

Tipo de suelo en el área de estudio y características

La clasificación de suelos se basa en propiedades del suelo definidas en términos de horizontes, propiedades y materiales de diagnóstico, las que hasta el máximo posible deberían ser medibles y observables en el campo. La selección de características de diagnóstico toma en cuenta sus relaciones con los procesos formadores de suelos. Se reconoce que una comprensión de los procesos formadores de suelos contribuye a una mejor caracterización de los suelos pero ellos no deberían como tales, usarse como criterios de diferenciación. Hasta donde sea posible en un alto nivel de generalización, se seleccionan rasgos de diagnóstico que son significativos para el manejo de los suelos.

Dentro del SAR se encuentran 4 asociaciones de suelos: Cambisol calcacico, Litosol, Regosol eutrico y Rendzina., dentro del área del proyecto el suelo presente es el Regosol Eutrico.

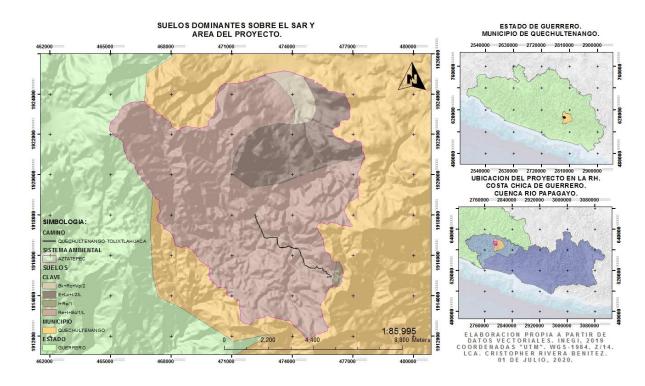


Imagen 30.- Tipo de suelo existente en la zona de estudio.

Características de los suelos presentes en el SAR del proyecto:

Cambisol

Del latín cambiare: cambiar. Literalmente, suelo que cambia. Estos suelos son jóvenes, poco desarrollados y se pueden encontrar en cualquier tipo de vegetación o clima excepto en los de zonas áridas. Se caracterizan por presentar en el subsuelo una capa con 112 terrones que presentan vestigios del tipo de roca subyacente y que además puede tener pequeñas acumulaciones de arcilla, carbonato de calcio, fierro o manganeso. También pertenecen a esta unidad algunos suelos muy delgados que están colocados directamente encima de un tepetate. Son muy abundantes, se destinan a muchos usos y sus rendimientos son variables pues dependen del clima donde se encuentre el suelo. Son de moderada a alta susceptibilidad a la erosión.

Litosol

Los Litosoles son suelos poco desarrollados, aparecen sobre rocas que han resistido la meteorización, proceso favorecido comúnmente por una topografía quebrada que facilita la erosión de los productos resultantes.

Algunos pocos Litosoles presentan un delgado horizonte subsuperficial que reúne las características de un horizonte cámbico o argilúvico, pero que desaparecería si el suelo fuera arado. Tales horizontes no se consideran diagnóstico para evitar clasificar suelos vírgenes y cultivados similares en grupos diferentes.

Desde el punto de vista genético, no puede decirse que los Litosoles son suelos jóvenes, debido a que la mayoría de ellos muestran evidencias claras de una acción prolongada de los procesos de formación del suelo, tales como acumulación de materia orgánica, formación de arcilla, desarrollo de estructura y liberación de óxidos.

Regosol

Son suelos de perfil tipo A-C, en el que no se observa desarrollo de los horizontes y formados a partir de materiales no consolidados. Son por tanto suelos más recientes y menos evolucionados. Es frecuente en ellos la existencia de un único horizonte A sobre la roca madre, por lo que suelen tener muy poca profundidad.

Ocupan posiciones fisiográficas muy inestables, como cerros y laderas de gran inclinación, por lo que están sometidos a continua erosión. Son suelos poco frecuentes y están muy diseminados, ocupando zonas de pequeña superficie. Son por lo tanto pobres, con escasas posibilidades de cultivo debido a la elevada

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE

QUECHULTENANGO, EN EL ESTADO DE GUERRERO.

pendiente y escasa profundidad. Además se caracterizan por ser suelos ácidos y muy pobres en materia orgánica.

Rendzina:

Del polaco rzedzic: ruido. Connotativo de suelos someros que producen ruido con el arado por su pedregosidad. Estos suelos se presentan en climas semiáridos, tropicales o templados. Se caracterizan por tener una capa superficial abundante en materia orgánica y muy fértil que descansa sobre roca caliza o materiales ricos en cal. Generalmente las rendzinas son suelos arcillosos y poco profundos por debajo de los 25 cm pero llegan a soportar vegetación de selva alta perennifolia, son moderadamente susceptibles a la erosión.

Grado de erosión del suelo

El grado de erosión que presenta el suelo adyacente a la zona en la cual se construirá el proyecto es Medio, por la topografía existente y la pendiente de los taludes, se observa erosión en los cerros con pendientes pronunciadas y en los costados del cauce donde es frecuente el arrastre de material por la corriente del río, también en los taludes donde hace falta cubierta vegetal.

Estabilidad edafológica

En la zona por donde pasa el eje del proyecto, la estabilidad es media, debido al tipo de suelo, estratigrafía, geología y morfología presente.

Fallas o Fracturas

Las fallas están asociadas con los límites entre las placas tectónicas de la Tierra. En una falla activa, las piezas de la corteza de la Tierra a lo largo de la falla, se mueven con el transcurrir del tiempo. El movimiento de estas rocas puede causar terremotos. Las fallas inactivas son aquellas que en algún momento tuvieron

movimiento a lo largo de ellas pero que ya no se desplazan. El tipo de movimiento a lo largo de una falla depende del tipo de falla, no existen fallas dentro del municipio de Quechultenango.

Hidrología superficial y subterránea

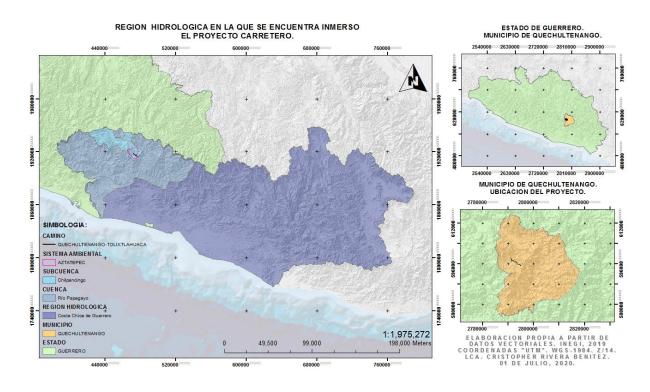


Imagen 31.- Ubicación del proyecto dentro del mapa hidrológico

La delimitación de SAR en donde se ubica el proyecto se encuentra inmerso en la Región Hidrológica RH20: Costa Chica – Río Verde, la cuenca corresponde a R. Papagayo, Subcuenca Chilpancingo, microcuenca Aztatepec, Río La Fundición.

Tabla 25.- Propiedades de la cuenca R. Papagayo.

Propiedad	Valor
Identificador	20

Clave Región Hidrológica	RH20
Nombre de la Región Hidrológica	Costa Chica-Río Verde
Área (km2)	39856.87
Perímetro (km)	1522.86

Propiedad	Valor	
Identificador	81	
Clave Región Hidrológica	RH20	
Nombre de la Región Hidrológica	Costa Chica-Río Verde	
Clave Cuenca	Е	
Nombre Cuenca	R. Papagayo	
Área (km2)	7533.68	
Perímetro (km)	624.14	



Imagen 32.- Ubicación del proyecto dentro de las Regiones Hidrológicas Prioritarias (RHP).

El proyecto se ubica en la Región Hidrológica Prioritaria No. 29 de acuerdo a la CONABIO, perteneciente al Río Papagayo – Acapulco, esta ocupa una extensión de 8,501.81km², sus recursos hídricos principales son lénticos: Lagunas Negra, La Sabana y Tres Palos, lóticos: río Papagayo, La Sabana y Omitlán.

Tabla 26.- Propiedades de la Subcuenca Río Papagayo (RH20Ea).

Identificador en Base de Datos Clave de subcuenca compuesta Clave de Región Hidrográfica RH20 Nombre de Región Hidrográfica COSTA CHICA - RÍO VERDE Clave de Cuenca EClave de Cuenca Clave de Cuenca Clave de Cuenca R. PAPAGAYO Clave de Subcuenca R. PAPAGAYO Clave de Subcuenca R. Papagayo Clave de Subcuenca R. Papagayo Tipo de Subcuenca Lugar a donde drena (principal) Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Cognicion 4 Total de Descargas 4 Cognicion 5 Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca Clave de Subcuenca R. Papagayo EXORREICA Lugar a donde drena 2			
Clave de subcuenca compuesta Clave de Región Hidrográfica Nombre de Región Hidrográfica COSTA CHICA - RÍO VERDE Clave de Cuenca Clave de Cuenca Clave de Cuenca Clave de Cuenca Clave de Subcuenca R. PAPAGAYO Clave de Subcuenca R. Papagayo Clave de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m)	Propiedad	Valor	
Clave de Región Hidrográfica Nombre de Región Hidrográfica COSTA CHICA - RÍO VERDE Clave de Cuenca Clave de Cuenca E Clave de Cuenca Compuesta R. PAPAGAYO Clave de Subcuenca R. PAPAGAYO Clave de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Austra 6 Perímetro (km) Austra 7 Austra 6 Austra 6 Austra 6 Austra 7 Austra			
Nombre de Región Hidrográfica Clave de Cuenca Clave de Cuenca Compuesta Clave de Cuenca Compuesta R. PAPAGAYO Clave de Subcuenca R. PAPAGAYO Clave de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) MAR Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m)	·	RH20Ea	
Clave de Cuenca E Clave de Cuenca Compuesta E Nombre de Cuenca R. PAPAGAYO Clave de Subcuenca a R. Papagayo Clave de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) MAR Total de Descargas (drenaje principal) 4 Lugar a donde drena 2 - Total de Descargas 2 0 Lugar a donde drena 3 - Total de Descargas 3 0 Lugar a donde drena 4 - Total de Descargas 4 0 Total de Descargas 4 Perímetro (km) 415.93 Área (km2) 2546.58 Densidad de Drenaje Compacidad 2.3243 Longitud Promedio de flujo superficial de la Subcuenca (m) 2920 Elevación Máxima en la Subcuenca (m) 2920 Elevación Mínima en la Subcuenca (m) 2920	Clave de Región Hidrográfica		
Clave de Cuenca Compuesta Nombre de Cuenca R. PAPAGAYO Clave de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) Lugar a donde drena 2 Total de Descargas (drenaje principal) Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Area (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O R. PAPAGAYO R. PAPAGAYO AR. PAPAGAYO A PAPAGAYO C R. PAPAGAYO A PAPACA A PAPABAYO A PAPACA	Nombre de Región Hidrográfica		
Nombre de Cuenca Clave de Subcuenca R. PAPAGAYO Clave de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) 415.93 Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) Descargas (m) Descarg	Clave de Cuenca	E	
Clave de Subcuenca Nombre de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) MAR Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) Da MAR R. Papagayo EXORREICA R. Papagayo EXORREICA R. Papagayo EXORREICA R. Papagayo EXORREICA A 4 Papagayo Total de Descargas 2 0 1 4 Coeficiente de Descargas 3 4 Perímetro (km) 415.93 Área (km2) 2546.58 Densidad de Drenaje 1.7468 Coeficiente de Compacidad 2.3243 Longitud Promedio de flujo superficial de la Subcuenca (D.1431188 (km) Elevación Máxima en la Subcuenca (m) 2920 Elevación Mínima en la Subcuenca (m)	Clave de Cuenca Compuesta	E	
Nombre de Subcuenca R. Papagayo Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) MAR Total de Descargas (drenaje principal) 4 Lugar a donde drena 2 - Total de Descargas 2 0 Lugar a donde drena 3 - Total de Descargas 3 0 Lugar a donde drena 4 - Total de Descargas 4 0 Total de Descargas 4 0 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total de Descargas 9 1 Total 9	Nombre de Cuenca	R. PAPAGAYO	
Tipo de Subcuenca EXORREICA Lugar a donde drena (principal) MAR Total de Descargas (drenaje principal) 4 Lugar a donde drena 2 Total de Descargas 2 0 Lugar a donde drena 3 Total de Descargas 3 0 Lugar a donde drena 4 Total de Descargas 4 0 Total de Descargas 4 0 Total de Descargas 9 4 Perímetro (km) 415.93 Área (km2) 2546.58 Densidad de Drenaje 1.7468 Coeficiente de Compacidad 2.3243 Longitud Promedio de flujo superficial de la Subcuenca (m) 2920 Elevación Máxima en la Subcuenca (m) 0	Clave de Subcuenca	а	
Lugar a donde drena (principal) Total de Descargas (drenaje principal) 4 Lugar a donde drena 2 Total de Descargas 2 0 Lugar a donde drena 3 - Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O MAR 4 4 4 Lugar a donde drena 2 - 0 0 Lugar a donde drena 3 - 0 0 1 4 0 1 1 1 1 1 1 1 1 1 1 1 1	Nombre de Subcuenca	R. Papagayo	
Total de Descargas (drenaje principal) Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 9 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O O A D A 4 Coeficiente de Compacidad Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente de Coeficiente	Tipo de Subcuenca	EXORRÉICA	
Lugar a donde drena 2 Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O O O O O Lugar a donde drena 3 - 0 Coeficiente 4 - 1 2 2 2 2 2 2 2 2 2 2 2 2	Lugar a donde drena (principal)	MAR	
Total de Descargas 2 Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Area (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) 0	Total de Descargas (drenaje principal)	4	
Lugar a donde drena 3 Total de Descargas 3 Lugar a donde drena 4 Total de Descargas 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O O O O O O O O O O O O O	Lugar a donde drena 2	-	
Total de Descargas 3 Lugar a donde drena 4 - Total de Descargas 4 O Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O O O O O O O O O O O O O	Total de Descargas 2	0	
Lugar a donde drena 4 Total de Descargas 4 Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m)	Lugar a donde drena 3	-	
Total de Descargas 4 Total de Descargas Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O O O O O O O O O O O O O	Total de Descargas 3	0	
Total de Descargas 4 Perímetro (km) 415.93 Área (km2) 2546.58 Densidad de Drenaje 1.7468 Coeficiente de Compacidad 2.3243 Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) 2920 Elevación Mínima en la Subcuenca (m) 0	Lugar a donde drena 4	-	
Perímetro (km) Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) 0 415.93 2546.58 1.7468 2.3243 0.1431188 0.1431188	Total de Descargas 4	0	
Área (km2) Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) O 2546.58 1.7468 2.3243 0.1431188 2920 0	Total de Descargas	4	
Densidad de Drenaje Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) 0 1.7468 2.3243 0.1431188 0.1431188	Perímetro (km)	415.93	
Coeficiente de Compacidad Longitud Promedio de flujo superficial de la Subcuenca (km) Elevación Máxima en la Subcuenca (m) Elevación Mínima en la Subcuenca (m) 0		2546.58	
Longitud Promedio de flujo superficial de la Subcuenca 0.1431188 (km) Elevación Máxima en la Subcuenca (m) 2920 Elevación Mínima en la Subcuenca (m) 0	Densidad de Drenaje	1.7468	
(km)2920Elevación Máxima en la Subcuenca (m)2920Elevación Mínima en la Subcuenca (m)0	Coeficiente de Compacidad	2.3243	
Elevación Mínima en la Subcuenca (m) 0	The state of the s	0.1431188	
\	Elevación Máxima en la Subcuenca (m)	2920	
Pendiente Media de la Subcuenca (%) 27.1	Elevación Mínima en la Subcuenca (m)	0	
	Pendiente Media de la Subcuenca (%)	27.1	

Elevación Máxima en Corriente Principal (m)	2409
Elevación Mínima en Corriente Principal (m)	20
Longitud de Corriente Principal (m)	183238
Pendiente de Corriente Principal (%)	1.315
Sinuosidad de Corriente Principal	1.88866

Imagen 33.- Corrientes de agua presentes en el SAR.

Durante la modernización no se alterarán las escorrentías existentes, al contrario se les construirán obras correspondiente para salvar el cuerpo de agua y de la misma manera proteger el camino de posibles daños físicos. Dentro del trazo se

conservarán algunas obras de drenaje y otras se mejorarán con base a lo que dictaminan las normas constructivas.

Características particulares y problemática ambiental del Río La Nopalera.

Tabla 27. Características hidrológicas

propiedad	valor
Identificador	9879326
Clave de Subcuenca	RH20Ed
Clave del conjunto topográfico escala 1:50000	
Tipo de entidad	101
Entidad	CORRIENTE DE AGUA
Código de rasgo	3271
Condición de la corriente	INTERMITENTE
Edición	N
Fecha	2008-03-19
Campo para habilitar o deshabilitar segmentos en redes geométricas (Enabled)	1
Descripción del campo Enabled (Ciclo o bifurcación)	
Calificador de Representación Geométrica	1
Identificador del punto de drenaje al cual pertenece la línea	5
Identificador de secuencia	1437
Magnitud de orden (clasificación de Strahler) a nivel de subcuenca	4
Nivel de corriente a nivel de subcuenca (Drain Stream Level)	2
Longitud (m)	621.9422
Arbolate Sum – Sumatoria de longitudes de líneas de flujo aguas arriba a nivel de subcuenca (m)	81007.6796
Longitud de trayectoria (sumatoria de longitudes aguas abajo) a nivel de subcuenca (m)	72928.8906

Procesos y problemática identificados en el Rio La Nopalera

De acuerdo con INEGI las principales causas de la perdida de suelos y degradación de la vegetación son:

- Fenómenos meteorológicos
- Perdida por deforestación
- Extracción de madera para autoconsumo

• Cambio de uso de suelo para actividades agrícolas o ganaderas.

Esta problemática lleva al deterioro de los ecosistemas en su conjunto como la perdida de diversidad, desplazamiento y perdida de las especies, introducción de especies exóticas, asolvamiento de causes. Sin embargo aún es posible observas especies de flora y fauna representativas de selva.

Tabla 28. Problemática encontrada.

propiedad	valor
Clave de Fotointerpretación	IAPF
	AGRICOLA-PECUARIA-
Descripción	FORESTAL
	AGRICOLA-PECUARIA-
Tipo de Información	FORESTAL

Siendo los usos de suelo dominantes en el área los agrícolas y pecuarios.

Hidrología subterránea

Por la naturaleza del proyecto no se llegará a afectar a algún cuerpo de agua subterráneo, por lo que deberán de tomarse las medidas pertinentes con el fin de evitar contaminación del suelo y subsuelo del área donde se desarrollará el proyecto.

Biota presente

Dentro del área del proyecto y el cauce es posible observar alevines durante la temporada de lluvias.

Peces			
Nombre científico	Nombre común	Estatus dentro de la NOM-059- SEMARNAT-2010:	Numero de indicios
Oreochromis sp	Tilapia o carpa	SS	1
Lile stolfera	charal		1
Mugil cephalus	lisa	SS	1

Tabla 29. Biota del rio.

Usos

Principalmente se utiliza para riego y consumo con algunos pozos artesanales a su margen en las localidades, de la misma manera se utiliza para labores de limpieza de ropa y recreación en las partes más cercanas al su desembocadura.

Condición ecológica.

En relación al sitio del proyecto el cauce no presenta tirante de agua visible presentando el cauce problemas de azolvamiento. Por lo que la fauna acuática es minima siendo común la fauna nociva como cochinos, y algunas aves de corral. Siendo su principal presión la deforestación en partes altas de la cuenca hacen que el arrastre de materiales y que el rio presente fuertes problemas de azolve.

IV.2.2. Medio biótico

Vegetación terrestre y/o acuática y composición florística

Se estudió la composición florística y distribución de las diferentes unidades que se encuentran en el SAR, muestreando la vegetación para el SAR y para el proyecto.

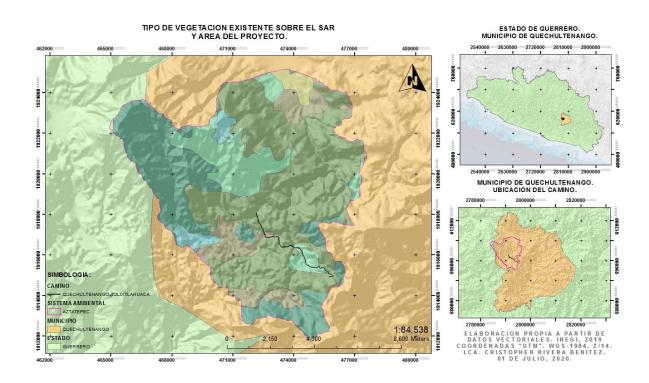


Imagen 34.- Tipos de vegetación presentes en el SAR del proyecto. INEGI serie VI.

La vegetación que se encuentra en el SAR del proyecto, según datos de INEGI en su serie VI, determina Bosque de encino, Urbano construido, Bosque de pino-encino, Pastizal inducido, Agricultura de riego anual, Agricultura de temporal anual, Vegetación secundaria arbustiva de bosque de pino-encino, Vegetación secundaria arbustiva de bosque de encino y Vegetación secundaria arbórea de selva baja caducifolia, como se muestra en la cartografía de vegetación, el área del proyecto se caracteriza por tener zonas desmontadas con vegetación que crece al margen

del camino son individuos que han crecido con las apertura del camino al margen, la vegetación conservada se encuentra en zonas aisladas en la mayoría de los polígonos los individuos son aislados y no forman zonas densas. De la misma manera estas zonas se encuentran dominadas en superficie por pastos que crecen o se favorecen para el forrajeo, también se observan polígonos de afectación con zonas desmontadas totalmente. Las zonas con vegetación conservada corresponden a laderas con la mayor pendiente donde se realizaran actividades de desmonte. En el tramo del camino a modernizar se describe a continuación el tipo de vegetación presente en el área del proyecto, correspondiente a Vegetación Secundaría arbórea de Selva Baja Caducifolia:

Tabla 30. Superficies por uso de suelo en SAR.

Uso de suelo	SUP (ha)
Bosque de encino	0.37
Urbano construido	4.16
Bosque de pino-encino	2359.22
Pastizal inducido	1297.65
Agricultura de riego anual	991.87
Agricultura de temporal anual	278.92
Vegetación secundaria arbustiva de bosque de pino-encino	7.27
Vegetación secundaria arbustiva de bosque de encino	113.74
Vegetación secundaria arbórea de selva baja caducifolia	4756.89
Total	9810.09

Vegetación de bosque de pino encino: Se caracteriza principalmente porque la vegetación original de la zona esta comunidad es la que ocupa la mayor parte de la superficie forestal de las partes superiores de los sistemas montañosos del país. Está constituida por la mezcla de diferentes especies de pino (Pinus spp.) y encino (Quercus spp.) ocupando muchas condiciones comprendidas dentro del área general de distribución de los pinos; esta transición del bosque de encino al de pino está determinada por el gradiente altitudinal.

Vegetación Secundaria Arbustiva de bosque de pino encino: Son comunidades vegetales muy características de las zonas montañosas de México y constituyen

junto con la comunidad vegetal de los pinos la mayor parte de cubierta vegetal en áreas de clima templado y subhúmedo; aunque no se limitan a estas condiciones ya que están presentes en áreas de clima cálido. En México se mencionan cerca de 150 especies presentes en el territorio nacional. Estos bosques se encuentran como una transición entre los bosques de coníferas y las selvas, pueden alcanzar desde los 4 metros hasta los 20 metros de altura más o menos abiertos o muy densos; se desarrollan en muy diversas condiciones ecológicas. Las especies más comunes de estas comunidades son Quercus crassifolia, Quercus rugosa y Quercus sideroxyla.

Bosque de Pino-Encino: se desarrollan en climas templados subhúmedos. Se ubican entre los 1200-3000 msnm. La temperatura media anual va de los 12 a los 18°C y las heladas son frecuentes. Las lluvias pueden ir de los 600 a los 1000 mm anuales. Se distribuyen desde el sureste de los Estados Unidos hasta el norte de Nicaragua y en México representan la mayor extensión de bosques templados. Los más importantes se encuentran en las zonas montañosas de la Sierras Madre Oriental y Occidental. Igualmente se presentan en el Eje Volcánico Transversal y en la Sierra de Chiapas.

Es una ecoregión de las zonas templadas en las que hay codominancia de especies de pino (*Pinus*) y encino (*Quercus*). Se caracterizan por presentar tres estratos. El estrato superior generalmente es dominado por los pinos, mientras que los encinos se ubican en el segundo. Es frecuente observar un mayor número de encinos, pero los pinos tienden a tener mayor área del tronco. En general, estos bosques se caracterizan por presentar tres estratos. El estrato arbóreo puede alcanzar hasta los 40 m de altura. Este estrato está generalmente dominado por los pinos.

Posteriormente se tiene un segundo estrato que puede alcanzar hasta los 20 de altura. En este se presentan principalmente especies de encino, aunque pueden estar presentes especies de otros grupos arbóreos.

Luego tenemos un estrato arbustivo que puede llegar hasta los 10 m. Aquí se presentan individuos juveniles de los pinos y encinos, así como otras especies asociadas.

Con relación al estrato herbáceo (1- 0,20 m) puede estar o no presente. Esto va a estar relacionado con lo cerrado que se presente el estrato arbóreo. En bosques muy cerrados, solo estará presente en los claros que se formen. Mientras que en aquellos bosques con el estrato arbóreo más abierto, se presenta una mayor diversidad de especies herbáceas. También pueden encontrarse gran diversidad de epifitas y trepadoras que crecen asociadas a los encinos. La mayor frecuencia de estas formas de vida, se relaciona con las condiciones de humedad y temperatura. Así, algunos grupos de epífitas como las orquídeas no se presentan cuando la temperatura es muy baja.

Pastizal Inducido: Estas comunidades vegetales corresponden a las gramíneas, la presencia de algunas está determinada por el clima, muchas otras son favorecidas, al menos en parte, por las condiciones del suelo o por disturbios ocasionados por el hombre y sus animales domésticos.

Es el que se ha introducido intencionalmente en una región y para su establecimiento y conservación se realizan algunas labores de cultivo y manejo. Son pastos nativos de diferentes partes del mundo como: *Digitaria decumbens (Zacate Pangola), Pennisetum ciliaris (Zacate Buffel), Panicum 190áximum (Zacate Guinea o Privilegio), Panicum purpurascens (Zacate Pará)*, entre otras muchas especies. Estos pastizales son los que generalmente forman los llamados potreros en zonas tropicales, por lo general con buenos coeficientes de agostadero.

Agropecuario

El sector agropecuario mexicano ha enfrentado transformaciones profundas durante las tres últimas décadas. El continuo proceso de urbanización, el intenso proceso

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
de globalización y las transformaciones demográficas han configurado un nuevo
entorno para el sector agropecuario (Escalante, *at. Al.*, 2005 y 2007).

La denominación agropecuario Surge a partir de la modalidad de las grandes estancias de arrendar parte de la superficie para la prosperidad del país corría de la mano de la ampliación de la frontera agrícola-ganadera (de las carnes primero y del trigo y del maíz después) en base a tecnologías importadas (y adaptadas localmente) sustentando un modelo fraccionado por el mercado externo. Agricultura intensiva y luego rotarla a lo largo de los años con ganadería extensiva lo cual conformaba un ciclo productivo que mantenía y/o mejoraba los grados de fertilidad de los suelos; lográndose, de esta manera, una adecuada sustentabilidad tanto ecológica como económica.

Vegetación Secundaría Arbórea de Selva Baja Caducifolia

También conocido como bosque tropical caducifolio. Comunidades vegetales dominadas por árboles pequeños que pierden sus hojas durante la época seca del año. Son propias de climas cálidos con lluvias escasas. Tienen una diversidad única con gran cantidad de especies endémicas. Se ubican en zonas muy frágiles y en condiciones climáticas que favorecen la desertificación. La vegetación que crece en las selvas bajas es muy densa y los árboles tienen alturas de máximo 15 m. En las zonas más secas es común la presencia de cactáceas columnares y candelabriformes. Algunas especies y géneros representativos de plantas son Bursera spp, Haematoxylon brasiletto, Lysiloma spp, Ipomea spp, Cercidium spp "palo verde", Ceiba spp, Beaucarnea spp, Yucca spp, Curatella americana. Las selvas bajas son ricas en especies endémicas.

Imagen 35. Estimación de individuos que serán afectados por la modernización del camino.

Vegetación del SAR.

CÁLCULO DEL TAMAÑO DE LA MUESTRA DESCONOCIENDO EL TAMAÑO DE LA POBLACIÓN

La fórmula para calcular el tamaño de muestra cuando se desconoce el tamaño de la población es la siguiente:

$$n = \frac{Z_a^2 \times p \times q}{d^2}$$

En donde

Z = nivel de confianza,

P = probabilidad de éxito, o proporción esperada

Q = probabilidad de fracaso

D = precisión (error máximo admisible en términos de proporción)

Donde:

Nivel de confianza deseado	Puntuación z
95 %	1.96

Tamaño en metros de vegetación en microcuenca: 9810

Nivel de confianza (%): 95

Margen de error (%): 5

Tamaño de la muestra en metros cuadrados de vegetación arbórea: 485

Con base en lo anterior se realizaron 4 sitios de muestreo las coordenadas del sitio de muestreo para la caracterización de la vegetación del proyecto dentro de la microcuenca son:

sitio	COORDENADAS	
1	X = 473271	Y = 1916720
2	X = 473271	Y = 1916720
3	X = 473265	Y = 1916767
4	X = 472365	Y = 1917471

Tabla 31. Sitios de muestreo.

