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Abstract 

Combined morphological and molecular analyses provided evidence for a new nannoniscid genus, 

Ketosoma gen. nov., including new species from abyssal waters of the equatorial NE Atlantic (eastern 

Vema Fracture Zone), SW Atlantic (Argentine Basin) as well as equatorial NE Pacific (Clarion 

Clipperton Fracture Zone, CCZ). Using mitochondrial (COI and 16S) and nuclear (18S) DNA markers 

together with morphological information from light scanning and confocal laser scanning microscopy 

we found clear differences between Ketosoma and its putative sister taxon Thaumastosoma Hessler, 

1970. The new genus can be distinguished from the latter by the presence of a robust seta on pereonite 

1 anterolateral corner and the lack of a ventral spine on the female operculum and pereonite 7 amongst 

others. Different species delimitation (SD) analyses were performed alongside morphological 

assessment to delineate species within Ketosoma. Here, four new species are described: Ketosoma 

vemae gen. et sp. nov. and K. hessleri gen. et sp. nov. from the eastern Vema Fracture Zone, K. 

werneri gen. et sp. nov. from the Argentine Basin and K. ruehlemanni gen. et sp. nov. from the CCZ. 

There is morphological and genetic evidence for the presence of at least two further Ketosoma species 

from the CCZ. Species within Thaumastosoma are reassessed; Thaumastosoma platycarpus Hessler, 

1970 and T. tenue Hessler, 1970 are redescribed based on type material and the diagnosis updated 

accordingly. Furthermore, a new Thaumastosoma species, T. diva sp. nov., is described from the 

Argentine Basin. Thaumastosoma distinctum (Birstein, 1963) and T. jebamoni (George, 2001) are 

assigned to Ketosoma, with the latter species regarded as a nomen dubium.  

 

Keywords. Molecular taxonomy, Vema-TRANSIT, DIVA 3, Clarion Clipperton Fracture Zone, 

sexual dimorphism, biodiversity, Janiroidea, deep sea 
 

1. Introduction 

The abyssal seafloor, usually defined as areas between 3000 and 6000 m depth, represents the largest 

benthic environment on Earth covering more that 50% of its surface (Gage and Tyler, 1991). Contrary 

to earlier perceptions though, abyssal areas are not homogeneous and flat, but reveal considerable 

spatial and temporal variation related to depth, surface productivity, geomorphology and current 

regimes - amongst others. In some areas - mainly in the central Pacific and Indian oceans - manganese 

nodules form large deposits and can locally increase habitat complexity (e.g., Janssen et al., 2015), 

while mid-ocean ridges can form important biogeographic barriers (McClain et al., 2009; but see Brix 

et al., 2011; Havermans et al., 2013; Brandt et al., this issue). The variety of habitats and related 

conditions at abyssal depth support a highly diverse yet still poorly known benthic fauna (Tyler et al., 

2016). Inevitably every abyssal sample taken yields a high proportion of species new to science and 

also has the potential to increase the number of supra-specific taxa by improving current phylogenies 

(Mora et al., 2011; Riehl et al., 2014b; Brix et al., 2015).  

 Species delimitation is the initial step to describe biological diversity. Defining thresholds to 

delineate species and higher taxonomic ranks is challenging though especially in the deep sea, where 
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individual numbers are too low to sufficiently capture intraspecific variability (Brandt et al., 2007; 

Lim et al., 2012). Furthermore, cryptic species that lack morphological differentiation, but differ 

genetically are widespread leading to an underestimation of true species richness (Etter et al., 2005; 

Raupach et al., 2007; Havermans et al., 2013). In contrast, strong sexual dimorphism, where males and 

females show significant morphological variation, makes allocation of conspecifics difficult and males 

and females may even be assigned to different species (Riehl et al., 2012; Blazewicz-Paszkowycz et 

al., 2014). There is now a trend towards using a combined morphological and genetic approach to the 

taxonomy of deep-sea taxa making demarcation of species boundaries more robust (e.g., Havermans et 

al., 2013; Brandt et al., 2014; Brix et al., 2015).  

 Asellotan isopods are a ubiquitous and particularly rich component of the deep-sea fauna, 

typically comprising more than 90% of total isopod specimens (Wilson, 1998; Brandt et al., 2007; 

Brix et al., this issue). Of the 25 extant marine asellotan families, 19 have representatives in the abyss, 

some of which have been almost exclusively found in the deep sea (Merrin, 2014; Schotte et al., 

2009). For some asellotan lineages an ancient deep-sea origin has been suggested; there is evidence 

that ancestors of the so-called munnopsoid radiation (e.g. Munnopsidae, Desmosomatidae and 

Nannoniscidae) have evolved in situ during the Carboniferous/Triassic (between 232 and 314 Myr 

ago) enduring several past anoxic periods (Wilson, 1999; Raupach et al., 2004; Lins et al., 2012). 

 The family Nannoniscidae has a wide distribution in the deep sea, yet some species have been 

recorded from shelves at high northern and southern latitudes (Kaiser et al., 2009; Brix and 

Svavarsson, 2010). So far, 80 formally described species in 12 genera are known from most major 

oceans ranging from the Mediterranean, Atlantic, Pacific, and Arctic oceans to the Southern Ocean 

(Kaiser, 2014, 2015; Schotte et al., 2009). Although no nannoniscid has been described from the 

Indian Ocean to date, this is likely to reflect undersampling and the family is thus presumed to have a 

cosmopolitan distribution.  

 During recent deep-sea expeditions specimens of new nannoniscid species were discovered in 

the North Atlantic (Vema Fracture Zone), South Atlantic (Argentine Basin) as well as in the central 

equatorial Pacific (Clarion Clipperton Fracture Zone, CCZ). These species show strong resemblance to 

Thaumastosoma Hessler, 1970, but do not fit into the current classification, and are therefore assigned 

to a new genus within the Nannoniscidae. We carried out a molecular phylogenetic analysis of of three 

DNA markers (COI, 16S and 18S). We applied five different species delimitation (SD) methods of 

molecular data to delineate species within Thaumastosoma and the new genus (i.e., General Mixed 

Yule Coalescent [GMYC], bPTP, STACEY, BPP, and Automatic Barcoding Gap Discovery [ABGD]; 

Pons et al., 2006; Yang and Rannala, 2010; Puillandre et al., 2012; Rannala and Yang, 2013; Zhang et 

al., 2013; Jones et al., 2014) and compared results with findings from morphological examination. 

Following on from this, we provide a description of a new nannoniscid genus including five new 

species. Furthermore, species (type specimens) within Thaumastosoma were reassessed and the 

diagnosis amended in the light of these new findings.  

 

2. Material and methods 

2.1 Sampling and sample processing 

Samples were obtained during recent deep-sea expeditions to the North and South Atlantic as well as 

equatorial Pacific (CCZ) (Table 1; Devey, 2015). A distribution map was produced in QGIS (QGIS, 

2015; see Fig. 1). Sampling was conducted using an epibenthic sledge (EBS sensu Brenke, 2015), a C-

EBS and a Rothlisberg & Pearcy sled (RP sledge) respectively (Kaiser and Brenke, 2016). For a full 

list of stations and related metadata see Table 1. On-board, the samples were elutriated and sieved 

(through a 300 µm mesh) in cold seawater, then fixed in pre-cooled (-20°C) 96% pure ethanol and 

kept at -20°C for at least 48 hours (VEMA: 24h). After 24 hours (VEMA: 12h) samples were re-fixed 

with 96% ethanol to ensure preservation of high-quality DNA and kept at -20°C until further sample 

processing (Riehl et al., 2014a). Samples were sorted on board to family level and in the laboratories 

of the German Centre for Marine Biodiversity Research (DZMB, Wilhelmshaven and Hamburg, 

Germany) to lowest taxonomic resolution. 
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2.2 Morphological methods 

Appendages were dissected and partly mounted in methylene green stained glycerine gelatine 

respectively. For species, where only one specimen was present, most appendages were drawn in situ 

or only dissected from one side (mouthparts) to keep the holotype intact. Illustrations were made using 

Leica DMLS and DM 2500 microscopes with a camera lucida. Assessment of length-width ratios and 

the terminology follows methods proposed by Hessler (1970). The terminology of setation follows 

Wolff (1962), Hessler (1970) and Riehl and Brandt (2010). The material is deposited at the Zoological 

Museum of Hamburg (ZMH). The article is registered in ZooBank under 

urn:lsid:zoobank.org:pub:0688957A-81BA-49B0-A597-7768A4F0583E. 

 

Confocal Laser Scanning Microscopy (CLSM) 

 

Eight specimens were used for CLSM as indicated in the descriptions below: 1 adult male specimen 

(voucher No. NBIso337, ZMH K 46139, Table 2), 1 adult male specimen (VTDesm013, ZMH K 

46140), 1 ovigerous female specimen (VTDesm569, ZMH K 46141), 1 adult male specimen 

(D3D064, ZMH K 46132), 1 ovigerous female specimen (D3D060, ZMH K 46142), as well as 2 

specimens of Thaumastosoma platycarpus Hessler, 1970 (1 ovigerous female, 1 adult male, Australian 

Museum, P.59254) and 1 ovigerous female of Thaumastosoma tenue Hessler, 1970 (Australian 

Museum, P.59256). Prior to the dissection of appendages specimens were stained with 1:1 solution of 

Congo Red and Acid Fuchsin overnight using procedures adapted from Michels and Büntzow (2010). 

The whole specimen was temporarily mounted onto a slide with glycerine, and self-adhesive plastic 

reinforcement rings were used to support the coverslip (Kihara and Rocha, 2009; Michels and 

Büntzow, 2010). To mount the specimens in lateral view, Karo® light corn syrup was used as 

mounting medium (Kihara et al., in preparation) and double sided tape pieces were combined in 

appropriate thickness, between the slide and coverslip, so that the body was not compressed. The 

material was examined using a Leica TCS SP5 equipped with a Leica DM5000 B upright microscope 

and 3 visible-light lasers (DPSS 10 mW 561 nm; HeNe 10 mW 633 nm; Ar 100 mW 458, 476, 488 

and 514 nm), combined with the software LAS AF 2.2.1. (Leica Application Suite Advanced 

Fluorescence). Images were obtained using objective HCX PL APO CS 10.0x0.40 DRY UV and 561 

nm excitation wavelength with 80% acousto-optic tunable filter (AOTF). Series of stacks were 

obtained, collecting overlapping optical sections throughout the whole preparation with optimal 

number of sections according to the software. The acquisition resolution was 2048×2048 pixels and 

the settings applied for the preparations are given in Table 3. Final images were obtained by maximum 

projection, and CLSM illustrations were composed and adjusted for contrast and brightness using the 

software Adobe Photoshop CS4. 

 

2.3 Molecular-genetic methods 

 

DNA extraction, PCR amplification, and sequencing  

 

DNA extraction and PCR amplification was conducted at Senckenberg Institute (DZMB) in 

Wilhelmshaven and at the Laboratories of Analytical Biology, Smithsonian Institution (USNM), 

Washington, D.C. USA. At DZMB, DNA was extracted from 1 to 3 posterior legs of three specimens 

(voucher No. NB12_Iso740_9, KM14 Iso259_1 and KM14Iso261_2, see Table 2) following Janssen 

et al. (2015). The remaining specimens were analysed at USNM. Here, DNA was extracted from one 

posterior leg of each specimen using protocols described in Brix et al. (2011) and Riehl et al. (2014a). 

Separate PCR reactions were conducted for the nuclear small ribosomal subunit (18S) and for 

mitochondrial cytochrome c oxidase subunit I (COI) and large subunit (16S). Primers and PCR 

protocols were as described in Riehl et al. (2014a). Amplified PCR products were purified for 

sequencing using ExoSap-IT (USB), and bidirectionally sequenced using standard BigDye chemistry 

(Perkin-Elmer) on an ABI 3730xl capillary sequencer. For specimens analyzed at DZMB, PCR-
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products were purified in the same way and sent to the Macrogen Europe Laboratory in Amsterdam, 

Netherlands for sequencing using the same set of primers as used for the PCR. For each sequenced 

individual, both strands of each gene were aligned in Geneious 9.1.6 and disagreements were resolved 

by hand. Alignments of 18S and 16S were made with the online MAFFT server v7 (Katoh and 

Standley 2013) and ambiguously aligned portions of the alignment were removed using the online 

Gblocks server (Talavera and Castresana, 2007), employing all three criteria for less-stringent 

selection. Alignment of DNA sequences of COI was performed on translated amino acids using the 

Clustal X algorithm (Larkin et al., 2007) as implemented in BioEdit. All alignments were edited for 

consistency by hand, and ends were trimmed to avoid large blocks of gaps. Furthermore, a published 

sequence of COI for one species (voucher No. NBIso337) of the new genus was obtained from 

GenBank (Table 2). Where subsequent analyses required an outgroup (see below), published 

sequences of 18S, 16S, and COI of three species of Chelator were obtained from GenBank (Table 2) 

and included in alignment and trimming steps. All new sequences generated in this work were 

deposited in GenBank (see Table 2). 

 

Species delimitation analyses 

 

Several species delimitation (SD) analyses were conducted, including both “discovery” and 

“validation” methods (e.g., Carstens et al., 2013). While some SD algorithms use sequences as input, 

most either use a fixed phylogenetic tree or require one as a guide tree; therefore, BEAST2 v.2.4.4 

(Bouckaert et al., 2014) was used to estimate the single best Bayesian phylogeny from the 18S, 16S, 

and COI alignment including the Chelator outgroup. Each alignment was treated as a separate 

partition with its own mutational model. The COI partition was given four categories of gamma-

distributed rate variation with estimated shape parameter, and an HKY model of mutation with mean 

rate set to 1; the 16S and 18S partition was also given gamma-distributed rate variation, but with a 

GTR model of mutation whose mean mutation rate was estimated relative to COI. All partitions shared 

a single log-normally distributed molecular clock for branch length optimization (Drummond et al., 

2006). All default gamma priors were changed to lognormal priors, and all 1/X priors were changed to 

exponential priors. Convergence of the BEAST2 run was assessed with Tracer v1.6 (Rambaut et al., 

2014) to ensure that all ESSs were ≥200. The branching patterns obtained in this multilocus tree were 

used in SD analyses where a guide tree was needed. Each locus was also used individually, with the 

same options as above, to estimate the best locus-specific tree. These single locus trees (with branch 

lengths) were used in some SD analyses as discussed below and are included in the supplementary 

material, Figs S1–3.  