Para la caracterización del tipo de vegetación con base en el tamaño de muestra se realizó un sitio de muestreo con 12.8 m de radio para una superficie aproximada de 500 m2 de vegetación característica donde se inserta el proyecto que es vegetación según INEGI en su serie VI vegetación secundaria arbórea de selva baja caducifolia.

Tipo de Vegetación presente en los polígonos de afectación:

Se observan modificaciones o nuevas aperturas por 27581 m2 y 19200 m2 en terrenos forestales con la presencia de Vegetación arbustiva de selva baja caducifolia.

Tabla 32. Sitios de afectación y superficie.

Polígono	Cadenamiento u	Tipo de vegetación o uso de suelo	Superficie m2
1	Del km 0+000 al km 0+190	Agropecuario	1451
2	Del km 0+200 al km 0+700	Vegetación secundaria arbórea de selva baja caducifolia	4439
3	Del km 0+790 al km 0+974	Vegetación secundaria arbórea de selva baja caducifolia	1543
4	Del km 0+974 al km 1+040	Agricultura de temporal	464
5	Del km 1+310 al km2+400	Vegetación secundaria arbórea de selva baja caducifolia	8864
6	Del km 2+500 al km 2+980	Vegetación secundaria arbórea de selva baja caducifolia	3757
7	Del km 2+980 al km 3+300	Pastizal inducido	1640
8	Del km 3+400 al km 4+000	Pastizal inducido	4459
9	Del km 4+580 al km 4+795	Pastizal inducido	367
10	Del km 5+740 al km 5+970	Vegetación secundaria arbórea de selva baja caducifolia.	597
Total			27581

Se observan modificaciones o nuevas aperturas por 27581 m2 en terrenos forestales con la presencia de **Vegetación arbustiva de selva baja caducifolia.**

Tabla 33.sitios de afectación en áreas de pastizal inducido.

Uso de suelo	Superficie (m2)	Polígonos
--------------	-----------------	-----------

Forestal	19200	1,2,5,6 y 10
Agropecuario	8381	3,4,7,8 y 9
Total	27581	

Imagen 36. Zonas de pastizal inducido y de cultivo en el área del proyecto.

Metodología para la estimación de medidas de biodiversidad.

Los métodos de descripción y clasificación estructurales y fisionómicos están fundamentados en características propias de la vegetación y no de la flora que la

constituye. La diversidad de ambientes que abarcan el SAR, hace más factible encontrar muchas variaciones en la fisionomía de la vegetación y, además muy diferentes usos de suelo. Se hicieron muestreos en los tipos de vegetación predominantes que son sujetos de afectación y están dentro del SAR, como referente se tomaron comunidades medianamente conservadas, las cuales presentan características estructurales y composición similares a una comunidad no alterada. Se obtuvo información del borde del camino, especies dominantes y características generales del mismo con la finalidad de estimar el número de individuos a remover e índices de diversidad del SAR y de la superficie de afectación.

De la misma manera se contabilizó la vegetación a eliminar para las áreas de vegetación forestal por estrato de vegetación.

Índice de diversidad

Estos índices fueron determinados para ecosistema de manera independiente, los cuales son representativos para comunidades vegetales del mismo tipo (VM Zarco–Espinosa, 2010) visto en Universidad y ciencia vol.26 no.1 Villahermosa abr. 2010. Structure and diversity of arboreal vegetation in the Parque Estatal Agua Blanca, Macuspana, Tabasco. VM Zarco–Espinosa, JI Valdez–Hernández, G Ángeles–Pérez, O Castillo–Acosta.

Medidas de la diversidad de especies

Con el propósito de conocer que tan homogéneas o heterogéneas fueron los sitios de muestreo, se calculó el índice de **Shannon-Wiener** (H'). Mide el grado promedio de incertidumbre para predecir la especie a la que pertenece un individuo tomado al azar dentro de los sitios de muestreo.

$$H' = -\sum_{i=1}^{s} P_i \operatorname{In}(P_i)$$

Dónde:

S = Número de especies.

 P_i = Proporción de individuos de la especie i.

A mayor valor de H' mayor diversidad de especies.

Como se observa en la tabla anterior el valor del Índice de diversidad de Shannon es **H'=3.36**, por lo que la diversidad puede considerarse **medio** y en estado medio de conservación, tomando en cuenta que el valor máximo que suele adoptar el índice es de 5 lo anterior se explica debido a la perturbación y a los tipos de ecosistemas de carácter templado observada área del proyecto.

Estrato arbóreo

Tabla 34. Estimación de estimadores de biodiversidad en SAR en los sitios muestreados

	ESTR/	ATO ARBOREO	NOM-059									
No.	Nombre común	Nombre científico	Estatus	Ind./Ha	Abundancia relativa	Densidad relativa	Frecuencia relativa	Dominancia absoluta	Dominancia relativa	LN(PI)	(PI) X LN (PI)	IVI
1	Cornizuelo	Acacia collinsi	Ss	7	0.0398	3.9773	1.8797	1.1667	3.9773	-3.2246	-0.1283	9.8342
2	Cornizuelo	Acacia cornigera	Ss	6	0.0341	3.4091	4.8335	1.0000	3.4091	-3.3787	-0.1152	11.6517
3	Espino	Acacia farnesiana	Ss	2	0.0114	1.1364	3.2223	0.3333	1.1364	-4.4773	-0.0509	5.4951
4	Coacoyul	Acroccomia aculea	Ss	1	0.0057	0.5682	0.3222	0.1667	0.5682	-5.1705	-0.0294	1.4586
5	Cuartolote	Andira inermis	Ss	5	0.0284	2.8409	2.6853	0.8333	2.8409	-3.5610	-0.1012	8.3671
6	Anona	Annona muricata	Ss	3	0.0170	1.7045	0.5371	0.5000	1.7045	-4.0719	-0.0694	3.9461
7	Papelillo	Bursera grandifolia	Ss	9	0.0511	5.1136	4.8335	1.5000	5.1136	-2.9733	-0.152	15.0608
8	mulato	Bursera simaruba	Ss	3	0.0170	1.7045	0.8056	0.5000	1.7045	-4.0719	-0.0694	4.2147
9	Nanche	Byrsonima crassifolia	Ss	6	0.0341	3.4091	4.8335	1.0000	3.4091	-3.3787	-0.1152	11.6517
10	Pochote	Ceiba pentandra	Ss	2	0.0114	1.1364	0.4603	0.3333	1.1364	-4.4773	-0.0509	2.7331
11	Apanico	Cochlospermum vitifolium	Ss	7	0.0398	3.9773	11.2782	1.1667	3.9773	-3.2246	-0.1283	19.2327
12	Zaza	Cordia dentata	Ss	1	0.0057	0.5682	0.4028	0.1667	0.5682	-5.1705	-0.0294	1.5392
13	Cuartolote	Couepia polyandra	Ss	4	0.0227	2.2727	0.9207	0.6667	2.2727	-3.7842	-0.086	5.4661

14	rasca	Curatela americana	Ss	7	0.0398	3.9773	11.2782	1.1667	3.9773	-3.2246	-0.1283	19.2327
15	Zapotillo	Diospyros digyna	Ss	1	0.0057	0.5682	0.1007	0.1667	0.5682	-5.1705	-0.0294	1.2371
16	Guallaba de monte	Eugenia rhombea	Ss	16	0.0909	9.0909	8.5929	2.6667	9.0909	-2.3979	-0.218	26.7747
17	Amate	Ficus cotinifolia	Ss	3	0.0170	1.7045	2.4168	0.5000	1.7045	-4.0719	-0.0694	5.8258
18	Cacahuananche	Gliricidia sepium	Ss	2	0.0114	1.1364	0.4603	0.3333	1.1364	-4.4773	-0.0509	2.7331
19	Cualote	Guazuma ulmifoli	Ss	7	0.0398	3.9773	3.7594	1.1667	3.9773	-3.2246	-0.1283	11.7139
20	Guapinol	Hymenaea courbaril	Ss	3	0.0170	1.7045	0.6905	0.5000	1.7045	-4.0719	-0.0694	4.0996
22	Casahuate	Ipomoea arborescens	Ss	7	0.0398	3.9773	3.7594	1.1667	3.9773	-3.2246	-0.1283	11.7139
23	chupon	Licaria trianda	Ss	3	0.0170	1.7045	0.5371	0.5000	1.7045	-4.0719	-0.0694	3.9461
24	Tepehuaje	Lysiloma acapulcensis	Ss	9	0.0511	5.1136	7.2503	1.5000	5.1136	-2.9733	-0.152	17.4775
25	Capulin	Muntingia calabura	Ss	2	0.0114	1.1364	0.6445	0.3333	1.1364	-4.4773	-0.0509	2.9172
26	Laurel	Nectandra martinicensis	Ss	5	0.0284	2.8409	2.6853	0.8333	2.8409	-3.5610	-0.1012	8.3671
27	Pino Amarillo	Pinus ocarpa	Ss	3	0.0170	1.7045	2.4168	0.5000	1.7045	-4.0719	-0.0694	5.8258
28	Pistache	Pistacia vera L.	Ss	2	0.0114	1.1364	1.0741	0.3333	1.1364	-4.4773	-0.0509	3.3468
29	guamuchil	Pithecellobium dulce	Ss	3	0.0170	1.7045	1.2084	0.5000	1.7045	-4.0719	-0.0694	4.6175
30	flor de mayo	Plumeria rubra	Ss	4	0.0227	2.2727	0.5371	0.6667	2.2727	-3.7842	-0.086	5.0825
31	Guayaba de monte	Psidium sartorianum	Ss	12	0.0682	6.8182	2.7620	2.0000	6.8182	-2.6856	-0.1831	16.3984
32	encino	Quercus acutifolia	Ss	7	0.0398	3.9773	2.8195	1.1667	3.9773	-3.2246	-0.1283	10.7741
33	encino	Quercus crassifolia	Ss	4	0.0227	2.2727	6.4447	0.6667	2.2727	-3.7842	-0.086	10.9901

34	Crucetillo	Randia sp.	Ss	1	0.0057	0.5682	0.3222	0.1667	0.5682	-5.1705	-0.0294	1.4586
35	ciruelo	Spondeas purpurea	Ss	5	0.0284	2.8409	2.6853	0.8333	2.8409	-3.5610	-0.1012	8.3671
36	Almendro	Terminalia catappa	Ss	3	0.0170	1.7045	0.4394	0.5000	1.7045	-4.0719	-0.0694	3.8485
37	Azulillo	Vitex mollis	Ss	11	0.0625	6.2500	0.1007	1.8333	6.2500	-2.7726	-0.1733	12.6007
	TOTALES			176	1.0000	100	100	29.3333	100	-137.5868	-3.367	300

La estructura de la vegetación arbórea las especies dominantes con mayores valores de importancia, dominancia y densidades son los *Bursera grandifolia*, *Bursera simaruba*, *Byrsonima crassifolia*, *Ceiba pentandra*, *Cochlospermum vitifolium*, *Cordia dentata*, *Couepia poliandra*, *Curatela americana y Diospyros digyna* Eugenia rhombea presentando un índice de diversidad de 3.36 siendo un valor medio.

Estrato arbustivo

Tabla 35. Índices de diversidad y estructura de estrato arbustivo.

		ESTRATO ARBUSTIVO										
No.	Nombre común	Nombre científico	Estatus	Ind./Ha	Abundancia relativa	Densidad relativa	frec. Absoluta	Dominancia absoluta	Dominancia relativa	LN(PI)	(PI) X LN (PI)	IVI
1	Paulillo	Rauvolfia tetraphyll	Ss	12	0.0160	1.6000	85.7143	0.8571	1.6000	-4.1352	-0.0662	3.7781
2	Carnizuelo	Acacia collinsi	Ss	14	0.0187	1.8667	9.6552	1.0000	1.8667	-3.9810	-0.0743	3.7985
3	Zarza	Mimosa pigr	Ss	145	0.1933	19.3333	414.2857	10.3571	19.3333	-1.6433	-0.3177	41.4608
4	Sierrecilla	Acacia riparioides	Ss	35	0.0467	4.6667	145.8333	2.5000	4.6667	-3.0647	-0.1430	10.3169

5	Tulipán de monte	Malvaviscus arboreus	Ss	24	0.0320	3.2000	160.0000	1.7143	3.2000	-3.4420	-0.1101	7.4791
6	hoja leon	Bocconia frutescens	Ss	15	0.0200	2.0000	78.9474	1.0714	2.0000	-3.9120	-0.0782	4.5324
7	Piñuela	Bromelia pinguin	Ss	19	0.0253	2.5333	46.3415	1.3571	2.5333	-3.6756	-0.0931	5.3792
8	Tetatle	Comocladia mollissima	Ss	41	0.0547	5.4667	33.0645	2.9286	5.4667	-2.9065	-0.1589	11.1563
9	Chapuixtle	Dodonaea viscosa	Ss	124	0.1653	16.5333	1033.3333	8.8571	16.5333	-1.7998	-0.2976	40.0358
10	lengua de vaca	Rumex p	Ss	12	0.0160	1.6000	4.6875	0.8571	1.6000	-4.1352	-0.0662	3.2316
11	vara blanca	Casearia Corymbosa	Ss	256	0.3413	34.1333	12800.0000	18.2857	34.1333	-1.0749	-0.3669	154.59
12	Higuerilla	Ricinus communis L.	Ss	2	0.0027	0.2667	15.3846	0.1429	0.2667	-5.9269	-0.0158	0.6371
13	Nopal	Opuntia atropes	Ss	13	0.0173	1.7333	68.4211	0.9286	1.7333	-4.0551	-0.0703	3.9281
14	Palma dulce	Brahea dulcis	Ss	19	0.0253	2.5333	158.3333	1.3571	2.5333	-3.6756	-0.0931	6.1345
15	Agave	Agave agustifolia	Ss	12	0.0160	1.6000	171.4286	0.8571	1.6000	-4.1352	-0.0662	4.3562
16	copa oro	Thevetya sp	Ss	7	0.0093	0.9333	0.9333	0.5000	0.9333	-4.6742	-0.0436	1.8730
	TO	TALES		750	1	100	14827.2473	53.5714	100	-39.6972	-2.0612	300

La estructura de la vegetación arbustiva las especies dominantes con mayores valores de importancia, dominancia y densidades son los *Mimosa pigra, Dodonaea viscosa* y *Casearia Corymbosa* presentando un índice de diversidad de 2.06 es un valor bajo.

Estrato herbáceo

Tabla 36. Índices de diversidad y estructura de estrato herbáceo.

	ESTRA	TO HERBACEO	NOM-059									
No.	Nombre común	Nombre científico	Estatus	Ind./Ha	Abundancia relativa	Densidad relativa	Frecuencia relativa	Dominancia absoluta	Dominancia relativa	LN(PI)	(PI) X LN (PI)	IVI
1	Quelite	Amaranthus sp.	Ss	75	0.0689	6.8934	16.8975	6.2500	6.8934	-2.6746	-0.1844	30.6842
2	Mafafa	Xanthosoma wendlandii Schott	Ss	12	0.0110	1.1029	1.4106	1.0000	1.1029	-4.5072	-0.0497	3.6165
3	Papayita	Momordica charantia L.	Ss	23	0.0211	2.1140	1.7766	1.9167	2.1140	-3.8566	-0.0815	6.0046
4	Yerba del zorrillo	Heliotropium indicum L.	Ss	35	0.0322	3.2169	3.9427	2.9167	3.2169	-3.4367	-0.1106	10.3766
5	Chicalote	Argemone mexicana L.	Ss	24	0.0221	2.2059	1.0138	2.0000	2.2059	-3.8140	-0.0841	5.4256
6	flor de disipela	Rivina humilis L.	Ss	64	0.0588	5.8824	12.3593	5.3333	5.8824	-2.8332	-0.1667	24.1240
7	Carricillo	Lasiacis ruscifolia HBK	Ss	14	0.0129	1.2868	1.8024	1.1667	1.2868	-4.3530	-0.056	4.3759
8	bolitas	Asclepias eriocarpa	Ss	21	0.0193	1.9301	0.0723	1.7500	1.9301	-3.9476	-0.0762	3.9326
9	pasto	Muhlenbergia tenuifolia	Ss	785	0.7215	72.1507	60.6378	65.4167	72.1507	-0.3264	-0.2355	204.93
10	simiate	Asclepias fascicularis	Ss	35	0.0322	3.2169	0.0870	2.9167	3.2169	-3.4367	-0.1106	6.5208
	TOTALES			1088	1	100	100	90.6667	24.6323529	-29.423018	-1.1552	300

Categorías de riesgo en la NOM-059-SEMARNAT-2010: Amenazada (A), Sujeto a Protección Especial (Pr), En Peligro de Extinción (P), Sin estatus (Ss)

La estructura de la vegetación herbácea la especies dominante con mayores valores de importancia, dominancia y densidades es *Muhlenbergia tenuifolia*, presentando este estrato un índice de diversidad de 1.15 es un valor bajo.

Dentro del SAR del proyecto no se encontraron especies de flora bajo alguna categoría de riesgo en la **NOM-059-SEMARNAT-2010**, sin embargo se llevaran a cabo las medidas de mitigación de daños necesarias, para evitar la afectación sobre la vegetación existente.

Composición florística

Imagen 37.- Bidens bipinnata L.

Imagen 38. Tithonia rotundifolia (Mill.) S.F. Blake

Imagen 39. Bidens pilosa

Imagen 40. Cosmos sulphureus

Imagen 41. Lysiloma acapulcensis

Polígo no	Cadenamiento km	Superficie con vegetación a remover (ha)	Tipo de vegetación	Nombre científico	Núm. De individuos a remover	NOM-059 SEMARNAT 2010	Estrat o
1	Del KM 0+000 al KM 0+190	1451	Potrero área agropecuaria	NA	NA	NA	
				Acacia collinsi	7	Ss	
				Acacia cornigera	1	Ss	
				Quercus crassifolia	2	Ss	
				Quercus acutifolia	1	Ss	
				Acacia farnesiana	3	Ss	Arbóre
				Eugenia rhombea	30	Ss	0
				Byrsonima crassifolia	14	Ss	
	Del KM 0+200 al KM0+700 4439			Curatela americana	73	Ss	
2		4439	Vegetación Secundaria Arbórea de selva	Lysiloma acapulcensis	4	Ss	
		Pinus ocarpa 3 Acacia collinsi 3 Bromelia pinguin 3	baja caducifolia	Pinus ocarpa	3	Ss	_
			3	Ss			
			3	Ss			
				Opuntia atropes	1	Ss	Arbust o
				Brahea dulcis	10	Ss	
				Agave agustifolia	1	Ss	
				Asclepias eriocarpa	2	Ss	
				Muhlenbergia tenuifolia	1363	Ss	Herba ceo
				Asclepias fascicularis	21	Ss	
				Cochlospermum vitifolium	5	Ss	
				Vitex mollis	3	Ss	
3	3 Del Km 0+790 al KM 0+973	1543	Vegetación Secuandaria Arborea de selva baja caducifolia	Muntingia calabura	1	Ss	Arbore o
				Ipomoea arborescens	1	Ss	
				Plumeria rubra	7	Ss	

				Acacia cornigera	3	Ss	
				Guazuma ulmifolia	2	Ss	
				Eugenia rhombea	17	Ss	
				Hymenaea Courbaril	1	Ss	
				Byrsonima crassifolia	2	Ss	
				Bursera simaruba	1	Ss	
				Ceiba pentandra	1	Ss	
				Lysiloma acapulcensis	12	Ss	
				Quercus crassifolia	22	Ss	
				Acacia collinsi	2	Ss	
				Mimosa pigr	345	Ss	
				Bocconia frutescens	3	Ss	
				Bromelia pinguin	2	Ss	Arbust
				Brahea dulcis	1	Ss	0
				Agave agustifolia	8	Ss	
				Thevetya sp	3	Ss	
				Amaranthus sp.	278	Ss	
				Momordica charantia L.	89	Ss	
				Asclepias eriocarpa	32	Ss	Herba ceo
				Muhlenbergia tenuifolia	678	Ss	
				Asclepias fascicularis	45	Ss	
				Acacia cornigera	2	Ss	
	Del Km 0+974 al	404	A minute manda. Tanan and A	Hymenaea Courbaril	2	Ss	Arbore o
4	Km 1+040	464	Agricultura de Temporal Anual.	Guazuma ulmifolia	1	Ss	
				Opuntia atropes	6	Ss	Arbust o

				Muhlenbergia tenuifolia	324	Ss	Herba
				Asclepias fascicularis	35	Ss	ceo
				Ficus cotinifolia	1	Ss	
				Cochlospermum vitifolium	3	Ss	
				Vitex mollis	18	Ss	
				Muntingia calabura	5	Ss	
				Acacia collinsi	18	Ss	
				Acacia cornigera	5	Ss	
				Guazuma ulmifoli	19	Ss	
				Quercus crassifolia	14	Ss	Arbore
				Quercus acutifolia	3	Ss	0
				Eugenia rhombea	49	Ss	
		Km 1+310 AI Vegetación Secundaria Arborea de selva (m 2+400 baja caducifolia		Bursera grandifolia	11	Ss	
5	Del Km 1+310 Al		Ceiba pentandra	1	Ss		
	Km 2+400		baja caducifolia	Curatela 1	1	Ss	
				Lysiloma acapulcensis	14	Ss	
				Plumeria rubra	1	Ss	
				Bursera simarobua	2	Ss	
				Bromelia pinguin	1	Ss	
				Casearia Corymbosa	2	Ss	Arbust
				Opuntia atropes	8	Ss	O Albust
				Brahea dulcis	11	Ss	
			Agave agustifolia	18	Ss		
			Muhlenbergia tenuifolia	568	Ss	Herba	
				Asclepias fascicularis	38	Ss	ceo

				Annona muricata	1	Ss	
				Muntingia calabura	5	Ss	
				Licaria trianda	3	Ss	
				Quercus acutifolia	2	Ss	
				Eugenia rhombea	1	Ss	Arbore
				Bursera grandifolia	2	Ss	0
	Del Km 2+500 al Km		Vegetación Secundaria Arborea de selva	Bursera simaruba	1	Ss	
6	2+980	3757	baja caducifolia	Lysiloma acapulcensis	2	Ss	
			Plumeria rubra 1	1	Ss		
		Acacia collinsi	3	Ss			
				Casearia Corymbosa	5	Ss	Arbust
				Opuntia atropes	3	Ss	0
				Muhlenbergia tenuifolia	139	Ss	Herba
				Asclepias fascicularis	8	Ss	ceo
				Ficus cotinifolia	1	Ss	
				Vitex mollis	1	Ss	
				Psidium sartorianum	6	Ss	Arbore
	Del Km 2+980 al	4040		Pithecellobium dulce	2	Ss	
7	Km 3+300	1640	Pastizal inducido	Bursera grandifolia	1	Ss	
				Casearia Corymbosa	21	Ss	Arbust
				Opuntia atropes	4	Ss	0
				Asclepias fascicularis	35	Ss	Herba ceo
				Ficus cotinifolia	1	Ss	
8	Del Km 3+400 al Km 4+000	4459	Pastizal inducido	Annona muricata	21	Ss	Arbore o
	4+000			Vitex mollis	1	Ss	

				Muntingia calabura	1	Ss	
				Acacia collinsi	2	Ss	
				Acacia cornigera	2	Ss	
				Bursera grandifolia	1	Ss	
				Bocconia frutescens	5	Ss	Arbust
				Casearia Corymbosa	15	Ss	O
				Muhlenbergia tenuifolia	59	Ss	Herba
				Asclepias fascicularis	27	Ss	ceo
9	Del km 4+580 al Km 4+795	367	Pastizal inducido	Pithecellobium dulce	1	Ss	Arbol
10	Del km 5+740 al Km 5+970	597	Vegetación Secundaria Arborea de Selva Baja Caducifolia.	Opuntia atropes	1	Ss	Arbust o
Total		27581			4671		

Tabla 37. Sitios de afectación y número de individuos a afectar.

Se contempla la eliminación de 4671 individuos de flora de los diferentes estratos, no se observan especies listadas en las NOM-059-SEMARNAT-2010.

Fauna terrestre y/o acuática

Metodología para el cálculo de abundancia en fauna.

La fauna silvestre que tengan algún estatus de riesgo se marcan de la siguiente manera: en peligro de extinción (P), amenazadas (A) y las sujetas a protección especial (Pr). Las especies que están marcadas con "C" son especies comunes. Algunas de las especies reportadas en esta lista pueden ser cotejadas en el anexo fotográfico. Algunos de los animales descritos se identificaron con la ayuda de claves y guías taxonómicas especializadas en el área, otros por observaciones directas y excretas.

En la literatura citada se puede hallar la técnica utilizada para la observación de los especímenes. Si bien las listas anteriores son de la fauna reportada para la zona se ponen con asterisco las especies observadas.

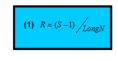
Metodologías empleadas.

Para anfibios y reptiles: Para los anfibios requieren de cuerpos de agua para reproducirse, por lo tanto, esos cuerpos de agua pueden ser permanentes (Ríos, lagunas, presas, etc.

Grupo de Aves Para este grupo faunístico se llevó a cabo el método de avistamiento simple (o con binoculares) y el registro fotográfico, la observación de estos organismos se realizó en los horarios matutino (8:00 – 11:00 hrs) y crepuscular (15:00 – 17:00 hrs), el método de búsqueda fue por conteo por puntos la cual consiste en identificar y contar aves desde un sitio definido denominado "punto de conteo" el cual abarca una superficie circular de 25 m de radio y dentro del mismo se deberá contar todas las aves que se observen y escuche a lo largo de un periodo de 30 minutos, debido a que las aves son organismos que se pueden mover de un lado a otro rápidamente.

Mamíferos: En este grupo faunístico se muestreo mediante el método de recorridos por los diferentes trayectos, buscando vestigios como son huellas, excretas, pelaje, roscaderos, etc., los recorridos se realizaron en un horario de diurno de 8:00 – 15:00 hrs; al igual se tomaron evidencias fotografías para su posterior identificación con la guía de mamíferos de México.

Abundancia relativa fauna


<u>Índices de Abundancia relativa</u>

Mediante los indicios se obtuvo el índice de abundancia relativa, para cada una de las especies registradas, entendido como el número de indicios por unidad de esfuerzo (Carrillo et al., 2000), de la siguiente manera:

$$I = \frac{No.\ de\ Indicios}{Unidad\ de\ esfuerzo}$$

El N° Indicios se refiere al número de huellas, heces, avistamientos, restos, comederos y la unidad de esfuerzo son los metros recorridos. Los valores obtenidos encontrados fueron entre 0 y 1, empleando un factor de corrección de 100 para senderos y de 1000 para trampas siendo el primer caso el utilizado (Villalobos, 2005).

TIPO DE INDICIOS						
Huellas, pelo, avistamiento						
Comedero asociado a huellas, avistamientos						
Huellas y comederos asociados a huellas						
Huellas, avistamientos, vocalizaciones						
Avistamientos, vocalizaciones						
Avistamiento y pelo						
Avistamiento						

Donde:

R = Indice de Margalef
S = Número de especies
N = Número total de especies
Log = Logaritmo base 10

Metodología utilizada de Villalobos, S. S. 2005. Comparaciones en la abundancia relativa de mamíferos medianos y grandes en el área Cerritos la Virginia, Risaralda – Colombia. Trabajo de grado para optar al título de Bióloga. 90 Pp.

La diversidad y riqueza de especies consiste en contar el número de especies que ocurren en una unidad de área; sin embargo, este conteo en sí presenta dos limitaciones principales: primero, resulta ser una medida no ponderada, puesto que no toma en cuenta la abundancia de las especies presentes. La segunda limitante se refiere a que el conteo de especies depende del tamaño de la muestra. El problema básico de la medición de estos parámetros es que no es posible contar todas las especies individuos de una comunidad, y por lo tanto, no existe ningún índice que se extrajo en su medición. Hay índices mejores que otros, dependiendo del tipo de colecta que se realice.

Para el muestreo de la fauna se aplicaron tres métodos diferentes, en donde se muestrearon roedores, quirópteros, mamíferos de talla mediana y grande y la realización de un listado de aves presentes en la microcuenca con sitios dos sitios de 100m2 y recorridos equivalentes a 5.5km.

Cada trampa fue revisada y cerrada por las mañanas para evitar capturas durante el día para evitar mayor estrés y riesgo de muerte por calor para los animales. En caso de captura los individuos serían identificados, sexados, marcados con pintura y liberados en el mismo sitio de su captura.

Las coordenadas del sitio de muestreo para la caracterización de la vegetación fauna del proyecto dentro de la microcuenca son:

Con base en lo anterior se realizaron dos sitios de muestreo las coordenadas del sitio de muestreo para la caracterización de la vegetación del proyecto dentro de la microcuenca son:

SITIO	COORDENADAS		
1	X = 473271	Y = 1916720	

2	X = 473271	Y = 1916720
3	X = 473265	Y = 1916767
4	X = 472365	Y = 1917471

Tabla 38. Sitios de muestreo.

Al igual que la flora, debido a la fuerte presión antropogénica, las especies de fauna cada vez han sido desplazadas hacia lugares más lejanos debido al crecimiento de la mancha urbana específicamente de la zona, en sitios perturbados prevalecen las especies de fácil reproducción como *Didelphis virginiana y Zenaida asiática*, entre otros.

En la siguientes Tablas, se muestran los Índices de Margalef, Shannon Wiener y Simpson obtenidos para los mamíferos, aves, reptiles y anfibios en la microcuenca.

Mamíferos

De acuerdo con el Índice de Margalef poseen una riqueza de 11.73 lo cual lo sitúa en un rango alto [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 0.1 lo cual denota una dominancia baja [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y una buena participación entre los individuos de las especies y el Índice de Shannon muestra que este grupo presenta una heterogeneidad de 2.3 que corresponde al nivel medio [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 39.- Listado de especies de Fauna presentes en la Microcuenca:

			Ма	nmíferos				ÍNDICE DE MARGALEF (RIQUEZA) Í	ÍNDICE DE SHANNON (EQUIDAD)		ÍNDICE (DOI	DE SIM		ESTACIO NALIDAD	SOCIA BILIDA D	ALIMENTAC ION
Orden	Famili a	Especie	Nombre Común	Estatus dentro de la NOM-059-SEMARNAT- 2010	Núm. avistamie ntos	Avista miento s	ni/ ha	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N) 2			
Didelphi morphia	Didelp hidae	Didelphis virginiana	Tlacuach e	ss	2	huellas	2	0.0488	3.0204	-0.1473	3	0.04 88	0.002 4	residente	solitario	omnívoro
Xenarth ra	Dasyp odidae	Dasypus novemcinct us	Armadillo	SS	2	directa	2	0.0488	3.0204	-0.1473	3	0.04 88	0.002	residente	solitario	Inv ertebrado/ Graniv oro
Lagomo rpha	Lepori dae	Sylvilagus cunicularius	Conejo	ss	2	madrig uera	2	0.0488	3.0204	-0.1473	3	0.04 88	0.002 4	residente	gregario	herbivoro
Rodenti a	Sciurid ae	Sciurus aureogaster	Ardilla gris	ss	5	huellas	5	0.1220	2.1041	-0.2566	24	0.12 20	0.014	residente	pareja	herbivoro
		Sigmodon hispidus	Rata	SS	3	directa	3	0.0732	2.6150	-0.1913	8	0.07 32	0.005 4	residente	gregario	herbivoro
	Geom yidae	Liomys irroratus	Ratón de abazones	SS	4	directa	4	0.0976	2.3273	-0.2271	15	0.09 76	0.009 5	residente	gregario	herbivoro
		Mephitis macroura	Zorrillo	Ss	1	huellas	1	0.0244	3.7136	-0.0906	0	0.02 44	0.000	residente	solitario	omnívoro
		Nasua narica	Tejón	ss	2	directa	2	0.0488	3.0204	-0.1473	3	0.04 88	0.002 4	residente	solitario	omnívoro
		Procyon lotor	Mapache	Ss	5	madrig uera	5	0.1220	2.1041	-0.2566	24	0.12 20	0.014 9	residente	gregario	omnívoro

	Micronyreri s	Murciélag o	Ss	6	directa	6	0.1463	- 1.9218	-0.2812	35	0.14 63	0.021	residente	gregario	omnívoro
	Sturnira Iudovici	Murciélag o	Ss	2	directa	2	0.0488	3.0204	-0.1473	3	0.04 88	0.002 4	residente	gregario	omnívoro
	Artibeus intermedius	Murciélag o	Ss	7	directa	7	0.1707	- 1.7677	-0.3018	48	0.17 07	0.029		gregario	omnívoro
				41		41	1	31.655 7	-2.3419	169	1	0.107			

Índice de Margalef	Riqueza (Dmg)	11.7307
Índice de Shannon	Equidad (J)	-2.3418
Índice de Simpson	Dominancia (D)	0.10767

Aves

De acuerdo con el Índice de Margalef poseen una riqueza de 8.71 lo cual lo sitúa en un rango alto [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 1.17 lo cual denota una dominancia alta [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y una probabilidad de ocurrencia baja de especies con el Índice de Shannon muestra que este grupo presenta una heterogeneidad de 1.93 que corresponde al nivel medio [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 40.- Listado de especies de aves presentes en la Microcuenca:

		,	Aves			ÍNDICE DE MARGALEF (RIQUEZA) Í	ÍNDICE DE SHANNON (EQUIDAD)		ÍNDICE DE SIMPSON (DOMINANCIA)			ESTACIO NALIDAD	SOCIA BILIDA D	ALIMENTA CION
Familia	Nombre científico	Nombre popular	Estatus dentro de la NOM-059- SEMARNAT-2010	Núm. avistamiento s	ni/ ha	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N) 2			
CATHA RTIDA E	Cathartes aura	Zopilote	ss*	2	2	0.0571	2.8622	-0.1636	3	0.05 71	0.00	residente	gregari o	carroñera
CATHA RTIDA E	Coragyps atratus	Zopilote negro	SS	6	6	0.1714	1.7636	-0.3023	35	0.17 14	0.02 94	residente	gregari o	carroñera
COLUM BIDAE	Columbina inca	Tortolita	ss	2	2	0.0571	2.8622	-0.1636	3	0.05 71	0.00	residente	gregari o	insectivoro
COLUM BIDAE	Zenaida macroura	Paloma	ss	2	2	0.0571	2.8622	-0.1636	3	0.05 71	0.00 33	residente	pareja	insectivoro- granívoro
COLUM BIDAE	Columba livia	Paloma doméstica	ss	5	5	0.1429	1.9459	-0.2780	24	0.14 29	0.02 04	residente	pareja	insectivoro
TYRAN NIDAE	Tyrannus cassirostri s	Tirano piquigrues o	ss	6	6	0.1714	1.7636	-0.3023	35	0.17 14	0.02 94	residente	solitario	insectivoro
ICTERI DAE	Quiscalus mexicanus	Zanate mexicano	ss	10	10	0.2857	- 1.2528	-0.3579	99	0.28 57	0.08 16	residente	gregari o	insectivoro
PICIDA E	Picoides scalaris	Carpinterill o mexicano	ss	1	1	0.0286	3.5553	-0.1016	0	0.02 86	0.00	residente	solitario	insectivoro
TROCH ILIDAE	Amazilia beryllina	Colibrí de berilo	ss	1	1	0.0286	3.5553	-0.1016	0	0.02 86	0.00	residente	gregari o	néctar
				35	35	1	22.423 1	-1.9344	202	1	0.17 22			

Índice de Margalef	Riqueza (Dmg)	8.7187
Índice de Shannon	Equidad (J)	-1.9344
Índice de Simpson	Dominancia (D)	0.1722

Reptiles

De acuerdo con el Índice de Margalef posee una riqueza de 3.61 lo cual lo sitúa en un rango medio [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 1.12 lo cual denota una dominancia alta [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y poca probabilidad de corregencia de una especie distinta con Índice de Shannon muestra que este grupo presenta una heterogeneidad de 1.27 [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)] .

Tabla 41.- Listado de especies de reptiles presentes en la Microcuenca:

	Reptiles						ÍNDICE DE MARGALEF (RIQUEZA) Í	SH	DICE DE ANNON QUIDAD)	ÍNDICE DE SIMPSON (DOMINANCIA)			ESTACIO NALIDAD	SOCIAB ILIDAD	ALIMEN TACION
Orde n	Fami lia	Nombre científico	Nombre común	Estatus dentro de la NOM- 059-SEMARNAT-2010	Núm. avistamien tos	ni/h a	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N) 2			
	Igua nidae	Ctenosaura pectinata (Wiegmann, 1834)	lguana negra	A*	2	2	0.1538	1.8718	-0.2880	3	0.153 8	0.023 7	residente	gregario	herbivoro
	Scinc idae	Plestiodon brevirostris Günther, 1860		ss	6	6	0.4615	0.7732	-0.3569	35	0.461 5	0.213 0	residente	gregario	insectivor o
	Teiid ae	Aspidocelis sp.	Cuije	ss	2	2	0.1538	1.8718	-0.2880	3	0.153 8	0.023 7	residente	gregario	insectivor o
Serp entes	Boid ae	Boa constrictor (Daudin, 1803)	Mazacua ta	Α	3	3	0.2308	1.4663	-0.3384	8	0.230 8	0.053	residente	solitario	carnívoro
					13	13	1	- 5.9831	-1.2712	49	1.000	0.313 6			

Índice de Margalef	riqueza (Dmg)	3.6101
Índice de Shannon	Equidad (J)	-1.2711
Índice de Simpson	Dominancia (D)	0.3136

Anfibios

De acuerdo con el Índice de Margalef posee una riqueza de 0.55 lo cual lo sitúa en un rango bajo [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 0.5 lo cual denota una dominancia baja [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y alta probabilidad de ocurrencia con respecto de Índice de Shannon muestra que este grupo presenta una heterogeneidad de 0.69 [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 42.- Listado de especies de anfibios presentes en la Microcuenca:

	Anfibios					ÍNDICE DE MARGALEF (RIQUEZA) Í				DE SHANNON QUIDAD)	ÍNDICE I (DOM	DE SIM		ESTACION ALIDAD	SOCIABI LIDAD	ALIMENT ACION
Clase	Orde n	Familia	Nombre científico	Nombre común	Núm. avistamiento s	ni/h a	ABUNDANCIA RELATIVA (pi)		In(PI)	(PI) X LN (PI)	n x (n-1)	n/N	(n/N)2			
Amph ibia	Caud ata	Brachycep halidae	Syrrhophus nitidus (Peters, 1869)	Sapito	1	1		0.5	-0.693	-0.347	0	0.5	0.25	residente	gregario	insectivoro
		Bufonidae	Ollotis sp.	Sapo	1	1		0.5	-0.693	-0.347	0	0.5	0.25	residente	gregario	insectivoro

Índice de Margalef	Riqueza (Dmg)	0.55730
Índice de Shannon	Equidad (J)	-0.69314
Índice de Simpson	Dominancia (D)	0.5

Fauna para los sitios de afectación.

En la siguientes Tablas, se muestran los Índices de Margalef, Shannon Wiener y Simpson obtenidos para los mamíferos, aves, reptiles y anfibios en el área del proyecto.

Mamíferos

De acuerdo con el Índice de Margalef poseen una riqueza de 3.51 lo cual lo sitúa en un rango bajo [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 0.3 lo cual denota una dominancia baja [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y una probabilidad entre los individuos de las especies y el Índice de Shannon muestra que este grupo presenta una heterogeneidad de 1.21 que corresponde al nivel bajo [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 43.- Listado de especies de Fauna presentes en los sitios de afectación:

Mamífero							ICE DE MARGALEF (RIQUEZA) Í	_	DE SHANNON QUIDAD)	ÍNDICE DE SIMPSON (DOMINANCIA)			ESTACION ALIDAD	SOCIABI LIDAD	ALIMENT ACION	
Orden	Famili a	Especie	Nombre Común	Estatus dentro de la NOM-059- SEMARNAT-2010	Núm. avistamiento s	Avistami entos	ni/ ha	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N)2	ALIDAD	LIDAD	ACION
Didelphim orphia	Didelph idae	Didelphis virginiana	Tlacuache	ss	1	huellas	1	0.1250	-2.0794	-0.2599	0	0.125 0	0.015 6	residente	solitario	omnívoro
		Nasua narica	Tejón	ss	2	directa	2	0.2500	-1.3863	-0.3466	3	0.25	0.062 5	residente	solitario	omnívoro
		Procyon lotor	Mapache	Ss	1	madrigue ra	1	0.1250	-2.0794	-0.2599	0	0.125	0.015 6	residente	solitario	omnívoro
		Artibeus intermedius	Murciélag o	Ss	4	directa	4	0.5000	-0.6931	-0.3466	15	0.5	0.250 0	residente	GREGAR IO	omnívoro
					8		8	1	-6.2383	-1.2130	18	1	0.343 8			

Aves

De acuerdo con el Índice de Margalef poseen una riqueza de 3.56 lo cual lo sitúa en un rango bajo [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 0.26 lo cual denota una dominancia baja [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y una probabilidad de ocurrencia baja de especies con el Índice de Shannon muestra que este grupo presenta una heterogeneidad de 1.36 que corresponde al nivel bajo [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 44.- Listado de especies de aves presentes en los sitios de afectación:

	Aves						SH	DICE DE IANNON QUIDAD)	ÍNDICE DE SIMPSON (DOMINANCIA)			ESTACION ALIDAD	SOCIABI LIDAD	ALIMENTAC ION
Familia	Nombre científico	Nombre popular	Estatus dentro de la NOM- 059-SEMARNAT-2010	Núm. avistamient os	ni/ ha	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N)2			
CATHAR TIDAE	Cathartes aura	Zopilote	ss*	2	2	0.2000	1.6094	-0.3219	3	0.200 0	0.040 0	residente	gregario	carroñera
CATHAR TIDAE	Coragyps atratus	Zopilote negro	ss	3	3	0.3000	1.2040	-0.3612	8	0.300 0	0.090	residente	gregario	carroñera
COLUMB IDAE	Columbina inca	Tortolita	ss	2	2	0.2000	1.6094	-0.3219	3	0.200 0	0.040 0	residente	gregario	insectivoro
COLUMB IDAE	Zenaida macroura	Paloma	ss	3	3	0.3000	1.2040	-0.3612	8	0.300 0	0.090 0	residente	pareja	insectivoro- granívoro
				10	10	1.0000	5.6268	-1.3662	22	1	0.260 0			

Reptiles

De acuerdo con el Índice de Margalef posee una riqueza de 1.27 lo cual lo sitúa en un rango bajo [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 0.09 lo cual denota una dominancia baja [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y poca probabilidad de corregencia de una especie distinta con Índice de Shannon muestra que este grupo presenta una heterogeneidad de 0.07 [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 45.- Listado de especies de reptiles presentes en los sitios de afectación:

Rept									ÍNDICE DE MARGALEF (RIQUEZA) Í	SH	DICE DE IANNON QUIDAD)	_	DE SIMI		ESTACION ALIDAD	SOCIABI LIDAD	ALIMENT ACION
Orde n	Fam ilia	Nombre científico	Nombre común	Uso	Endem	Estatus dentro de la NOM- 059-SEMARNAT-2010	Núm. avistamient os	ni/ ha	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N)2			
		Ctenosaura pectinata (Wiegmann, 1834)	Iguana negra	Alim ento	Е	A*	2	2	0.6931	1.3863	-0.0391	3	0.693 1	0.480 5	residente	solitario	omnívoro
	Teii dae	Aspidocelis sp.	Cuije	s/us o		ss	2	2	0.6931	1.3863	-0.0391	3	0.693 1	0.480 5	residente	solitario	omnívoro
							4	4	1.3863	2.7726	-0.0782	6	1.386	0.960 9			

Anfibios

De acuerdo con el Índice de Margalef posee una riqueza de 0.01 lo cual lo sitúa en un rango bajo [1.5; bajo, 3.25; medio y 6; alto (Magurran, 1989)], el Índice de Simpson el cual determina la dominancia está en un valor de 0.48 lo cual denota una dominancia baja [0 baja, 0.5 media y 1 alta (Magurran, 1989)] y baja probabilidad de ocurrencia con respecto de Índice de Shannon muestra que este grupo presenta una heterogeneidad de 1 [1.5 bajo, 2.27 medio y 3.5 alto (Magurran, 1989)].

Tabla 46.- Listado de especies de anfibios presentes en los sitios de afectación:

Anfib ios								ÍND	(RIQUEZA) Í		DE SHANNON QUIDAD)		DE SIMP			SOCIABI LIDAD	ALIMENT ACION
Clas e	Ord en	Famili a	Nombre científico	Nombre común	Us o	Núm. avistamiento s	Avistami entos	ni/ ha	ABUNDANCIA RELATIVA (pi)	In(PI)	(PI) X LN (PI)	n x (n- 1)	n/N	(n/N)2			
		Bufoni dae	Ollotis sp.	Sapo	s/u so	1	huellas	1	0.0000	0.0000	-1.0000	0	0.6931	0.4805	residente	solitario	omnívoro
						1		1	0	0	-1	0	0.6931	0.4804			

En conclusión la fauna presenta componentes por grupo de fauna poco diversos, siendo especies frecuentes y en algunos casos comunes o de zonas con cierto grado de alteración. Solo se encontró una especie en la NOM-059-SEMANRNAT-2010. Y serán incluidas en el programa de rescate y reubicación de fauna.

Tabla 47.- Listado de especies de peces y crustáceos presentes en el rio:

Peces				
Nombre científico	Nombre común	Estatus dentro de la NOM-059-SEMARNAT-2010:	Sistema ambiental	Área del proyecto
Oreochromis sp	Tilapia o carpa	SS	Х	X
Lile stolfera	charal		Х	Х
Mugil cephalus	lisa	ss	Х	Х
CRUSTÁCEOS				
Macrobrachium tenellum	Camarón de rio	ss	Х	Х

SS: Sin estatus A: Amenazada

PR: Protección especial

IV.2.2.3 Medio socioeconómico.

Contexto regional

Región económica

El estado de Guerrero está situado en la región meridional de la República Mexicana, sobre el Océano Pacífico, se encuentra dividido en 8 regiones: Tierra Caliente, Norte, Centro, Montaña, Costa Grande, Costa Chica, Acapulco y Sierra.

En este proyecto participa únicamente el municipio de Quechultenango y las principales comunidades beneficiadas son Aztatepec, Buena Vista, Delegación Sur de Aztatepec, El Naranjo, Jalapa, Santa Cruz, Tolixtlahuaca, Pueblo Viejo, así como rancherías pequeñas a lo largo del trayecto.

Según información del Censo de Población y vivienda 2010 INEGI, se presentan los datos que se muestran en la siguiente tabla, tomando en cuenta por separada la población femenina y masculina.

Tabla 48. Población Total para el Municipio de Quechultenango.

Municipio	Población Masculina	Población	Población	
		Femenina	Total	
Quechultenango	16 855	17 875	34 728	

Tabla 49. Población Total dentro de las localidades beneficiadas.

Fuente: Censo de INEGI 2010, relación hombresmunicipio.

Localidad	Población Total
Aztatepec	990
Buena Vista	336
Delegación Sur de Aztatepec	10
El Naranjo	165
Jalapa	462
Santa Cruz	711

Población y Vivienda Población Total y mujeres por

		Tolixtlahuaca	492		
De acuerdo	al	Pueblo Viejo	637	Censo	de
Población	у	TOTAL	3,803	vivienda	2010

efectuado por el Instituto Nacional de Estadística, Geografía e Informática (INEGI), la población total del municipio de Quechultenango fue de 34 728 habitantes, de los cuales 16 855 son hombres y 17 873 mujeres. La tasa de crecimiento intercensal 2005-2010 es de 4.0 por ciento.

Tabla 50. Tasa de crecimiento poblacional para el Municipio de Quechultenango.

Año	Población	Tasa de crecimiento (%)
1980	22 275	
1990	28 870	22.8
2005	33 367	15.5
2010	34 728	4.0

Indígenas

De acuerdo al Censo General de Población y Vivienda 2010 efectuado por el Instituto Nacional de Estadística, Geografía e Informática (INEGI) la población total de indígenas en el municipio de Quechultenango ascienda a 2 171 personas que representan el 6.2% respecto de la población total del municipio. Sus principales lenguas son Náhuatl y Tlapaneco.

Sus actividades principales son el cultivo de la tierra, además la elaboración de artesanías con materiales de la región.

Tabla 51. Población de indígenas para el Municipio de Quechultenango.

Lenguas Indígenas	Quechultenango
Población que habla alguna lengua indígena	2 171

No habla español	52
Población que habla lengua indígena y habla español	2 036
No especificado	83

Tipos de organizaciones sociales predominantes

El Municipio de Quechultenango, corresponde al distrito federal de Bravos y a los distritos electorales XI federal y al II local.

El municipio cuenta con 43 comisarías municipales, con 13 delegaciones y 4 anexos, los representantes de las diferentes comunidades son electos y se les denomina comisarías, delegaciones y representantes respectivamente en cada comunidad y sus funciones son las de autoridades municipales en cada una de sus comunidades.

3.4.2. Vivienda

En cuestiones de vivienda, en las localidades rurales más apartadas, éstas se caracterizan por ser de tipo rústico, mientras que en la periferia de las comunidades de Pueblo Viejo, Aztatepec y Jalapa, se observan construcciones con muros de adobe, cemento y bajareque, techos de teja, palma, lámina de cartón y pisos de tierra y cemento, mientras que en el resto de las localidades las viviendas son en su mayoría con paredes de adobe, techos de lámina de asbesto y construcciones de material industrializado.

Para definir la oferta y demanda (existencia-déficit), se tomó como indicadores las viviendas propias y no propias del Censo de Población y Vivienda del año 2010, en

cada una de las localidades; cabe señalar que estos datos no toman en consideración otros indicadores como la calidad de la vivienda, servicios, espacio etc., por lo que no son un indicador totalmente confiable, sin embargo, para el proyecto en cuestión es suficiente.

Con lo anterior se determina que en el Municipio de Quechultenango, el 86.2% de la población cuenta con vivienda propia, y el 12.5% no la tiene.

Tabla 52. Cobertura de servicios públicos para el Municipio de Quechultenango (censo del año 2010).

MUNICIPIO	TOTAL DE VIVIENDAS	CON ENERGIA ELECTRICA	CON AGUA ENTUBADA	CON DRENAJE	OCUPANTES POR VIVIENDA
Quechultenango	7 753	7 141	5 561	5 093	4.4

Tabla 53. Cobertura de servicios públicos por localidad (censo del año 2010).

Localidad	Total de viviendas	Sin energia electrica	No disponen de agua entubada	Sin drenaje	Con piso de tierra
Aztatepec	201	4	38	127	47
Buena Vista	63	5	3	23	12
Delegación Sur de Aztatepec	2	1	2	1	1
El Naranjo	40	4	7	6	5
Jalapa	115	9	34	89	33
Santa Cruz	175	3	8	60	37
Tolixtlahuaca	116	7	6	71	21
Pueblo Viejo	152	7	68	64	57

Fuente: Censo de Población y Vivienda INEGI 2010, cobertura de servicios públicos por municipio y localidad. * Sin Datos.

3.4.3 Urbanización

El Municipio de Quechultenango se encuentra en un eje de conexión que comunica a la capital del estado, a través de la carretera libre que va de Chilpancingo – Petaquillas – Quechultenango – Colotlipa - Juxtlahuaca.

Asimismo, el servicio de transporte foráneo en cada localidad, es proporcionado por autobuses, taxis, combis y camionetas de servicio colectivo; el servicio interno lo cubren taxis y colectivos.

Los principales medios de comunicación en las comunidades involucradas en el proyecto son: mediante correos, servicio telefónico, radio telefonía y casetas telefónicas. Las comunidades inmersas en el área del proyecto presentan vías secundarías de comunicación en muy mal estado, se comunican por medio de brechas de terracería a las localidades principales.

Medios de Comunicación

En cuanto a servicios cuenta con transporte foráneo (autobuses). En el interior se cuenta con el servicio de transporte colectivo: taxis, microbuses, combis y camionetas de mudanzas.

La cabecera municipal cuenta con: Radiotelefonía, administración de correos, agencia postal, internet, casetas telefónicas, administración de telégrafos y teléfonos automáticos; en su mayoría, las localidades cuentan con algunos de estos servicios.

Vías de Comunicación

Se comunica a través de la carretera libre Chilpancingo – Petaquillas – Quechultenango – Colotlipa - Juxtlahuaca. Además cuenta con una infraestructura caminera integrada por 27 kilómetros de carretera pavimentada y 65.5 kilómetros de camino rural; en cuanto a los servicios de transporte cuenta con transporte foráneo, y en el interior se cuenta con el servicio de transporte colectivo, como: Taxis, microbuses, camionetas de mudanzas.

3.4.4 Salud y seguridad social

La infraestructura y recursos del sector salud en el estado de Guerrero, es el siguiente: cuenta con 1 170 unidades médicas en servicio de las instituciones públicas las cuales 29 corresponden al IMSS, 50 al ISSSTE, 2 a la SEMAR, 1 039 a la SESA, 1 al IEC, 1 al IEO, 39 al DIF, y 9 a la CRM.

Tabla 54. Unidades Médicas en servicio del sector salud en el municipio:

Número de unidades de salud, según tipo								
Tipo	No. de unidades							
Unidad de Consulta Externa	11							
Unidad de Hospitalización	1							
Establecimiento de Apoyo	0							
Establecimiento de Asistencia Social	0							

Fuente: Secretaría de Salud. Directorio de Establecimientos de Salud con CLUES del Sector Público y Privado, 2011.

Tabla 55. Derecho al servicio salud para el Municipio de Quechultenango.

DERECHOHABIENCIA		
	Αí	ño
Estatal	2005	2010
Porcentaje de población con derechohabiencia	23.69	53.33
Porcentaje de población sin derechohabiencia	74.08	45.75
Municipal		
Porcentaje de población con derechohabiencia	2.84	72.61
Porcentaje de población sin derechohabiencia	95.95	27.03

Fuente: Cálculos propios a partir de INEGI. Il Conteo de Población y Vivienda 2005 e INEGI. Censo de Población y Vivienda 2010.

Las localidades cercanas al proyecto carecen de los servicios básicos de salud por lo que la construcción del proyecto será un beneficio que ayude a tener un menor tiempo de traslado de su localidad a la capital para poder tener acceso a este servicio.

3.4.5 Educación

Es un factor detonante para saber a grandes rasgos el rezago educativo tiene la población a nivel municipal, de manera cuantitativa, los datos que se obtuvieron para el municipio son los siguientes:

Tabla 56. Indicadores de rezago.

Indicadores de rezago social, 2010			
Indicador	Nacional	Estatal	Municipal
% de población de 15 años o más analfabeta	6.88	16.68	29.12
% de población de 6 a 14 años que no asiste a la escuela	4.77	6.49	6.52
% de población de 15 años y más con educación básica incompleta	41.11	53.75	74.83
Índice de rezago social		2.51574	0.95812
Grado de rezago social		Muy alto	Alto
Lugar que ocupa en el contexto nacional		1	433

Fuente: Elaboración propia a partir de CONEVAL. Grado de Rezago Social por entidad federativa 2010. Estimaciones del CONEVAL con base en Censo de Población y Vivienda 2010.

Con los datos obtenidos se puede concluir que el 29.12% de la población del municipio con edades de 15 años o más es analfabeta y el 74.83% posee un grado de educación básica incompleta, colocando al municipio en el lugar 433 con un grado de rezago social alto a nivel municipal y muy alto a nivel estatal.

3.4.6 Actividad económica

Aspectos económicos

Principales actividades productivas y su distribución espacial.

Las principales actividades productivas presentes en la zona son:

Sector Primario:

Comprende a la agricultura, ganadería, silvicultura y pesca.

Sector Secundario:

Está conformado por la minería, industria manufacturera, electricidad, agua y construcción.

Sector Terciario:

Está compuesto por el comercio, transporte y comunicaciones, servicios financieros, administración pública, correos y almacenamiento, información en medios masivos, servicios y actividades de gobierno.

Población Económicamente Activa (PEA), Tasa de actividad.

PEA por sector y rama de actividad a nivel municipal definiendo más detalladamente al municipio con respecto a sus características de la PEA se obtienen los siguientes resultados:

PEA y Tasa de Actividad (TA)

En el siguiente cuadro se definen a nivel municipal los resultados que arrojaron las tasas de actividad de la población económicamente activa en relación a la población de más de 12 años como grupo potencialmente apto para una actividad remunerada.

Tabla 57. Pobalcion económicamente activa.

Población de 12 años y más según condición de actividad económica, 2010						
		Població	ón Económicai	mente Activa (Pl	EA)	
	Total	Total	Ocupada	Desocupada	Población no Económicamente Activa	No especificada
Absolutos						
Nacional	84,927,468	44,701,044	42,669,675	2,031,369	39,657,833	568,591
Estatal	2,481,173	1,221,440	1,174,712	46,728	1,242,498	17,235
Municipal	24,189	10,560	10,364	196	13,508	121
Grupo 1080 [1]	11,178,275	4,990,305	4,816,793	173,512	6,111,513	76,457

Relativos (%)					
Nacional	100	52.63	95.46	4.54	46.70	0.67
Estatal	100	49.23	96.17	3.83	50.08	0.69
Municipal	100	43.66	98.14	1.86	55.84	0.50
Grupo	100	44.64	96.52	3.48	54.67	0.68
1080 [1]						

Fuente: INEGI. Censo de Población y Vivienda 2010.

De acuerdo con los datos de INEGI del año 2010, la población económicamente activa ocupada que cubre la canasta básica en el Municipio de Quechultenango es de 10,364 que reciben de un ingreso económico.

El salario mínimo vigente a partir de enero del 2015 es de 68.28 pesos para la región "B" en la que se encuentra el estado de Guerrero y en especial los municipios descritos.

Para determinar el índice de desempleo, se tomó únicamente a la población económicamente activa (ocupada-desocupada) con base al Censo de población y Vivienda del año 2010. Cabe señalar que estos indicadores al igual que cualquier otro tipo de encuesta no son totalmente confiables debido a que si hoy se levantaran datos estadísticos algunas personas podrían estar desempleados y 3 días más tarde no estarlo.

De la población económicamente activa en el Municipio de Quechultenango de 34,728 habitantes, 10,364 personas están ocupadas, es decir, tiene algún tipo de empleo bien o mal remunerado al momento de realizar el censo.

Con base a los indicadores utilizados al momento de levantar los datos, la población que se encuentra desempleada asciende a 196 personas, con esto se puede determinar que el índice de desempleo es bajo, tomando en cuenta que estos datos pueden ser un tanto engañosos y, a la fecha totalmente distinta.

Empleo: PEA ocupada por rama productiva, índice de desempleo, relación ofertademanda. De acuerdo con datos de INEGI del año 2010, en el municipio donde se ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
ubicará el proyecto, la población económicamente activa ocupada por rama productiva se encuentra de la siguiente manera:

PEA ocupada por rama productiva

Tabla 58. Población económicamente activa por rama productiva.