 Four “discovery” SD algorithms were employed: Automatic Barcode Gap Discovery (ABGD, 

Puillandre et al., 2011), the General Mixed Yule Coalescent (GMYC; Pons et al., 2006), its relative 

bPTP (Zhang et al., 2013), and the STACEY algorithm (Jones et al., 2014). The “validation” 

algorithm BPP (Bayesian Phylogenetics and Phylogeography, Yang and Rannala, 2010; 2013) was 

used as an independent assessment of the delimitations produced by the discovery methods and those 

supported by morphology. For GMYC and bPTP, the BEAST2 single-locus gene trees with branch 

lengths were uploaded to online servers and SD analysis employed standard options; the GMYC 

analysis was run with both single and multiple species thresholds. STACEY analysis was conducted 

on the partitioned 3-locus dataset in BEAST2 following the tutorial, employing the same DNA 

mutation models as in phylogenetic tree estimation, the default Yule prior, and changes to gamma and 

1/X priors as above. After ensuring convergence of the run, assessment of species partitions was 

performed with the “speciesDA.jar” program in the STACEY package. Finally, the BPP algorithm 

was employed to obtain posterior support values for species delimitations produced by the discovery 

methods, using the multilocus tree as the fixed guide tree. A theta prior with parameters 2 and 200 was 

employed, and a tau prior with parameters 30 and 1000; the algorithm was run with both delimitation 

models described in Yang and Rannala (2010). 
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2.4 Comparative material 

For comparison, the following type material was requested from the United States National Museum 

Smithsonian Institution (USNM), and the Australian Museum, Sydney: 

 

USNM 125112, Thaumastosoma platycarpus, holotype, female 

Australian Museum, P.58793, Thaumastosoma platycarpus, paratype, 1 manca 

Australian Museum, P.59254, Thaumastosoma platycarpus paratypes, 1 male, 3 females 

Australian Museum, P.59254, Thaumastosoma platycarpus paratypes, 1 male for CLSM 

Australian Museum, P.59254, Thaumastosoma platycarpus paratypes, 1 female for CLSM 

Australian Museum, P.65517, Thaumastosoma platycarpus, paratypes, 3 mancas 

USNM 125113, Thaumastosoma tenue, holotype, female 

Australian Museum, P.59255, Thaumastosoma tenue, paratype, 1 female  

Australian Museum, P.59256, Thaumastosoma tenue, paratype, 1 female for CLSM and illustration of 

mouthparts 

USNM 138731, Prochelator sarsi, holotype, female 

USNM 138732, Mirabilicoxa hessleri, holotype, male 

USNM 138733, Mirabilicoxa alberti, holotype, female 

 

Remarks. An adequate effort was made to procure and examine described species within 

Thaumastosoma sensu lato. We were not able though to allocate the type material of Thaumastosoma 

jebamoni (George, 2001). In his paper, George (2001) assigned the same catalogue number to 

holotypes of three species (i.e., Mirabilicoxa alberti George, 2001, Eugerda svavarssoni George, 2001 

and Thaumastosoma jebamoni (George, 2001)). For clarification, we ordered all type specimens listed 

in George (2001) and assigned to a catalogue number. However, when investigating the material we 

found only the holotype of M. alberti being present whereas the holotypes of T. jebamoni and E. 

svavarssoni were missing (see also Wilson, 2008). Thus, both species must be regarded as a nomen 

dubium (Wilson, 2008). Furthermore, we made a sufficient attempt to allocate the type material of 

Thaumastosoma distinctum (Birstein, 1963), which, however, is currently not available due to re-

organisation of the museum collections (K. Minin, pers. communication). 

 

2.5 Abbreviations 

 

In the taxonomic descriptions and figure legends the following abbreviations were used: A1—

antennula, A2—antenna, lMd—left mandible, rMd—right mandible, Mx1—maxillula, Mx2—maxilla, 

Mxp—maxilliped, Op–operculum, PI–PVII—pereopods I–VII, Plp 1–5—pleopods 1–5, Plt—

pleotelson 

 

3. Results 

3.1 Morphological assessment 

During recent expeditions several morpho-types were discovered that show strong resemblance to 

species within Thaumastosoma, for example, in having the mouthparts forwardly produced, the 

maxilliped bearing unusually long coupling hooks, the robustness of pereopod I compared to pereopod 

II, as well as the triangular shape of pereopod I carpus (cf. Hessler, 1970; Wilson, 2008; Riehl et al., 

2014b). In Thaumastosoma Hessler, 1970 there are currently four species described from the bathyal 

and abyssal of the Northern Atlantic and Pacific oceans (cf. Wilson, 2008), viz.: T. distinctum 

(Birstein, 1963), T. jebamoni (George, 2001) nomen dubium, T. platycarpus Hessler, 1970 and T. 

tenue Hessler, 1970. However, morphological examination revealed clear differences between a 

cluster formed by three Thaumastosoma species (T. platycarpus and T. tenue, Thaumastosoma sp. 

nov., described below) and four new species (described below) together with T. jebamoni and T. 

distinctum. The latter cluster can be distinguished from Thaumastosoma sensu stricto as follows: seta 

present on the anterolateral corner of the first pereonite (seta present on the coxa in Thaumastosoma 
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species), absence of a ventral spine on pereonite 7 and the female operculum (ventral spine present) as 

well as maxilla mesial endite more than half of the remaining endites (mesial endite ≤ 0.5 times lateral 

and middle endite length). Furthermore the number of antennula articles is ≥ 11 in most species 

belonging to this cluster, which is quite unusual for any nannoniscid species. 

 As described above, the status of T. jebamoni is problematic; the species was first described 

by George (2001) to erect the monotypic genus Leutziniscus. A type species was not designated in the 

original description by George (2001), but Wilson (2008) denotes T. jebamoni by monotypy (see 

ICZN Article 68.3). However, Wilson (2008) did not find any apomorphies to distinguish Leutziniscus 

from Thaumastosoma and therefore regarded Leutziniscus as a junior synonym for Thaumastosoma 

Hessler, 1970 (cf. Wilson, 2008). As the holotype of T. jebamoni is missing, the species should be 

regarded as a nomen dubium (Wilson, 2008). We therefore do not re-establish Leutziniscus, but erect a 

new genus, Ketosoma gen. nov.; this is because the type species of Leutziniscus represents a nomen 

dubium and generic features cannot be adequately inferred on the basis of illustrations provided by 

George (2001). Furthermore investigations of the new species revealed a number of additional 

characters present in the new species but not mentioned in the description of Leutziniscus. These, 

however, are important diagnostic features to distinguish them from the remaining Thaumastosoma 

species; for instance, in T. jebamoni there is neither a seta shown on the coxa nor the anterolateral 

margin of the first pereonite. Furthermore, the maxilla is not illustrated in T. jebamoni.  

 

3.2 Species delimitation analyses 

The PCR success was low (67%, 47%, and 27% for 16S, 18S, and COI respectively), which however 

is not unusual for small data sets (Brix et al. 2011), so not all three genes were covered for all 

examined specimens (Table 2). Yet, multilocus Bayesian phylogenetic analysis generated reasonable 

support when all three genes were used in concert to create a multilocus tree.  

 The multilocus phylogenetic tree (Fig. 2) showed strong support for a deep split among 

specimens, defining a clade of Thaumastosoma sensu stricto and a clade of Ketosoma (1.0 Bayesian 

posterior probability (PP) in all cases). Likewise within the Ketosoma clade, there was strong support 

for phylogenetic separation of three Pacific specimens (KM14_Iso259_1, KM14_Iso261_2, 

NB12_Iso740_9; Fig. 2) from all others (0.90-1.0 PP). In general, the presence of deep and shallow 

branches in both subclades made SD analysis especially pertinent. 

 The three discovery SD analyses produced largely congruent species groups that received high 

support by the BPP validation method (Fig. 2). All discovery methods grouped IDesm010, 012, 041, 

045, and 046 (all T. cf. platycarpus) into a single species; the GMYC with multiple species threshold 

added D3D064 (Thaumastosoma sp. nov.) to this species, while all other methods delineated it as a 

separate species (0.99 BPP support for inclusion vs. 0.76 support for exclusion). Likewise, in the 

Ketosoma clade all discovery methods grouped KM14_Iso259_1 and KM14_Iso261_2 into a single 

species, with NB12_Iso740_9 included in half of the SD determinations (0.99 BPP support for 

inclusion vs. 0.39 support for exclusion). In the Ketosoma clade, most delimitation methods kept all 

remaining specimens as separate species, though only NBIso337 was separate in 100% of SD 

analyses. ABGD analysis at 16S detected a barcode gap between 1% and 4% pairwise difference 

(Table 4); because only COI sequences were obtained for four specimens, there were too few pairwise 

comparisons for ABGD on COI (Table 5). 

 In accordance with the SD analyses of the molecular data, the new genus includes six new 

species from the North and South Atlantic, as well as equatorial North Pacific, of which four are 

described below. Furthermore, it reveals a new species of Thaumastosoma from the Argentine Basin 

(see description below). Here, T. jebamoni and T. distinctum are transferred to Ketosoma although 

characters do not entirely fit the diagnosis and/or could not be inferred from the illustrations provided 

by Birstein (1963) and George (2001); yet they share a number of diagnostic and apomorphic features 

with species in the new genus (Table 6, see also discussion below): lack of a ventral spine on the 

female operculum; presence of well developed posterolateral spines in female (both species); robust 

seta present on the anterolateral corner of the first pereonite (K. distinctum comb. nov.); antennula 
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article with ≥11 articles (K. jebamoni comb. nov.). So, for now these species should be placed in 

Ketosoma until further examination of type specimens and/or newly collected material. 

 

3.3 Taxonomy 

Suborder Asellota Latreille, 1803 

Suprafamily Janiroidea Sars, 1897  

Family Nannoniscidae Hansen, 1916 

Desmosomidae Sars, 1899: 118; Vanhöffen, 1914: 549; Nannoniscini Hansen, 1916: 83; 

Nannoniscidae Siebenaller & Hessler, 1977: 17–43.  

 

Type genus: Nannoniscus Sars, 1870 

 

Composition: Austroniscus Vanhöffen, 1914; Exiliniscus Siebenaller & Hessler, 1981; Hebefustis 

Siebenaller & Hessler, 1977; Ketosoma Kaiser & Brix gen. nov.; Micromesus Birstein, 1963; 

Nannoniscoides Hansen, 1916; Nannonisconus Schultz, 1966; Nannoniscus Sars, 1870; Nymphodora 

Kaiser, 2008; Panetela Siebenaller & Hessler, 1981; Rapaniscus Siebenaller & Hessler, 1981; 

Regabellator Siebenaller & Hessler, 1981; Thaumastosoma Hessler, 1970. 

 

Thaumastosoma Hessler, 1970 

Thaumastosoma Hessler, 1970: 25; George, 2001: 1843; Wilson, 2008: 9. 

 

Type species: Thaumastosoma platycarpus Hessler, 1970 

 

Species included (see also Table 7): Thaumastosoma platycarpus Hessler, 1970; T. tenue Hessler, 

1970; T. diva Kaiser & Jennings sp. nov. 

 

Diagnosis (modified after Hessler, 1970). A1 with 6 articles. Mouthparts produced conspicuously 

forward. Md elongate, incisor process bent forward, lacinia mobilis membranous, palp well developed. 

Mxp with unusually elongate coupling hooks, palp segments 2–4 produced forward medially. Mesial 

endite of Mx2 less than half the length of the other endites, with 1 long slender seta and several 

somewhat smaller ones. PI more robust than PII. Pereonite 1 somewhat larger than pereonite 2. Coxae 

of PI slightly produced, each tipped with a robust seta, anterolateral margins of pereonites 2–4 each 

with a robust seta. A ventral spine present on pereonite 7 and female Op. Urp biramous. Sexual 

dimorphism modest; in copulatory male Plt broader posteriorly, with acute posterolateral spines, in 

female Plt with pair of very poorly developed posterolateral angularities.  

 

Thaumastosoma platycarpus Hessler, 1970 (Figs 3–4) 

Material examined. Holotype: 1 female holotype (preparatory), USNM 125112. Paratypes: 1 manca, 

Australian Museum, P.58793; 1 male, 3 females, Australian Museum, P.59254; 1 male (adult) and 1 

female (ovigerous) for CLSM, Australian Museum, P.59254; 3 mancas, Australian Museum, P.65517. 

 

Redescription of paratype female. Habitus (Fig. 3a–d). Body length 5.1 pereonite 2 width. Coxae 1 

visible in dorsal view. Pereonite 7 and Op each with a strong ventral spine (Fig. 3b–d). Pereonites 2–4 

decreasing in width. Pereonite 1 widest (damaged). Pereonite 1 length 1.3 pereonite 2 length. 

Pereonites 2–4 of similar length. Pereonites anterior margins 1–4 frontally directed, rounded. 

Pereonite 1 coxae each with a robust spine; anterior lateral tergites of pereonites 2–4 each tipped with 

a small robust seta. Pereonites 5 width 0.9 pereonite 2 width. Pereonite 5 longest, length 1.8 pereonite 

2 length, width 1.1 pereonite 4 width. Pereonite 5 and 7 anterior margins slightly concave, pereonite 6 

anterior margin straight. Plt length 0.2 body length, length 0.9 width, with a pair of very poorly 

developed posterolateral angularities; Plt width 0.9 pereonite 2 width, posterior margin strongly 
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rounded, anterior margin slightly concave. Anus (Fig. 3d) covered by anus valves laterally. Urp 

inserting closely to the anus valves, length 0.5 Plt length, projecting beyond posterior margin.  

 Cephalothorax (Fig. 3a–b). Free, almost as long as wide. Anterior, posterior and lateral 

margins slightly rounded. Transition of frons, clypeus, and labrum smooth, without transverse ridge; 

clypeus and labrum extending 0.2 beyond frontal margin. Antennae inserting frontolaterally in a deep 

fold. 

 

Redescription of paratype male. Habitus (Fig. 4a–d). Body length 4.8 pereonite 2 width. Coxae 1 

visible in dorsal view. Body gradually flattening from pereonite 1 to 4 and increasing in height from 

pereonite 5 to 7. Pereonite 3, 4 and 7 each with a distinct ventral spine (Fig. 4b–d). Pereonites 1 to 4 

decreasing in width. Pereonite 1 widest, length 0.3 width. Pereonite 2 width 0.9 pereonite 1 width, 

length 0.8 pereonite 1 length. Pereonites 2–4 of similar length. Pereonites anterior margins 1–4 

frontally directed, rounded. Pereonite 1 coxae each with a robust spine; anterior lateral tergites of 

pereonites 2–4 each tipped with a small robust seta. Pereonite 5 longest, length 1.7 pereonite 1 length, 

about as wide as pereonite 1 width, width 1.3 pereonite 4 width. Pereonite 5 anterior margin concave, 

pereonite 6–7 anterior margins straight. Plt length 0.2 body length, length 0.8 width, Plt width 0.9 

pereonite 1 width, with a pair of well-developed posterolateral spines, posterior margin almost 

straigtht, anterior margin concave. Anus (Fig. 4d) covered by anus valves laterally. Urp inserting 

closely to the anus valves, length 0.4 Plt length, projecting beyond posterior margin.  

 Cephalothorax (Fig. 4a–b). Free, length 0.9 width. Anterior, posterior and lateral margins 

slightly rounded. Transition of frons, clypeus, and labrum smooth, without transverse ridge (Fig. 4b). 

Antennae inserting frontolaterally in a deep fold. 