Rama productiva	Población Económicamente Activa Ocupada por Sector Municipio y Iocalidad
	Quechultenango
Primario	5,287
Secundario	1,328
Terciario	2,813
No especificado	577

3.4.6 Marginación y pobreza

El concepto de marginación (pobreza) empleado por el Consejo Nacional de Población (CONAPO), cuya función primordial es ayudar en la definición de estrategias y de políticas sociales, permite dar cuenta del fenómeno estructural que surge de la dificultad para "propagar el progreso técnico en el conjunto de los sectores productivos, y socialmente se expresa como persistente desigualdad en la participación de los ciudadanos en el proceso de desarrollo y en el disfrute de sus beneficios".

Este indicador se define a través de las variables de educación, vivienda e ingresos monetarios, principalmente (PROTEG).

Para definir o calificar el grado de marginación que presentan las entidades federativas, municipios y localidades, la CONAPO estableció los siguientes límites de rangos:

Muy alta y alta marginación: Indica que en esa unidad la población vive en las más difíciles condiciones de vida, en comparación a otros estados o municipios.

Marginación media: Representa una posición intermedia en las condiciones de vida de la población en el Estado o municipio a que se hace referencia.

Baja y muy baja: Indica que las condiciones de vida son favorables para la población de esa entidad.

El estado de Guerrero ocupa el segundo lugar en cuanto a índice de marginación en el país, lo que se debe principalmente a la mala calidad en los servicios (o falta de ellos) que contribuyen a un mejor desarrollo de la población, entre los que destacan salud, vivienda y educación (PROTEG).

Tabla 59. Índice de marginación municipal.

QUECHULTENANGO				
	ESTATAL		MUNICIPAL	
	2005	2010	2005	2010
Índice de marginación	2.41213	2.53246	1.52903	1.26138
Grado de marginación	Muy alto	Muy alto	Muy alto	Muy alto
Lugar que ocupa en el contexto nacional	1	1	181	275

Dentro de la clasificación de marginación municipal, el Municipio de Quechultenango, se ubica con un grado de marginación **Muy Alto**, lugar que ocupa en el contexto estatal hasta el año 2010, se ubica en el lugar 275.

Grado de marginación presente en las localidades beneficiadas

Tabla 60. Marginación.

Localidad	Grado de marginación
Aztatepec	Alto
Buena Vista	Alto
Delegación Sur de Aztatepec	Alto
El Naranjo	Alto
Jalapa	Alto
Santa Cruz	Alto
Tolixtlahuaca	Alto
Pueblo Viejo	Alto

El grado de marginación presente en las localidades directamente conectadas por donde se pretende desarrollar el proyecto es **Alto**, por tal razón es muy importante el desarrollo del presente proyecto.

IV.2.2.3.1 Paisaje.

El paisaje es manifestación externa, imagen, indicador o clave de los procesos que tienen lugar en el territorio, ya sea que correspondan al ámbito natural o al de influencia humana. El paisaje como expresión externa y perceptible del ambiente, es sensible con el entorno y es evidencia infalible de las actividades históricas desarrolladas por el ser humano. Para el tratamiento de los indicadores de seguimiento relacionados con el paisaje, se aborda este como expresión espacial y visual del medio, haciendo referencia a los valores estéticos del medio natural.

Calidad paisajística. En general se definen los valores de la calidad visual en función de la morfología, tipo de vegetación y su diversidad, presencia de agua u otra característica, que determinan colores, contraste y formas en el paisaje. Aunque ya se cuenta con un camino de terracería, las actividades del proyecto tienen algunas repercusiones sobre la calidad visual del paisaje al introducir en él factores que contrastan con el paisaje natural, como es el caso de actividades de desmonte y despalme que contrastan con el color de la vegetación natural aumentando su incidencia visual. De esta forma, el material extraído y la remoción de la vegetación contrastarán fuertemente con el entorno.

La calidad del paisaje de la región se puede evaluar por varios factores, la fragilidad de los ecosistemas y la presencia humana en ellos. La parcelación de las zonas arboladas y su alternancia con áreas de cultivos y pastizales. En la zona de estudio podemos decir que la calidad del paisaje Media – Alta, ya que existen zonas ocupadas por diversos usos de suelo, viviendas y vegetación nativa perturbada que está ampliamente distribuida. Por otro lado, en aquellas zonas donde la vegetación se ha sustituido por áreas de cultivo y pastizales extensos, el paisaje puede incrementar su fragilidad y calidad, puesto que la uniformidad de estas diferentes áreas no es del ecosistema original.

La fragilidad visual es la susceptibilidad de un paisaje al cambio, cuando se desarrolla un uso sobre éste, expresa el grado de deterioro que el paisaje experimentaría ante la incidencia de determinados impactos. También se conoce como vulnerabilidad visual y se refiere a la incapacidad del paisaje de absorber visualmente modificaciones o alteraciones sin detrimento de su calidad visual. De acuerdo a lo anterior, a mayor fragilidad o vulnerabilidad visual corresponde una menor capacidad de absorción. Dicha fragilidad estará en función del tipo de vegetación, su densidad, altura y capacidad de regeneración, unidades

geomorfológicas, tipo de suelo y materiales geológicos superficiales. El grado de fragilidad del área se puede considerar medio debido al tipo de vegetación y suelo presentes en el área.

El proyecto se desarrollara sobre un camino de terracería existente con aperturas en algunas zonas, por lo que con la construcción de la carretera no generará grandes cambios significativos, la fragilidad visual del SAR ha estado influenciada desde que existe la presencia de esta vía. Las comunidades vegetales con mayor fragilidad o vulnerabilidad dentro del sistema ambiental **son los de climas templados como bosques de pino y encino.**

El Area de Influencia Directa del eje y ancho de corona proyectado presenta alteración en grado importante, la fragmentación del ecosistema es debido a las distintas prácticas antropogénicas. Principalmente la incursión de actividades agrícolas son los factores que provocan una severa deforestación constante y degradación del entorno. Los manchones mejor conservados se presentan en los lomeríos y laderas, el área del proyecto se caracteriza por tener zonas desmontadas con vegetación que crece al margen del camino, son individuos que se han crecido con las apertura del camino al margen, la vegetación conservada se encuentra en zonas aisladas en la mayoría de los polígonos los individuos son aislados y no forman zonas densas. Al borde del camino se encuentran individuos de Vegetación Secundaria Arbórea de Selva Baja Caducifolia combinados con especies secundarias herbáceas y arbustivas, el pastizal inducido y zonas agrícolas se presentan en algunos tramos al borde del camino representando mayor perturbación de la vegetación original. En el eje del proyecto existen escurrimientos que se forman solo en temporadas de lluvias, posteriormente se secan, lo cual de manera indirecta muestra que el sistema se encuentra alterado en cuestión de los servicios ambientales.

Imagen 42.- Vegetación de Selva Baja Caducifolia observados se observa fragmentación del SAR.

Imagen 43.- Áreas desprovistas de vegetación producto de actividades antropogénicas a gran escala en el área del proyecto.

IV.3 Diagnóstico ambiental.

Mediante el respectivo análisis al sistema ambiental regional, se describe el estado actual que guarda cada uno de los elementos que conforman el sistema ambiental. Para determinar la calidad de los sistemas ambientales, se toma como indicador la salud de las comunidades vegetales, por la relación intrínseca que se da entre los recursos bióticos y abióticos.

Tabla 61. USV del SAR, superficie en ha.

Uso de suelo	SUP (ha)
BOSQUE DE ENCINO	0.37
URBANO CONSTRUIDO	4.16
BOSQUE DE PINO-ENCINO	2359.22
PASTIZAL INDUCIDO	1297.65
AGRICULTURA DE RIEGO ANUAL	991.87
AGRICULTURA DE TEMPORAL ANUAL	278.92
VEGETACIÓN SECUNDARIA ARBUSTIVA DE BOSQUE DE PINO-ENCINO	7.27
VEGETACIÓN SECUNDARIA ARBUSTIVA DE BOSQUE DE	
ENCINO	113.74
VEGETACIÓN SECUNDARIA ARBOREA DE SELVA BAJA	
CADUCIFOLIA	4756.89
Total	9810.09

La cubierta vegetal desde una perspectiva regional, se presenta como un mosaico heterogéneo de comunidades vegetales en diferentes estados de sucesión, las cuales varían desde Bosque de Pino-Encino y Pastizal Inducido también existen zonas con elementos aislados sin conformar un continuo de vegetación forestal como vegetación secundaria arbustiva de bosque de pino-encino, vegetación secundaria arbustiva de bosque de encino, vegetación secundaria arbórea de selva baja caducifolia. En los diferentes tipos de vegetación se encuentran algunas partes con manchones fragmentados por una matriz de pastizal y zonas de cultivo. Todos estos elementos inmersos en un terreno con valle con lomeríos con zonas escarpadas en la mayor parte del sistema.

En general se puede describir como un SAR con perturbación Media por la actividad humana y en proceso continuo de degradación. Como resultado de tales modificaciones se presenta en algunas zona un aumento considerable en los procesos de erosión; disminución en la capacidad de absorción de agua (se infiere por la ausencia de vegetación) y con ello deficiencias en la recarga de los mantos freáticos; aumento en las temperaturas micro climáticas como resultado de la

disminución de la cubierta vegetal, que traen consigo alteraciones en los ciclos biogeoquímicos a nivel micro regional. Pero estas inferencias de lo observado requieren de un estudio a largo plazo y con hipótesis de estudio muy concretas.

El diagnóstico del área en donde se ubicará el camino presenta una estructura irregular con respecto a la vegetación, comparada con las zonas mejor conservadas. El borde del camino presenta árboles nativos usados como cercas vivas. La vegetación secundaria es densa. El camino colinda con diversos usos de suelo, destacando el agrícola y pastizal en el trazo del camino. Se observa degradación y fragmentación del sistema ambiental original por las diversas prácticas humanas. La carretera desde su creación se muestra como un elemento que fragmenta el ecosistema. A lo largo del borde del camino se localiza principalmente Zonas Agrícolas, Pastizal Inducido, Vegetación Secundaría Arbustiva y Arbórea; dentro de estas perturbaciones se encuentran algunos elementos de Vegetación Secundaría arbórea de Selva Baja Caducifolia. En las zonas inmediatas al camino los principales usos de suelo son la Agricultura de Temporal, Pastizales Inducidos, Cultivados y Zona Urbana.

Imagen 44.- Presencia de zonas urbanas cercanas al área del proyecto.

Erosión eólica. Las áreas altamente erosionables por acción del viento se sitúan en pastizales, es interesante notar también que las áreas de agrícolas potencialmente sufren de este tipo de erosión.

Imagen 45.- Presencia de áreas con un alto grado de erosión.

Contaminación de desarrollo suburbano: Los recursos naturales (agua, aire, bosques, minerales, tierra), al momento podemos describir que no se encuentran alterados o contaminados, estos recursos son vitales para el desarrollo económico de las ciudades y de futuras generaciones. Al aumentar la población y las construcciones aumenta constantemente el radio de impacto de las cercanías del proyecto. Hacemos una comparación con las áreas urbanas que se encuentran inundadas por sus propios desechos y asfixiadas por sus propias emisiones como resultado de políticas y prácticas inadecuadas de control de la contaminación y manejo de los desechos. Con respecto a lo antes mencionado se describe que existe una contaminación mínima los impactos de mayor preocupación aún se encuentran a menudo a escala doméstica y comunitaria, y se relacionan con las deficiencias de infraestructura y servicios urbanos. Los habitantes de las urbes,

particularmente los pobres, soportan la mayoría de las condiciones del ambiente deteriorado mediante la pérdida de salud y productividad y la disminución de la calidad de vida. Se elevan los costos de la explotación de los recursos (p.ej. el costo de nuevas fuentes de agua) a medida que se acaban los recursos económicamente accesibles y de alta calidad.

Imagen 46.- Zonas Urbanas presentes en la periferia del proyecto.

Para evaluar de manera cualitativa y cuantitativa del estado de la zona de estudio y realizar así un diagnóstico de la situación ambiental, se utiliza la metodología descrita por la CONABIO para determinar las Regiones Prioritarias Terrestres, Hidrológicas y Marinas del país. Se utilizó esta metodología ya que resulta ser integral por involucrar tanto la situación ambiental actual así como los procesos de deterioro que han ocurrido en determinada región; se basa en la asignación de un

peso cualitativo (criterio), así como uno cuantitativo (valor) a características ambientales, económicas y de riesgo identificadas en la región.

Tabla 62. Criterios de evaluación de la estructura y función del Sistema Ambiental.

	Criterio	Valor
NC	No se conoce	0
В	Bajo	1
PI	Poco importante	1
M	Medio	2
I	Importante	2
Α	Alto	3
MI	Muy importante	3

Valor ambiental (biótico y abiótico)

A. Integridad ecológica (funcional): Se relaciona con el estado del hábitat (calidad) en el que se evalúa si sus características funcionales se encuentran en o lo más cercano a su estado natural. Una alta integridad indica que el hábitat presenta sus características funcionales naturales.

La integridad funcional de la zona de estudio está determinada por el grado de perturbación al que se ha sometido determinado ecosistema, ya que este factor incide de forma directa en la estructura y por lo tanto en la función de un sistema. En este caso, el grado de perturbación del sistema en el cual se encuentra inmerso el camino es bajo, el SAR presentando alteración en la vegetación Original. Por lo tanto, la integridad de las funciones del ecosistema original se infiere que siguen presentes con poca perturbación, por lo que se usa el criterio **Alto (3).**

Imagen 47. Alto grado de perturbación en zonas adyacentes al camino actual.

B. Hábitat: Evalúa cualitativamente la diversidad de hábitats que se encuentran representados en el área, como indicador de si en un mismo sitio están representados varios tipos de hábitats (lago, reservorio, cuerpos acuáticos someros, ríos, arroyos, lagos salinos, lagunas, humedales, u otros).

La diversidad de hábitats en el SAR es representada por: Agricultura de Temporal Anual, Bosque de Encino, Bosque de Encino, Bosque de Pino-Encino, Pastizal Inducido, Vegetación Secundaría arbórea de Bosque de Encino, Vegetación Secundaría Arbustiva de Bosque de Pino-Encino, Vegetación Secundaría arbórea de Selva Baja Caducifolia, Vegetación Secundaría Arbórea de Bosque de Pino-Encino y Vegetación

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
Secundaría Arbórea de Selva Baja Caducifolia. Además de cuerpos de agua como
el Río La Nopalera. Por lo que el valor asignado a ellos es Importante (2).

Imagen 48. Hábitats del SAR y Camino actual el cual será pavimentado.

C. Especies amenazadas: Evalúa la presencia de especies que presentan alguna amenaza. Indicar qué especies y el agente de amenaza.

En la zona de construcción y el área de influencia directa e indirecta no se detectaron especies dentro del algún estatus de la **NOM-059-SEMARNAT-2010**, pero se reportan algunos ejemplares para la región y la delimitación del SAR por lo cual el valor otorgado a este factor es **medio (2)**.

D. Especies indicadoras: Evalúa diferentes características ya sea de distribución, abundancia, rareza, de las especies en el área como indicadoras del estado natural del ecosistema.

Al borde del camino se registra la presencia de especies heliófilas, cuyas poblaciones se incrementan como resultado de la perturbación que experimentan los ecosistemas, estas especies se derivan de la quema de los pastizales así como de la creación de los denominados tlacocoles para la siembra de algunos granos. El valor de este factor es **importante (2).**

Imagen 49. Pastizal a los costados del eje del camino actual indicadores de perturbación de vegetación original.

Valor económico

A. Especies de importancia comercial: Evalúa la presencia de especies comerciales como medida de su importancia económica.

Las especies de importancia comercial constituyentes del ecosistema original se localizan en la zona circundante al camino, en manchones de vegetación mejor conservada y los de mayor importancia se presentan algunos árboles forestales de importancia económica como son; *Quercus sp y Pinus oocarpa* por lo que se otorga un valor **Importante (2).**



Imagen 50. Presencia de especies de flora de interés comercial en el área de influencia del proyecto.

Riesgo y amenazas

A. Modificación del entorno: Se ejemplifica por actividades como alteración de cuencas y/o construcción de presas que reducen aporte agua epicontinental, la tala de árboles, desecación o relleno de áreas inundables, deforestación, modificación

de la vegetación natural que promueve la erosión e incrementa el aporte de sedimentos, formación de canales, obras de ingeniería como construcción de caminos o carreteras u otros.

Debido a la transformación de la cubierta vegetal preexistente en la región por factores antropogénicos, la presencia de Pastizal Inducido y zona rural, además de la existencia de la carretera de terracería, se puede considerar que el entorno se haya modificado, por lo que el valor asignado es **Importante (2).**

Imagen 51. La tala de árboles para convertir las zonas a agricultura, pastizal y zona rural es el principal factor de pérdida de biodiversidad, alteración del ecosistema natural y

B. Contaminación: Evalúa la presencia de energía, substancias u organismos contaminantes en la zona. Los agentes que alteran la calidad del agua pueden ser directos o indirectos: desechos sólidos como basura, aguas residuales domésticas e industriales, petróleo y sus derivados, agroquímicos, fertilizantes, residuos industriales, descargas termales y salobres provenientes de termo e hidroeléctricas, presencia de industria generadora de gases atmosféricos que inducen la lluvia ácida u otros.

Durante el recorrido de campo se encontraron desechos sólidos contaminantes a un costado del camino existente (botellas, plásticos, cartón, vasos de unicel, etc.), además de que se infiere que la cantidad de derivados de agroquímicos y fertilizantes es importante, lo cual es indicio de contaminación de afluentes durante la temporada de lluvias. Fuera de este tipo de contaminantes, no se registran en la zona otros cuya presencia sea indicativa de un deterioro mayor del ecosistema. El valor asignado es **importante (2).**

Imagen 52. Presencia de contaminantes en cuerpos de agua, producto de actividades antropogénicas.

C. Concentración de especies en riesgo: Puede reflejar el grado de amenaza o deterioro al que está sometida una región en particular.

En la zona de construcción y el área de influencia directa e indirecta no se detectaron especies dentro del algún estatus de la **NOM-059-SEMARNAT-2010**, pero se reportan algunos ejemplares para la región y la delimitación del SAR; debido a esto se le asigna un valor **importante (2)**.

D. Especies introducidas o exóticas: Evalúa la presencia de especies introducidas en los diferentes hábitats como medida de los impactos negativos que ocasionan, por ejemplo el desplazamiento de especies nativas.

El desplazamiento de las especies nativas se ha registrado como consecuencia de su sustitución por el cambio de uso de suelo hacia actividades agropecuarias. Por tal motivo, se le asignó un valor **medio (2).**

Imagen 53.- Cambio de usos de suelo para la realización de actividades agropecuarias.

E. Prácticas de manejo inadecuadas: Evalúa la práctica de actividades no compatibles con la conservación como uso de explosivos, violación de vedas y talas mínimas de extracción, venenos y trampas no selectivas, pesca ilegal u otros.

Las prácticas de manejo de la región se han desarrollado tiempo atrás, y han consistido básicamente en la conversión a pastizales y campos agrícolas las áreas ocupadas anteriormente por Vegetación de Selva Baja Caducifolia. Sustituyendo los tipos de vegetación original. Este tipo de prácticas se consideran **Importantes (2)**.

Imagen 54. Presencia de Pastizales en el área del proyecto.

V. IDENTIFICACIÓN, CARACTERIZACIÓN Y EVALUACIÓN DE LOS IMPACTOS AMBIENTALES, ACUMULATIVOS Y RESIDUALES DEL SISTEMA AMBIENTAL REGIONAL.

V.1 Identificación de impactos.

Dentro de los cambios que sufrirá la estructura del sistema ambiental regional se encuentra la perdida de la cobertura vegetal en la línea adyacente del trazo y así sucesivamente la modificación del paisaje del lugar, impactando en la funciones de la fauna del sitio.

Dentro de los impactos acumulativos se encuentran: la pérdida de la cobertura vegetal, pérdida de suelo, perturbación en la fauna, contaminación del agua y el cambio en el microclima. Para tener una mejor compresión de lo que significan estos impactos se menciona en los siguientes párrafos la descripción de cada uno de estos impactos.

<u>Cobertura vegetal.</u> La afectación a la vegetación se efectuará a la hora de realizar el desmonte para la construcción de la carretera, lo que generará cambios en el microclima, pérdida de hábitat para la fauna e incremento a la erosión del suelo.

<u>Pérdida del suelo.</u> Con la formación y compactación de terraplenes y extracción de bancos de material, la zona incrementará su susceptibilidad a la erosión, este impacto se sumará al existente ya que, en el sistema ambiental regional el factor común es la pérdida de suelo, debido a la erosión ocasionada por la presión de las actividades antropogénicas.

Perturbación a la fauna. El principal impacto que se ocasionará por la construcción de la carretera a las comunidades faunísticas será la modificación en los patrones de distribución de las especies: el impacto más grande, permanente se verá reflejado en organismos como anfibios y reptiles debido a que estos tienen poco

movilidad territorial; sin embargo este efecto disminuye en organismos con movilidad media como pequeños mamíferos, ya que el proyecto podría constituir un efecto barrera y en el caso de las aves el impacto será menor ya que cuya movilidad es muy alta.

Con la modernización de la carretera, habrá especies desplazadas permanentemente dentro del área del proyecto, sin embargo algunas especies serán desplazadas temporalmente debido al ahuyentamiento por ruido producido por la maquinaria, equipo y por los vehículos automotores en las diferentes etapas del proyecto y la presencia humana, así como el incremento en la caza, furtivismo y riesgo de atropellamiento y también a la presencia de la misma carretera al considerar los impactos ocasionados a la fauna del área del proyecto motivo de este estudio, se tomó en cuenta el hecho de que las obras serán realizadas dentro del derecho de vía sobre la carretera existente, en zonas en las cuales actualmente existe un alto índice de alteración producida por las actividades humanas.

Contaminación del agua. El incremento de la población y creciente desarrollo agrícola y agricultura continua tecnificada emplea fertilizantes y herbicidas para incrementar la producción, ejercen una considerable presión sobre el acuífero de la microcuenca.

Generación de Empleo: Durante los trabajos constructivos previstos se generaran diversos tipos de empleo como son: empleos cubiertos por personal de la empresa constructora o empresas subsidiarias; empleos absorbidos por personas residentes en el área del proyecto; y empleos generados indirectamente o por el crecimiento general de la economía, inducido por la inyección económica al ámbito de influencia Vial. Indudablemente que los trabajos y sobre todo lo que no requieren una especialización serán distribuidos entre los trabajadores procedentes de las diferentes poblaciones por las que atraviesa la vía, lo expresado, generará una posibilidad de incremento salarial para el personal especializado en trabajos de

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
carretera, para personal de campo no especializado y para personal vinculado a
labores más especializadas de administración, y logística entre otros.

Disminución de la calidad del aire: La operación de las plantas de asfalto generan emisiones de gases producto de la combustión incompleta de derivados de petróleo utilizados para el calentamiento de la mezcla asfáltica y vapores de sustancias volátiles utilizadas como aditivos en la mezcla que escapan de los equipos de control de vapores. Estas substancias se incorporan a la atmósfera y se convierten en elementos disponibles para la asimilación por parte de los seres vivos. Por otro lado, la preparación de mezcla asfáltica involucra la utilización de materiales pétreos, por lo que existe un aumento de los niveles de emisión de partículas sólidas suspendidas, debido a los movimientos de esos materiales.

Alteración del Paisaje: La alteración del paisaje será realmente mínima y estará referida a la extracción de material que pudiera generarse lo cual podría disturbar las áreas de extracción y modificar la morfología. También la conformación de Depósitos de Material Excedente, puede determinar la alteración del paisaje.

Beneficios económicos: Uno de los principales problemas de las economías es su enclaustramiento, por los costos de transacción que impiden su funcionamiento eficiente y competitivo. Es por ello, que las políticas de integración física no solo tienen una correspondencia económica sino también de articulación geográfica. En esta iniciativa, se hará posible no solo acrecentar los procesos de integración dentro del territorio, sino, al mismo tiempo, en el territorio de la región debido a que estará vinculado a las oportunidades. La ejecución de los proyectos de desarrollo traería consigo el incremento de los ingresos económicos familiares, el acceso a servicios y el desarrollo de las capacidades sociales y productivas de la población local. En este sentido, se prevé no solo un crecimiento económico, sino además el acceso a servicios fundamentales como salud, educación, vivienda, comunicación, entre

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
otras, lo que constituye una valiosa oportunidad para la superación progresiva de la
pobreza.

Servicios Públicos, Transporte, Educación y Salud: Este impacto es positivo y directo, el mismo que se espera se produzca durante la operación y explotación de la carretera, es el aumento de la cobertura de los servicios públicos locales como educación, salud, seguridad ciudadana, electricidad, agua potable y saneamiento básico, entre otros, debido a una mayor presencia de instituciones públicas en la zona, debido a la mayor accesibilidad hacia distintos centros poblados que hasta el momento no cuentan con la suficiente cobertura de estos servicios básicos.

Identificación y descripción de las fuentes de cambio, perturbaciones y efectos.

La principal afectación al ambiente es el cambio en el uso del suelo y los aspectos relacionados con el desmonte, despalme e impermeabilización de una porción del derecho de vía. Es decir, existe pérdida de vegetación natural por efecto del desmonte.

El suelo, una vez desprovisto de la capa vegetal quedará temporalmente expuesto a erosión hídrica en época de lluvias y, finalmente, quedará impermeabilizada por efecto de la obra principalmente la superficie de rodamiento, perdiéndose parte de la infiltración.

Las otras posibles afectaciones al ambiente se originan por desconocimiento del medio, por agentes naturales, o bien en forma accidenta los errores en la operación de la maquinaria o de sus servicios, el comportamiento negativo de los empleados, los accidentes con la maquinaria y equipo de transporte, etc. De acuerdo a lo anterior, las actividades de desmonte y despalme implicarán la remoción total de la vegetación existente en el área de rodamiento en donde ya existe una terracería, lo cual impactará en menor proporción al ecosistema correspondiente Pastizal Inducido aunado a la alta perturbación de la vegetación por el desarrollo de áreas destinadas a la agricultura y ganadería como una de las principales actividades productivas de la población.

La fauna silvestre será impactada en menor grado debido a que el área a intervenir sirve de paso a ésta, además de que por la cercanía a las localidades ha motivado su desplazamiento hacia áreas más alejadas, sin embargo durante la operación del proyecto se deberá de indicar las zonas de mayor tránsito y cruce de fauna para que se tomen las precauciones necesarias a fin de evitar atropellamientos y accidentes automovilísticos.

En la etapa de operación de la carretera, los impactos correspondientes a la emisión de ruidos y gases contaminantes que generarán los vehículos que transiten por esta, incrementarán los niveles de contaminación que se tienen en la actualidad (nulos), sin embargo, por las características de la zona en cuanto a topografía, vientos, vegetación existen las condiciones de que se dispersen de manera rápida y no afectar a la población, además de que no se tiene un efecto acumulativo o sinérgico por no tener fuentes fijas de contaminación en la zona.

Por lo tanto el desarrollo del proyecto no generará desequilibrios ecológicos que provoquen daños permanentes al ambiente o que pudieran afectar al desarrollo de las poblaciones establecidas dentro del área de influencia del proyecto.

Estimación cualitativa y cuantitativa de los cambios generados en el sistema ambiental Regional

Los cambios generados en el SAR en el entorno socioeconómicos son benéficos proporcionados por la obra incluyendo la reducción de los costos de transporte, el mayor acceso a los mercados para los cultivos y productos locales, el acceso a nuevos centros de empleo, la contratación de trabajadores locales en obras en sí, el mayor acceso a la atención médica y otros servicios sociales y el fortalecimiento de las economías locales.

Sin embargo, el SAR también tiene cambios generados por el proyecto en el entorno ambiental. Desde la apertura de la terracería del **camino Jalapa - Xochitepec**, vino a transformar el uso de suelo de Vegetación de Selva Baja Caducifolia a agricultura, ganadería, que existía en el sitio, en una zona comunicada por un camino de terracería que permitió el traslado de personas y bienes hacia la cabecera municipal y comunicando con a otras localidades del municipio.

V.2 Caracterización de los impactos.

Técnicas para evaluar los impactos ambientales.

En el presente estudio se utiliza un método de evaluación de impactos combinado, es decir cualitativo y cuantitativo (Conesa Fernández-Vítora en 1996). En la presente metodología se procede a cuantificar los impactos ambientales del proyecto por medio de cálculos, simulaciones, medidas o estimaciones. Para el desarrollo de la evaluación, se subdivide en tres partes. La primera que se ejecuta es la identificación y descripción de los impactos, seguidamente se avaluarán y finalmente se emiten las conclusiones de las evaluaciones. La metodología se identifican las actividades o acciones que se realizarán durante las distintas fases de ejecución del proyecto, susceptibles a provocar impactos, así como los impactos ambientales que son provocados en cada una de las componentes ambientales afectadas.

Criterios de evaluación

Para la caracterización de los impactos se han empleado los criterios siguientes:

<u>Carácter de impacto (CI)</u> El signo del impacto hace alusión al carácter beneficioso

(+) o perjudicial (-) de las distintas acciones que van actuar sobre los distintos

factores considerados.

Existe la posibilidad de incluir, en algunos casos concretos, un tercer carácter: previsible, pero difícil de cuantificar sin estudios previos (x).

Este carácter (x), también refleja efectos asociados con circunstancias externas al proyecto, de manera que solamente a través de un estudio global de todas ellas sería posible conocer su naturaleza dañina o beneficiosa.

<u>Intensidad (I)</u> Este término se refiere al grado de incidencia de la acción sobre el factor, en el ámbito específico en que actúa.

El intervalo de valoración estará comprendido entre 1 y 12, en el que el 12 expresara una destrucción total del factor en el área en la que se produce el efecto, y el 1 una afección mínima. Los valores comprendidos entre esos dos términos reflejarán situaciones intermedias. Valores: Media (2), Alta (4), Muy alta (8).