 

Remarks. The CLSM images revealed some additional features not documented in Hessler’s (1970) 

description. These mostly refer to the presence of ventral spines on pereonites 3 and 4, which seems to 

be a dimorphic character only occurring in the male specimen. Other gender-related characters 

include: pereonite 5 wider in male (width 1.3 pereonite 4 width vs. 1.1); pereonite 4 tapering in male 

(rectancular in female); width 1.4 pereonite 4 width (female 1.3); Plt quadrangular (Plt tapering in 

female towards anterior end); posterolateral spines well developed in male (only poorly developed in 

female). Furthermore the antenna is swollen in male (i.e., peduncular articles 5, 6 and flagellar 

articles), yet no A2 is known for the female. 

 

 

Thaumastosoma tenue Hessler, 1970 (Figs 5–6) 

 

Material examined. Holotype: 1 female holotype (preparatory), 4 mm, USNM 125113. Paratypes: 1 

paratype female (damaged), Australian Museum, P.59255; 1 female, ovigerous, for CLSM and 

illustration of mouthparts, Australian Museum, P.59256. 

 

Remarks. A redescription of certain features of T. tenue is necessary as some important characters (e.g. 

habitus, Mx2) were not illustrated by Hessler, 1970. 

 

Redescription holotype and paratype female. Habitus (Figs 5a, c, 6a–c), body length 4.7 pereonite 2 

width. Coxae 1 and 4 visible in dorsal view. Body gradually flattening from pereonite 1 to 4 and 

decreasing in height from pereonite 5 to 7. Pereonite 7 and Op each with a strong ventral spine (Figs 

5c, 6b, c). Pereonites 2–4 decreasing in width. Pereonite 2 widest, length 0.3 width. Pereonite 1 width 

0.9 pereonite 2 width, length 1.1 pereonite 2 length. Pereonites 2 and 3 of similar length; pereonite 4 

length 1.2 pereonite 2 length. Pereonites 1–4 anterior margins frontally directed, rounded. Pereonite 1 

coxae each with a robust seta; anterior lateral tergites of pereonites 2–4 each tipped with a small robust 

seta. Pereonites 5 width 0.8 pereonite 2 width. Pereonite 5 longest, length twice pereonite 2 length, 

width 1.1 pereonite 4 width. Pereonite 5 anterior margin straight, pereonite 6 anterior margin convex, 
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pereonite 7 anterior margin straight. Plt length 0.2 body length (measured from lateral view), about as 

long as wide, width 0.9 pereonite 1 width, with a pair of poorly developed posterolateral angularities 

inserting 0.8 from anterior margin; posterior margin straight, anterior margin concave. Anus (Fig. 6c) 

covered by anus valves laterally. Urp inserting closely to the anus valves, length 0.4 Plt length, 

projecting beyond posterior margin.  

 Cephalothorax (Figs 5a–c, 6b). Free, almost as long as wide. Anterior, posterior and lateral 

margins slightly rounded. Transition of frons, clypeus, and labrum smooth, without transverse ridge 

(Fig. 5b); clypeus and labrum extending 0.2 beyond frontal margin. Antennae inserting frontolaterally 

in a deep fold. 

 LMd (Fig. 5d–e). Md palp well developed, consisting of 3 articles, reaching mid incisor. 

Palpal article 1 length 0.9 article 2 length, with 1 long simple seta distally. Article 2 with 2 simple 

setae medially and several small setae laterally. Terminal article length about one-third article 2 

length, tapering distally, with 6 small setae ventrally and 2 more robust setose setae terminally. Incisor 

process with 4 teeth, subdistal tooth reduced. Lacinia mobilis blunt. Setal row with 10 robust dentate 

setae of varying size and several slender setae in between, with 6 long simple setae proximally. Molar 

process triangular, with 12 long, serrate setae distally. 

 Mx2 (Fig. 5f). Outer margins of mesial endite with 1 long slender seta and several somewhat 

smaller setae. Mesial endite reduced, length 0.4 lateral endite. Lateral and middle endites each with 4 

strong setae distally.  

 

Thaumastosoma diva Kaiser & Jennings sp. nov. (Figs 7–8) 

 

Type fixation: Holotype, adult male, designated here. 

 

Material examined. Holotype: 1 adult male, 1.7 mm (measured without Plt), Argentine Basin, SW 

Atlantic, DIVA-3 expedition, RV Meteor, EBS, station 534 (start: 36.01016’S, 49.02566’W; end: 

36.0115’S, 49.029’W, 4608 m), date: 16/07/2009, voucher No. D3D064, ZMH K 46132. 

 

Etymology. Diva is female and relates to the sampling campaign (DIVA - DIVersity of the abyssal 

Atlantic Ocean) during which the species was collected. 

 

Distribution. Argentine Basin, SW Atlantic, 4608 m; only known from the type locality.  

 

Diagnosis. A2 with 6 peduncular and 23 flagellar articles in male; pereonites 3–4 without ventral 

spine; coxae of pereonite 1 and anterolateral margins of pereonites 2–4 each with a very robust spine; 

coxa 1 spine length half pereonite 1 length. 

 

Description of holotype male. Habitus (Figs 7a, 8a–c) Plt broken off. Coxae of pereonite 1 visible in 

dorsal view. Pereonites 2–4 and 5–7 decreasing in width; pereonite 5 widest, width 1.2 pereonite 4 

width, length 0.6 width. Pereonite 1 width 0.9 pereonite 5 width, length 0.4 width. Pereonites 2 width 

almost as wide as pereonite 5. Pereonites 2–4 of similar length, length 0.8 pereonite 1 length. 

Pereonites 1–4 anterior margins frontally directed, rounded. Pereonite 1 coxae each with a robust 

spine, length half pereonite 1 length; anterior lateral tergites of pereonites 2–4 each tipped with a 

robust seta. Pereonite 5 longest, length 1.8 pereonite 1 length. Pereonite 5 and 6 anterior margins 

straight.  

 Cephalothorax (Figs 7a, 8a–d). Free, wider than long. Anterior and frontal margins strongly 

rounded, posterior margin slightly rounded. Mouthparts not visible from dorsal view. Antennae 

inserting frontolaterally in a deep fold. 

 A1 (Fig. 7b, 8a–d), drawn in situ. With 6 articles. First article rectangular and broadest, length 

1.9 width, with 2 broom setae of varying size distally. Second article length 1.2 article 1 length, length 

3.3 width, with 4 broom setae of varying size distally. Article 3 length 0.6 article 2 length, with 1 
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simple seta distally. Article 4 length 0.3 article 2 length, with 1 small broom seta distally. Article 5 

length 0.3 article 2 length. Article 6 length about half article 2 length, with 3 long slender simple setae, 

1 small broom seta and 1 terminally. 

 A2 (7a, b, 8c), from CLSM. With 6 peduncular and 23 flagellar articles. Peduncular articles 1–

4 short. Article 3 with 1 robust unequally bifid seta, 1 small spine and 1 simple seta; article 4 with 1 

simple seta distally. Articles 5–6 long and slender. Article 5 with robust unequally bifid setae laterally. 

Flagellar articles 1–13 indistinctly separated from each other, lacking any setae, marcation between 

articles 14–23 more distinct.  

Mx2 (Fig. 7d). Outer margin of mesial endite with several setae of varying length, with 1 long 

slender seta and several somewhat smaller setae. Mesial endite reduced, length 0.4 lateral endite. 

Lateral and middle endites each with 4 strong setae distally. 

PI (Fig. 7c). Basis length 6.6 width, with 2 simple setae and 1 broom seta dorsally, with 2 

setae (1 simple 1 broken off) ventrally, with 2 long strong simple setae distoventrally. Ischium about 

half basis length, length about twice width, with 2 setae (1 simple, 1 broken off) ventrally. Merus 

length half ischium length, length 1.2 width, with 2 long robust simple setae distodorsally, 2 simple 

setae ventrally. Carpus length twice merus length, length 2.6 width, with a row of 4 simple setae 

dorsally, with numerous small setae, membranously embedded, and with 5 unequally bifid setae in 

between. Propodus length 0.75 carpus length, length 3.6 width, with 2 simple setae dorsally, with 1 

small unequally bifid seta and 1 simple seta distoventrally. Dactylus length 0.7 propodus length, 

length 4.8 width, with 3 slender setae medially. Unguis length one-third dactylus length, with 2 long, 

slender setae between unguis and ventral claw.  

Plp 1 (Figs 7e, 8b), from CLSM. Length 2.4 proximal width. Distal projection width 0.6 

proximal width, lateral margins straight. Lateral lobes elongate, rounded; distal margins strongly 

rounded, with 7 simple setae of varying length each. 

  

Remarks. T. diva sp. nov. is most similar to T. platycarpus, but can be distinguished from the latter as 

follows: ventral spines absent from pereonites 3 and 4 (vs. ventral spines present in T. platycarpus);  

coxa 1 spine length half pereonite 1 length (vs. 0.3 pereonite 1 length); pereonite 5 anterior margin 

straight (vs. strongly concave). Distinguishing T. diva from T. tenue is complicated by the fact that for 

the latter species only the female is known. Thus, potential differences may arise from sexual 

dimorphism. From comparing both sexes in T. platycarpus (see summary above), characters that are 

more or less conservative between male and female include for instance the antennula, as well as 

pereopods, but also length of spines on coxa 1 as well as length/width ration of the tergites of 

pereonites 2–4. Accordingly T. diva differs from T. tenue as follows: A1 article 6 length > article 5 

length (vs. article 6 length < article 5 length) coxa 1 spine length half pereonite 1 length (vs. 0.2 

pereonite 1 length in T. tenue); PI overall less setose and more slender in T. diva; PI basis with 2 

simple setae and 1 broom seta dorsally (vs. 9 small simple setae); PI merus with 2 simple setae 

ventrally (vs. 7 setae ventrally); PI carpus more than twice width (vs. less than twice width).  

 

Ketosoma Kaiser & Brix gen. nov. 

Desmosoma G.O. Sars, 1864; Birstein, 1963: 121; Leutziniscus George, 2001: 1844; Thaumastosoma 

Hessler, 1970: 19; Wilson, 2008: 10. 

 

Type species: Ketosoma ruehlemanni gen. et sp. nov., by original designation 

 

Species included (see also Table 7): K. distinctum (Birstein, 1963), comb. nov.; K. hessleri gen. et sp. 

nov.; K. jebamoni (George, 2001), comb. nov. (nomen dubium); K. ruehlemanni gen. et sp. nov.; K. 

vemae gen. et sp. nov. 

 

Etymology. Ketosoma is neuter and derived from the greek words kētos (κῆτος), denoting a sea 

monster, and -soma meaning body. In Greek mythology Keto was a marine goddess and the sister of 
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Thaumas. The name refers to the relatively large body size of species in the new genus and 

furthermore emphasizes its strong resemblance to Thaumastosoma. 

 

Distribution. Species in the genus have been described from the North and South Atlantic as well as 

the central and North Pacific. 

 

Diagnosis. A1 with 6–13 articles. Mouthparts produced conspicuously forward. Md elongate, incisor 

process bent forward, lacinia mobilis membranous, palp well developed. Mxp with unusually long 

coupling hooks. Mx2 mesial endite more than half of the other endites. PI more robust than PII. 

Pereonite 1 somewhat larger than pereonite 2. Anterolateral margins of pereonites 1–4 with each with 

a robust seta. Female Op and pereonite 7 without ventral spine. Urp biramous. Sexual dimorphism 

modest; Plt with a pair of acute posterolateral spines in both male and female. 

 

Ketosoma ruehlemanni Kaiser & Janssen gen. et sp. nov. (Figs 9–12) 

Type fixation: Holotype, ovigerous female, 5.8 mm, designated here. 

 

Material examined. Holotype: 1 female holotype (ovigerous), 5.8 mm, CCZ, equatorial NE Pacific, 

BIONOD expedition, RV L’Atalante, EBS, station BIO12-33 (start: 11°49.17’N, 117°03.73’W, 4133 

m; end: 11°51.91’N, 117°03.13’W, 4127 m), date: 07/04/2012, ZMH K 46133. Paratypes: 3 adult 

males, 1 juvenile, 1 preparatory female, from the same station as holotype, ZMH K 46134; 1 

preparatory female, from the same station as holotype, ZMH K 46135; 1 preparatory female, 

BIONOD expedition, EBS, BIO12–43 (start: 11°45.52’N, 117°34.33’, 4358 m; 11°48.34’N, 

117°31.95’W, 4360 m), date: 09/04/2012, ZMH K 46136; 1 preparatory female, BIONOD expedition, 

EBS, BIO12–43, ZMH K 46137; 1 adult male, BIONOD expedition, EBS, BIO12–43, ZMH K 46138; 

1 adult male (NBIso337), BIONOD expedition, EBS, BIO12–43, ZMH K 46139. 

 

Etymology. The name is masculine and is dedicated to Carsten Rühlemann, one of the PIs of the 

BIONOD expedition. 

 

Distribution. Eastern CCZ, equatorial NE Pacific, 4127–4360 m. 

 

Diagnosis: A1 articles 13 in female, 11 in male; A1 article 2 with 2 broom setae distally; medial setae 

inserting at the distal margin of Mxp article 3; PI ischium with 7 unequally bifid ventrally; PI merus 

ventral margin with 2 unequally bifid setae; Op lateral and distal margins with >60 setae; Plt with one 

pair of posterolateral spines. 

 

Description of holotype female. Habitus (Figs 9a, c, 10a, b), body length 3.9 pereonite 1 width. 

Coxae not visible in dorsal view. Body gradually flattening from pereonite 1 to 4 and decreasing in 

height from pereonites 5 to 7. Pereonites 1–7 decreasing in width; pereonite 1 widest, length 0.4 width. 

Pereonite 2 width 0.9 pereonite 1 width, length 0.7 pereonite 1 length. Pereonites 2 and 3 of similar 

length; pereonite 4 length 0.8 pereonite 1 length. Pereonites 1–4 anterior margins frontally directed, 

rounded, anterior lateral tergites each tipped with a small robust seta. Pereonite 5 width 0.8 pereonite 1 

width. Pereonite 5 longest, length 1.2 pereonite 1 length. Pereonite 5 anterior margin slightly concave, 

pereonites 6–7 anterior margins convex. Plt length 0.2 body length, about as long as wide; width 0.8 

pereonite 1 width, with a pair of well-developed posterolateral spines inserting 0.9 from anterior 

margin, posterior margin strongly rounded; anterior margin concave. Urp length 0.4 Plt length, 

projecting beyond posterior margin.  

 Cephalothorax (Figs 9a, c, 10a, b). Free, almost as long as wide. Anterior margin straight, 

posterior and lateral margins slightly rounded. Clypeus and labrum clearly visible from dorsal view, 

transition of frons, clypeus, and labrum smooth, without transverse ridge; clypeus and labrum 

extending 0.2 beyond frontal margin. Antennae inserting frontolaterally in a deep fold. 
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A1 (Fig. 9b). Length 0.1 body length, with 13 articles. First article circular and broadest, 

length 1.5 width, with 2 small broom setae distally. Second article length 1.3 article 1 length, length 

5.4 width, with 2 long broom setae and 3 simple setae of varying length distally. Article 3 as long as 

article 1, length 6.0 width, with 1 simple seta distally. Article 4 length 0.2 article 1 length, length 1.8 

width, with 2 simple setae distally. Articles 5–10 of similar length, length about 0.4 article 1 length, 

article 6 with 1 simple seta laterally. Articles 11–13 slightly shorter than articles 5–10; article 13 

shortest, length 0.2 article 1 length. Article 12 with 2 simple setae of varying length distally. Article 13 

with 2 long simple setae terminally. 

Md (Fig. 9f, g). Md palp of left and right mandible well developed, consisting of 3 articles 

reaching mid of incisor. Palpal article 1 of lMd length 0.9 article 2 length, with 6 simple setae of 

varying length laterally. Article 2 with 2 simple setae medially. Terminal article length about one-third 

article 2 length, tapering distally, with several (≥ 9) small setae ventrally. Palpus of rMd similar to 

lMd. Incisor process of rMd lacking distinct teeth, incisor of lMd with 3 teeth and 1 subdistal tooth. 

Lacinia mobilis of lMd with 4 teeth. Setal row of rMd with 5 robust setae of varying size and several 

slender setae in between; dentation decreasing proximally. Setal row of lMd with 5 robust setae and 

several slender setae in between, dentation decreasing, seta size increasing proximally. Molar of rMd 

and lMd triangular; molar of rMd with 7, of lMd with 6 long, serrate setae distally. 

Mx1 (Fig. 9d). Inner endite lost during dissection. Outer endite length 5.4 width, with 12 

strong spine-like setae and 4 simple setae distally, with several simple setae of varying length laterally. 

Mx2 (Fig. 9e). Outer margin of mesial endite with several setae of varying length, distal 

margin with numerous long setae of varying length. Mesial endite almost as long as lateral endite. 

Lateral endite with 4, middle endite with 3 strong setae distally.  

 Mxp (Fig. 9h). Left and right Mxp connected by 2 long retinacula. Epipodite smooth, 

triangular, slender, length 3 width, reaching mid of palpal article 2. Palpal article 1 short, width 2.6 

length, with several small setae lateral. Article 2 length 2.9 article 1 length, width 1.1 length, with 

several small setae laterally, with 1 simple seta distally. Article 3 length 1.6 article 1 length, width 1.5 

length, with 7 robust sensory setae and 1 somewhat longer simple seta distally. Article 4 length 1.5 

article 1 length, width 0.4 length, with a distal projection exceeding tip of article 5, with 3 long, 

slender setae distally. Article 5 length 0.6 article 1 length, width 0.3 length, with 4 slender setae of 

varying size terminally. Endite distal margin with some robust, dentate setae and several fine setae 

laterally. Protopod quadrangular, length 0.9 width. 

PI (Fig. 10h). More robust than PII. Basis length 2.8 width, with 8 simple setae dorsally and 3 

simple setae ventrally. Ischium about half basis length, length 1.4 width, with 3 simple setae 

distodorsally, 1 simple seta medially (located underneath), with 7 unequally bifid and 3 simple setae 

ventrally. Merus length 0.6 ischium length, length 0.8 width, with 2 robust setae (1 long, 1 short) and 1 

simple seta distodorsally, with 4 simple setae medially, with 2 unequally bifid and 5 simple setae of 

varying size ventrally. Carpus length 1.4 merus length, length 1.8 width, with a row of 12 simple setae 

dorsally, with 9 unequally bifid setae and 1 simple seta ventrally. Propodus length 0.9 carpus length, 

length 3 width, with 9 simple setae dorsally, with numerous small setae, membranously embedded, 

and 2 robust unequally bifid setae in between ventrally, with 2 small simple setae distoventrally. 

Dactylus length about half propodus length, length 3.4 width, with 3 slender setae medially. Unguis 

length 0.4 dactylus length, with 2 long, slender setae between unguis and ventral claw.   

PII (Fig. 10i). Basis length 4.1 width, with 9 simple setae of varying length and 1 broom seta 

dorsally, with 1 simple seta distodorsally, with 8 simple setae ventrally and 1 long simple seta 

distoventrally. Ischium length about half basis length, length 2.2 width, with 5 simple setae dorsally, 

with 4 simple setae of varying length distodorsally, with 4 simple setae ventrally. Merus length 0.6 

ischium length, length 1.2 width, with 2 simple setae of varying length distodorsally, with 5 simple 

setae (1  underneath) of varying size and 1 unequally bifid seta ventrally. Carpus length 2.7 merus 

length, length 3.5 width, with a row of 4 simple setae increasing in size medially, with 6 long slender 

simple setae and 8 unequally bifid setae ventrally. Propodus length 0.8 carpus length, length 5.6 width, 

with 2 simple setae (broken off) and 2 broom setae (1 broken off) ventrally, with numerous small 
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setae, membranously embedded, 6 stout unequally bifid setae (decreasing in size towards distal end) 

ventrally. Dactylus length one-third of propodus length, length 4.4 width, with 3 simple setae 

medially, with numerous small setae, membranously embedded ventrally. Unguis length 0.4 dactylus 

length, with 2 slender setae between unguis and ventral claw.  

PIII (Fig. 10j). Basis missing. Ischium length 3.1 width, with 3 small simple setae and 1 long 

more robust simple seta dorsally, with 2 simple setae of varying length ventrally. Merus length 0.5 

ischium length, length 1.5 width, with 1 small seta dorsally, with 2 simple setae (broken off) 

distodorsally, with 2 simple setae (1 broken off) ventrally, with 3 setae (1 long, 2 short) distoventrally. 

Carpus length 3 merus length, length 4.6 width, with 2 short simple setae dorsally, with 6 long slender 

setae (1 broken off) ventrally, with 8 stout unequally bifid setae ventrally. Propodus length 0.9 carpus 

length, length 7.7 width, with 1 broom seta distodorsally, with numerous small setae, membranously 

embedded, and 6 stout unequally bifid setae ventrally, with 1 simple seta distoventrally. Dactylus 

length 0.3 propodus length, length 4.4 width, with 3 simple setae medially. Unguis length 0.4 dactylus 

length, with 2 slender setae between unguis and ventral claw.   

PIV (Fig. 10k). Basis length 5.7 width, with 7 simple setae and 3 broom setae (2 long, 1 short) 

dorsally, with 6 simple setae ventrally and 1 long simple seta distally. Ischium length half basis length, 

length 3 width, with 3 small simple setae dorsally, with 3 simple setae of varying size ventrally. Merus 

length half ischium length, length 1.7 width, with 1 long simple seta distodorsally, with 2 long simple 

setae distoventrally. Carpus length 3 merus length, length 5.5 width, with 2 simple setae (1 broken off) 

dorsally, with 5 long slender simple setae and 8 stout unequally bifid setae (1 broken off) ventrally. 

Propodus length 0.9 carpus length, length 8.3 width, with 8 simple setae of varying size and 1 long 

broom seta dorsally, with 6 stout unequally bifid setae and 1 simple seta ventrally. Dactylus length 0.2 

propodus length, length 3.2 width, with 4 simple setae medially. Unguis length 0.3 dactylus length, 

with 2 slender setae underneath unguis. 

PVI (Fig. 10l). Basis length 3.9 width, with 2 simple setae (broken off) dorsally, with 2 simple 

setae (1 broken off) distodorsally. Ischium length 0.6 basis length, length 2.9 width, with 4 simple 

setae (broken off) dorsally. Merus length 0.3 ischium length, length 1.3 width, with 2 simple setae 

distodorsally. Carpus length 4.6 merus length, length 3.8 width, with 4 slender setae (2 simple, 1 

serrate, 1 broken off) dorsally, with 2 stout unequally bifid setae and 1 simple seta distoventrally. 

Propodus length 0.8 carpus length, length 6.2 width, with 10 setae (5 underneath, 2 serrate, 1 broken 

off) dorsally, with 7 setae (1 serrate, 1 broken off) of varying size ventrally. Dactylus length 0.3 

propodus length, length 5.3 width, with 3 simple setae medially. Unguis length 0.3 dactylus length, 

with 2 slender setae underneath unguis. 

PVII (Fig. 10m). Basis length 4.4 width, with 3 simple setae and 1 broom seta (broken off) 

dorsally, with 6 simple setae ventrally and 1 long simple seta distally. Ischium length 0.6 basis length, 

length 3.6 width, with 4 simple setae (2 broken off) dorsally. Merus length 0.3 ischium length, length 

1.3 width, with 2 simple setae (broken off) distodorsally, with 2 simple setae distoventrally. Carpus 

length 4.2 merus length, length 4.2 width, with 8 long slender simple setae dorsally, with 4 setae (1 

broken off, 1 unequally bifid) ventrally. Propodus length 0.9 carpus length, length 7.3 width, with 7 

long simple setae and 1 long broom seta dorsally, with 4 stout unequally bifid setae and 1 simple seta 

ventrally. Dactylus length one-third of propodus length, length 6.3 width, with 3 simple setae 

medially. Unguis length 0.4 dactylus length, with 2 slender setae underneath unguis. 

Op (Fig. 10c). Length 1.1 width. Lateral margin rounded, posterior margin almost straight, 

with numerous (> 60) simple setae. 

Plp3 (Fig. 10d). Protopodite length 0.9 width, length 0.9 endopodite length. Exopodite 0.6 

endopodite length, length 1.9 width, tapering in width distally, with numerous short simple setae 

laterally. Endopodite 1.2 longer than wide, with 3 long plumose setae distally, distal end tapering in an 

acute angle. 

Plp4 (Fig. 10e). Protopodite rectangular, length 0.5 width, about 0.3 endopodite length. 

Exopodite slender, about as long as endopodite, length 5.8 width, with several thin setules laterally 

(outer margin) and 1 long robust plumose seta distally. Endopodite ovoid-shaped, length 1.5 width. 
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Plp5 (Fig. 10f). Small oval lobe, without setation, about as long as pleopod 4. Length 1.8 

proximal width, width tapering towards distal end. 

Urp (Fig. 10g). Biramous. Protopodite trapezoid, length about twice width, with 2 long simple 

setae laterally, with 1 small simple seta proximally, with 6 long simple setae distally. Exopodite length 

1.2 protopodite length, length 7.6 width, with 5 long simple setae terminally. Endopodite length 1.5 

exopodite length, length 8.6 width, with 2 simple setae (broken off) laterally, with 5 simple setae (3 

broken off) terminally. 

 

Description paratype male. Habitus (Figs 11a, d–e, 12a–c, e). Body length 4.8 pereonite 1 width. 

Coxae not visible in dorsal view. Body gradually flattening from pereonite 1 to 4 and slightly 

increasing in height from pereonite 5 to pleotelson. Pereonites 1–4 decreasing in width. Pereonite 1 

widest, length half width. Pereonite 2 width 0.9 pereonite 1 width, length 0.6 pereonite 1 length. 

Pereonites 2–4 of similar length. Pereonites 1–4 anterior margins frontally directed, rounded, anterior 

lateral tergites each tipped with a small robust seta. Pereonites 5–7 of similar width, width 0.9 

pereonite 1 width. Pereonite 5 longest, length 1.4 pereonite 1 length. Pereonite 5 anterior margin 

concave, pereonites 6–7 anterior margins straight. Plt 0.2 body length, about as long as wide; width 

0.9 pereonite 1 width, with a pair of well-developed posterolateral spines inserting 0.8 from anterior 

margin, posterior margin strongly rounded, anterior margin slightly convex. Anus (Fig. 12e) covered 

by anus valves laterally. Urp inserting closely to the anus valves, length 0.3 Plt length, projecting 

beyond posterior margin.  

 Cephalothorax (Figs 11a, e, 12f). Free, length 0.7 width. Anterior margin straight, posterior 

and lateral margins slightly rounded. Clypeus and labrum clearly visible from dorsal view, transition 

of frons, clypeus, and labrum smooth, without transverse ridge; clypeus and labrum extending about 

one-third beyond frontal margin. Antennae inserting frontolaterally in a deep fold. 

A1 (Figs 11a, 12a, b), from CLSM. Length 0.2 body length, with 11 articles. First article 

circular and broadest, length 1.7 width. Second article as long as article 1, length 6 width, with 2 long 

broom setae distally. Article 3 about as long as article 1, length 6.0 width. Article 4 length 0.2 article 1 

length, as long as wide. Article 5 length 0.7 article 1 length, length 4 article 4 length. Articles 6–10 of 

similar length, length about 0.3 article 1 length. Article 11 slightly shorter than articles 6–10, length 

0.2 article 1 length. 

A2 (Figs 11e, 12c), from CLSM. Length 0.9 body length, with 6 peduncular and 45 flagellar 

articles. Peduncular articles 1–4 short. Articles 5–6 long and slender. Article 5 length 1.6 article 1–4 

length, length 5 width. Article 6 length twice articles 1–4 length, length 6.1 width. Flagellar articles 1–

20 swollen. Flagellar article 1 length 0.25 peduncular article 6 length. Flagellar articles 21–45 of 

similar length, length 0.25 article 1 length. 

Plp1 (Figs 11c–d, 12e). Length 1.9 proximal width. Distal projection width 0.8 proximal 

width, lateral margins concave. Lateral lobes rounded, with 5 small setae inserting distally from each 

lateral lobe. Distal margins strongly rounded, with 6 simple setae of varying length each. 

Plp2 (Fig. 11b). Sympod length 2.1 width, outer margin rounded, with 7 slender simple setae 

laterally, inner margin straight. Endopod inserting 0.3 from distal tip of sympod. Stylet length half 

sympod length, slightly curved, distal end not extending beyond distal tip of sympod. Exopod short 

and rounded, inserting 0.2 from distal tip of sympod.  

 

Remarks. K. ruehlemanni sp. nov. shares some similarities with K. jebamoni, but can be delimited 

from the latter species by the following characters: Op with > 60 setae on lateral and distal margins 

(vs. ≤ 30 setae in K. jebamoni); A1 with 13 articles in female (vs. 11 articles); PI ischium ventral 

margin with 7 unequally bifid setae (vs. 4). K. ruehlemanni also resembles K. distinctum, but can be 

differentiated as follows: A1 with 13 articles (vs. 6 in K. distinctum); medial setae inserting at the 

distal margin of Mxp article 3 (vs. medial setae located in an arc on the ventral surface of the 

segment). Further details are given after the description of three new species below.  
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Ketosoma hessleri Kaiser & Brix gen. et sp. nov. (Figs 13–14, 17a–c)  

 

Type fixation: Holotype female, ovigerous, 4.1 mm, designated here 

 

Material examined. Holotype: 1 female holotype (ovigerous), 4.1 mm, Vema-TRANSIT expedition 

(S0237), RV Sonne, C-EBS, station # 6-7 (start: 10.351389’N, 36.950278’W, end: 10.36528’N, 

36.932778’W, 5085–5079), date: 02/01/2015, voucher no. VTDesm569, ZMH K 46141. 

 

Type locality: Cape Verde Basin, eastern Vema Fracture Zone, 5085–5079 m; only known from type 

locality. 

 

Etymology. The new species (hessleri, lat. genitive, masculine) is named in honour of Robert R. 