<u>Extensión (EX)</u> Se refiere al área de influencia teórica del impacto en relación con el entorno del proyecto (% de área, respecto al entorno, en que se manifiesta el efecto).

Si la acción produce un efecto muy localizado, se considera que el impacto tiene un carácter puntual (1). Si, por el contrario, el efecto no admite una ubicación precisa dentro del entorno del proyecto, teniendo una influencia generalizada en todo él, el impacto será total (8), considerando las situaciones intermedias, según su gradación, como impacto parcial (2) y extenso (4).

En el caso de que el efecto sea puntual pero se produzca en un lugar crítico, se le atribuirá un valor de cuatro unidades por encima del que le correspondería en función del porcentaje de extensión en que se manifiesta y, en el caso de considerar que es peligroso y sin posibilidad de introducir medidas correctoras, habrá que buscar inmediatamente otra alternativa al proyecto, anulando la causa que nos produce este efecto.

<u>Momento (MO)</u> El plazo de manifestación del impacto alude al tiempo que transcurre entre la aparición de la acción (t_o) y el comienzo del efecto (t_j) sobre el factor del medio considerado.

Así pues, cuando el tiempo transcurrido sea nulo, el momento será Inmediato, y si es inferior a un año, corto plazo, asignándole en ambos casos un valor de (4).

Si es un período de tiempo que va de 1 a 5 años, medio plazo (2), y si el efecto tarda en manifestarse más de cinco años, largo plazo, con valor asignado de (1).

<u>Persistencia (PE)</u> Se refiere al tiempo que, supuestamente, permanecería el efecto desde su aparición y a partir del cual el factor afectado retornaría a las condiciones iniciales previas a la acción por medios naturales, o mediante la introducción de medidas correctoras.

Fugaz (< 1 año), Temporal (de 1 a 10 años) y (4) Permanente (>10 años).

<u>Reversibilidad (RV)</u> Se refiere a la posibilidad de reconstrucción del factor afectado por el proyecto, es decir, la posibilidad de retornar a las condiciones iniciales previas a la acción, por medios naturales, una vez aquella deja de actuar sobre el medio.

Si es a corto plazo, se le asigna un valor (1), si es a medio plazo (2) y si el efecto es irreversible le asignamos el valor (4). Los intervalos de tiempo que comprende estos periodos, son los mismos asignados al parámetro anterior.

<u>Recuperabilidad (MC)</u> Se refiere a la posibilidad de reconstrucción, total o parcial, del factor afectado como consecuencia del proyecto, es decir, la posibilidad de retornar a las condiciones iniciales previas a la actuación, por medio de la intervención humana (introducción de medidas correctoras).

Si el efecto es totalmente recuperable, se le asigna un valor (1) o (2) según lo sea de manera inmediata o a medio plazo respectivamente; si lo es parcialmente, el efecto es mitigable, y toma un valor (4).

Cuando el efecto es irrecuperable (alteración imposible de reparar, tanto por la acción natural, como por la humana, le asignamos el valor (8). En el caso de ser irrecuperables, pero existe la posibilidad de introducir medidas compensatorias, el valor adoptado será (4).

<u>Sinergia (SI)</u> Este atributo contempla el reforzamiento de dos o más efectos simples. La componente total de la manifestación de los efectos simples, provocados por acciones que actúan simultáneamente, es superior a la que cabría de esperar de la manifestación de efectos cuando las acciones que las provocan actúan de manera independiente no simultánea.

Cuando una acción actuando sobre un factor, no es sinérgica con otras acciones que actúan sobre el mismo factor, el atributo toma el valor (1), si presenta un sinergismo moderado (2) y si es altamente sinérgico (4).

Cuando se presenten casos de debilitamiento, la valoración del efecto presentará valores de signo negativo, reduciendo al final el valor de la Importancia del Impacto.

<u>Acumulación (AC)</u> Este atributo da idea del incremento progresivo de la manifestación del efecto, cuando persiste de forma continuada o reiterada la acción que lo genera.

Cuando una acción no produce efectos acumulativos (acumulación simple), el efecto se valora como (1). Si el efecto producido es acumulativo el valor se incrementa a (4).

<u>Efecto (EF)</u> Este atributo se refiere a la relación causa-efecto, o sea a la forma de manifestación del efecto sobre un factor, como consecuencia de una acción. El efecto puede ser directo o primario, siendo en este caso la repercusión de la acción consecuencia directa de esta.

En el caso de que el efecto sea indirecto o secundario, su manifestación no es consecuencia directa de la acción, sino que tiene lugar a partir de un efecto primario, actuando éste como una acción de segundo orden. Este término toma el valor de 1 en el caso de que el efecto sea secundario y el valor 4 cuando sea directo.

<u>Periodicidad (PR)</u> La periodicidad se refiere a la regularidad de manifestación del efecto, bien sea de manera cíclica o recurrente (efecto periódico), de forma impredecible en el tiempo (efecto irregular), o constante en el tiempo (efecto continuo).

A los efectos continuos se les asigna un valor de (4), a los periódicos (2) y a los de aparición irregular, que deben evaluarse en términos de probabilidad de ocurrencia, y a los discontinuos (1).

Importancia del Impacto (IM): La importancia del impacto viene representada por un número que se deduce, en función del valor asignado a los criterios considerados.

$$IM = \pm [3(I) + 2 (EX) + MO + PE + RV + SI + AC + EF + PR + MC]$$

Una vez obtenida la valoración cuantitativa de la importancia del impacto o efecto, se procede a la clasificación del impacto partiendo del análisis del rango.

Tabla 63. Resumen de las asignaciones nur	néricas a los criterios de impacto.
Carácter De Impacto	Intensidad (I)
	(Grado De Destrucción)
	Baja 1
Impacto Beneficioso (+)	Media 2
Impacto Perjudicial (-)	Alta 3
	Muy Alta 4
	Total 12
Extensión (Ex)	Momento (Mo)
(Área De Influencia)	(Plazo De Manifestación)
Puntual 1	Largo Plazo 1
Parcial 2	Medio Plazo 2
Extenso 4	Inmediato 4
Crítica (+4)	Critico (+4)
Persistencia (Pe)	Reversibilidad (Rv)
(Permanencia Del Efecto)	Corto Plazo 1
Fugaz 1	Medio Plazo 2
Temporal 2	Irreversible 4
Permanente 4	
Sinergia (Si)	Acumulación (Ac)
(Regularidad De La Manifestación)	(Incremento Progresivo)
Sin Sinergismo (Simple) 1	Simple 1
Sinérgico 2 Muy Sinérgico 4	Acumulativo 4
Muy Sinérgico 4	
Efecto (Ef)	Periodicidad (Pr)
(Relación Causa – Efecto)	(Regularidad De La Manifestación)
Indirecto (Secundario) 1	Irregular O Aperiódico Y Discontinuo 1
Directo 4	Periódico 2
	Continuo 4
Recuperabilidad (Mc)	
(Reconstrucción Por Medios Humanos)	Importancia (I)
Recuperable De Manera Inmediata 1	Im = ± [3 I + 2 Ex + Mo + Pe + Rv + Si + Ac +
Recuperable A Medio Plazo 2	Ef + Pr + Mc]
Mitigable 4	
Irrecuperable 8	

Variación del impacto. Si el valor es menor o igual que 25 se clasifica como COMPATIBLE (CO), si su valor es mayor que 25 y menor o igual que 50 se clasifica como MODERADO (M), cuando el valor obtenido sea mayor que 50 pero menor o igual que 75 entonces la clasificación del impacto es SEVERO (S) y por último cuando se obtenga un valor mayor que 75 la clasificación que se asigna es de CRITICO (C).

Una vez identificadas las fuentes de cambio (acciones) y los factores del medio que, presumiblemente, serán impactados por aquellas, y definidas las posibles alteraciones, se hace preciso una previsión y valoración de las mismas, como se muestra a continuación:

Tabla 64. Evaluación de los impactos ambientales

ETAPA DE PREPARACIÓN DEL SITIO														
			DESM	ONTE	DE L	A ZO	NA							
Componente Ambiental							Impa	cto						
Flora	vegetación arbustiva o programa o	a afe	ectar elva l	es: 19 2 Baja C ón de l	200 n Caduc	n² en ifolia	terre de	nos c Pastiz onada	on ve	getac 8 81 n	ión se 12. Se auracio	ecunc e ree ón for		
Impacto 1	CI	ı	EX	МО	PE	RV	SI	AC	EF	PR	MC	IM	CATEGORÍA	
- 1 1 4 1 2 1 1 4 1 4 23 Compatible														
Componente Ambiental Impacto														
Fauna	La fauna se ha visto afectada desde la construcción del camino actual y por la fragmentación de su hábitat. Con la pavimentación no se prevén afectaciones graves a su densidad e interacciones ecológicas. No se registró poblaciones de aves a afectar, pero al derribar un árbol es claro que se elimina un hábitat importante para dichas													
Impacto 2	NAT	ı	EX	МО	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA	
impacto 2	-	1	2	4	1	2	1	1	1	1	4	22	Compatible	
			DESP	ALME	DE L	A ZO	NA							

	omponente Ambiental							I	mpact	0				
Suelo	Características geomorfológicas	raíces mater veget	y g ial s ació	germo se oci n. Se	plasma upara recom	a de la para e iienda	a vege el arro _l que e	taciór pe de l mate	que terra erial de	lo hab plenes e corte	oita. El s y pe e con r	mayor rmitir la nateria	porce rege orgár	aterial contiene entaje de dicho neración de la nica se coloque explotar.
	Impacto 3	NAT	ı	EX	МО	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
	ппрасто 3	-	2	1	4	1	2	1	1	4	1	4	26	Moderado
1	componente Ambiental							I	mpact	0				
Agua	Superficial	por lo cauce afecta	De acuerdo al tipo de litología y a las fallas en el área, se presenta un buen drenaje, por lo que no se conocen áreas considerables de inundación o anegamiento. Los cauces naturales se modificaran de manera temporal, la calidad del agua se verá afectada de igual forma. Se presentarán asolvamientos en los cauces temporales y perennes.											
	Impacto 4	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
	III puoto T	+	1	2	2	1	1	1	1	1	1	4	22	Compatible

		E.	ΓΑΡΑ	DE C	ONS	TRUC	CIO	N					
		C	onst	rucció	on De	l proy	ecto/)					
Componente Ambiental							Imp	acto					
Fauna	pérdida y maquinari afectacior comportai	alto alto a re see see see see see see see see see	eracion percusobre to co e ma	ones tiendo toda mo c quina	de ha sobi la fau onsec ria. F	ábitats re la una p cuenci	fauna reser ia de	mbiér a terrente er e los	n por estre. n el á ruido	la p Tam área, os, m	oresen bién s ya qu ayor	cia d se pu e vai prese	ecuencia de la de personal y leden producir rias pautas de encia humana, s y educación
Impacto 5	NAT	ı	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
inipacto 5	-	1	2	4	1	2	1	1	1	1	4	22	Compatible

	ETAPA DE OPERACIÓN Y MANTENIMIENTO
	CIRCULACIÓN VEHICULAR DIARIA
Componente Ambiental	Impacto
Fauna	Durante esta etapa las afectaciones que se producen como consecuencia de la pérdida, fragmentación y alteraciones de hábitats, repercutiendo especialmente sobre la fauna terrestre. También se pueden producir afectaciones sobre toda la fauna presente en el área, ya que varias pautas de comportamiento como consecuencia de los ruidos, mayor presencia humana, movimiento de maquinaria.

Impacto 6	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	МС	I	CATEGORÍA
	-	2	2	4	1	1	1	1	1	1	4	23	Compatible

			RE	QUE	RIMIE	NTOS	DE N	IANO	DE (OBRA	\				
Compor	nente Ambiental								Impa	cto					
		Se ne	ecesit	ara la	contr	atació	n de p	erson	al par	a la c	onstru	ıcción	de la	obra,	se recomienda
	Empleo	que s	sea d	le las	pobla	ciones	cerc	anas :	al pro	oyecto	o, lo d	cual es	s un c	omp	onente positivo
		para	un er	npleo	temp	oral er	itre la	local	lidade	es bei	neficia	adas a	lo lar	go de	el proyecto.
	mpacto 7	N.	ΑT	ı	EX	MO	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
•"	inpacto i		+	2	1	4	1	1	2	1	4	1	2	24	Compatible
		OPE	RACI	ÓN D	E VEH	IÍCUL	OS Y	MAQ	JINA	RIA F	PESA	DA			
Compor	nente Ambiental								Impa	cto					
	Calidad del aire	La m	aquir	naria c	lue se	rá utili	zada	para l	as ac	tivida	des n	nenore	es de l	prepa	aración del sitio
Atmósfe	era Estado	•		_	neraci	ón de	partíc	ulas s	ólida	s así	como	altos	nivele	s de	ruido de forma
	acústico	inevit	able.												
	addonoo	N.	AT	1	EX	МО	PE	RV	SI	AC	EF	PR	MC		CATEGORÍA
lı	mpacto 8	- 14	-	1	2	4	1	1	1	1	1	1	4	21	Compatible
	MΔN	NEJO Y	' DIS	POSI		•	•	•		•	-	•			Compandio
Compor	nente Ambiental	1200 .							Impa						
- Compon		Las a	ctivid	ades	deriva	das de	e la ol				duos	sólido	s v lía	uidos	s no peligrosos
								_							obra o por los
Paisaje	Apariencia					-		•				-			al paisaje, por
•	visual			_					_						o de limpia del
		-				ıltenaı									·
1		NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	С	ATEGORÍA
ır	npacto 8	-	1	1	4	1	1	1	1	1	1	4	19	(Compatible
				•											
	MANEJO Y D	SPOSI	CIÓN	I FINA	AL DE	RESI	DUOS	SÓL	IDOS	S Y LÍ	QUID	OS P	ELIGF	ROSC	os
Compor	MANEJO Y Di nente Ambiental	SPOSI	CIÓN	I FINA	AL DE	RESI	DUOS	SÓL		S Y LÍ pacto	QUID	OS P	ELIGF	ROSC	os
Compor	ente Ambiental								Imp	acto					ración del sitio
Compor	características	La uti	lizaci	ón de	la ma	aquina	ria ne	cesar	lmp ia pa	acto ra las	activ	ridade	s de p	repa	
	ente Ambiental	La uti	lizaci a gen	ón de ierar i	la ma	aquina os sól Irosos	ria ne idos y	cesar líquio	Imp ia pa dos p	acto ra las peligro	activ	ridade (aceite	s de p	orepa topas	ración del sitio impregnadas,
Suelo	características	La uti	lizaci a gen	ón de ierar i	la ma	aquina os sól	ria ne idos y	cesar líquio	Imp ia pa dos p man	acto ra las peligro	activ	ridade (aceite	s de p	orepa topas	ración del sitio

	ETAPA DE CONSTRUCCIÓN							
	CORTES Y EXCAVACIONES							
Componente Ambiental Impacto								

Suelo	Relieve		cion	es de	e funci					•				uales en óptimas as y curvas masa
Inc	maata 11	NAT	ı	EX	МО	PE	RV	SI	AC	EF	PR	МС	ı	CATEGORÍA
""	ipacto 11	-	1	2	4	1	1	1	1	4	1	4	24	Compatible
		TRA	NSI	PORT	ΓE DE	L MA	TERI	AL G	EOL	ÓGIC	0			
Compon	ente Ambiental								Impa	cto				
Atmósfera	Visibilidad	visibil	idad	d cua		pres	enten	caíc	las de	el mis	mo, o	casior	-	puede afectar la por el exceso de
l		NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	МС	I	CATEGORÍA
ım	pacto 12	_	1	1	4	1	1	1	1	4	1	4	22	Compatible
		COI	NST	RUC	CIÓN	DE O	BRAS	S DE	DRE	NAJE	.			
Compon	ente Ambiental		Impacto											
Suelo	Drenaje natural	cuale	Durante el proceso de construcción se incorporarán obras de drenaje menor, las cuales son necesarias debido a la naturaleza del terreno. De no construirse, se interrumpiría el drenaje natural y el impacto sería mayor.											
_		NAT	T	EX	МО	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
lm	pacto 13	-	1	1	4	2	4	1	1	4	1	4	26	Moderado
		ľ	ИEJ	ORA	MIEN	TO DI	E TEF	RRAF	PLEN	ES				
Compon	ente Ambiental								Impa	cto				
Suelo	Características geomorfológicas	mater estruc	ial (ctura	geoló a y co	gico d	e forr ación	na tal del sເ	l que uelo.	impi Esta	da la activi	infiltra dad es	ación	del a	compactación del gua, afectando la eza positiva sobre
		NAT	Ι	EX	МО	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
Im	pacto 14	-	1	1	4	2	4	1	1	4	1	4	26	Moderado
		CON	STR	UCC	IÓN D	EL P	AVIM	ENT	O FLI	EXIBI	E			
Compon	ente Ambiental								Impa	cto				
Suelo	Características fisicoquímicas	impregnación, que por sus características químicas modifican las características fisicoquímicas del suelo, principalmente su pH y temperatura.												
		NAT	I	EX	MO	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
lm	pacto 15	-	2	1	4	2	4	1	1	2	1	4	27	Moderado

Compo Ambie									In	npact	to			
Atmósfera Calidad del aire Durante la pavimentación se generaran vapores producto del riego de impregna estos vapores contienen cierto grado de toxicidad, lo que los convierte en una fuer emisiones atmosféricas que se sumaran a las producidas por los automovilistas.											nvierte en una fuente de			
Impact	to 16	NAT	ı	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA

	-	2 1	2	1	1	1	1	1	1	4	- 20)	Co	ompatible
		RE	QUE	RIMII	ENTO	S DE	MAN	O DE	ОВЕ	RA				
Compon	ente Ambiental							Ir	npact	to				
E	Empleo	pavime	enta	ción,	éste d	debe	ser de	las	pobla	acione	es ale	dañas	s al pi	personal para la royecto, ya que royecto.
		NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
lm	pacto 17	+	2	1	4	1	1	2	1	4	1	2	24	Compatible
		OPER	ACI	D NČ	E VE	HÍCUL	OS Y	MA	QUIN	ARIA	L			
Compon	ente Ambiental							lr	npact	to				
Suelo	Características geomorfológicas	factore alterac alterac	es q ción ción o o a la	ue lo física del su a com	influ , quím lelo. E npacta	yen. nica o sta ad ición (Un ca biológ ctivida que pi	ambio gica. d gei roduo	o de La c nera i cen lo	este ompa mpac os vel	equil etació etos co nículo	ibrio on es onside s, aur	puede la prir rables nque f	tre los diversos e provocar una ncipal causa de s sobre el suelo, inalmente es el
		NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	МС	I	CATEGORÍA
lm	pacto 18	-	1	1	4	2	4	1	1	4	1	4	26	Moderado
Compon	ente Ambiental							Ir	npact	to				
Componente Ambiental Los vehículos que se utilicen en la etapa de la pavimentación emitirán gases (CO2, CO, NOX, e Hidrocarburos), producto de la combustión interna de los motores que utilizan gasolina como combustible. La operación de la maquinaria pesada producirá emisiones de partículas sólidas en forma de humo y hollín, como resultado de la combustión del diésel que utiliza la maquinaria como combustible. La generación de este tipo de emisiones provocara la contaminación del aire por humos, produciendo un impacto mínimo sobre la calidad atmosférica del sitio. Actualmente el camino sobre el que construirá el pavimento se encuentra en operación, por lo que este tipo de emisiones se sumaran a las producidas por los vehículos.														
lm	pacto 19	NAT -	1 1	EX 2	MO 4	PE 2	RV 1	SI 1	AC 1	EF 1	PR 1	MC 4	1 22	CATEGORÍA Compatible

Component	e Ambiental								Impa	cto				
Atmósfera	Estado acústico	de na que s ruido.	itura e co Es	aleza onside te tipo	efímeı era qu	ra, es ie una misioi	la en a maq nes re	nisió uina perc	n de a pesa cuten c	altos i da pr en el	nivele oduce ambie	s de r e apro	uido ximad	nás relevante, pero a la atmósfera, ya damente 90 dB de no y en la salud de
Imno	nto 20	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
impac	cto 20	- 1 2 4 2 1 1 1 1 1 4 22 Compatible												
		MANEJO DE COMBUSTIBLE												
Component	e Ambiental	Impacto												

Suelo	Características fisicoquímicas	cierta (derra altera	s ro ame iría l	ecom), qu las co	endac e imp	iones actarí nes d	de s a de el sue	segui forn elo, re	ridad, na dr eperci	para ástica	evit a al	ar así suelo,	un cont	á de cumplir con posible accidente aminándolo. Esto en la fertilidad del
lmr	nacto 21	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
	Impacto 21		1	2	4	2	1	1	1	1	1	4	22	Compatible
REQUERIMIENTOS DE AGUA														
Compone	nte Ambiental								Impa	cto				
Beneficio	que fa concr	acilit eto erimi	tar la que	compa se u	actacio tilizara	ón del a en	suel la c	o, tan onstr	nbién ucciói	será n de	neces las a	ario u Icanta	ades de agua para tilizar agua para el arillas. Todos los a de pagar por este	
lmp	oacto 22	NAT +	1	EX 1	MO 4	PE 2	RV 1	SI 2	AC 1	EF 4	PR 1	MC 2	1 22	CATEGORÍA Compatible
	MANEJ	O Y DI	SPO	OSICI	ÓN FI	NAL I	DE RI	ESID	uos	NO P	ELIG	ROSC	S	
Compone	nte Ambiental								Impa	cto				
Paisaje Apariencia visual Apariencia visual Apariencia volumente esta etapa y mientras dure la construcción del pavimento, se general residuos no peligrosos, generados principalmente por los trabajadores y residuos no peligrosos, generados principalmente por los trabajadores y residuos de obra. Realizando una suposición de que la empresa a cargo no gesticorrectamente sus residuos, y los disponga inadecuadamente en los linderos camino, se ocasionaría un cambio negativo en la apariencia visual sobre componente paisaje.									adores y residuos cargo no gestione en los linderos del					
lmp	pacto 23	NAT -	1 1	EX 2	MO 4	PE 2	RV 1	SI 1	AC 1	EF 1	PR 4	MC 4	1 25	CATEGORÍA Compatible

	MANEJO Y DISPOSICIÓN FINAL DE RESIDUOS SÓLIDOS Y LÍQUIDOS PELIGROSOS													
	omponente Ambiental	Impacto												
Durante esta etapa y mientras dure la construcción del pavimento, se generara residuos sólidos y líquidos peligrosos. Suponiendo que la empresa ejecutora n realizara mantenimiento adecuado a la maquinaria esta generaría residuos sólidos líquidos peligrosos (estopas impregnadas de aceite, aceites usados, piezas de maquinaria, botes de pintura, brochas con pintura, etc.), residuos de pintura utilizad para el señalamiento del camino. Estos residuos modificarían las característica fisicoquímicas del suelo, provocando la contaminación de este.												presa ejecutora no a residuos sólidos y sados, piezas de la s de pintura utilizada		
lr	npacto 24	NAT	ı	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
- 1 2 4 1 1 1 2 1										1	1	4	22	Compatible
ETAPA DE OPERACIÓN Y MANTENIMIENTO														
CIRCULACIÓN VEHICULAR DIARIA														

Compor	nente											.1 \ 1 \ \		
Ambie									Imp	acto				
Atmósfera ·	Calidad del aire Estado acústico natural	inicio tráns que s	se ito v se co	dio a ehicu muni	entra lar en can co	ar en f la car on la c	iuncio retera abece	nami debi era m	ento e do a la unicip	el car a may al, au	mino e or colument	exister munic	nte. C ación as em	acumulativos, cuyo conforme aumente el entre las localidades hisiones atmosféricas era.
Impact	0.25	NAT	ı	ΕX	МО	PE	RV	SI	AC	EF	PR	МС	I	CATEGORÍA
Compor Ambie	nente	-	- 1 2 4 1 1 1 1 1 4 21 Compatible Impacto											
Faur	ıa	pérdi la fau prese	da, f una ente	ragm terre: en el	entaci stre. 1 área,	ión y a Γambi ya qu	ilterac én se e vari	iones pue as pa	s de ha den p autas e	ábita rodu de co	ts, rep cir afe mport	ercuti ectaci	endo ones nto co	consecuencia de la especialmente sobre sobre toda la fauna mo consecuencia de
Impost	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	МС	I	CATEGORÍA	
Impacto 26		-	1	2	4	1	1	1	1	1	1	4	21	Compatible
Compor Ambie									lmp	acto				
Transp	orte	La pavimentación de la carretera tiene por finalidad mejorar el transporte entre las poblaciones involucradas en el camino Jalapa - Xochitepec , por lo que una vez terminada la pavimentación del camino de terracería, y abierto el tramo a la circulación, se mejoraran las condiciones y los tiempos de transporte.												
Impact	o 27	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
		+	2	2	1	4	4	1	1	1	4	4	30	Moderado
Compon Ambier									Imp	acto				
Educad	ión	Una vez en operación el camino pavimentado, se espera que se minimice y facilite transporte hacia lugares con escuelas de educación media superior y super aumentando con ello el nivel de educación de la región y sobre todo del municipio cual facilita el movimiento de personas hacia localidades de mejores condicion educativas.										superior y superior, e todo del municipio lo		
Impacto	28	NAT	l	EX	МО	PE	RV	SI	AC	EF	PR	MC	l	CATEGORÍA
Compon Ambier	ente	+	2	2	1	4	4	2	1 Imp	1 acto	1	4	28	Moderado
Salu	d	Con el mejoramiento del transporte entre localidades, se espera que mejore la disponibilidad de los servicios de salud para los habitantes del municipio, también se espera que con la pavimentación del tramo carretero y el crecimiento poblacional tengar mayor acceso a servicios de salud.												

lmn	Impacto 29	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
ШР	acto 23	+	2	2	2	4	4	2	1	1	1	4	29	Moderado
				В	ACHE	O Y F	RELLI	ENO	DE G	RIET	AS			
	ponente								lm	pacto)			
Am	biental	Impacto												
	Apariencia					•	•					•		diciones operacionales aches y grietas, lo que
Paisaje	yisual			•				•						al que presentan estos
	Vidual	deteri			pacio	paisa	jistico	CII	Juant	<i>3</i>	і араі	ionoia	VISUE	ii que presentan estos
lmn	aata 20	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
Impacto 30		-	1	1	4	1	1	1	1	1	1	4	19	Compatible
	ponente biental								lm	pacto)			
	La presencia de baches y grietas dificulta el tránsito vehicular diario, por lo que el bacheo													
Trai	nsporte	y el relleno de estas grietas impactaran positivamente sobre las condiciones												
		operacionales del camino.												
lmn	acto 31	NAT	I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
	4010 01	+	1	1	4	1	1	1	1	1	1	4	19	Compatible
				LIMP	IEZA	DE A	LCAN	ITAF	ILLA	SYL	OSA	S		
1	ponente biental								lm	pacto)			
		Esta actividad es una de las que más impactan sobre un camino que se encuentra en												
Agua	Superficial	opera	ciór	n, ya	que la	s obr	as de	drer	naje si	uelen	llena	rse de	e bası	ıra, la cual obstruye el
		paso	libre	e del a	agua e	n la te	empor	ada	de llu	vias.				
lmn	Impacto 32		I	EX	МО	PE	RV	SI	AC	EF	PR	MC	I	CATEGORÍA
iiiipacto 32		-	1	1	4	1	1	1	1	1	1	4	19	Compatible

Posibles impactos ambientales que se generarían al **Río La Nopalera** por la construcción del camino.

El presente análisis se hace considerando que el proyecto no contempla la construcción o remodelación del paso existente en el **río La Nopalera**.