Hessler for his life dedicated to the study of deep-sea biodiversity and systematics of isopod 

crustaceans in particular. 

 

Diagnosis. A1 articles 13 in female; A1 article 2 with 3 broom setae distally; medial setae inserting at 

the distal margin of Mxp article 3; PI ischium with a row of simple setae on ventral margin; PI merus 

ventral margin with 4 unequally bifid setae; Op lateral and distal margins with >50 setae; Plt with one 

pair of posterolateral spines. 

 

Description of holotype female. Habitus (Figs 13a, c, 14f, 17a–c), body length 3.5 pereonite 1 width. 

Coxae not visible in dorsal view. Pereonites 1–7 decreasing in width. Pereonite 1 widest, length 0.3 

width. Pereonite 2 width 0.9 pereonite 1 width, length 0.8 pereonite 1 length (measured from lateral 

view). Pereonites 2 to 4 of similar length (measured laterally). Pereonites 1–4 anterior margins 

frontally directed, rounded, anterior lateral tergites each tipped with a small robust seta. Pereonite 5 

width 0.9 pereonite 1 width. Pereonite 5 longest, length 1.6 pereonite 1 length (measured laterally). 

Pereonite 5–7 anterior margins slightly concave. Plt length 0.2 body length, about as long as wide 

(measured laterally), width 0.8 pereonite 1 width, with a pair of well-developed posterolateral spines 

inserting 0.9 from anterior margin, posterior margin strongly rounded, anterior margin concave. Urp 

length 0.4 Plt length, projecting beyond posterior margin.  

 Cephalothorax (Figs 13a–d, 14 f, 17a–b). Free, length almost as long as wide (measured 

laterally). Anterior margin straight, posterior and lateral margins slightly rounded. Transition of frons, 

clypeus, and labrum smooth, without transverse ridge (Fig. 17b). Antennae inserting frontolaterally in 

a deep fold. 

A1 (Fig. 13b). Length 0.25 body length, with 13 articles. First article circular and broadest, 

length 1.8 width. Second article length 1.2 article 1 length, length 6.5 width, with 3 broom setae 

distally. Article 3 length 0.6 article 1 length, length 4.7 width. Article 4 length 0.2 article 1 length, 

length 1.3 width. Articles 5–13 of similar length, length 0.4 article 1 length.   

LMd (Fig. 14a), palpus broken off. Incisor process with 3 teeth and 1 subdistal tooth. Lacinia 

mobilis with 3 teeth. Setal row with 6 robust setae and 3 slender setae in between, dentation 

decreasing, seta size increasing proximally. Molar triangular, with 5 long setae distally. 

Mx2 (Fig. 14b) Outer margins of mesial endite with several setae of varying length. Mesial 

slightly longer than lateral and middle endites. Lateral and middle endite each with 4 strong setae 

distally.  

 Mxp (Fig. 14c–d), only palpal articles 2–5 and endite drawn in situ. Left and right Mxp 

connected by 3 long retinacula. Palpal article 2 almost as long as wide; with several small setae 

laterally, with 4 simple setae distally. Article 3 length 0.9 article 2 length, width 0.8 length, with 11 

robust sensory setae located in an arc on the ventral surface of the segment. Article 4 length 0.6 article 

2 length, width 0.3 length, with a distal projection exceeding tip of article 5, with 4 long, slender setae 

distally. Article 5 length 0.2 article 2 length, width 0.3 length, with 4 slender setae of varying size 
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terminally. Endite distal margin with some robust, dentate setae and several fine setae on lateral and 

ventral margins. 

PI (Fig. 13e). Drawn in situ. Basis not drawn. Ischium length 1.3 width, with 12 simple setae 

of varying size dorsally, with 6 simple setae ventrally. Merus length 0.6 ischium length, length 0.7 

width, with a row of 9 simple setae (1 broken off), extending from medial surface to distodorsal end, 

with 2 robust unequally bifid setae (1 long, 1 short) distodorsally, with 3 simple setae and 4 robust 

unequally bifid setae ventrally increasing in size distally. Carpus length 1.6 merus length, length 1.2 

width, with 11 simple setae of varying size dorsally, with 8 unequally bifid setae ventrally increasing 

in size distally. Propodus as long as carpus, length 2.9 width, with 3 simple setae dorsally, with 

numerous small setae, membranously embedded, and 2 robust unequally bifid setae in between 

ventrally. Dactylus length 0.6 propodus length, length 4 width, with 3 slender setae medially. Unguis 

length 0.5 dactylus length, with 2 long, slender setae underneath unguis.   

PVI (Fig. 14e). Basis length 4.9 width, with 5 simple setae and 5 broom setae dorsally, with 5 

simple setae dorsally, with 1 long simple seta distodorsally. Ischium length half basis length, length 

3.1 width, with 6 simple setae dorsally, with 4 simple setae ventrally. Merus length 0.3 ischium length, 

length 1.5 width, with 2 simple setae distodorsally, with 1 simple seta ventrally. Carpus length 3.9 

merus length, length 4.1 width, with 6 setae (all broken off) dorsally, with 5 simple setae ventrally. 

Propodus length 0.8 carpus length, length 6.7 width, with 7 long serrate setae (1 broken off) and 1 

unequally bifid seta dorsally (see detail), with 4 stout unequally bifid setae ventrally. Dactylus length 

0.4 propodus length, length 7.4 width, with 3 simple setae medially, with numerous small setae, 

membranously embedded, ventrally. Unguis length 0.4 dactylus length, with 2 slender setae 

underneath unguis. 

Op (Fig. 17c), from CLSM. Length 1.1 width. Lateral margin rounded, posterior margin 

slightly concave, with numerous (> 50) simple setae. 

 

Remarks. K. hessleri sp. nov. is most similar to K. ruehlemanni and K. jebamoni. All three species 

differ from K. distinctum in the number of antennular articles (≥11 vs. 6). K. hessleri can be further 

distinguished from K. ruehlemanni by the following characters: PI ischium with a row of simple setae 

on ventral margin (vs. unequally bifid in K. ruehlemanni); A1 article 2 with 3 broom setae (vs. 2); 

medial setae located in an arc on the ventral surface of the segment of Mxp article 3 (vs. medial setae 

inserting at the distal margin). The new species also shows some resemblance to K. jebamoni, but 

differs from the latter as follows: A1 with 13 articles in female (vs. 11 articles in K. jebamoni); PI 

merus ventral margin with 4 unequally bifid setae (vs. 7). 

 

Ketosoma vemae Brix & Kihara gen. et sp. nov. (Figs 15–17d–f) 

Type fixation: Holotype adult male, 3.7 mm, designated here. 

 

Material examined. Holotype: 1 male holotype (adult), 3.7 mm, equatorial NE Atlantic, Vema-

TRANSIT expedition (SO237), RV Sonne, C-EBS, station # 2-6 (start: 10.709167’N, 25.0994’W, 

end: 10.72667`N, 25.086667’W, depth: 5520 m), date: 20/12/2014, voucher No. VTDesm013, ZMH K 

46140. 

 

Type locality: Cape Verde Basin, eastern Vema Fracture Zone, 5520 m; only known from the type 

locality. 

 

Etymology. The name is genitive female and relates to the sampling campaign (Vema-TRANSIT) as 

well as the type locality, where the type specimen was collected. 

 

Diagnosis. A1 articles 11 in male; A1 article 2 with 4 broom setae distally; medial setae located in an 

arc on the ventral surface of the segment of Mxp article 3; PI ischium with 4 unequally bifid setae 
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ventrally; PI merus ventral margin with 2 unequally bifid setae; Plt with one pair of posterolateral 

spines. 

 

Description of holotype male. Habitus (Figs 15a, d, 17d–e), body length 4.9 pereonite 1 width. 

Coxae not visible in dorsal view. Body gradually flattening from pereonite 1 to 6 and increasing in 

height from pereonite 6 to Plt. Pereonites 1–4 decreasing in width. Pereonite 1 widest, length 0.6 

width. Pereonite 2 width 0.9 pereonite 1 width, Pereonite 2 and 3 similar in length; length about half 

pereonite 1 length. Pereonite 3 and 4 similar in width. Pereonite 3 width 0.8 pereonite 1 width. 

Pereonite 4 length 0.6 pereonite 1 length. Pereonites anterior margins 1–4 frontally directed, rounded, 

anterior lateral tergites each tipped with a small robust seta. Pereonites 5–7 decreasing in width 

distally. Pereonites 5 width 0.8 pereonite 1 width. Pereonite 5 longest, length 1.4 pereonite 1 length. 

Pereonite 5 anterior margin slightly concave, pereonites 6–7 anterior margins straight. Plt length 0.2 

body length, about as long as wide, width 0.8 pereonite 1 width, with a pair of well-developed 

posterolateral spines inserting 0.8 from anterior margin, posterior margin strongly rounded. Urp length 

0.4 Plt length, projecting beyond posterior margin.  

 Cephalothorax (Figs 15a–d, 17d–f). Free, length 0.7 width. Anterior margin strongly rounded, 

posterior and lateral margins straight. Transition of frons, clypeus, and labrum smooth, without 

transverse ridge (Fig. 17f). Antennae inserting frontolaterally in a deep fold. 

A1 (Fig. 16a). Length 0.3 body length, with 11 articles. First article rectangular, broadest, 

length 1.5 width, with 2 broom setae distally. Second article length 1.5 article 1 length, length 3.8 

width, with 4 long broom setae distally. Article 3 length 1.1 article 1 length, length 4.3 width, with 1 

simple seta distally. Article 4 shortest, length 0.3 article 1 length, length 1.2 width, with 1 simple seta 

and 1 small broom seta distally. Articles 5–10 of similar width. Article 5 length 0.9 article 1 length, 

length 4.5 width, with 1 small simple seta distally. Article 6 length 0.6 times article 1 length, length 3 

width, with 1 small simple seta distally. Articles 7–10 of similar length, length 0.7 article 1 length, 

length 4.3 width. Article 7 and 9 each with 1 small simple seta distally. Article 10 with 1 long 

aesthetasc. Article 11 with 1 small broom seta, and 4 simple setae (2 broken off) terminally. 

 Mxp (Fig. 16c). Only the palpus drawn in situ. Palpal article 1 short, width 2.3 length, with 

several small setae and 1 long slender seta laterally. Article 2 length 3 article 1 length, almost as wide 

as long, with several small setae proximally, with 8 distally pappose sensillae, 1 dentate seta, two rows 

of small setule and 1 simple setae distolaterally. Article 3 length twice article 1 length, width 1.2 

length, with 7 distally pappose sensillae arranged in an arc on the Mxp ventral surface, with 1 slender 

and 2 small simple setae laterally. Article 4 length 1.8 article 1 length, width 0.3 length, with a distal 

projection exceeding tip of article 5, with 3 long distally pappose sensillae distally, with numerous 

small simple setae laterally. Article 5 length half article 1 length, width half length, with 4 slender 

setae of varying size terminally. 

 PI (Fig. 16g–h). Drawn in situ, left PI illustrated basis to merus, right PI merus to dactylus. 

Basis length 2.9 times width, with 3 simple setae and 1 small broom seta dorsally, with 4 simple setae 

(1 broken off) ventrally. Ischium length 0.6 basis length, length 1.9 times width, with 1 slender seta 

(broken off) and 1 robust seta dorsally, with 4 unequally bifid setae and 1 simple seta ventrally. Merus 

length 0.4 times ischium length, length 0.7 width, with 2 robust unequally bifid setae (broken off in 

left PI) distodorsally, with 4 simple setae medially, with 2 unequally bifid and 2 robust setae (broken 

off in left PI) distoventrally. Carpus length 1.5 times merus length, length 1.3 times width, with 1 

simple seta distodorsally, with 7 unequally bifid setae ventrally. Propodus length 1.2 times carpus 

length, length 4.1 times width, with 3 simple setae and 1 small broom seta dorsally, with numerous 

small setae, membranously embedded, 1 robust unequally bifid seta and 1 simple seta in between 

ventrally. Dactylus length about half propodus length, length 3.6 times width, with 3 slender setae 

medially. Unguis length 0.3 times dactylus length, with 2 long, slender setae between unguis and 

ventral claw.   

PIII (Fig. 16d). Basis missing. Ischium length 3.3 width, with 3 simple setae (1 broken off) 

dorsally, with 3 simple setae (1 broken off) ventrally. Merus length 0.6 ischium length, length 1.7 
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times width, with 1 long robust seta distodorsally, with 3 simple setae of varying size ventrally. 

Carpus length 3.2 merus length, length 4.7 width, with 12 setae (5 broken off) dorsally, with 4 long 

slender setae, numerous small setae, membranously embedded, and 7 stout unequally bifid setae in 

between ventrally. Propodus length 0.9 carpus length, length 4.6 width, with 3 simple setae of varying 

size (1 broken off) and 1 broom seta dorsally, with numerous small setae, membranously embedded, 

and 5 stout unequally bifid setae in between ventrally. Dactylus length 0.4 propodus length, length 4.6 

width. Unguis length 0.4 dactylus length, with 2 slender setae underneath unguis.   

PIV (Fig. 16e). Basis length 6.2 width, with 1 long broom seta and 1 simple seta dorsally, with 

5 broom setae and 1 short simple seta ventrally. Ischium length 0.6 basis length, length 3.8 width, with 

2 short simple setae dorsally, with 2 short simple setae ventrally. Merus length 0.4 ischium length, 

length 1.7 width, with each 1 simple seta distodorsally and distoventrally. Carpus length 3.5 merus 

length, length 5.8 width, with 1 simple seta (broken off) distodorsally, with numerous small setae, 

membranously embedded and with 7 setae (3 unequally bifid, 1 simple, 3 broken off) in between 

ventrally. Propodus length 0.9 carpus length, length 7.4 width, with 4 setae (all broken off) and 1 

broom seta dorsally, with numerous small setae, membranously embedded and with 5 setae (1 

unequally bifid and 4 broken off) ventrally. Dactylus length 0.3 propodus length, length 4.5 width, 

with 3 simple setae medially. Unguis length 0.4 dactylus length, with 2 slender setae underneath 

unguis. 

PV (Fig.16f). Basis length 4.1 width, with 6 simple setae dorsally, with 2 simple setae and 1 

broom seta dorsally. Ischium length 0.6 basis length, length 2.7 width, with 1 simple seta dorsally, 

with 5 slender simple setae of varying size ventrally. Merus length 0.4 ischium length, length 1.5 

width, with 2 simple setae distodorsally. Carpus length 3.7 merus length, length 2.8 width, with 10 

slender setae (6 long simple, 1 short simple, 2 long serrate, 1 broken off) dorsally, with 7 setae (4 

unequally bifid, 3 broken off) ventrally. Propodus length 0.9 carpus length, length 4.6 width, with 8 

simple setae of varying size dorsally, with 7 long slender setae (all tips broken off) ventrally. Dactylus 

length 0.3 propodus length, length 5 width, with 3 simple setae medially. Unguis length about half 

dactylus length, with 2 slender setae underneath unguis. 

 

Remarks. Ketosoma vemae sp. nov. can be easiliy distinguished from K. distinctum by the number of 

A1 articles (11 vs. 6). As for K. vemae only the male is known, it is difficult to define characters 

distinguishing it from K. hessleri and K. jebamoni, where only female specimens have been collected.  

The new species, for example, resembles K. jebamoni in the number of antennula articles, though it 

also shows some distinct features separating it from the latter: PI merus with 2 long unequally bifid 

setae distodorsally (vs. 1 simple seta in K. jebamoni); PI merus ventral margin with 2 unequally bifid 

setae (vs. 7); A1 article 1 with 2 broom setae (vs. none). The new species is also similar to K. 

ruehlemanni, but can be distinguished as follows: medial setae located in an arc on the ventral surface 

of the segment of Mxp article 3 (vs. medial setae inserting at the distal margin in K. ruehlemanni). K. 

vemae can be differentiated from K. hessleri by the following characters: A1 article 2 with 4 broom 

setae distally (vs. 3 in K. hessleri); PI ischium with 4 unequally bifid setae (vs. only simple setae 

present); PI merus ventral margin with 2 unequally bifid setae (vs. 4). 

 

Ketosoma werneri Kaiser & Brix gen. et sp. nov. (Figs 18–19) 

Type fixation: Holotype female, preparatory, 2.1 mm (measured without Plt), designated here. 

 

Material examined: Material examined. Holotype: 1 female holotype (preparatory), 2.1 mm, Argentine 

Basin, SW Atlantic, DIVA-3 expedition (M79), RV Meteor, EBS, station # 534 (start: 36.01016’S, 

49.02566’W, end: 36.0115’S, 49.029’W, depth: 4608 m), date: 16/07/2009, voucher no. D3D060, 

ZMH K 46142. 

 

Type locality: Argentine Basin, SW Atlantic, 4608 m; only known from type locality. 
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Etymology. The name is genitive masculine and dedicated to Werner Rosenboom, participant of the 

DIVA-2 expedition, and Werner Harke, uncle of the first author, passing away in 2006 and 2009 

respectively. 

 

Diagnosis. A1 with 6 articles; pereonite 7 length ≤0.4 pereonite 6 length; PI ischium with 2 unequally 

bifid setae on ventral margin; Op lateral and distal margins with 10 setae; Plt posterior margin smooth, 

with one pair of posterolateral spines. 

 

Description of holotype female. Habitus (Figs 18a, c–d, 19a–b), body length 4.4 pereonite 1 width. 

Coxae of pereonite 2 visible in dorsal view. Body gradually flattening from pereonite 1 to 6 and 

increasing in height from pereonite 6 to Plt. Pereonites 1–4 decreasing in width, pereonites 4–7 of 

similar width. Pereonite 1 widest, length half width. Pereonite 2 width 0.9 pereonite 1 width, length 

0.6 pereonite 1 length. Pereonites 2–4 of similar length. Pereonite 4 width 0.75 pereonite 1 width. 

Pereonites 1–4 anterior margins frontally directed, rounded, anterior lateral tergites each tipped with a 

small robust seta. Pereonite 5 longest, length 1.1 pereonite 1 length. Pereonite 5–7 anterior margins 

straight. Pereonite 6 length 0.9 pereonite 1 length. Pereonite 7 length half pereonite 1 length. Plt length 

0.2 body length, length 0.9 width, width 0.8 pereonite 1 width, with a pair of well-developed 

posterolateral spines inserting 0.9 from anterior margin, posterior margin strongly rounded, anterior 

margin concave. Urp length 0.5 Plt length, projecting beyond posterior margin.  

 Cephalothorax (Figs 18a, d, 19b). Free, length 1.4 width. Anterior margin straight, posterior 

and lateral margins slightly rounded. Clypeus and labrum clearly visible from dorsal view, transition 

of frons, clypeus, and labrum smooth, without transverse ridge; clypeus and labrum extending 0.2 

beyond frontal margin. Antennae inserting frontolaterally in a deep fold. 

A1 (Fig. 18b). Drawn in situ. Length 0.2 body length, with 6 articles. First article rectangular, 

broadest, length 1.3 width, with 2 broom small setae and 1 simple seta distally. Second article length 

1.3 article 1 length, length 3 width, with 2 long broom setae and 1 small simple seta distally. Article 3 

as long as article 1, length 2.7 width, with 1 small simple seta distally. Article 4 length half article 1 

length, length 1.3 width, with 2 broom setae distally. Articles 5 length 1.1 article 1 length, article 6 

about as long as article 1, length 5 width, with 4 long simple setae and 1 aesthetasc terminally. 

A2 (Fig. 18b). Drawn in situ. Length 0.9 body length, with 6 peduncular and 17 flagellar 

articles. Peduncular articles 1–4 short. Article 1 with 1 simple seta laterally Article 3 with 1 unequally 

bifid and 1 simple seta laterally.  Article 4 with 1 simple seta laterally. Articles 5–6 long and slender. 

Article 5 length 1.4 article 1–4 length, length 6.5 width, with 3 robust unequally bifid setae, 3 broom 

setae and 2 simple setae of varying size laterally. Article 6 length 2.5 article 1–4 length, length 11.7 

width, with 1 simple seta laterally, with 1 broom seta and 1 slender seta distally. Flagellar article 1 

length 0.2 article 6 length. Flagellar articles 1–17 length ratios: 1 : 1 : 0.6 : 0.9 : 0.6 : 0.6 : 0.6 : 0.8 : 

0.8 : 0.7 : 0.9 : 0.5 : 0.6 : 0.6 : 0.5 : 0.3 : 0.2. Articles 1–16 with 0–3 simple setae distally, article 17 

with 6 long, slender setae terminally.  

PI (Fig. 18f). Basis length 3 width, with 1 long robust simple seta distoventrally. Ischium 0.4 

basis length, length 1.5 width, with 2 simple setae of varying size dorsally, with numerous small setae, 

membranously embedded, and 3 unequally bifid (1 broken off) setae ventrally. Merus length 0.6 

ischium length, as long as wide, with 2 long robust unequally bifid setae distodorsally, with numerous 

small setae, membranously embedded, 2 slender simple setae and 2 robust unequally bifid setae (1 

underneath) ventrally. Carpus length 1.7 merus length, length 1.5 width, with 3 simple setae dorsally, 

with numerous small setae, membranously embedded, 4 unequally bifid setae and 1 simple seta in 

between ventrally. Propodus as long as carpus, length 2.5 width, with 1 simple seta distodorsally, with 

numerous small setae, membranously embedded, 1 small unequally bifid seta and 1 simple seta in 

between ventrally. Dactylus 0.6 propodus length, length 3.5 width, with 3 slender setae medially. 

Unguis length 0.3 dactylus length, with 2 long, slender distally pappose setae between unguis and 

ventral claw.   
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PIV (Fig. 18g). Drawn in situ. Basis length 4.7 width, with 2 broom setae medially, with 3 

simple setae ventrally. Ischium length 0.7 basis length, length 3.6 width, with 1 simple seta ventrally. 

Merus length 0.6 ischium length, length 1.9 width, with 2 long simple setae distodorsally, with 2 long 

simple setae distoventrally. Carpus length 2.6 merus length, length 6.1 width, with 3 simple setae (1 

broken off) medially, with numerous small setae, membranously embedded, and 2 unequally bifid 

setae in between ventrally. Propodus length 0.8 carpus length, length 5.4 width, with 1 long simple 

seta dorsally, with numerous small setae, membranously embedded, 2 stout unequally bifid setae and 1 

simple seta in between ventrally. Dactylus length 0.6 propodus length, length 5 width, with 3 simple 

setae medially. Unguis length half dactylus length, with 2 slender distally pappose setae underneath 

unguis. 

PVI (Fig. 18h). Drawn in situ. Basis length 4.5 width, with 1 simple seta distoventrally. 

Ischium length 0.7 basis length, length 3.3 width, with 1 simple seta dorsally, with 1 simple seta 

ventrally. Merus length 0.3 ischium length, length 1.2 width, with 2 simple setae distodorsally, with 2 

simple setae distoventrally. Carpus length 4.4 merus length, length 6.4 width, with 1 slender seta 

dorsally, with 1 simple seta and 1 broom seta distodorsally, with 2 long simple setae ventrally. 

Propodus length 0.8 carpus length, length 7.5 width, with 3 simple setae of varying size dorsally, with 

1 simple seta distoventrally. Dactylus length about half propodus length, length 5 width. Unguis length 

0.7 dactylus length, with 2 slender distally pappose setae underneath unguis. 

Op (Fig. 18e). Drawn in situ. As long as wide. Lateral and posterior margins rounded. Lateral 

margin with 4 simple setae, distal margin with 6 simple setae. 

 

Remarks. Based on the number of the antennula articles two species clusters can be differentiated 

within Ketosoma; one formed by Ketosoma werneri sp. nov. together with K. distinctum each bearing 

6 antennula articles and one containing K. ruehlemanni, K. hessleri, K. vemae and K. jebamoni (A1 

with ≥11 articles). K. werneri and K. distinctum share some further similarities including pereonite 7 

length ≤0.4 pereonite 6 length, and number of setae on Op lateral and distal margins with ≤10 (vs. 

pereonite 7 length ≥0.6 pereonite 6 length; Op lateral and distal margins with ≥30 setae in the 

remaining species, if known). The new species can be differentiated from K. distinctum as follows: Plt 

bearing only one pair of posterolateral spines, posterior margin smooth (vs. Plt with two pairs of 

posterolateral spines [2 large and 2 minute] distally, Plt posterior margin with fringe of tiny setules); 

Op as long as wide, with 4 setae laterally (vs. Op longer than wide, lacking lateral setae); PI ischium 

with 2 unequally bifid setae on ventral margin (vs. PI ischium lacking ventral setae). It should be 

noted, that morphological characters of K. distinctum are inferred from illustrations by Birstein (1963). 

Once the type material becomes available, it should be closely re-examined to provide a more reliable 

comparision. 

 

4. Discussion  

4.1 Integrative species delimitation  

 

Combining information from multiple sources to delineate species is now more commonly adopted as 

the foundation for subsequent biodiversity assessment. In fact, there is the proposal to perform a 

number of species delimitation analyses and then to define species boundaries being most consistent 

across methods to overcome potential limitations (Carstens et al., 2013). In our study, we provided 

morphological and genetic evidence to erect a new genus, Ketosoma that shows distinct features 

separating it from the closely related Thaumastosoma. Furthermore, species delimitation analyses of 

the molecular data were mostly congruent with a priori morphological presumptions to differentiate 

species within both genera. However, low sample sizes (as in number of individuals per clade) are 

raising some issues to both morphological and molecular species delimitation methods, as all are 

sensitive to undersampling (e.g. Lohse, 2009; Lim et al., 2012).  

 The Ketosoma vemae/hessleri clade highlights such a dilemma, where neither morphological 

nor molecular examination provided unequivocal evidence for species differentiation. Morphological 
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differentiation is complicated by the fact that K. vemae and K. hessleri are singleton species and 

holotypes are represented by the opposite sex. Thus, morphological differences may be obscured by 

potentially sexually dimorphic features. So far, the only characters distinguishing both species from 

each other are the type and number of setae on the ventral margins of PI ischium and merus, and the 

antennula. Most but not all SD analyses delimited K. vemae and K. hessleri as separate species (Fig. 

2). The divergence between both specimens was about 5.14% uncorrected p-distance in 16S, which 

lies above the ABGD threshold of 1-4% calculated from the specimens herein (Table 4). A few other 

similar analyses on deep-sea isopods are available for additional comparison. For Atlantoserolis 

vemae, a widespread species across the Atlantic, Brandt et al. (2014) found a gap between 2.5% and 

4.7% for 16S to separate between intraspecific and congeneric divergence. In the desmosomatid 

species Parvochelus russus, Brix et al. (2015) found a genetic variation of 3.8% uncorrected p-

distances for 16S between specimens occuring on both sides of the Mid-Atlantic Ridge (MAR). For 

this species the authors suggest infrequent connectivity across the MAR (i.e., through the Romanche 

Fracture Zone, Brix et al., 2015). In ABGD analyses of 195 South Atlantic desmosomatid and 

nannoniscid specimens (comprising 15 genera), Brix et al. (this issue) detected a barcode gap of 4% at 

16S; genus-specific analyses of the desmosomatids Chelator (61 specimens), Mirabilicoxa (12 

specimens), and Parvochelus (9 specimens) detected barcode gaps beginning at 3.0%, 4.5%, and 1.5% 

at 16S, respectively (Brix et al., this issue). It should be noted that the seemingly different thresholds 

for Parvochelus (Brix et al., 2015 vs. Brix et al., this issue) arise from the use of different data sets 

(one including specimens of Parvochelus russus only, one comprising additional species in the genus, 

cf. Brix et al., this issue). Thus, defining unified thresholds across different evolutionary lineages has 

some limitations, in that such lineages represent a spectrum of evolutionary ages and histories, which 

may differ across taxa and markers (Brix et al., 2015). Nevertheless, using these estimates as 

additional means of comparison, K. vemae and K. hessleri would be considered as separate species.  

 Molecular species delimitation methods do not necessarily require (or measure) reciprocal 

monophyly between delimited species; rather, most invoke a multispecies coalescent model in which 

some aspect of the evolutionary process (patterns in evolutionary rates, branch length distributions, 

etc.) changes across the intra- vs. interspecific threshold. Even though, reciprocal monophyly was 

difficult to establish in some cases here, when the putative species were delimited from a single 

specimen. As De Queiroz (2007, p. 884) points out, because of the maternal inheritance of 

mitochondrial DNA, “a pattern of reciprocal monophyly can also result from low dispersal distances 

of females even when autosomal and paternally inherited genes are being exchanged regularly 

between the same sets of populations […]”. While the sequencing success of nuclear 18S was not 

high, moreover its low mutation rate made it rather uninformative to delineate species in these two 

closely related genera. Finally, the existence of doubly uniparental inheritance (DUI, e.g. Passamonti 

and Ghiselli, 2009) of mitochondrial markers could complicate the interpretation, although to our 

knowledge no evidence of DUI has been reported for asellotes. Even though male- and female-type 

mitochondrial sequences are not necessarily each other’s closest relatives, DUI is often detected when 

highly aberrant sequences are recovered from a single individual or putatively conspecific individuals, 

and no evidence of this was found here. Likewise no specimen produced chromatograms with 

evidence of divergent, overlaid sequences, nor were the coding errors typical of male mitochondrial 

DNA encountered. Accordingly, we regard Ketosoma vemae and K. hessleri as separate species. It is 

possible that both species represent recently diverged conspecific lineages becoming reproductively 

isolated through geographic and separation. Recently diverged species are expected to retain ancestral 

polymorphisms due to incomplete lineage sorting, and incipient (i.e. ongoing) speciation can generate 

a similar signal as reproductive isolation increases, as has been found in other marine invertebrates 

(e.g. Johnson et al., 2006; Baird et al., 2011; Schüller, 2011; Jennings et al. 2013). 