Tabla 65. Evaluación de los impactos ambientales sobre el **río La Nopalera**. Etapa de desmonte, despalme y construcción

Componente	
Ambiental	Hidrología calidad del agua
afectado	

	El pas	so (de m	aguin	aria	v mov	vimi	ento	de m	ateria	ales o	erca	nos al área del
	•			•		•							odamientos de
	materi						•	•	q o	12 5. 511		•. •	u o
				•					utili	zados	s nara	la co	nnstrucción del
	Generación de desechos o materiales utilizados para la construcción camino que pudieran caer al rio se controlaran con un programa de mu												
	cercano al rio.											ama de muios	
	Aumento en la turbiedad, el cauce se encuentra levemente azolvado pero												
		en caso de que la presencia de tirante de agua, se alterará la turbidez por el paso de maquinaria. El suelo y la hidrología temporalmente afectada se recuperarán en corto tiempo. De esta manera se recomienda construir en											
,	l .												
Descripción													
del impacto	temporada de estiaje y Para no afectar la calidad del agua, la compañía												
				•					າ de ເ	ına m	ıalla g	jeote	xtil y así evitar
	que cı	uald	uier (eleme	nto p	ropio	afec	te.					
	Prese	nci	a de	traba	jadoı	res de	esec	hos	huma	anos	así ta	mbié	n se colocarán
	letrina	s p	ortátil	les a r	azón	de 1	por d	cada 1	15 tra	bajad	ores y	/ de e	esta manera se
	evitara	á qu	ıe se	conta	mine	el ag	ua c	on los	resid	duos,	la con	npañ	ía constructora
	se ase	egu	rara d	que el	retire	de lo	s re	siduo	s sea	i bajo	la noi	rmati	vidad aplicable
	vigent	e, c	le igu	ıal ma	nera	el áre	ea de	e alma	acena	amien	to de	resid	uos peligrosos
	y el p	atio	de	manic	bras	estar	án a	alejad	os de	el cue	erpo d	le ag	ua para evitar
	contar	min	ación	del m	nismo	, esta	s so	n me	didas	preve	entiva	s	
Impacto 22	NAT	Ι	EX	MO	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
Impacto 33	-	1	1	4	2	1	1	1	4	1	4	23	Compatible

Etapa de desmonte, despalme y construcción

Componente Ambiental afectado	Hidrología calidad del agua
Descripción del impacto	El paso de maquinaria y movimiento de materiales en el área del proyecto afectara de manera temporal ya que pudiera haber rodamientos de rocas o tierra en las áreas cercanas al rio. Generación de desechos o materiales utilizados para la construcción que pudieran caer al rio se controlaran con un programa de muros. Aumento en la turbiedad, el cauce se encuentra total levemente azolvado, se alterará levemente la turbiedad por el paso de maquinaria. El suelo y la hidrología temporalmente afectada se recuperarán en corto tiempo. De esta manera se recomienda construir en temporada de estiaje y Para no afectar
	la calidad del agua, la compañía constructora implementará la colocación de una malla geotextil y así evitar que cualquier elemento propio afecte. Presencia de trabajadores desechos humanos así también se colocarán letrinas portátiles a razón de 1 por cada 15 trabajadores y de esta manera se

	evitar	evitará que se contamine el agua con los residuos, la compañía constructora											
	se as	se asegurara que el retiro de los residuos sea bajo la normatividad aplicable											
	vigen	vigente, de igual manera el área de almacenamiento de residuos peligrosos											
	y el p	y el patio de maniobras estarán alejados del cuerpo de agua para evitar											
	conta	contaminación del mismo, estas son medidas preventivas											
Impacto 34	NAT	NAT I EX MO PE RV SI AC EF PR MC I CATEGORÍA											
- 1 1 4 2 1 1 1 4 1 4 23 Compa									Compatible				

Etapa de desmonte, despalme y construcción

Componente Ambiental afectado	Hidro	Hidrología calidad del agua											
Descripción del impacto		oso	s y qı	ue la r	naqui	inaria	recil	ba ma	anten	imien	to en i	taller	nerar residuos es. En caso de isma.
Impacto 34	NAT	I	EX	MO	PE	RV	SI	AC	EF	PR	MC	ı	CATEGORÍA
IIIIpacio 34	-	1	1	4	2	1	1	1	4	1	4	23	Compatible

V.3 Valoración de los impactos.

Se identificaron y evaluaron en total 34 impactos ambientales. En la primera etapa del proyecto, la cual corresponde a Preparación del Sitio presenta 4 impactos en total, de los cuales 3 corresponden a la categoría de compatibles y 1 a moderado negativo, el cual se presenta sobre el suelo (desmonte y despalme). En la siguiente fase, la cual corresponde a Etapa de Construcción, se tienen presentes 20 impactos en total, de los cuales 16 son del orden compatible, 4 de orden Moderado, los del

orden moderado son negativos, impactando sobre el suelo, con la construcción de las obras de drenaje, la formación de terraplenes con material de corte y compactando, afectando de manera negativa el suelo con la cubierta de asfalto.

En la etapa de Operación y Mantenimiento, se presentan 11 impactos en total, de los cuales 8 son compatibles; 3 del orden moderado, de los cuales con la circulación vehicular se infieren impactos acumulativos negativos sobre el entorno.

Pero también se presentan impactos positivos. Los impactos negativos se presentan sobre las variables atmósfera y fauna. Los impactos moderados positivos se presentan sobre la economía regional, transporte, educación y salud.

Para el caso de los posibles impactos sobre el rio **La Nopalera** se consideran todos compatibles ya que no hay afectación sobre el mismo y las actividades que afectaran indirectamente se mitigaran con un programa de muros.

V.6 Impactos residuales

Se consideran impactos ambientales residuales a aquellos que permanecerán después del cierre del proyecto. Como medidas de control y mitigación que se han planeado para el proyecto se anticipa que solo abra impactos residuales limitados. En el diseño de los principales componentes del proyecto, se han incorporado las siguientes medidas para asegurar el control y mitigación de los posibles impactos ambientales residuales. El diseño de ingeniería de taludes finales se ha basado en investigaciones geotécnicas y en un análisis de estabilidad, que han mostrado que éstas serán estables aun después de la conclusión del proyecto a modernizar.

Las áreas accesibles en las cuales se dispone ubicar bancos de tiro, serán reforestadas con vegetación nativa de la región para que tengan una estabilidad aun después del abandono del proyecto.

Se establecerá una cobertura de suelo y vegetación en la superficie del área de almacenamiento de desmontes. Como resultado de ello, el área tendrá un aspecto visiblemente similar al área no perturbada que lo rodea y se establecerá la utilización de la tierra para el pastoreo de ganado y vida silvestre se necesitara un cuidado pasivo leve que comprenda el monitoreo de la erosión. Los impactos residuales son los que afectan al paisaje, desplazamiento de individuos por el ruido ocasionado por la maquinaria y alteración y fragilidad a la calidad visual.

La disminución del impacto residual se producirá con el paso del tiempo debido a la capacidad del medio de absorber los impactos generados.

V.6 Impactos acumulativos

Aire

El proyecto se considera una fuente menor de contaminación del aire. Estos debido a que sus fuentes de emisión se limitarán a generadores de automóviles, por tal razón se espera que el impacto acumulativo en la calidad del aire asociado al proyecto propuesto no sea significativo.

Recursos de agua y suelos

El análisis de los impactos acumulativos sobre recursos de agua, se dividió en recursos de agua superficial y subterráneos, el criterio espacial de inclusión fue la cuenca hidrológica debido a que a esta escala es donde operan los procesos naturales que controlan la estructura y función de los ríos.

Por ejemplo, un proyecto que impacte la hidrología de un cuerpo de agua, como una toma de agua o una canalización, va a tener efectos indirectos rio arriba y río abajo del área de impacto directo debido a la conexión ecológica. La cuenca hidrológica permite estudiar estos impactos ya que esta unidad espacial está definida sobre una base estrictamente hidrológica y topográfica que plasma la conexión entre un paisaje y los patrones de drenaje.

Un impacto previsible del proyecto es la contribución a la impermeabilización del suelo y la consecuente del área de infiltración. Del área donde se realizará la modernización del camino que se cambiara el uso de suelo de terracería a pavimento.

Para evitar impactos acumulativos negativos aguas abajo se realizaran obras de drenaje menor y así no se interrumpirá el drenaje natural.

No habrá remoción de vegetación riparia por lo que la capacidad de absorber nutrientes y conservar los arroyos y ríos no se verán afectados.

Usos de terrenos

Abra unas modificaciones al uso de terreno solo en algunos correcciones de las curvas, pero no generara impactos acumulativos.

Recursos biológicos

Los recursos faunísticos existentes en el SAR no se verán afectados. De los recursos florísticos se afectaran en el área correspondiente al proyecto (modificación de algunas curvas) vegetación secundaria arbórea de Selva Baja Caducifolia, los cuales serán mitigados con la reforestación con vegetación nativa al concluir la obra. Los recursos faunísticos no se verán afectados de manera directa ya que su hábitat natural ha sido modificado por las diferentes actividades antropogénicas de los pobladores circundantes y la agilidad de las especies les permitirá desplazarse a zonas más conservadas.

Infraestructura

Los impactos acumulativos sobre la infraestructura son elevados tomando en consideración las áreas de servicio de los sistemas como (agua entubada, alcantarillado sanitario y energía eléctrica) sin embargo será el ayuntamiento el proveedor de la infraestructura quien reducirá el impacto acumulativo y eventualmente permitir la conexión de sus respectivos sistemas.

Recursos socioeconómicos

El analisis de los impactos acumulativos en el contexto socioeconómico discute aquellos componentes socioeconómicos en los cuales el proyecto propuesto pudiera tener efectos acumulativos tales como: socioeconomía, población y servicios publicos.

Recursos esteticos visuales

Los impactos acumulativos en los aspectos visuales podran generarce en las orilas del proyecto por los individuos de las poblaciones locales, generaran diferentes residuos como (plasticos, cartones, papel, etc.)

V.6 Conclusiones

Con la modernización del presente proyecto el cual cuenta con una longitud de 6 kilómetros de terracería y que va de Jalapa a Xochitepec, no se prevén impactos severos sobre el entorno ya que las aperturas son sobre vegetación secundaria y áreas alteradas. La presente modernización se realizará ocupando parte de la corona existente, se presentan longitudes de cambio de ruta pero se compensaran con las restitución del camino actual. La mayor parte corresponde a ampliación y modificación en curvas en ciertos puntos del trazo y mejoramiento de la superficie de rodamiento, en el área correspondiente a los polígonos de afectación no se encontraron especies de flora registradas en la norma NOM-059-SEMARNAT-2010. De la vegetación a afectar se propone construir empalizadas en las zonas potenciales a presentar mayor erosión, además la reforestación con 980 árboles de especies nativas de la región. La S.C.T., dentro de sus bases de licitación obliga a la empresa constructora a reforestar con especies nativas, por lo cual esta medida la deberá realizar la empresa que se le adjudique el contrato de construcción. Dicha medida debe ser cumplida, en caso de desacato, la S.C.T., no paga las estimaciones correspondientes a este concepto y ella misma lleva a cabo la medida propuesta. La modernización de la carretera beneficiará de manera directa a más de 3000 habitantes de manera directa. Se determinó que ninguno de los impactos ambientales negativos en las etapas de preparación y pavimentación del proyecto será del orden SEVERO por lo que no se diagnostican cambios significativos entre el sistema ambiental actual y el escenario futuro una vez concluida la modernización.

En atención al Reglamento en Materia de Impacto Ambiental de la Ley General del Equilibrio Ecológico y Protección al Ambiente, se considera que el proyecto de modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, tramo: del km 0+000 al km 6+000, en el Municipio de Quechultenango, en el Estado de

Guerrero, no ocasionará desequilibrios ecológicos al sistema ambiental circundante, ni rebasará los límites y condiciones establecidos en las disposiciones jurídicas relativas a la protección al ambiente, a la preservación y restauración de los ecosistemas.

VI. ESTRATEGIAS PARA LA PREVENCIÓN Y MITIGACIÓN DE IMPACTOS AMBIENTALES, ACUMULATIVOS Y RESIDUALES DEL SISTEMA AMBIENTAL REGIONAL

VI.1 Programa de manejo ambiental Plan de manejo ambiental

Una vez analizados los resultados de la evaluación de impactos se presentan los programas de manejo que se proponen para la prevención, mitigación, restauración y compensación de los impactos ambientales causados por la modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, tramo: del km 0+000 al km 6+000, en el Municipio de Quechultenango, en el Estado de Guerrero. Estos programas no son una serie de medidas aisladas para resolver problemas puntuales, sino que han sido concebidos de manera que aporten una solución integral a cada uno de los "problemas" planteados por las interacciones proyecto-medio ambiente.

En el siguiente cuadro se presenta la lista de los documentos del Plan de Manejo Ambiental que involucra a la vez programas para mitigar los impactos negativos por el desarrollo de la modernización. Dichos programas y planes se manifiestan en las bases de licitación de la SCT y los cuales son obligatorios para las empresas que ganan las obras y son requeridos por la misma dependencia.

Tabla 66. Programas del PMA

No.	Documentos
1	Plan de manejo ambiental
2	Programa de reforestación en el tramo contratado, avalado por el Especialista Ambiental contratado como asesor.
3	Programa de rescate flora y fauna silvestre
4	Programa de restitución de suelos y reforestación en banco de materiales utilizados.
5	Programa de restitución de suelos y reforestación en sitios ocupados por instalaciones fuera de zona urbana.
6	Plan y procedimientos de atención a emergencias y restauración de suelos contaminados por derrames de combustible y/o aceites lubricantes.
7	Informes mensuales y carpeta fotográfica mensual.

Funciones y responsabilidades de los participantes en la aplicación de medidas de mitigación de impacto ambiental

ESPECIALISTA AMBIENTAL (EA)

Funciones.-

- Deberá analizar el programa de ejecución de la obra y elaborará los planes y programas solicitados.
- Reunirse con el Residente de Obra de la Empresa (ROE) para hacer ajustes a los programas en caso de ser necesario, por la reprogramación que pudiera haber de la obra.
- Coordinadamente con el (ROE), dar instrucciones al Técnico Ambiental (TA)
 de cómo desarrollar de manera apropiada las actividades encomendadas
- Proponer soluciones a situaciones inesperadas o contingencias de tipo ambiental
- Diseñar letreros alusivos al cuidado del medio ambiente y de seguridad.
- Analizar las evidencias proporcionadas por el (TA)

- Elaborar los informes de medidas de mitigación de impacto ambiental Responsabilidades.-
- Responsable de que se implementen las mejores medidas de mitigación de impacto ambiental
- Responsable de la programación de actividades
- Responsable del contenido de los informes de aplicación de medidas de mitigación de impacto ambiental.

RESIDENTE DE OBRA DE LA EMPRESA (ROE)

Funciones.-

- Coordinarse con el (EA) para la elaboración de programas y planes en materia ambiental.
- Comunicarle al (EA) de los cambios en el programa de ejecución de la obra.
- Analizar conjuntamente con el (EA) posibles cambios en los programas y planes en materia ambiental.
- Dar las facilidades para la ejecución de las medidas de mitigación de impacto ambiental, proporcionando la herramienta necesaria, maquinaria y vehículos requeridos.
- Atender y proporcionar un informe de la aplicación de medidas de mitigación de impacto ambiental al personal de la Dirección de Obras del SCT, que se presente para verificar los trabajos desarrollados en materia ambiental.

Responsabilidades.-

- Responsable de la totalidad de trabajos ejecutados en la obra.
- Avalar las actividades de medidas de mitigación de impacto ambiental, contenidas en los informes presentados.
- Proporcionar la herramienta necesaria para desarrollar actividades de medidas de mitigación de impacto ambiental, requeridas y por la Brigada Ambiental.

 Cuando se requiera apoyará de la maquinaria y equipo necesario para desarrollar actividades de medidas de mitigación de impacto ambiental.

TÉCNICO AMBIENTAL (TA)

Funciones.-

- Ejecutar y supervisar que las actividades de medidas de mitigación de impacto ambiental se desarrollen de acuerdo a los planes y programas vigentes.
- Supervisar la elaboración de señalamientos alusivos al cuidado del ambiente.
- Registrar e integrar las evidencias necesarias del desarrollo de las actividades de impacto ambiental
- Comunicarle al (EA) y al (ROE) de las incidencias en la ejecución de actividades de impacto ambiental.
- Atender y proporcionar un informe de la aplicación de medidas de mitigación de impacto ambiental al personal de la Dirección de Obras de la SCT, que se presente para verificar los trabajos desarrollados en materia ambiental.
- Solicitarle al (ROE) el apoyo requerido en herramientas, insumos y equipo.
- Supervisar que todas las áreas del campamento cumplan con los requisitos de seguridad.

Responsabilidad.-

- Verificar que las actividades se realicen de acuerdo a la metodología, procedimientos y recomendaciones indicadas por el (EA)
- Dotar de las herramientas e insumos necesarios a la brigada de apoyo para realizar actividades de impacto ambiental.
- Que las evidencias presentadas muestren claramente las actividades desarrolladas

VI.2 Seguimiento y control (monitoreo)

Programa de vigilancia ambiental

La presente modernización requiere de un ciclo de vigilancia ambiental basado en el estudio de impacto, de sus objetivos y predicciones. Este programa tiene que incluir elementos relacionados con el medio biótico y físico, los impactos sociales y la salud humana. El programa de monitoreo se llevara de forma paralela a la supervisión de construcción del camino.

La vigilancia según Canter, puede dividirse en dos tipos:

- Vigilancia obligatoria: La cual asegura que las medidas correctoras sean llevadas a cabo de acuerdo al documento ambiental presentado, en este caso, NOM's, MIA y Reglamentos), por ello los objetivos particulares de este programa son:
- Verificar el cumplimiento de las medidas de mitigación y de la legislación ambiental que se aplique en la construcción de la carretera.
- Minimizar las afectaciones al ambiente
- Proporcionar información y aviso inmediato cuando un impacto se acerque a un nivel crítico.
- 2. Vigilancia de control de eficacia del monitoreo: Con las medidas de vigilancia de control de eficacia, se controla el éxito de las medidas correctoras o efecto ambiental, por ello los objetivos de vigilancia de eficacia son:
- Verificar las predicciones de impacto realizadas y la eficacia de las medidas de mitigación propuestas, para aplicar esta propuesta en futuras actividades del mismo tipo.
- Acumular información de las condiciones iníciales y finales del proyecto.
 Vigilancia obligatoria por parte de un Biólogo o profesionista capacitado durante la ejecución del proyecto de construcción.

- Administrar los elementos de información necesarios para la correcta ejecución de las medidas de mitigación y recomendaciones en los elementos ambientales correspondientes.
- Integrar herramientas para la planeación, seguimiento y evaluación de la vigilancia del conjunto de medidas de mitigación ambientales relativas al proyecto.
- Respetar los reglamentos y Normas aplicables en la materia.

VI.4 Información necesaria para la fijación de montos para fianzas

Las medidas de mitigación se clasifican de la siguiente manera:

- 1. Medidas Preventivas
- 2. Medidas de Remediación
- 3. Medidas de Rehabilitación
- 4. Medidas de Compensación
- 5. Medidas de Reducción

A continuación se describe cada una de las medidas mencionadas:

Preventivas

Actividades que tienden a disminuir las posibilidades de que ocurra un impacto adverso en alguna etapa del proyecto.

De remediación

Realización de obras o actividades con las que se busca eliminar el impacto adverso causado durante alguna etapa de la obra.

De rehabilitación

Realización de obras o actividades con las que se busca restablecer las condiciones originales del medio impactado.

De compensación

Realización de obras o actividades que beneficien algún medio a cambio del impacto adverso causado.

De reducción

Realización de obras o actividades que permitan disminuir la intensidad y magnitud del impacto adverso mitigable identificado en alguna de las etapas del proyecto.

Agrupación de los impacto de acuerdo con las medidas de mitigación propuestas

Dentro del medio físico

Agua. Los impactos provocados sobre las escorrentías de las aguas superficiales son mitigables de tipo remediación y reductivas.

Suelo. Se aplicarán medidas de tipo preventivo, reductivo (deslizamientos, azolves, erosión)

Aire. Se aplicarán medidas preventivas, reductivas y compensatorias.

Dentro del medio biótico

Flora. Para la eliminación de la vegetación, se consideran medidas preventivas, reductivas, rehabilitación y compensación.

Fauna. Para los impactos adversos provocados sobre la fauna, se aplicarán medidas de tipo preventivo, reductivo y compensación.

Paisaje y dinámica ecológica. Las modificaciones a nivel paisaje y la alteración de algunos procesos ecológicos requieren de medidas de compensación, preventiva y reductivas.

Dentro del medio socioeconómico

Economía regional, salud, transporte y empleo. Los impactos adversos en este componente requieren de medidas preventivas y de compensación.

Descripción de la estrategia o sistema de medidas de mitigación.

Los impactos ambientales adversos identificados pueden ser mitigados mediante la realización de actividades acordes al punto anterior. A continuación se mencionan

las medidas de mitigación (Generales y Particulares) propuestas, que ayudarán a la disminución de los impactos negativos generados durante las diferentes etapas de la realización del presente proyecto. Cabe señalar que cada una de las medidas propuestas también están contempladas dentro de las bases de licitación de la SCT, por lo que a cada empresa ganadora de una modernización del camino se le exige que las debe acatar y llevar a cabo, en caso de no hacerlo la SCT puede revocarle el contrato o no pagarle las estimaciones correspondientes a medidas de mitigación y llevarlas a cabo directamente la SCT.

Medidas generales de mitigación

Medidas de mitigación propuestas en las etapas de preparación del sitio, construcción y operación.

a) Desmonte y despalme

Antes de iniciar las acciones de desmonte y despalme en la primera etapa de construcción, se impartirá una plática informativa a todos los trabajadores de la obra con el objetivo de sensibilizarlos con respecto a la importancia del cuidado del entorno, de la aplicación de cada una de las medidas de mitigación propuestas, de la LGEEPA así como de su reglamento, de las sanciones por la violación de la misma, de las ventajas y beneficios que brinda la protección del medio. Medida de tipo preventiva.

Las actividades de desmonte y despalme se harán respetando la línea de ceros, únicamente sobre el lugar que ocupara la carpeta asfáltica. Esta medida es de tipo preventiva.

Acamellonar parte del material producto del despalme, para su utilización como una capa orgánica sobre los taludes de terraplén que permitan el establecimiento y crecimiento de la vegetación. Medida reductiva de rehabilitación y compensatoria.

b) Flora

Los impactos sobre la reducción de la densidad de flora de la región por las actividades realizadas en las distintas etapas de preparación y construcción del

proyecto, podrán ser mitigados a través de reforestación con especies nativas. Esta medida es compensatoria y de rehabilitación.

Durante las actividades de preparación del sitio, construcción y operación, se instruirá al personal que participe en la construcción del proyecto, se les prohibirá de cortar árboles para uso doméstico y/o comercial. Esta medida es preventiva.

c) Fauna

Se debe propiciar el desplazamiento de los animales silvestres de la zona de influencia hacia los sitios de menor afectación. Esta medida es de prevención.

Durante las actividades de preparación del sitio, construcción y operación, se instruirá al personal que participe en la construcción del proyecto sobre la prohibición de caza, colecta y/o el cautiverio de especies silvestres de la zona. Esta medida es de tipo preventiva.

d) Suelo

Durante la etapa de construcción de terracerías, el material de corte que no sea utilizado en la conformación de las capas del camino, deberá trasladarse a sitios de tiro previamente seleccionados por la empresa encargada de la construcción. M. Preventiva.

El transporte de los materiales de corte se hará en vehículos adecuados, los cuales usarán lonas que retengan los polvos que pudieran desprenderse. M. Preventiva y reducción.

Los conductores de los vehículos transportistas acatarán las rutas, velocidades máximas, horario de tránsito y acceso al sitio, con el objeto de reducir afectaciones al tráfico y a la vialidad de la región. Esta medida es de tipo preventiva y reductiva. Colocar contenedores adecuados de desechos sólidos. La colecta y limpieza de la zona será periódica. Esta medida es de tipo preventiva y de reducción.

e) Hidrología

Evitar que durante la etapa de construcción del proyecto se alteren los cauces de escorrentías intermitentes y perennes. Se debe conservar la dinámica natural mediante construcción de obras de drenaje adecuadas. Esta medida es de tipo preventiva, compensación y reductiva.

Se evitará de manera radical hacer cambios de aceite, tirar basura, verter material de corte o cualquier otro tipo de acción que por su naturaleza pueda generar contaminación y afectar cualquier cause perenne o intermitente en el trazo del camino. M. preventiva.

Se colocarán letrinas portátiles en lugares estratégicos, con la finalidad de evitar que las heces fecales sean arrastradas a los cauces de agua. El manejo de las letrinas debe estar a cargo de una empresa la cual le debe dar mantenimiento y desinfección periódica. M. preventiva.

f) Paisaje

Desde el punto de vista estético la obra representa un componente conspicuo, el cual es opuesto al paisaje natural existente. Aunque los impactos por la introducción de este nuevo elemento al paisaje son irreversibles, mediante la ejecución de tareas adecuadas de reforestación se podrá atenuar el efecto adverso. Esta medida es de tipo compensación y remediación.

Se evitará crear una zona que funcione como tiradero de basura a cielo abierto. La basura generada se depositará en el lugar que el municipio tenga destinado para su buen manejo y evitar de esta manera la contaminación visual del paisaje. M. preventiva y de reducción.

g) Calidad del aire

Los vehículos y la maquinaria que se van a emplear para la construcción del camino, deberán contar con su respectivo mantenimiento. Esta medida es de tipo preventiva.

Evitar la propagación de partículas al entorno, mediante riego con agua al camino de tránsito y colocación de lonas a los vehículos de transporte de material. Esta media es preventiva y reductiva.

Al personal que participe en la operación de maquinaria pesada se les recomendará utilizar equipo que les permita disminuir las emisiones de ruido. Medida de prevención.

Se evitará hacer fogatas con material utilizado en la obra, ej.: maderas, llantas, plásticos, láminas de cartón, botellas de plástico, etc., o con cualquier otro material que sea contaminante de la atmósfera. M. preventiva.

h). Medio socioeconómico

Establecer señalamientos que indiquen la prohibición del paso a personal ajeno a la obra con el objetivo de evitar accidentes. Esta medida es preventiva.

Para la construcción del presente proyecto, se empleará mano de obra preferentemente que viva en poblados cerca de la vía. M. Compensatoria.

La empresa constructora está obligada a dotar del equipo de seguridad básico a sus empleados, de acuerdo al tipo de actividad que desarrollen.

Se ocuparan los servicios como hospedaje, comedor, etc., de la región, lo cual repercutirá en una fuente de ingreso adicional durante la ejecución de la obra. M. Compensatoria.

Medidas particulares de mitigación

A continuación se describen las medidas de mitigación particulares para cada una de las etapas y componentes del sistema durante la ejecución del presente proyecto.

1. Etapa de preparación del sitio

El material producto del desmonte y despalme, se utilizara en el arrope de los terraplenes, con la finalidad de prevenir la erosión y permitir el establecimiento de la capa vegetal. Esta medida es de tipo preventiva, reductiva y de remediación.

Para prevenir erosión, derrumbe y deslizamientos en taludes, es necesaria la construcción de muros de retención, empalizadas o gaviones en los puntos que lo requieran, así como de acelerar la regeneración natural mediante la siembra de especies nativas. Esta medida es de tipo preventiva y remediación.

Identificar los sitios de tiro de material de desperdicio producto de cortes. M. Preventiva, de reducción y rehabilitación.

Hacer un recorrido previo al inicio del desmonte y localizar nidos, madrigueras y ahuyentar a las especies de fauna que pudieran ser afectadas. Si existen especies vegetales que por su rareza no hayan sido detectadas durante el análisis en campo para realizar el presente estudio, al momento de iniciar la primera etapa constructiva deben ser reportadas a la SEMARNAT y posteriormente removidas de la zona de desmonte y despalme a un sitio en el que no sean afectadas. M. preventiva.

Se debe evitar que el material de corte se voltee a zonas de escurrimientos naturales perennes. M. preventiva.

2. Etapa de Construcción

Los ángulos de corte deberán efectuarse de tal forma que garanticen la estabilidad de los taludes y hagan posible el establecimiento de vegetación natural. M. preventiva, reducción y de rehabilitación.

En los taludes de mayor altura se recomienda colocar una geomalla, que permita y garantice, tanto su estabilidad como el desarrollo de vegetación nativa. En caso de no tener recursos suficientes, realizar empalizadas con el material residual del desmonte. M. preventiva, rehabilitación y compensación.

Los caminos existentes podrán ser utilizados para tener acceso a los distintos frentes de trabajo. M. reducción.

Se debe dar preferencia a materiales obtenidos de bancos en explotación que actualmente están en uso. M. prevención y reducción.

Asignar los sitios de almacenamiento de materiales, preferentemente los señalados, considerando las distancias de uso en las obras, de tal manera que el movimiento de estos materiales sea mínimo. M. preventiva y reductiva.

Para el manejo de desechos sólidos y líquidos contratar a una empresa para su buen destino. Por ningún motivo depositar residuos contaminantes a cielo abierto o sobre el suelo. Esta medida es de prevención y de reducción.

Los residuos de aceites, lubricantes y combustibles generados por el mantenimiento de la maquinaria que se emplee, por ningún motivo serán derramados en el suelo. Estos residuos serán almacenados temporalmente en tambos de 200 litros y trasladados a los centros de acopio autorizados o trasladados por la empresa responsable de su manejo. A su vez, se debe contar con un convenio con los organismos de protección civil para atender cualquier accidente. M. preventiva.

Los combustibles serán almacenados en áreas que cuenten con pisos impermeables y en tambos colocados sobre tarimas de madera. Los trasvases se harán de un camión a la maquinaria por medio de sifones. M. preventiva.

Se deben llevar a cabo cada una de las obras de drenaje en los puntos que marca el proyecto y de esta forma conservar la dinámica natural de los cauces. M. compensatoria.

De tener recursos suficientes construir pequeños puentes, en vez de alcantarillas de tubo, para permitir la conectividad entre fragmentos y permitir el paso de los animales domésticos. M. preventiva y Compensatoria.

Los cortes y explotación de bancos de material deben programarse preferentemente llevarse a cabo en temporada de secas para evitar un elevado arrastre de sedimentos a los cauces de agua. M. preventiva.

Durante las acciones de acarreo y explotación de bancos debe hacerse riego constante con la finalidad de evitar levantamiento de polvos y contaminar con los mismos la vegetación adyacente. M. preventiva.

3. Operación y Mantenimiento

Colocación de señalamientos haciendo alusión a la prohibición de caza y captura de las especies silvestres de la región, así como la prohibición de arrojo de basura. Se llevará a cabo el deshierbe en la zona adyacente a la carretera con el fin de permitir un mejor funcionamiento de la vía y sus obras de drenaje y complementaria.

Tabla 67. Presupuesto de medidas de mitigación.

rabia 67. Presupuesto de medidas de miligación.			
Nombre de la obra			
Modernización del Camino Jalapa- Tolixtlahuaca-Xochitepec, tramo: del km 0	+000 al km		
6+000, en el Municipio de Quechultenango, en el Estado de Guerrero) .		
Documentos, acciones y actividades a realizar en la obra			
Plan de manejo ambiental	8,000.00		
Programa de rescate de flora y fauna silvestre	4,000.00		
Programa de restitución de suelos en campamentos y parque de maquinaria	4,000.00		
Programa de reforestación en tramo a conservar incluyendo bancos de material	4,000.00		
Planta para la reforestación, incluye preparación del sitio con empalizadas o muros			
de piedra donde así lo requiera, reforestación y sustitución de las muertas por un			
año (hasta 200 muertas se podrán restituir).			
Plan y procedimiento de atención de emergencia y restauración de suelos	4,000.00		
contaminados por derrame de combustibles, grasas y/o aceites lubricantes			
Programa de muros	50,000.00		
Conocimiento y concientización al personal de campo con respecto a la	4,000.00		
normatividad en materia ambiental			
Letreros alusivos a la protección del medio ambiente	4,000.00		
Elaboración de los informes de impacto ambiental (según las bases son mensuales)	140,000.00		
Colocación de 2 letrinas. 1 en campamento de hacerlo, 1 en zona de trabajo del	8,000.00		
camino, por año.			
Total:	310,000.00		

Se deberá efectuar la supervisión permanente de la carretera, a fin de corregir daños a lo largo de la vía.