 Likewise Ketosoma specimens in the so far undescribed Pacific clade (containing KM14 and 

NB12 specimens) were not separated by all SD methods. For NB12_Iso740_9 only sequence data 

from 18S was available; due to the overall paucity of 18S data in the study the AGBD results remain 

inconclusive though. Furthermore, as a slowly evolving marker it is better suited to explore supra-
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specific relationships. Here, greater taxon sampling as well as morphological examination of the 

Pacific clade may provide important hints to resolve within-clade patterns. 

 Molecular species delimitation is a nascent and quickly-evolving field; currently no single 

methodology is considered superior in all cases, but rather concordance is sought between multiple 

methods, particularly with discovery methods. While ABGD requires very few assumptions and is 

easily comparable across taxa, it makes only simple comparative, not phylogenetic use of the data. The 

bPTP and GMYC methods both employ a multispecies coalescent model; however, GMYC requires a 

strictly ultrametric tree, and the multiple threshold version tends to underperform the single threshold 

version (Fujisawa and Barraclough, 2013). Indeed, the results of ABGD, bPTP, and GMYCsingle 

were all consistent, and these delimitations received high validation support by BPP (≥90), suggesting 

that the complications of small taxon size and missing sequences did not overwhelm the signal in the 

data. The most parameter-rich and complex analysis is STACEY, where the species tree and its 

delimitations are estimated simultaneously; although the STACEY results were broadly consistent 

with the others, the dataset’s complications probably affected STACEY moreso than other SD 

algorithms.  

 

4.2 Taxonomic considerations 

Besides genetic differentation between Ketosoma and Thaumastosoma, both genera are well defined 

by morphological means (summarized above). However, the taxonomic value of ventral spines present 

on pereonite 7 and operculum as a synapomorphic character in Thaumastosoma is not unambiguously 

solved. Ventral spines are also present in the related Desmosomatidae G.O. Sars, 1897 and 

Macrostylidae Hansen 1916. It is likely that spines evolved independently in the three families, as they 

are located on different pereonites and their shape varies across taxa (but see Wägele, 1989). For 

example, in Desmosomatidae ventral spines are limited to the pereonites 1–5 (e.g. in Prochelator 

lateralis (Sars, 1899), Disparella kensleyi Brix, 2006). In Macrostylidae the position of ventral spines 

varies across pereonites, and is regarded as an important diagnostic character to separate species 

within the (monogeneric) family (T. Riehl, pers. communication). Within Nannoniscidae, ventral 

spines on the fused pereonites 6 and 7 are reported as as a synapomorphy of species within 

Regabellator Siebenaller & Hessler, 1981. However, in the genera Nannoniscus G.O. Sars, 1870 and 

Rapaniscus Siebenaller & Hessler, 1981 the position and shape of ventral spines varies greatly. In a 

recent paper, Wilson (2008) re-evaluated the classification of the genera in Nannoniscidae with special 

emphasis on Nannoniscus. Wilson (2008) discussed the variable position of the ventral spines within 

the genus, yet did not accord this character great diagnostic value. Nannoniscus teres Siebenaller & 

Hessler, 1981 possesses a caudally directed strong spine on pereonite 7, N. analis Hansen, 1916 has a 

caudally directed curved spine on the operculum and N. bidens (sensu Brandt, 1992, cf. Wilson, 2008) 

and N. antennaspinis Brandt, 2002 have a straight, but caudally directed spine on their opercula, while 

some species do not possess any ventral spine (e.g., N. aequiremus Hansen, 1916). In Thaumastosoma, 

a small straight spine on pereonite 7 and a strong midventral spine on the operculum are present, 

which seems to be consístent in two Thaumastosoma species, but cannot be seen in T. diva due to 

damage of the holotype.   

 Additionally, there has been some debate whether posterolateral spines are present in 

Thaumastosoma or not (Hessler, 1970; George, 2001; Wilson, 2008). We argue, in the line with 

Wilson (2008), that both genera possess posterolateral spines, yet, where known, the shape differs 

(acute in Ketosoma vs. broad in Thaumastosoma) as well as the degree of differentiation between male 

and female (hardly any difference in Ketosoma vs. highly sexually dimorphic in Thaumastosoma). 

 Sexual dimorphism seems to be only weakly developed in Ketosoma, while still being an issue 

as male and female are only known from one species. We discussed this problem in more detail with 

reference to the differentiation of Ketosoma vemae and K. hessleri above. Due to paucity of data it is 

not possible to draw final conclusions as to which characters are conservative between male and 

female and thus informative to separate species (cf. Riehl et al., 2012). In this respect, it is not clear 

whether the difference in the number of antennula articles between male and female is gender-related 
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(11 in male vs. 13 in female), and furthermore if this is consistent across all Ketosoma species. For 

example, in the female holotype of K. jebamoni only 11 articles were illustrated (George, 2001). This 

is further complicated by the fact that some Ketosoma species possess ≥ 11 antennula articles, a 

number quite unusual among nannoniscids, compared to only six in Ketosoma distinctum and K. 

werneri. The latter two species bear additional characters, which clearly assign them to Ketosoma, but 

at the same time show features separating them from the remaining species in the genus (e.g. including 

setation operculum distal margin and size of pereonite 7). Genetic data are only available from K. 

werneri, which, in our study, has been assigned to a well-supported Atlantic clade within the new 

genus (Figure 1). However, with future sampling more specimens and species in the Ketosoma clade 

may become available, which could be used to fine-tune phylogenetic patterns.  

 

4.3 Implications for deep-sea biodiversity and biogeography 

Most species descriptions herein are based on individual specimens. One could argue that when 

describing singleton species means that intraspecific variability cannot be assessed (cf. Dayrat 2005). 

However, rarity represents a common feature of the deep-sea fauna (e.g. Brandt et al., 2007; Janssen et 

al., 2015), and thus a large fraction of its diversity would remain undescribed (Lim et al., 2012).  

 Overall geographic patterns and mechanisms of species’ distributions are still poorly 

understood leading to some contraints on assessing broad-scale diversity patterns (Appeltans et al., 

2012). Due to their predominant reproductive mode (as being brooders) restricted ranges in isopods, as 

seen in our study, would not be surprising (see also Raupach et al., 2007; Brix et al., 2011; Janssen et 

al., 2015; Brix et al., this issue; Riehl et al., this issue). On the contrary though, there is also evidence 

for some isopod species to maintain gene flow across relatively large geographic distances (hundreds 

to thousands of kms; e.g. Riehl and Kaiser, 2012; Janssen et al., 2015; Brix et al., 2015, this issue, 

Riehl et al., this issue). Based on our analyses, species within each genus seem to have a very narrow 

distributional range. Furthermore, in the CCZ we found several Ketosoma species to occur at relatively 

small spatial scales (few km to tens of kms apart, Table 2; see also Janssen et al., 2015). In fact, 

Thaumastosoma platycarpus seems to be the only species with a broader distribution (specimens 

collected >4000 km apart, Fig. 1, Tables 2, 7), but material of T. platycarpus from the Iceland Basin 

examined here (Table 2) could not be assigned to this species with final certainty due to damage of the 

specimens.  

 Along the Vema Fracture Zone species most isopod lineages within the families 

Desmosomatidae, Nannoniscidae (including K. vemae and K. hessleri) and Macrostylidae showed 

limited geographic distributions either restricted to one station and/or one side of the MAR, and only 

few species were found at both sides of the MAR (Brix et al., 2015, this issue, Riehl et al., this issue). 

This is in support of the hypothesis that the MAR in fact presents a dispersal barrier, at least for 

isopods, but also geographic distance itself and prevailing hydrographic conditions have been 

identified as important factors to shape faunal distributions in the abyss amongst others (Janssen et al., 

2015; Brix et al., this issue; Guggolz et al., this issue; Riehl et al., this issue; but see Etter et al., 2005)  

 Although data presented here are rather limited, they cover some general issues reported for 

deep-sea samples (e.g. with regard to sexual dimorphism, rarity, and undersampling). So it is very 

likely that with further sampling singleton species will occur at more sites, but at the same time the 

number of rare species will increase (as seen for other environments, Lim et al. 2012). The way 

forward is to account for rarity and low sample sizes by using multiple lines of evidence to maximize 

the accuracy of species delimitations. However, it is interesting to note that, in our case, SD 

delimitations tend to vary in the same situations where morphological data are likewise not 

straightforward - implying that the most interesting (biological) questions are the most difficult to 

answer definitively. 
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Figure captions 

Fig. 1 Global distribution of Ketosoma and Thaumastosoma species; 1) Ketosoma distinctum (Birstein, 

1963) comb. nov.; 2, 3) Thaumastosoma platycarpus Hessler, 1970, Thaumastosoma tenue Hessler, 

1970; 4) Thaumastosoma cf. platycarpus (IDesm010_ICE- IDesm046_ICE); 5-7) Ketosoma 

ruehlemanni sp. nov., Ketosoma sp. 1 (NB12_Iso740_9); Ketosoma sp. 2 (KM14_Iso259_1); 8) 

Ketosoma jebamoni (George, 2001) comb. nov.; 9) Ketosoma hessleri sp. nov.; 10) Ketosoma vemae 
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sp. nov; 11, 12) Thaumastosoma diva sp. nov.; Ketosoma werneri sp. nov. The sampling location for 

K. distictum has been inferred from the expedition route reported by Birstein (1963), but does not 

reflect the precise station. Dashed line indicates the equator.   

 

Fig. 2 Multilocus Bayesian tree and species delimitation results. Phylogenetic scale denotes 

evolutionary distance among taxa based on all three markers. Numbers above branches indicate 

Bayesian posterior probabilities. Colored boxes indicate species delimitations from four “discovery” 

methods, and numbers below branches denote “validation” BPP posterior probabilities that the two 

directly descendant branches denote separate species, assuming the Bayesian tree topology as fixed. 

 

Fig. 3 Thaumastosoma platycarpus Hessler, 1970, confocal laser scanning microscopy images; 

paratype, female (Australian Museum, P.59254); a, habitus, dorsal view; b, habitus, lateral view; c, 

habitus, ventral view; d, pereonite 7 and Plt, ventral view. Scale bars: a–c = 400 μm, d = 200 μm. 

 

Fig. 4 Thaumastosoma platycarpus Hessler, 1970, confocal laser scanning microscopy images, 

paratype, male (Australian Museum, P.59254); a, habitus, dorsal view; b, habitus, lateral view; c, 

habitus, ventral view; d, pereonite 7 and Plt, ventral view. Scale bars: a–c = 400 μm, d = 200 μm. 

 

Fig. 5 Thaumastosoma tenue Hessler, 1970; a–c, holotype female (USNM 125113), d–f, paratype 

female (Australian Museum, P.59256); a, habitus, dorsal view; b, cephalothorax, lateral view; c, 

habitus, lateral view; d, e, lMd, detail: molar process, incisor process and lacinia mobilis; f, Mx2. 

Scale bars: a, c = 1 mm, d–f = 100 μm. 

 

Fig. 6 Thaumastosoma tenue Hessler, 1970, confocal laser scanning microscopy images; paratype, 

female (Australian Museum, P.59256); a, habitus, dorsal view; b, habitus, lateral view; c, pereonite 7 

and Plt, ventral view. Scale bars: a–b = 400 μm, c = 200 μm. 

 

Fig. 7 Thaumastosoma diva sp. nov.; a–e, holotype, female (ZMH K 46132); a, habitus, dorsal view; 

b, A1 and A2, drawn in situ; c, PI, drawn in situ; d, Mx2; e, Plp 1. Scale bars: a = 200 µm, b–e = 100 

μm. 

 

Fig. 8 Thaumastosoma diva sp. nov., confocal laser scanning microscopy images; holotype, male 

(ZMH K 46132); a, habitus, dorsal view; b, habitus, lateral view; c, habitus, ventral view; d, A1, 

dorsal view; e, mouthparts, ventral view. Scale bars: a–c = 200 μm, d = 50 μm, e = 100 μm. 

 

Fig. 9 Ketosoma ruehlemanni sp. nov.; a, c, holotype, female (ZMH K 46133), b, d–h, paratype 

female (ZMH K 46135); a, habitus, dorsal view; b, A1; c, habitus, lateral view; d, Mx1; e, Mx2; f, 

rMd, detail: incisor process and mandible palpus; g, lMd; h, Mxp. Scale bars: a, c = 1 mm, b, d–h = 

100 μm. 

 

Fig. 10 Ketosoma ruehlemanni sp. nov.; a, b, holotype, female (ZMH K 46133), c–h, l–m, paratype, 

female (ZMH K 46135), i–k paratype, female (ZMH K 46136); a, habitus, lateral view; b, habitus, 

ventral view; c, Op; d, Plp 3; e, Plp 4; f, Plp 5; g, Urp; h–k, P 1–4; l–m, P 6–7. Scale bars: a, b = 1 

mm, c = 200 µm , d–m = 100 μm. 

 

Fig. 11 Ketosoma ruehlemanni sp. nov.; a, d–e, paratype, male (ZMH K 46139), b–c, paratype, male 

(ZMH K 46138). a, habitus, lateral view; b, Plp 2; c, Plp 1; d, Plt, ventral view; e, habitus, dorsal view. 

Scale bars: a, e = 200 µm, b, d–h = 100 μm. 

 

Fig. 12 Ketosoma ruehlemanni sp. nov., confocal laser scanning microscopy images, paratype, male 

(ZMH K 46139); a, habitus, dorsal view; b, habitus, lateral view; c, habitus, ventral view; d, 
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mouthparts, ventral view; e, Plt, ventral view; f, cephalothorax, lateral view. Scale bars: a–b = 400 μm, 

c = 800 μm, d–f = 200 μm. 

 

Fig. 13 Ketosoma hessleri sp. nov.; a–e, holotype, female (ZMH K 46141); a, habitus, dorsal view; b, 

cephalothorax, A1 and A2; c, habitus, lateral view; d, cephalothorax, lateral view; e, PI. Scale bars: a–

d = 1 mm, e = 100 μm. 

 

Fig. 14 Ketosoma hessleri sp. nov.; a–f, holotype, female (ZMH K 46141); a, lMd; b, Mx2; c, Mxp 

endite; d, Mxp palpus; e, PVI; detail: propodus, dactylus and ungius; f, habitus, lateral view. Scale 

bars: a–e = 100 μm, f = 1 mm. 

 

Fig. 15 Ketosoma vemae sp. nov.; a–d, holotype, male (ZMH K 46140); a, habitus, dorsal view; b, 

cephalothorax, lateral view; c, cephalothorax, frontal view; d, habitus, lateral view. Scale bars: a = 400 

µm, d = 200 µm. 

 

Fig. 16 Ketosoma vemae sp. nov.; a–g, holotype, male (ZMH K 46140); a, A1; b, Md palpus; c, Mxp 

palpus; d, PIII; e, PIV; f, PV; g, right PI; h, left PI. Scale bars: a–h = 100 μm.  

 

Fig. 17 Ketosoma hessleri sp. nov., confocal laser scanning microscopy images; holotype, female 

(ZMH K 46141); a, habitus, dorsal view; b, habitus, lateral view; c, Plt, ventral view; Ketosoma vemae 

sp. nov., holotype, male (ZMH K 46140); d, habitus, dorsal view; e, habitus, lateral view; f, 

cephalothorax, lateral view. Scale bars: a–b, d = 400 μm; c, e–f = 200 μm. 