Se deberá evitar el desarrollo de asentamientos irregulares u otros usos del suelo, no apropiados dentro del derecho de vía donde se modernizará la vía.

Se realizará una reforestación con especies nativas de la región. La reforestación se hará en función de la especie y época del año, con la finalidad de garantizar una mayor sobrevivencia. Las especies se sembrarán en zonas que permitan su establecimiento, ya sea zonas elegidas con base a un análisis previo y adyacente a la carretera.

Se llevará a cabo mantenimiento constante a la maquinaria con el objetivo de reducir la contaminación por ruido y gases al entorno. M. preventiva y reductiva.

Se concientizará a los usuarios de la vía para que obedezcan los señalamiento viales y valoren su vida y la de los ciudadanos que recorren la vía con sus bestias o caminando. M. preventiva.

Programa de fauna y de las especies listadas dentro de la nom-059-semarnat-2010.

Etapa de aplicación: preparación de sitio, construcción y operación

Fauna

 Previo al inicio de las actividades de preparación del sitio se llevará a cabo un Programa de Rescate de Flora y Fauna Silvestre, principalmente aquellas que se encuentren en algún estatus dentro de la Norma Oficial Mexicana NOM-059-SEMARNAT-2010 y/o de alta importancia en el ecosistema presente.

No se practicará la cacería, captura y comercialización con especies silvestres que se lleguen a encontrar a lo largo y ancho del área del proyecto.

2. Todo el personal de la constructora involucrado en los trabajos de construcción debe tener conocimientos sobre las diferentes especies que se encuentren dentro de la NOM-059-SEMARNAT-2010.

- Evitar en todos los casos el consumo de animales silvestres propios de la región o que pudieran ser ofrecidos por los pobladores cercanos al sitio del proyecto.
- 4. Detectar si en los sitios donde se llevarán a cabo los trabajos civiles, no se encuentren madrigueras o nidos y de ser así serán reubicados en lo posible en zonas con características similares de donde fueron rescatados.
- 5. Previo al inicio de las actividades diarias se deberá ahuyentar la fauna que se encuentre cerca del proyecto a través de ruido o persecución y, de ser posible, liberar vertebrados, principalmente en animales que presentan desplazamientos cortos o lentos.
- 6. Además, al finalizar la jornada diaria se colocará una garrocha de madera en cada una de las cepas abiertas, con la dimensión adecuada para que permita la salida de cualquier animal pequeño, por ejemplo, reptiles, aves y mamíferos que durante la noche pudieran haber caído en alguna de las mismas.
- 7. En caso que se encuentren organismos vivos en las cepas abiertas se procederá a su rescate, posteriormente se liberará en una zona que presente características ambientales similares al sitio de donde se realizó el rescate.

Generales

1. La(s) Contratista(s), bajo la supervisión de la contratista, elaborará(n) un "Reglamento Interno" para regular el manejo de la basura, residuos de obra, de flora y fauna silvestre. En dicho reglamento se deberá incluir un capítulo de sanciones a las cuales se sujetará el personal de la contratista que no observe y cumpla con lo dispuesto en el mismo.

2. Los residuos sólidos y líquidos, así como la basura, generados por las actividades de la obra se recogerán diariamente al finalizar la jornada e igualmente se depositarán en el almacén de la constructora o en los lugares donde la autoridad competente lo determine.

- 3. Al finalizar las actividades diarias, se recogerán todos los residuos de tornillería, madera, fletadores metálicos y de cable.
- 4. En caso de utilizar algún almacén, se dispondrán áreas para depositar los residuos de la obra.
- 5. Todos los materiales utilizados y almacenados por la(s) contratista(s) estarán disponibles en el lugar donde se ejecute la tarea.

Programa de rescate, reubicación y manejo de fauna bajo estatus de riesgo existente en el proyecto.

Tabla 68. Cronograma de actividades para el programa de fauna

1 abia 68. C	Tabla 68. Cronograma de actividades para el programa de fauna											
Trimestres	AÑ					AÑO				AÑO		
	1	2	3	4	1	2	3	4	1	2	3	4
Rescate y Relocalización de fauna y flora.	X	X										
Captura de reptiles y mamíferos menores.	X	X	X	X	x							
Traslado, liberación y reubicación de la flora y fauna.	X	X	X	X	х							
Capacitación a trabajadores de la obra.	x	x										
Supervisión de obra.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
Documentación de acciones.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Registro fotográfico.	Х	X	Х	Х	Х	Х	Х	Х	X	Х	Х	X
Registro en bitácora.	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х
Elaboración de informes parciales.						X	X				Х	X
Elaboración de informe final.											Х	Х

Especies contempladas dentro del programa.

Tabla 58. Especies a las que aplica el programa.

Mamíferos

Tabla 69.- Listado de especies de Fauna presentes en la Microcuenca:

				Mamíferos		
Orden	Familia	Especie	Nombre Común	Estatus dentro de la NOM-059- SEMARNAT-2010	Núm. avistamientos	Avistamien tos
Didelphimor phia	Didelphid ae	Didelphis virginiana	Tlacuache	ss	2	huellas
Xenarthra	Dasypodi dae	Dasypus novemcinctus	Armadillo	SS	2	directa
Lagomorpha	Leporidae	Sylvilagus cunicularius	Conejo	ss	2	madriguera
Rodentia	Sciuridae	Sciurus aureogaster	Ardilla gris	ss	5	huellas
		Sigmodon hispidus	Rata	SS	3	directa
	Geomyida e	Liomys irroratus	Ratón de abazones	ss	4	directa
		Mephitis macroura	Zorrillo	Ss	1	huellas
		Nasua narica	Tejón	SS	2	directa
		Procyon lotor	Mapache	Ss	5	madriguera
		Micronyreris	Murciélago	Ss	6	directa
		Sturnira Iudovici	Murciélago	Ss	2	directa
		Artibeus intermedius	Murciélago	Ss	7	directa
					41	

Aves

Tabla 70.- Listado de especies de aves presentes en la Microcuenca:

		ESTACIO NALIDAD	SOCIAB ILIDAD	ALIMENTA CION			
Familia	Nombre científico	Nombre popular	Estatus dentro de la NOM- 059-SEMARNAT-2010	Núm. avistamien tos			
CATHA RTIDAE	Cathartes aura	Zopilote	ss*	2	residente	gregario	carroñera
CATHA RTIDAE	Coragyps atratus	Zopilote negro	ss	6	residente	gregario	carroñera
COLUM BIDAE	Columbina inca	Tortolita	ss	2	residente	gregario	insectivoro
COLUM BIDAE	Zenaida macroura	Paloma	ss	2	residente	pareja	insectivoro- granívoro
COLUM BIDAE	Columba livia	Paloma doméstica	SS	5	residente	pareja	insectivoro

TYRAN NIDAE	Tyrannus cassirostris	Tirano piquigrueso	ss	6	residente	solitario	insectivoro
ICTERID AE	Quiscalus mexicanus	Zanate mexicano	ss	10	residente	gregario	insectivoro
PICIDAE	Picoides scalaris	Carpinterillo mexicano	ss	1	residente	solitario	insectivoro
TROCHI LIDAE	Amazilia beryllina	Colibrí de berilo	ss	1	residente	gregario	néctar
				35			

Reptiles

Tabla 71.- Listado de especies de reptiles presentes en la Microcuenca:

			ESTACION ALIDAD	SOCIABI LIDAD	ALIMENT ACION			
Orde n	Famil ia	Nombre científico	Nombre común	Estatus dentro de la NOM- 059-SEMARNAT-2010	Núm. avistamient os			
	Iguan idae	Ctenosaura pectinata (Wiegmann, 1834)	Iguana negra	A*	2	residente	gregario	herbivoro
	Scinc idae	Plestiodon brevirostris Günther, 1860		ss	6	residente	gregario	insectivor o
	Teiid ae	Aspidocelis sp.	Cuije	SS	2	residente	gregario	insectivor o
Serpe ntes	Boida e	Boa constrictor (Daudin, 1803)	Mazacuat a	Α	3	residente	solitario	carnívoro
					13			

Anfibios

Tabla 72.- Listado de especies de anfibios presentes en la Microcuenca:

			ESTACIONALI DAD	SOCIABILI DAD	ALIMENTAC ION			
Clase	Orde n	Familia	Nombre científico	Nombre común	Núm. avistamientos			
Amphi bia	Caud ata	Brachycephal idae	Syrrhophus nitidus (Peters, 1869)	Sapito	1	residente	gregario	insectívoro
		Bufonidae	Ollotis sp.	Sapo	1	residente	gregario	insectívoro

Descripción del sitio seleccionado para la reubicación de fauna

Para el caso de que durante el operativo de campo que se realizará se encontrasen ejemplares de las especies de reptiles y fauna menor que se encuentran incluidos en la NOM-059-SEMARNAT-2010, se tiene previsto realizar su captura viva e inmediata liberación en áreas conservadas y adyacentes al proyecto. El sitio en donde se liberen a las especies rescatadas será informado a la autoridad mediante georeferenciación.

Metodología

Fauna

Debemos señalar que las aves y los mamíferos pequeños y medianos son los taxas más representativos en área relictos como en este caso, y por ser los primeros en presentar movimientos migratorios cuando las condiciones de su hábitat son alteradas, la ausencia de grandes mamíferos indica la baja calidad del área de estudio, por lo tanto la estructura y composición que se tienen de la fauna en el sitio es un claro indicativo de la fuerte alteración en el ecosistema donde solamente se encuentran ejemplares de especies que son capaces de soportar la fuerte presión antropogénica, los cuales son principalmente aves algunos mamíferos y reptiles los cuales al disponer de alimento pueden sobrevivir muy bien en hábitats alterados.

No obstante, se considera importante que en el desarrollo de todo proyecto que implique el retiro de vegetación nativa y, en consecuencia, la eliminación de hábitat para especies de fauna silvestre -independientemente de la existencia de condiciones restrictivas como las mencionadas-, debe prevalecer un criterio precautorio que determine la aplicación de medidas para prevenir cualquier daño o afectación a los individuos que eventualmente pudieran encontrarse en el sitio.

Por ello, se recomendará a la empresa realizar un intenso operativo de campo que permita asegurar el retiro de cualquier individuo animal de talla media, bien por ahuyentamiento o por captura y traslocación, para proporcionarle mejores oportunidades de sobrevivencia, antes de que se inicien las actividades constructivas en el sitio. A continuación, se describen las acciones particulares que deberán realizarse para cumplir con el objetivo propuesto. Para efectos prácticos, las actividades han sido agrupadas en cinco etapas:

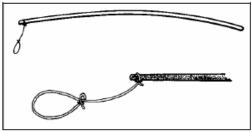
- Preparativos
- Rescate
- Relocalización
- Medidas de preventivas de protección ambiental
- Documentación de acciones

Las etapas y sus acciones particulares han sido planeadas de manera tal que el programa pueda realizarse con un margen temporal adecuado y suficiente, antes de que inicie la etapa constructiva del proyecto. A continuación se describe cada una de las actividades por etapa

Preparativos

Los preparativos del programa incluyen las acciones relativas a:

- a. La prospección del predio
- b. La selección del sitio probable de liberación de los individuos a rescatar;
- La integración y preparación de las brigadas de rescate.


Respecto de la integración de las brigadas de rescate, es de mencionar que con la finalidad de ejecutar el rescate en el menor tiempo posible y no interferir con el programa general de trabajo del proyecto, se han conformado tres brigadas de rescate con capacidad de desarrollar el trabajo en un plazo máximo de cinco días. Cada brigada estará integrada por al menos tres personas: un especialista con

conocimientos y experiencia en manejo de fauna silvestre; así como dos asistentes de campo que han sido previamente capacitados en el manejo de los ejemplares.

La capacitación de los asistentes ha consistido en mostrar las bases generales y suficientes para estar en posibilidad de localizar animales y buscar nidos de aves; aplicar técnicas básicas de captura y manipulación de ejemplares, identificar madrigueras y llenar bitácoras de registro. La preparación del material y equipo ha consistido en disponer de las herramientas necesarias e indispensables para el trabajo, tanto individual, como para el objeto del operativo. Particularmente, se utilizarán los siguientes materiales:

- Sacos de lona o yute con cordel de amarre y dimensiones suficientes para contener temporalmente ejemplares de hasta un metro de longitud.
- Redes de cuerda con dimensiones de 2.0 X 2.0 metros.
- Cordel de algodón o lazo delgado.
- GPS.
- Vehículo de traslado.
- Cámaras fotográficas.
- Tablas de plástico y madera para bitácoras.
- Guantes de carnaza.

El uso de dispositivos de lazo con nudo corredizo, de manufactura no comercial, es un método útil para la captura de serpientes, grandes lagartos e iguanas. No obstante, su uso, como el de los bastones herpetológicos dependerá de la habilidad individual para su manejo.

Dispositivos de lazo de nudo corredizo

Rescate

Adicionalmente al ahuyentamiento de ejemplares de reptiles y mamíferos pequeños (roedores, lagartijas, etc.), se realizará la búsqueda de reptiles medianos tales como iguanas, para su rescate y relocalización. La búsqueda de los individuos se realizará de manera planificada y conforme a un diseño que asegure una inspección completa del polígono. Para ello, la superficie del terreno se dividirá en sectores perpendiculares al frente del predio. Todos los sectores serán revisados (barridos) por cada brigada conforme a una planeación que, de manera natural, evitará la interferencia de los grupos de trabajo. La búsqueda de reptiles se programará en horario diurno, preferentemente desde el amanecer hasta antes del crepúsculo, incluyendo las horas de mayor insolación.

A su vez, la búsqueda de nidos será diurna. En general los reptiles terrestres se pueden encontrar en refugios naturales, tales como troncos podridos, volteando rocas y troncos debajo de corteza o ramas de árboles, palmas y arbustos que se encuentren amontonadas. Es recomendable al momento de realizar la búsqueda, la utilización de guantes de carnaza para evitar raspaduras o piquetes de insectos, arañas o alacranes que se pueden encontrar en es esos refugios o la utilización de ganchos de hierro para voltear rocas y troncos. Para a su traslado, se deben colocar en bolsas de manta o material similar, que tengan una dimensión de 50 X 100 cm, introduciendo primero la parte posterior (cola), y después soltando la cabeza, la bolsa se tuerce, se dobla y se amarra en el extremo. Cabe señalar que ningún ejemplar de fauna y mucho menos reptiles deberán introducirse en bolsas de plástico, a fin de evitar su asfixia.

Muy importante:

Previo a la puesta en marcha del Plan de rescate y relocalización de ejemplares de reptiles en algún estatus de riesgo, será necesario contar con una estrategia de emergencia en caso de accidente por mordedura de saurios venenosos. Este plan de emergencia deberá ser diseñado y coordinado por personal con experiencia en este tipo de eventos. Al igual que todos los reptiles su actividad física y por ende su peligrosidad se incrementa cuando la temperatura ambiental es mayor. Por consiguiente es recomendable que durante las labores de colecta y rescate, esté presente un manejador con experiencia para poder realizar la captura en el momento adecuado, en especial durante los meses con mayor incremento de temperatura (Junio-Septiembre). Las iguanas se capturarán manualmente o utilizando los dispositivos de lazo mencionados anteriormente. Preferentemente se inmovilizarán por el dorso, colocando las manos a la altura del cuello y la base de la cola, evitando recibir coletazos, rasguños o mordidas.

En caso necesario podrá lanzarse una red sobre el animal, a la vez que se intenta sujetarlo del modo descrito. Una vez capturado el individuo, con ayuda del compañero de brigada se asentarán en la bitácora los datos que sean necesarios, incluyendo las coordenadas geográficas del sitio de captura. Cada animal se identificará con un código numérico en la bitácora y una etiqueta dentro del saco. En todo momento se manipulará a los animales de forma cuidadosa, evitando dañarlo y someterlo a estrés innecesario.

El ejemplar será posteriormente colocado dentro del saco, cuidando de no lastimarlo. La boca del saco deberá anudarse o atarse con cordel. Tratándose de iguanas, sólo en caso de que el animal muestre un comportamiento agresivo o excesivamente nervioso que imposibilite su manejo, podrán sujetarse

temporalmente las patas traseras y delanteras con cordel de algodón o lazo, con fuerza suficiente para inmovilizarlo sin lastimarlo.

Se deberá procurar el rápido traslado de los ejemplares capturados en los sacos hacia un área de trabajo previamente definida donde serán transferidos a cajas de plástico de dimensiones adecuadas a su talla. Dependiendo de las dimensiones del animal, podrá colocarse más de un ejemplar por caja, pero procurando no juntar dos machos adultos. Si éstos se encuentran inmovilizados de las patas, puede evitarse colocar la tapa de rejilla plástica.

En el área de trabajo se medirán los ejemplares y se terminarán de registrar los datos de la bitácora. Los animales capturados deberán trasladarse el mismo día al sitio previamente definido. En caso de detectar nidadas de iguana o de escorpión, se procurará capturar primero a la hembra. Posteriormente se transferirán cuidadosamente los huevos a una caja de plástico en la que previamente se haya colocado una cama de tierra del mismo sitio. Cabe señalar que ningún ejemplar de fauna y mucho menos reptiles deberán introducirse en bolsas de plástico, a fin de evitar su asfixia. Ninguna bolsa o recipiente que contenga un ejemplar en su interior, deberá permanecer expuesto al sol directo. El sobrecalentamiento es mortal para estos animales.

Relocalización

La liberación de los animales en el área seleccionada deberá realizarse el mismo día de la captura, buscando los sitios más adecuados y similares al hábitat de la especie. Los ejemplares se extraerán de los sacos o cajas de plástico; y en el caso de las iguanas se liberarán de las patas de haber sido sujetadas. Se colocarán sobre el suelo y se les permitirá alejarse libremente.

Medidas preventivas de protección ambiental

Las medidas de protección ambiental que a continuación se indican serán observadas por las empresas contratistas responsables de la construcción de las obras, en las distintas etapas de ejecución del proyecto. Previamente al inicio de los trabajos de preparación y construcción en el predio, los empleados de las empresas contratistas deberán ser capacitados e informados sobre la obligatoriedad de cumplir con todas las medidas de protección ambiental.

Las empresas contratistas mantendrán una supervisión permanente del cumplimiento de las medidas que se indican a continuación, mientras duren los trabajos para los cuales han sido contratados.

- Se prohibirá estrictamente a todo el personal realizar la caza o captura de cualquier animal que no sea la prevista por este programa por parte de especialistas en la materia.
- En caso de que durante las actividades de preparación del sitio (despalme, desmonte y nivelación) se encontrara algún animal en el sitio, se deberá dar aviso de inmediato a las brigadas para que sea capturado y relocalizado en el predio ya previsto.
- 3. El trabajo de preparación del sitio deberá atender a un modelo secuencial de intervención del terreno, que permita que los animales que aún se encontraran presentes se desplacen por sus propios medios, evitando su caza, captura o daño. Únicamente se capturarán ejemplares cuando la especie y condición del animal lo requiera y siempre con supervisión de personal especializado.

Documentación de acciones

Todo el proceso de desarrollo del programa deberá quedar debidamente documentado. El registro fotográfico será requerido durante la captura y liberación de ejemplares. Las bitácoras de rescate se llenarán de acuerdo con el formato anexo y deberán resguardarse como parte del expediente interno del programa.

Al finalizar el desarrollo del programa, el coordinador responsable se encargará de elaborar un informe completo de las actividades realizadas, en el que se describa la totalidad de las actividades y conste el número de individuos rescatados, su especie, sexo y medidas; el plano que identifique las coordenadas de los sitios de captura; así como una descripción general del sitio al cual fueron entregados o liberados. Dicho informe se complementará con el registro fotográfico y las consultas obtenidas..

Seguimiento

A todos los organismos manejados, se les tomarán datos básicos, priorizando en no afectar o estresarlos en lo posible. Con un manejo sutil se llevara un registro mediante fotografías, tratando de resaltar alguna característica singular para evitar marcas adicionales. Y como el objetivo final no es el seguimiento, si no que haya seguridad de sobrevivencia por lo que será más importante la baja afectación, y mantener recorridos posteriores en las áreas de reubicación por algún periodo para obtener datos de los organismos manejados.

Resultados esperados

Etapa de aplicación: preparación de sitio, construcción y operación.

- No se practicará la cacería, captura y comercialización con especies silvestres que se lleguen a encontrar a lo largo y ancho del área del proyecto.
- Todo el personal de la constructora involucrado en los trabajos de construcción debe tener conocimientos sobre las diferentes especies que se encuentren dentro de la NOM-059-SEMARNAT-2010.
- Evitar en todos los casos el consumo de animales silvestres propios de la región o que pudieran ser ofrecidos por los pobladores cercanos al sitio del proyecto.
- Detectar si en los sitios donde se llevarán a cabo los trabajos civiles, no se encuentren madrigueras o nidos y de ser así serán reubicados en lo posible en zonas con características similares de donde fueron rescatados.

Previo al inicio de las actividades diarias se deberá ahuyentar la fauna que se encuentre cerca del proyecto a través de ruido o persecución y, de ser posible,

liberar vertebrados, principalmente en animales que presentan desplazamientos cortos o lentos.

Además, al finalizar la jornada diaria se colocará una garrocha de madera en cada una de las cepas abiertas, con la dimensión adecuada para que permita la salida de cualquier animal pequeño, por ejemplo, reptiles, aves y mamíferos que durante la noche pudieran haber caído en alguna de las mismas.

Tabla 73. Actividades para fauna.

Actividad	Número	Ubicación	Evidencias	
Recorridos de ahuyentamiento	10	En las áreas de mayor tránsito.	Registros fotografías	у
Recorridos para ubicar sitios de anidación	5	En las áreas de mayor tránsito.	Registros fotografías	у
Recorridos de captura y reubicación de fauna de lento desplazamiento	15	En las áreas de mayor tránsito.	Registros fotografías	У
Letreros	8	Con una distancia de 150 m entre cada uno.	Registros fotografías	у
Platicas a fin de concientizar	3	Con trabajadores en el área del proyecto y con pobladores de las comunidades beneficiadas.	Registros fotografías	У

Medidas adicionales para la zona aledaña al rio La Nopalera.

Medidas preventivas Agua

Tabla 74. Medidas para el cuerpo de agua rio La Nopalera

Factor ambiental: agua superficial
Impacto ambiental: alteración de calidad de agua y agua superficial
Objetivo: evitar contaminación del agua y evitar aumentos en la turbidez del cauce
Actividades causales:
Desmonte y despalme
Preparación y construcción
Medidas de prevención , control, mitigación y compensación ambiental

El desmonte que sea necesario se realizará de manera programada, evitando en lo posible dejar áreas de terreno expuestas innecesariamente y que faciliten la formación de escorrentías descontroladas en la época de lluvias.

En caso de paso o realizar alguna maniobra cercana del cauce y sea necesario se colocaran muros a fin de evitar rodamientos.

Durante las obras se colocara una malla tipo malasombra a fin de retener partículas y evitar aumentos en la turbiedad de la misma manera se colocará geo membrana para evitar cualquier desecho sea vertido sobre el cuerpo de agua.

Viabilidad técnica: es altamente viable ya que la empresa considera dentro de sus gastos las medidas de prevención y mitigación de los impactos ambientales

Indicadores de éxito: análisis periódicos en la calidad del agua y bitácora de colocación de malla

- Restaurar y limpiar las áreas circundantes del proyecto
- No permitir el acceso de máquinas al lecho, no sin antes haber desviado el cauce del mismo, de tal manera que se trabaje en una zona seca.

Tabla 75. Medidas para agua superficial.

Factor ambiental: agua superficial

Impacto ambiental: contaminación del agua superficial

Objetivo: evitar contaminación a causa de desmonte y despalme y sustancias utilizadas en el proceso de preparación y construcción

Actividades causales:

desmonte y despalme

construcción

Medidas de prevención, control, mitigación y compensación ambiental

El desmonte y despalme que sea necesario se realizará de manera programada, evitando en lo posible dejar áreas de terreno expuestas innecesariamente y que promuevan el aporte de sedimentos a las escorrentías en la época de lluvias.

La recuperación, almacenamiento y conservación del suelo fértil procedente de las áreas de ocupación del proyecto, reducirá la disponibilidad de material que pueda ser arrastrado al lecho de los escurrimientos mayores por el efecto de las precipitaciones.

Durante las actividades de desmonte no se emplearán herbicidas ni productos químicos que pudieran favorecer la incorporación de elementos tóxicos al suelo.

Los residuos vegetales resultantes del desmonte se triturarán y mezclarán con el suelo orgánico recuperado para promover su enriquecimiento.

El manejo y disposición de los distintos tipos de residuos que serán generados por las actividades propias del proyecto, se sujetarán a las disposiciones que establece la normatividad en materia de residuos peligrosos.

Las instalaciones contarán con las facilidades necesarias para la recolección, separación y disposición temporal de residuos.

Los residuos sólidos no peligrosos se dispondrán en contenedores, para su posterior disposición.

Los residuos peligrosos como estopas, aceites gastados y similares, se separarán y almacenarán temporalmente en el depósito especialmente diseñado para ese efecto, previamente a su envío al sitio de disposición final.

Viabilidad técnica: es altamente viable ya que la empresa considera dentro de sus gastos las medidas de prevención y mitigación de los impactos ambientales

Indicadores de éxito: análisis periódicos en la calidad del agua y bitácora de colocación de malla

Tabla 76. Medidas para agua subterránea.

Factor ambiental: agua subterránea Impacto ambiental: disminución de la superficie de recarga hídrica y contaminación Objetivo: disminuir contaminación y afectar lo menos posible la superficie de recarga Actividades causales: Desmonte nivelación, compactación Medidas de prevención, control, mitigación y compensación ambiental El retiro de vegetación se realizará estrictamente en las áreas indispensables para el óptimo desarrollo del proyecto. Los trabajos de revegetación que se realizarán en la etapa de cierre, promoverán la recuperación de la cubierta edáfica y vegetal de las áreas perturbadas por la ejecución del proyecto, generando con ello un igual o mayor coeficiente de infiltración y recarga de agua.

- Restaurar y limpiar las áreas circundantes del proyecto
- No permitir el acceso de máquinas al lecho.
- Con el fin no de incrementar la turbiedad mientras que se realicen actividades y movimientos de materiales se instalará un muro. Dicho muro evitara rodamientos hacia el rio.

Viabilidad técnica: es altamente viable ya que la empresa considera dentro de sus gastos las medidas de prevención y mitigación de los impactos ambientales

Indicadores de éxito: análisis periódicos en la calidad del agua y bitácora de colocación de muro y medidas protectoras y correctoras.

- Evitar el uso de herbicidas para realizar el desmonte en las zonas con maleza.
- Retirar todo el material producto de las excavaciones para la construcción de pilotes, zapata y pilas. No se debe dejar el material excavado en el lecho del río. Antes de cambiar el cauce del río se debe retirar todo el material residual del mismo, hacer limpieza y colocar una cama de rocas para evitar el arrastre del material residual que pudiese quedar.
- En caso de requerirse almacenamiento temporal de combustible (recarga a maquinaria durante la jornada de trabajo), este deberá estar en tambos de 200 litros, alejado de corrientes superficiales y con el señalamiento adecuado a fin de evitar manejos imprudenciales. Vigilar periódicamente que el sistema de combustible no tenga fugas. El almacenamiento de combustible se deberá de realizar en un área dentro del almacén y bajo la sombra.
- La maquinaria que participe en las etapas de preparación del sitio, construcción y mantenimiento, deberá utilizar únicamente el camino existente para llegar al sitio puntual y por ningún motivo deberán circular abriendo nuevos caminos.
- Las reparaciones mecánicas que se le realicen a la maquinaría, forzosamente deberán de efectuarse en el sitio destinados a taller. Estos

ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACAXOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE
QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
sitios deberán ser totalmente impermeables y deberán estar equipados con
desarenadores y trampas de aceite y grasas.

- Los frentes de trabajo (obras provisionales) deben ser provistos de sistemas de saneamiento básico, con la adecuada disposición de sus excretas (sanitarios portátiles) y residuos sólidos (contenedores con tapa).
- En un área dentro del campamento o en el taller se colocaran contenedores impermeables con tapa, para almacenar temporalmente los residuos peligrosos generados en las etapas de preparación del sitio y construcción, para posteriormente ser entregados mediante manifiesto generador de residuos peligrosos a empresas autorizadas por la SEMARNAT para recolectar residuos peligrosos, y así dar cumplimiento a la NOM-052-SEMARNAT-2005.
- La empresa constructora deberá elaborar un plan de contingencias para la protección de los suelos en caso de derrames accidentales de combustible u otros riesgos inherentes.
- La disposición de los sobrantes de mezcla asfáltica deberán recogerse y en camiones de volteo retornarse a la planta de asfalto, para su reciclado o disposición definitiva.

Programa de muros

El Programa estratégico para la contención de rocas con muros, surge con el fin de evitar afectaciones a la flora y fauna acuática, ocasionados por rodamientos o deslaves de material rocoso resultado de las actividades constructivas.