 

Fig. 18 Ketosoma werneri sp. nov.; a–h, holotype, female (ZMH K 46142); a, habitus, dorsal view; b, 

A1 and A2; c, habitus, posterior pereonites, lateral view; d, habitus, dorsal view; e, Op; f, PI; g, PIV; 

h, PVI. Scale bars: a–h = 100 μm. 

 

Fig. 19 Ketosoma werneri sp. nov., confocal laser scanning microscopy images; holotype, female 

(ZMH K 46142); a, habitus, dorsal view; b, habitus, lateral view; c, mouthparts, ventral view; d, 

pereonite 7 and Plt, ventral view. Scale bars: a–d = 200 μm. 

 

Table 1 Station list of sampling campaigns, where examined specimens were collected (including gear 

type, date, position (decimal degrees) and depth [m]); ARG: Argentine Basin; CCZ: Clarion 

Clipperton Fracture Zone; IB: Iceland Basin; NEA: North-East Atlantic.  

 
Expedition Area Gear Station Date Start lat  Start long  End lat End long  Depth 

[m] 

BIONOD CCZ EBS #06 02/04.2012 11.770346’N 116.68556’W 11.770360’N 116.68551’W 4259 

BIONOD CCZ EBS #33 07/04/2012 11.862434’N 117.052893’W 11.8651339’N 117.052225’W 4133 

BIONOD CCZ EBS #43 09/04/2012 11.803588’N 117.53435’W 11.8056938’N 117.532522’W 4358 

KM14 CCZ EBS #20 10/05/2014 11.864722’N 117.020556’W 11.869722’N 117.008611’W 4127-

4124 

DIVA 3 ARG EBS #534 16/07/2009 36.01016’S 49.02566’W 36.0115’S 49.029’W 4608 

VEMA NEA C-EBS #2-6 20/12/2014 10.709167’N 25.0994’W 10.7266667`N 25.0866667’W 5520 

VEMA NEA C-EBS #6-7 02/01/2015 10.351389’N 36.9502778’W 10.3652778’N 36.9327778’W 5085–

5079 

IceAge IB EBS 963 28/08/2011 60.0455’N 21.46766`W 60.0455’N 21.498’W 2749.4 

IceAge IB RP 

Sled 

967 29/08/2011 60.04616’N 21.47566’W 60.04633’N 21.50116’W 2750.4 
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Table 2 List of voucher specimens used for molecular-genetic analyses. All voucher specimens are 

located at the CeNak Hamburg (ZMH catalogue). ARG: Argentine Basin; CB: Cape Basin; GB: 

Guinea Basin; IB: Iceland Basin; NEA: North-East Atlantic; CCZ: Clarion Clipperton Fracture Zone. 
Voucher 

identification # 

Expedition Area Station Taxon (type status) Marker GenBank 

accession # 

ZMH 

catalogue # 

Sex 

D2D003 DIVA2 CB 40/1 Chelator rugosus (paratype) COI,  

16S, 

18S 

KJ578686 

KJ578667 

KJ578678 

K 43229 M 

D2D051 DIVA2 GB 90/7 Chelator aequabilis (paratype) COI,  

16S, 

18S 

KJ578690 

KJ578663 

KJ578675 

K 43205 j. 

IDesm014 IceAge IB 967 Chelator vulgaris COI,  

16S, 

18S 

KJ710289 

KJ630813 

KJ630816 

K 19860 n.a. 

IDesm010_ICE IceAge IB 967 Thaumastosoma cf. platycarpus COI, 

16S,  

18S 

MF040897 

KY951735 

KY951740 

K 46143 F 

IDesm012_ICE IceAge IB 967 Thaumastosoma cf. platycarpus COI, 

16S 

MF040896 

KY951734 

K 46144 F 

IDesm041_ICE IceAge IB 963 Thaumastosoma cf. platycarpus COI, 

16S 

MF040895 

KY951733 

K 46145 F 

IDesm045_ICE IceAge IB 963 Thaumastosoma cf. platycarpus COI, 

16S 

MF040894 

KY951732 

K 46146 M 

IDesm046_ICE IceAge IB 963 Thaumastosoma cf. platycarpus COI, 

16S 

MF040898 

KY951736 

K 46147 F 

D3D060 DIVA 3 ARG 534 Ketosoma werneri sp. nov. 

(holotype) 

COI,  

18S 

MF040893 

KY951738 

K 46142 F 

D3D064 DIVA 3 ARG 534 Thaumastosoma diva sp. nov. 

(holotype) 

16S,  

18S 

KY951731 

KY951739 

K 46132 M 

VTDesm013 Vema NEA 2-6 Ketosoma vemae sp. nov. 

(holotype) 

COI,  

16S,  

18S 

MF040892 

KY951730 

KY951737 

K 46140 M 

VTDesm569 Vema NEA 6-7 Ketosoma hessleri sp. nov. 

(holotype) 

16S KY951729 K 46141 F 

NBIso337 BIONOD CCZ 43 Ketosoma ruehlemanni sp. nov. 

(paratype) 

COI KJ736158 K 46139 M 

NB12_Iso740_9 BIONOD CCZ 06 Ketosoma sp. nov. 1 18S KY693696 K 46148 M 

KM14_Iso259_1 KM14 CCZ 20 Ketosoma sp. nov. 2 COI,  

16S,  

18S 

KY693699 
KY693698 

KY693694 

K 46149 F 

KM14_Iso261_2 KM14 CCZ 20 Ketosoma sp. nov. 2 16S,  

18S 

KY693697 

KY693695 

K 46150 F 

 

Table 3 Confocal laser scanning microscopy (CLSM) settings. Ch1 and Ch2 = detection channels 1 

and 2. 

Numerical aperture  0.4 

Excitation beam splitter  DD 488/561 

Detected emission wavelength (nm) Ch1: 570 - 629  

 Ch2: 629 - 717 

Detector gain  544 and 509 V 

Amplitude offset  -1.7 and -0.8 % 

Pinhole aperture (µm) 53.0  

 

Table 4 ABGD 16S pairwise uncorrected p-distances between specimens investigated. For 16S 

ABGD analysis detected a barcode gap between 1% and 4% pairwise difference, noteworthy values 

are shown in bold. 

  1 2 3 4 5 6 7 8 9 10 11 12 

1

3 

1 D2D003_ Chelator rugosus              

2 D2D051_Chelator aequabilis 

0.16

16                         

3 D3D064_Thaumastosoma diva sp. nov. 

0.33

5 

0.34

53              

4 

IDesm010_ICE_Thaumastosoma cf. 

platycarpus 

0.29

38 

0.29

79 

0.20

05             
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5 

IDesm012_ICE_ Thaumastosoma cf. 

platycarpus 

0.29

64 

0.30

05 

0.20

24 
0.00

47            

6 IDesm014_ICE_Chelator insignis 

0.17

97 

0.18

23 

0.31

38 

0.29

12 

0.29

12           

7 

IDesm041_ICE_ Thaumastosoma cf. 

platycarpus 

0.29

64 

0.30

05 

0.20

05 
0.00

47 0 

0.29

12          

8 

IDesm045_ICE_ Thaumastosoma cf. 

platycarpus 

0.29

64 

0.30

05 

0.20

24 
0.00

47 0 

0.29

12 0         

9 

IDesm046_ICE_ Thaumastosoma cf. 

platycarpus 

0.29

46 

0.30

13 

0.19

8 
0.00

73 

0.00

48 

0.28

94 
0.00

24 

0.00

48        

1

0 KM14_Iso259_1 Ketosoma sp. 2 

0.28

72 

0.29

62 

0.24

53 

0.20

33 

0.20

28 

0.28

14 

0.20

33 

0.20

28 

0.21

12       

1

1 KM14_Iso261_2 Ketosoma sp. 2 

0.28

72 

0.29

62 

0.24

41 

0.20

33 

0.20

28 

0.28

14 

0.20

33 

0.20

28 

0.21

12 0      

1

2 VT569_Ketosoma hessleri sp. nov. 

0.27

3 

0.27

69 

0.24

23 

0.22

51 

0.22

7 

0.27

69 

0.22

51 

0.22

7 

0.23

15 

0.12

48 

0.12

16     

1

3 VTDes013_ Ketosoma vemae sp. nov. 

0.28

06 

0.28

21 

0.24

63 

0.22

51 

0.22

46 

0.27

69 

0.22

51 

0.22

46 

0.23

4 

0.11

87 

0.11

87 
0.05

41  

 

Table 5 ABGD COI pairwise uncorrected p-distances between specimens investigated 

  1 2 3 4 5 6 7 

1 D2D003 Chelator rugosus        

2 D2D051 Chelator aequabilis 0.154             

3 D3D060 Ketosoma werneri sp. nov. 0.3533 0.3786        

4 IDesm014 Chelator insignis 0.246 0.244 0.3175       

5 KM14_Iso259_1 Ketosoma sp. 2 0.3601 0.3694 0.1847 0.3274      

6 VTDesm013 Ketosoma vemae sp. nov. 0.3551 0.3551 0.1656 0.3095 0.194     

7 NBIso337 Ketosoma ruehlemanni sp. nov. 0.3406 0.3279 0.1589 0.3095 0.1679 0.1689  

 

Table 6 Morphological comparison of species within Thaumastosoma and Ketosoma gen. 

nov.; characters were also examined from undescribed species included in the molecular-

genetic analysis (voucher KM14Iso259_1, KM14Iso261_2, and NB12Iso740_9); an asterisk 

indicates synapomorphies shared between Ketosoma species. 
Chara

cter 

T. 

platyca

rpus 

T. tenue T. 

diva  

sp. 

nov. 

K. 

distinct

um 

comb. 

nov. 

K. 

ruehle

manni 

sp. nov. 

K. 

vemae  

sp. nov. 

K. 

hessleri 

sp. nov.  

KM14 

Iso259_

1 

KM14 

Iso261_

2 

NB12 

Iso74

0_9 

K. 

werneri  

sp. nov. 

K. 

jebamo

ni 

comb. 

nov. 

Gende

r 

M/F F M F F M F F F M F F 

A1, 

numbe

r 

article

s 

6 6 6 6 13 11 13 13 damage

d 

11 6 11 

mouth

parts 

produce

d 

forward

, 

elongat

ed 

produce

d 

forward

, 

elongat

ed 

produ

ced 

forwa

rd, 

elong

ated 

? produce

d 

forward

, 

elongat

ed 

produce

d 

forward

, 

elongat

ed 

produce

d 

forward

, 

elongat

ed 

produce

d 

forward

, 

elongat

ed 

produce

d 

forward

, 

elongat

ed 

produ

ced 

forwa

rd, 

elong

ated 

produce

d 

forward

, 

elongat

ed 

n.a. 

Mxp, 

coupli

ng 

hooks 

unusual

ly long 

couplin

g hooks 

unusual

ly long 

couplin

g hooks 

unus

ually 

long 

coupl

ing 

hook

s 

unusual

ly long 

couplin

g hooks 

unusual

ly long 

couplin

g hooks 

unusual

ly long 

couplin

g hooks 

unusual

ly long 

couplin

g hooks 

n.a. n.a. n.a. unusual

ly long 

couplin

g hooks 

n.a. 

Mxp 
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3 
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setae 

arrange
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arc on 
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ventral 
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ventral 

surface 

medi

al 

setae 

arran

ged 

in an 

arc 

on 

medial 

setae 

located 

in an 

arc on 

the 

ventral 

surface 

medial 

setae 

insertin

g at the 

distal 

margin 

medial 

setae 

arrange

d in an 

arc on 

the 

ventral 

surface 

medial 

setae 

insertin

g at the 

distal 

margin 

n.a. n.a. n.a. medial 

setae 

insertin

g at the 

distal 

margin 

n.a. 
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of the 

segmen

t 

of the 

segmen

t 

the 

ventr

al 

surfa

ce of 

the 

segm

ent 

of the 

segmen

t 

of the 

segmen

t 

Mx2* mesial 

endite 

reduced 

mesial 

endite 

reduced 

mesia

l 

endit

e 

reduc

ed 

n.a. not 

reduced 

n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

First 

pereon

ite* 

robust 

seta on 

coxa  

robust 

seta on 

coxa  

robus

t seta 

on 

coxa 

seta on 

tergite 

robust 

seta on 

tergite 

robust 

seta on 

tergite 

robust 

seta on 

tergite 

robust 

seta on 

tergite 

robust 

seta on 

tergite 

robus

t seta 

on 

tergit

e 

robust 

seta on 

tergite 

no seta 

drawn 

Ventra

l spine 

pereon

ite 7* 

present present n.a. n.a. absent absent absent absent absent absen

t 

absent n.a. 

Plt with 

pair of 

very 

poorly 

develop

ed 

posterol

ateral 

angular

ities in 

female 

with 

pair of 

very 

poorly 

develop

ed 

posterol

ateral 

angular

ities in 

female 

n.a. with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female 

with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female, 

similar 

to male 

with 

well 

develop

ed 

posterol

ateral 

spines 

in male 

with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female 

with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female 

with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female 

n.a. with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female 

with 

well 

develop

ed 

posterol

ateral 

spines 

in 

female 

Femal

e 

opercu

lum* 

with 

ventral 

spine 

with 

ventral 

spine 

n.a. without 

ventral 

spine 

without 

ventral 

spine 

n.a. without 

ventral 

spine 

without 

ventral 

spine 

without 

ventral 

spine 

n.a. without 

ventral 

spine 

without 

ventral 

spine 

 

Table 7 Checklist of species within Ketosoma gen. nov. and Thaumastosoma Hessler, 1970 including 

information on their type locality 

Species Type locality Lat/long (decimal degree) Depth (m) 
 

Ketosoma gen. nov. 
   

K. distinctum (Birstein, 1963) comb. nov. NW Pacific n.a. 5680–5690 

K. jebamoni (George, 2001) comb. nov. NW Atlantic 33.33333` -  33.333889’N, 

71.516667` - 71.51722`W 

5325 

 

K. ruehlemanni gen. et sp. nov. Equatorial NE Pacific 11.862434 - 11.803588’N, 

117.05289 -117.53435’W 

4133–4358 

K. vemae gen. et sp. nov. Equatorial NE Atlantic 10.709167’ - 10.72667`N, 

25.0994’ - 25.086667’W 

5520 

K. hessleri gen. et sp. nov. Equatorial NE Atlantic 10.351389’ -  10.36528’N,  

36.950278’ - 36.932778’W 

5085– 5079 

K. werneri gen. et sp. nov. SE Atlantic 36.01016’S, 49.02566’W 4608 
 

Thaumastosoma Hessler, 1970 
   

T. diva sp. nov. SW Atlantic 36.01016’S, 49.02566’W 4608 

T. platycarpus Hessler, 1970  N Atlantic 38.7667’N, 70.1000`W 2886 

T. tenue Hessler, 1970 N Atlantic  38.7667’N, 70.1000`W 2886 
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