La implementación de este tipo de programas es importante, porque de esta manera los responsables de los proyectos y los gestores ambientales, conjuntamente establecen un verdadero compromiso de coordinación para cumplir con cada una de las medidas preventivas y compensatorias propuestas, lo que se traducirá finalmente en proyectos amigables con el ambiente y que contribuirán al desarrollo sostenible. Y con esto se evita afectar el cauce.

I. Objetivos.

Algunos objetivos que se persiguen con el presente programa:

- a) Evitar los rodamientos hacia el rio, de rocas o desechos de construcción y cualquier producto derivado de esta, a fin de evitar afectaciones sobre el cuerpo de agua.
- b) Evitar daños a las especies vegetales y fauna que pudiera resultar afectada por las actividades de construcción del proyecto.
- c) Implementar nuevas medidas compensatorias, derivadas de aspectos ambientales no contemplados en la manifestación de impacto ambiental.

Imagen 57.- Vista de muro tipo

II. Metodología.

Se supervisará, verificará la instalación de un muro perimetral para evitar rodamientos que pudieran resultar de las obras de construcción. Este muro estará conformado por dos elementos, el primero por una valla de alambre o plástico y el segundo un muro de madera para evitar rodamientos hacia los causes o hacia las partes bajas del terreno (ver figura 1). Con esto se pretende evitar cualquier deslave de rocas o sedimentos, resultado de la construcción de la obra en todas sus fases.

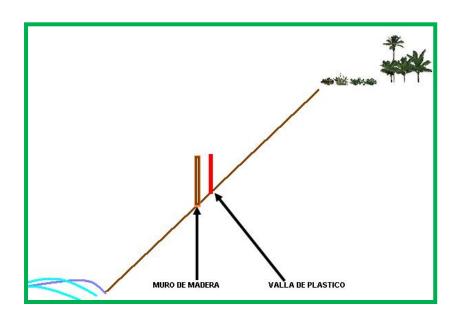


Imagen 58.- Componentes de muro de contención.

Es importante recalcar que las obras por el proyecto se encuentran colindando con zona federal. Aunque si se realizaran obras cercanas al cauce. Solo se considerara muros en los sitios que así se requieran, quedando áreas libres de muros donde la pendiente es plana.

Ubicación física del proyecto y planos de localización

El muro se encontrará repartido en las áreas que así lo requieran por la pendiente y la cercanía a los causes.

Para evitar los deslaves de rocas y sedimentos el muro de contención tendrá 50.00 m de longitud y será únicamente por las obras realizadas en la zona colindante con el rio.

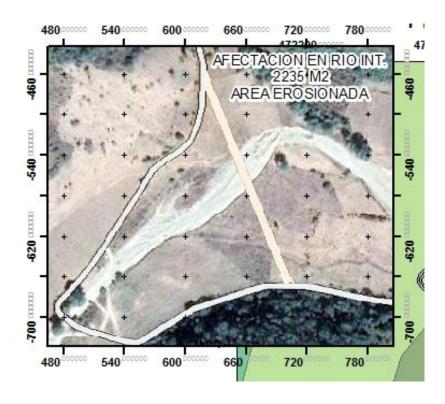


Imagen 59.- Mapa georreferenciado con la ubicación de los muros

Construcción del cercado de malla y material:

Detalle estándar de instalación de la cerca en malla ciclónica o de plástico:

Tubos verticales de 1½ pulgadas y pared de 1.80 mm, colocados cada 3 metros sobre bases de concreto de 30x30 cm de ancho y 50 cm de profundidad. Los horizontales de 1¼ pulgadas colocados arriba y abajo son soldados a los verticales mediante corte "boca de pez." Cada 9 metros colocamos un poste de apoyo (arriostre) para darle a la cerca una mayor estabilidad.

Cada tubo lleva en la parte superior una tapa que al igual que todas las uniones van debidamente soldadas para que no penetre el agua dentro de la marquetería y se herrumbre.

Para evitar cortar el tubo se dobla en un ángulo de 45º estética y perfectamente para formar la cachera a la cual se le instalan tres hileras de alambre de púas o alambre navaja.

La tela de malla por lo general es en alambre # 3.20 (calibre N°10) con la abertura que se desee.

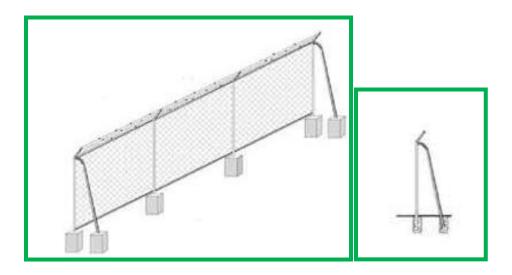
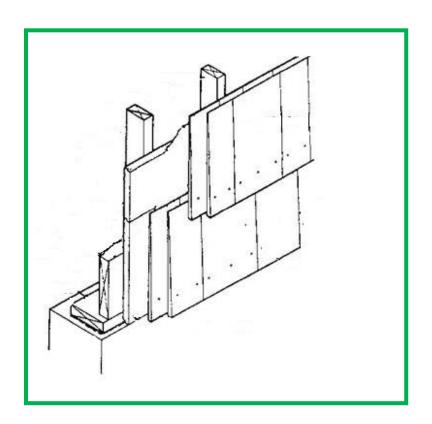



Imagen 60.- Vista de la malla perimetral tipo.

Construcción del muro.

Es importante señalar que el muro no será continuo, solo en las áreas propuestas, en algunos tramos no será necesario construirlo, debido a la pendiente del terreno además de que se tendrá un adecuado manejo de los desechos resultantes de la construcción. Además se implementará un programa de manejo de los residuos, donde se deberá dar disposición final a los desechos donde el municipio lo disponga.

Esta construcción del muro es doble filtro, donde el primero es de malla ciclónica y el segundo muro será de madera y se implementará en las áreas donde se pudiera afectar algún cause ya sea intermitente o perene. Este segundo muro de madera, es una barrera por los residuos que se hayan colocado en el muro de malla ciclónica.

III. Cronograma de instalación del muro de contención.

El proyecto se pretende realizar en un período de 3 años, en dicho tiempo se llevará a cabo las siguientes actividades para la operación e instalación del muro de contención:

Tabla 77. Cronograma de construcción de muro.

rabia 11. Cronograma de constitucción de muro.												
Actividades		Trimestres										
		2	3	4	5	6	7	8	9	10	11	12
Trazo de curvas de nivel	Х											
Marqueo de las áreas donde se instalarán los muros	Х											
Instalación de la malla perimetral	Χ	Χ										
Instalación del muro de contención	Х	Х										
Revisión y mantenimiento de muro	Permanente											
Remoción y desmantelamiento de malla y muro.												Х

VII. PRONÓSTICOS AMBIENTALES Y EN SU CASO, EVALUACIÓN DE ALTERNATIVAS

VII.1 Descripción y análisis del escenario sin proyecto

Tabla 78. Descripción de escenarios.

Tabla 78. Descripcion de escenarios.				
	ESCENARIOS			
FACTOR	SIN PROYECTO			
AIRE	Antes de la realización del proyecto, la calidad del aire solo se encontraba impactada por las emisiones de los vehículos automotores y el polvo que levantaban.			
SUELO	Sin la realización del proyecto, la calidad del suelo no se vería afectada, en ningún aspecto.			
AGUA	La calidad del agua no sería afectada sin la ejecución del proyecto, solo en las zonas que pasaban los vehículos directamente sobre los arroyos intermitentes. En el caso del Rio La Nopalera no se tienen modificaciones al puente existente o colocar nueva infraestructura.			
FLORA Y FAUNA	La flora y la fauna ya han sido impactadas con las actividades antropogénicas y de manera puntual con la flora debido al pastoreo. El sistema presenta fragmentación con el camino actual.			
PAISAJE	El paisaje no tendrá modificaciones significativas, ya que la mayor parte del proyecto va por el camino existente			
ASPECTOS SOCIALES Y ECONOMÍA DE LA REGIÓN	Sin la ejecución del proyecto, los habitantes se trasladarían en menor tiempo al lugar, así como les costaría más trabajo sacar sus productos de las cosechas para su comercialización.			

VII.2 Descripción y análisis del escenario con proyecto.

Tabla 79. Descripción de escenarios.

	ESCENARIOS
FACTOR	CONSTRUCCIÓN DE PROYECTO SIN MEDIDAS DE MITIGACIÓN
AIRE	La calidad del aire, se ve afectada por las actividades del proyecto, ya que se producirían, emisiones a la atmósfera y levantamiento de partículas, así como ruido por la utilización del equipo y maquinaria de construcción, de igual forma con los vehículos que transporten el material requerido.
SUELO	Con la generación de residuos sólidos peligrosos generados por las actividades de construcción, se provocaría un impacto severo.

AGUA	Con las actividades de construcción, realizadas con total descuido de arrojar residuos sólidos y líquidos peligrosos al agua provocaría un impacto negativo y contaminación de acuíferos.
FLORA Y FAUNA	La flora y la fauna ya han sido impactadas por las actividades antropogénicas por lo que realizando el proyecto sin medidas de mitigación continuaría de la misma forma, pero con la probable destrucción de zonas fuera de los hombros del camino y la cacería por parte de los trabajadores sería evidente.
PAISAJE	Sin medidas de mitigación el paisaje se vería afectado de forma considerable, si es que no se tiene un manejo adecuado de los residuos generados por la obra, y se encontrarían dispersados en el suelo o en el cuerpo de agua.
ASPECTOS SOCIALES Y ECONOMÍA DE LA REGIÓN	Sin las medidas de mitigación necesarias para los factores bióticos y abióticos, este proyecto causaría efectos negativos en la región, generando posteriormente gastos en proyectos para la restauración del sitio. La falta de cuidado y medidas preventivas podrían ocasionar hasta muertes a los transeúntes. La mala planeación y desarrollo de la obra podría detener la economía de manera temporal en los pueblos beneficiados por el camino.

VII.3 Descripción y análisis del escenario considerando las medidas de mitigación.

Tabla 80. Descripción de escenarios con medidas de mitigación.

FACTOR	ESCENARIOS
FACTOR	CONSTRUCCIÓN DEL PROYECTO CON MEDIDAS DE MITIGACIÓN
AIRE	La calidad del aire se verá levemente afectada, debido a que los impactos no podrán ser prevenidos en su totalidad, pero si podrán ser controlados. El equipo y la maquinaria a utilizar, laborará en óptimas condiciones, además de que se efectuará el cambio de filtros y aceite de éstos dependiendo de la carga de trabajo; los camiones que transportarán el material se cubrirán con lonas con el objetivo de evitar la dispersión de partículas. Para evitar la formación de tolvaneras se implementaran riegos en la zona del proyecto. El impacto será de manera temporal y ligero.
SUELO	Los impactos al suelo, por la generación de residuos si puede ser prevenida; con el almacenamiento y el manejo adecuado de los mismos; el impacto será ligero y temporal. Las defecaciones a cielo abierto se evitarán. Se terminará la obra con un suelo limpio y sin huellas de grasas o aceites. Los residuos se recolectarán y depositarán en zonas aptas para ello, se minimizará el grado de erosión alto que presenta el área.
AGUA	Los impactos del agua se podrían prevenir de igual forma, con las estrictas indicaciones al personal de la obra de no arrojar desechos al cuerpo de agua. De respetar las escorrentías y de no desechar productos residuales a barrancas o zonas que conecten con cuerpos de agua. La construcción de obras de drenaje adecuadas permitirá conservar los escurrimientos naturales.

FLORA Y FAUNA	Considerando que la flora y la fauna, ya han sido impactadas con las actividades antropogénicas, estas podrían ser prevenidas en su totalidad instruyendo al personal que labora en el proyecto de no molestarlos y/o capturar especímenes. De respetar las franjas del proyecto y no cortar vegetación fuera de dichas zonas. La reforestación incrementará la densidad de vegetación en el SAR, así mismo la estética del paisaje mejorará.
PAISAJE	La estética del paisaje, se verá impactada de forma temporal por las actividades de construcción, sin embargo se aplicarán las medidas de mitigación necesarias, lo cual permitirá tener un desarrollo de la obra limpia y un escenario compatible ecológicamente. El arbolado a reforestar a ambos lados del camino permitirá un mejor paisaje.
ASPECTOS SOCIALES Y ECONOMÍA DE LA REGIÓN	Con la puesta en operación del proyecto los productos serán manejados con mayor fluidez y se brindara mayor seguridad y eficiencia, trayendo consigo un incremento en la economía y servicios en la región. Con apoyo del municipio se promoverá un mejor crecimiento de la población y no un desarrollo inducido e irregular a lo largo de la vía.

VII.4 Pronóstico ambiental.

Tomando como base un SAR medianamente alterado y que presenta vegetación alterada de pastizales y zonas agrícolas, y vegetación conservada a secundaria de Bosques Templados y Selvas baja desde el punto y respecto al medio ambiente, se concederá que una vez aplicadas las medidas de mitigación propuestas en el apartado anterior, podremos esperar que la dinámica ambiental y la estética del paisaje de esta zona se recupere totalmente, ya que no existirán impactos relevantes, ni críticos en el área donde se efectuarán las obras y actividades del proyecto de modernización del camino, así mismo se debe considerar que gran parte del camino es por trazo actual y para el caso de nuevas aperturas es sobre vegetación secundaria de selva baja y zonas agrícolas y pecuarias.

Una vez que finalice la modernización del camino, las actividades de los sectores económicos de la zona y los servicios con los que se cuenta en el Municipio de **Quechultenango**, en el Estado de Guerrero, no solo volverán a la normalidad, sino que éstas adquirirán un nuevo impulso con el cual se logrará un mejor desempeño v funcionamiento de la sociedad.

Así mismo no generarán afectaciones sobre causes temporales como le Rio La Nopalera por lo que la dinámica

VII.5 Evaluación de alternativas.

a) Ubicación

No se proponen sitios alternativos de camino ya que se utilizara al máximo el ancho de la corona actual.

b) De tecnología

Se utilizara el equipo y maquinaria para la construcción del camino en buen estado y se programara un cronograma de mantenimiento de maquinaria y equipo.

c) De reducción de la superficie a ocupar.

Se ocupara la superficie actual del camino

d) De características en la naturaleza, tales como dimensiones, cantidad y distribución de obras y/o actividades.

No se realizan actividades ni obras extraordinarias para la ejecución del proyecto.

VII.1 Pronóstico del escenario

Después de aplicar cada una de las medidas de mitigación propuestas en el capítulo anterior, sobre todo las correspondientes a mitigar los impactos sobre el suelo, flora y fauna, que son sobre las cuales se generarán los mayores impactos negativos, se pretende obtener un proyecto que se integre de manera armónica con el entorno. El objetivo de cumplir con la aplicación de cada una de las medidas de mitigación durante las etapas de ejecución de la obra, es la obtención de un escenario que funcione de la mejor manera, sin alterar de manera radical la dinámica que existía antes de la inmersión de la carretera y de ser posible mejorar la conectividad entre fragmentos con la construcción de mejores obras de drenaje y de tener presupuesto suficiente, contemplar pequeños puentes en lugar de alcantarillas. Es importante considerar pasos para ganado, ya que su función beneficia la conectividad de los fragmentos y permite mantener la carretera más segura para los transeúntes.

Durante la preparación del sitio se plantea usar el material producto del desmonte y despalme, en el arrope de los terraplenes, con la finalidad de prevenir la erosión y permitir el establecimiento de una nueva capa vegetal, ya que el suelo removido contiene germoplasma de especies nativas. La germinación de especies nativas, en las primeras etapas sucesionales es de gran relevancia ecológica para el posterior establecimiento de especies pioneras o primarias de cada uno de los tipos de vegetación que se verán afectados a lo largo de la ruta. Se considera que a medio plazo, posteriores a la construcción de los terraplenes, la vegetación secundaría comenzará a invadir las zonas descubiertas, la cual servirá de acelerador para establecimiento de especies arbóreas. Evitar contaminación del suelo con basura o residuos de aceites, lubricantes y combustibles, generados por el mantenimiento de

la maquinaria, permite que el entorno se mantenga sin mayores perturbaciones, por ejemplo que el agua que se filtra al subsuelo no se contamine, además evitar riesgo de incendios por vidrios u otros objetos, de tal manera que el pronóstico es el de una vía limpia y compatible con el entorno. Con la sensibilización de los trabajadores y de la gente de las comunidades más cercanas de las medidas de prevención y cuidado del entorno se pretende que las personas tomen conciencia del cuidado de su entorno.

Con la supervisión permanente de la carretera y la corrección de daños se prevé mejor funcionamiento de la vía y menor riesgo de accidentes.

La contaminación atmosférica por gases de los vehículos se mitigará con el cumplimiento de las normas que rigen el servicio a los motores de los vehículos. El paisaje se modificará y se seguirá modificando con posteriores obras que generen desarrollo en la región, pero si se establece un plan de ordenamiento territorial por parte del gobierno estatal se puede revertir de manera radical la constante alteración del medio. Si la modernización de la carretera induce el desarrollo de asentamientos irregulares u otros usos del suelo, no apropiados dentro del derecho de vía donde se desarrolla el proyecto, los riesgos de que sucedan muertes de personas por el tránsito de los vehículos es mucho mayor a que si se da cumplimiento a la medida de ordenamiento territorial por parte del gobierno del estado. La operación de la vía generará mayores posibilidades a los beneficiarios directos de incrementar su economía y elevar su calidad de vida. La aplicación de la reforestación con especies nativas permitirá rehabilitación, remediación, reducción y compensación del daño causado a la densidad de la vegetación y posteriormente a que las funciones del sistema se recuperen, y que la fauna de la zona se adapte al nuevo elemento introducido al paisaje. No se pronostican catástrofes naturales, ni alteraciones graves con la modernización del camino, ni cambios climáticos, ni reducción de la biodiversidad alfa, beta o gamma. A medio plazo el camino modernizado se encontrará formando parte del ecosistema sin consecuencias negativas al entorno y con su vegetación herbácea y arbustiva de borde original.

VIII. IDENTIFICACIÓN DE LOS INSTRUMENTOS METODOLÓGICOS Y ELEMENTOS TÉCNICOSQUE SUSTENTAN LA INFORMACIÓN SEÑALADA EN LAS FRACCIONES ANTERIORES.

VIII.1 Formatos de presentación

Word

VIII.1.1 Planos definitivos Coordenadas UTM DATUM WGS 84

VIII.1.2 Fotografías

Anexos

VIII.1.4 Listas de flora y fauna

La lista de especies se incluyó en el CAPITULO IV

VIII.2 Otros anexos

VIII.3 Bibliografía

- ♣ Álvarez, F. & JL Villalobos. 1997. Pseudothelphusa ayutlaensis, una nueva especie de cangrejo de agua dulce (Brachyura: Pseudothelphusidae). desde México Actas de la Sociedad Biológica de Washington 110 (3):388-392
- ♣ Bowles, J.E., (1996) "Foundation Analysis and Design", Fifth Edition, Editorial Mc Graw Hill Book Co.
- Conesa Fernández-Vítora, Vicente. "Guía Metodológica para la Evaluación del Impacto Ambiental". Ed. Mundi-Prensa. Madrid. 1997. 3ª edición
- ♣ Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), (1998). Subcuencas hidrológicas'. Extraído de Boletín hidrológico. (1970). Subcuencas hidrológicas en Mapas de regiones hidrológicas. Escala más común 1:1000000. Secretaría de Recursos Hidráulicos, Jefatura de Irrigación y control de Ríos, Dirección de Hidrología. México.
- ♣ Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), (1999). 'Uso de suelo y vegetación modificado por CONABIO'. Escala 1: 1000000. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Ciudad de México. México.
- ♣ Enciclopedia de los Municipios de México. (1988). Centro Nacional de Estudios Municipales, Secretaria de Gobernación. México.
- ➡ Flores-Villela, O., F. Mendoza y G. González (comps.). (1995). Recopilación de claves para la Determinación de Anfibios y Reptiles de México. Las Prensas de Ciencias de la Universidad Nacional Autónoma de México. Publicación Especial Museo de Zoología 10: 258
- García, E. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), (1998). 'Climas' (clasificación de Koppen, modificado por García). Escala 1:1000000. México.

- ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
- García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía de la Universidad Nacional Autónoma de México. 5ª edición. México, D. F.
- ♣ Gobierno del Estado de Guerrero, 2007. Programa de Ordenamiento Ecológico Territorial del Estado de Guerreo. Publicado para consulta pública el 3 de septiembre de 2007. www.guerrero.gob.mx
- Instituto Nacional de Estadística Geografía e Informática (INEGI). 2005. Guía para la Interpretación de Cartografía Uso del Suelo y Vegetación. México, D. F.
- ♣ Instituto Nacional de Estadística Geografía e Informática (INEGI). 2010. Instituto Nacional de Estadística y Geografía. Avance del Censo Nacional de Población.
- ♣ Instituto Nacional de Estadística Geografía e Informática (INEGI) 2001. Carta topográfica Escala 1:50,000. Hoja E14d53. México.
- ♣ Instituto Nacional de investigaciones Forestales y Agropecuarias (INIFAP) -Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), (1995). 'Edafología'. Escalas 1:250000 y 1:1000000. México.
- ♣ LGEEPA. 2008. Reglamento de la ley general del equilibrio ecológico y la protección al ambiente en materia de evaluación del impacto ambiental. Diario Oficial de la Federación (DOF). México, D.F.
- ♣ Sarmiento, Fausto O. 2000. Diccionario de Ecología, Paisajes, Conservación y Desarrollo Sustentable para Latinoamérica. Quito Ecuador. 514 pp.
- Secretaría de Recursos Hidráulicos, "Manual de Mecánica de Suelos", Segunda Edición, México, 1970.
- ➡ SEMARNAT. 2010. NOM-059-SEMARNAT-2010, Protección ambientalespecies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Diario Oficial de la Federación (DOF). México, D.F.
- 🖶 Terzaghi K., y Peck, R. "Mecánica de Suelos en la Ingeniería Práctica",1955.

- www.conabio.gob.mx. (2011). Comisión Nacional para la Biodiversidad. 2001.
- www.guerrero.gob.mx. (2011). Gobierno del Estado de Guerrero, 2006. Plan Estatal de Desarrollo 2005-2011.
- www.inegi.gob.mx. (2011). Instituto Nacional de Estadística Geografía e Informática.
- www.semarnat.gob.mx. (2011). Secretaría del Medio Ambiente y Recursos Naturales.

GLOSARIO DE TÉRMINOS

- Ambiente: El conjunto de elementos naturales y artificiales o inducidos por el hombre que hacen posible la existencia y desarrollo de los seres humanos y demás organismos vivos que interactúan en un espacio y tiempo determinados.
- Áreas naturales protegidas: Las zonas del territorio nacional y aquéllas sobre las que la nación ejerce su soberanía y jurisdicción, en donde los ambientes originales no han sido significativamente alterados por la actividad del ser humano o que requieren ser preservadas y restauradas.
- Aprovechamiento sustentable: La utilización de los recursos naturales en forma que se respete la integridad funcional y las capacidades de carga de los ecosistemas de los que forman parte dichos recursos, por periodos indefinidos.
- Biodiversidad: La variabilidad de organismos vivos de cualquier fuente, incluidos, entre otros, los ecosistemas terrestres, marinos y otros ecosistemas acuáticos y los complejos ecológicos de los que forman parte; comprende la diversidad dentro de cada especie, entre las especies y de los ecosistemas.
- Contaminación: La presencia en el ambiente de uno o más contaminantes o de cualquier combinación de ellos que cause desequilibrio ecológico.
- Contaminante: Toda materia o energía en cualesquiera de sus estados físicos y formas, que al incorporarse o actuar en la atmósfera, agua, suelo, flora, fauna o cualquier elemento natural, altere o modifique su composición y condición natural.

- Contingencia ambiental: Situación de riesgo, derivada de actividades humanas o fenómenos naturales, que puede poner en peligro la integridad de uno o varios ecosistemas.
- * Control: Inspección, vigilancia y aplicación de las medidas necesarias para el cumplimiento de las disposiciones establecidas en este ordenamiento.
- Criterios ecológicos: Los lineamientos obligatorios contenidos en la presente Ley, para orientar las acciones de preservación y restauración del equilibrio ecológico, el aprovechamiento sustentable de los recursos naturales y la protección al ambiente, que tendrán el carácter de instrumentos de la política ambiental.
- Desarrollo Sustentable: El proceso evaluable mediante criterios e indicadores del carácter ambiental, económico y social que tiende a mejorar la calidad de vida y la productividad de las personas, que se funda en medidas apropiadas de preservación del equilibrio ecológico, protección del ambiente y aprovechamiento de recursos naturales, de manera que no se comprometa la satisfacción de las necesidades de las generaciones futuras.
- Desequilibrio ecológico: La alteración de las relaciones de interdependencia entre los elementos naturales que conforman el ambiente, que afecta negativamente la existencia, transformación y desarrollo del hombre y demás seres vivos.
- Ecosistema: La unidad funcional básica de interacción de los organismos vivos entre sí y de éstos con el ambiente, en un espacio y tiempo determinados.

- ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
- Equilibrio ecológico: La relación de interdependencia entre los elementos que conforman el ambiente que hace posible la existencia, transformación y desarrollo del hombre y demás seres vivos.
- **Elemento natural:** Los elementos físicos, químicos y biológicos que se presentan en un tiempo y espacio determinado sin la inducción del hombre.
- Emergencia ecológica: Situación derivada de actividades humanas o fenómenos naturales que al afectar severamente a sus elementos, pone en peligro a uno o varios ecosistemas.
- Fauna silvestre: Las especies animales que subsisten sujetas a los procesos de selección natural y que se desarrollan libremente, incluyendo sus poblaciones menores que se encuentran bajo control del hombre, así como los animales domésticos que por abandono se tornen salvajes y por ello sean susceptibles de captura y apropiación;
- Flora silvestre: Las especies vegetales así como los hongos, que subsisten sujetas a los procesos de selección natural y que se desarrollan libremente, incluyendo las poblaciones o especímenes de estas especies que se encuentran bajo control del hombre.
- Impacto ambiental: Modificación del ambiente ocasionada por la acción del hombre o de la naturaleza;
- Manifestación del impacto ambiental: El documento mediante el cual se da a conocer, con base en estudios, el impacto ambiental, significativo y potencial que generaría una obra o actividad, así como la forma de evitarlo o atenuarlo en caso de que sea negativo.

- ESTUDIO DE IMPACTO AMBIENTAL DEL CAMINO JALAPA- TOLIXTLAHUACA-XOCHITEPEC, TRAMO: DEL KM 0+000 AL KM 6+000, EN EL MUNICIPIO DE QUECHULTENANGO, EN EL ESTADO DE GUERRERO.
- Material peligroso: Elementos, substancias, compuestos, residuos o mezclas de ellos que, independientemente de su estado físico, represente un riesgo para el ambiente, la salud o los recursos naturales, por sus características corrosivas, reactivas, explosivas, tóxicas, inflamables o biológico infecciosas.
- Ordenamiento ecológico: El instrumento de política ambiental cuyo objeto es regular o inducir el uso del suelo y las actividades productivas, con el fin de lograr la protección del medio ambiente y la preservación y el aprovechamiento sustentable de los recursos naturales, a partir del análisis de las tendencias de deterioro y las potencialidades de aprovechamiento de los mismo.
- Preservación: El conjunto de políticas y medidas para mantener las condiciones que propicien la evolución y continuidad de los ecosistemas y hábitat naturales, así como conservar las poblaciones viables de especies en sus entornos naturales y los componentes de la biodiversidad fuera de sus hábitat naturales.
- Prevención: El conjunto de disposiciones y medidas anticipadas para evitar el deterioro del ambiente;
- Protección: El conjunto de políticas y medidas para mejorar el ambiente y controlar su deterioro;
- Recursos biológicos: Los recursos genéticos, los organismos o partes de ellos, las poblaciones, o cualquier otro componente biótico de los ecosistemas con valor o utilidad real o potencial para el ser humano.
- Recurso natural: El elemento natural susceptible de ser aprovechado en beneficio del hombre.

- Región ecológica: La unidad del territorio nacional que comparte características ecológicas comunes
- Residuo: Cualquier material generado en los procesos de extracción, beneficio, transformación, producción, consumo, utilización, control o tratamiento cuya calidad no permita usarlo nuevamente en el proceso que lo generó.
- Residuos peligrosos: Todos aquellos residuos, en cualquier estado físico, que por sus características corrosivas, reactivas, explosivas, tóxicas, inflamables o biológico-infecciosas, representen un peligro para el equilibrio ecológico o el ambiente.
- Restauración: Conjunto de actividades tendientes a la recuperación y restablecimiento de las condiciones que propician la evolución y continuidad de los procesos naturales.
- ♣ Zonificación: El instrumento técnico de planeación que puede ser utilizado en el establecimiento de las áreas naturales protegidas, que permite ordenar su territorio en función del grado de conservación y representatividad de sus ecosistemas, la vocación natural del terreno, de su uso actual y potencial, de conformidad con los objetivos dispuestos en la misma declaratoria. Asimismo, existirá una subzonificación, la cual consiste en el instrumento técnico y dinámico de planeación, que se establecerá en el programa de manejo respectivo, y que es utilizado en el manejo de las áreas naturales protegidas, con el fin de ordenar detalladamente las zonas.

Imagen 62. Recorrido del proyecto.

Imagen 63. Zonas deforestadas y ancho de camino

Imagen 64. Bocconia furtesens

Imagen 65. Annona que será removida.

Imagen 66. Arroyo temporal

Imagen 67. Sitios de muestreo

Imagen 68. Marqueo de individuos a remover.

Imagen 69. Zonas deforestadas en el proyecto.