

Institute for Software-Integrated Systems

Technical Report

TR#: ISIS-15-111

Title: Software Quality Assurance for the META Toolchain

Authors: Ted Bapty, Justin Knight, Zsolt Lattmann, Sandeep

Neema and Jason Scott

This research is supported by the Defense Advanced Research Project Agency

(DARPA)’s AVM META program under award #HR0011-13-C-0041.

Copyright (C) ISIS/Vanderbilt University, 2015

i

Table of Contents
List of Figures .. iii

List of Tables ... iv

1. Introduction ... 1

1.1 Purpose .. 1

1.2 Scope ... 1

2. Applicability ... 1

3. Applicable Documents .. 2

3.1 Contract Level Documents.. 2

3.2 ISIS Governing Documents .. 2

3.3 Reference Documents ... 2

4. Program Management, Planning and Environment .. 3

4.1 The META SQA Plan ... 3

4.2 Organization .. 3

4.3 Task Planning .. 4

4.4 Software Personnel Training ... 6

4.4.1 SQA Personnel .. 6

4.4.2 Software Developer Training Certification ... 7

4.4.3 META project management .. 7

4.5 Tools and Environment ... 7

5 SQA Program Requirements ... 9

5.1 User Threads as Requirements .. 9

5.2 Innovation and Improvement .. 9

5.3 Program Resources Allocation Monitoring .. 9

5.4 Best practices of software development .. 9

5.5 Inspections .. 10

5.6 Test Case Management ... 11

5.7 Defect Reports and Change Requests ... 11

5.8 Software and Project Document Deliverables .. 11

ii

5.9 Requirements Traceability .. 12

5.10 Software Development Process .. 12

5.11 Project reviews .. 12

5.11.1 Formal Reviews .. 12

5.11.2 Informal Reviews .. 12

5.12 Test Benches ... 13

5.13 Software Configuration Management ... 14

5.14 Release Procedures and Software Configuration Management .. 14

5.15 Change Control ... 15

5.16 Problem Reporting .. 15

5.17 Continuous Build .. 16

5.18 Services and Resources Provided to AVM ... 19

5.19 Software Testing ... 21

5.19.1 Unit Test .. 21

5.19.2 Integration Test ... 21

5.19.3 Alpha Testing .. 21

5.19.4 Beta Testing .. 22

5.19.5 Gamma Test .. 24

5.20 Meta Release Schedule .. 26

5.21 Quality Metrics ... 26

6 Appendix ... 28

6.1 Coding Documentation Requirements .. 28

6.2 Testing Requirements ... 28

6.3 Inspection and Code Review Guidance .. 30

6.4 Sample Checklist .. 31

iii

List of Figures

Figure 1: META Team Organization .. 4

Figure 2: Spiral Development Cycle ... 5

Figure 3: Internal Development/Testing Cycle ... 6

Figure 4: High Level Architecture Integration View .. 7

Figure 5: JIRA Issue Summary page for META .. 15

Figure 6: Beta Testing Issue Reporting (Beta.VehicleFORGE.org) ... 16

Figure 7: Jenkins interface showing the status of the Meta development branch 17

Figure 8: Installer Acceptance Test Checklist .. 22

Figure 9: Core CyPhy Tools Test Checklist ... 25

Figure 10: Core Test Bench Functionality Checklist .. 25

Figure 11: 2014 META Release Schedule .. 26

file:///D:/ISIS_mgt/______FinalReport/Final_Report_No_Edits-2015-01-14_with%20Word/Send_to_Stephan/In-work/10.%20Software%20Quality%20Assurance_Revised.docx%23_Toc421893775

iv

List of Tables

Table 1: AVM Tools at the End of Gamma Testing ... 8

Table 2: Automated Tests ... 18

1

1. Introduction

1.1 Purpose

The purpose of this Software Quality Assurance Plan (SQAP) is to define the techniques,

procedures, and methodologies that will be used at the Vanderbilt University Institute of

Software Intensive Systems (ISIS) to ensure timely delivery of software that implements the

META portion of the Defense Advanced Research Projects Agency (DARPA) Adaptive Vehicle

Make (AVM) program.

1.2 Scope

Use of this plan will help assure the following:

(1) That software development, evaluation and acceptance standards appropriate for the META

program interfaces to the AVM software are developed, documented and followed.

(2) That the results of software quality reviews and audits will be available for META program

management and AVM program managers to support development, testing, and integration

decisions.

(3) Important characteristics of the META program affecting quality, maintainability, and

stability are documented for potential partners and customers.

2. Applicability

The SQAP covers quality assurance activities throughout all development phases of the DARPA

AVM Meta Project. This plan represents efforts beginning at the end of the FANG-I program

through the remainder of the Meta tool development.

While many pieces of the SQAP can be generalized to other ISIS software projects, the DARPA

AVM program has unique requirements that require specialized attention, and limit our abilities

to conduct a traditional QA process. The following list outlines some aspects of the AVM

program related to our QA process.

● Research focused – The products generated at ISIS are typically cutting edge research

products. These efforts involve technology that has not been developed, so, much of the

software is produced by exploration or prototyping.

● Agile development is the approach we are following. Requirements are light. Interfaces

are defined as needed in consultation with our partners. User Threads provide details of

2

the required functionality. Integration testing is where the bulk of the integration and

user requirements are focused.

● Changing Requirements – Our process is designed to be adaptive as requirements change

and evolve.

As the program matures and final products for delivery are assembled, the focus of the SQAP

shifts in the following ways:

 R&D is no longer a driver. Maturing existing functionality and ensuring effective

integration with team contributions is more important.

 Agile development continues with more focus on complete seamless execution of user

threads.

 No new requirements are anticipated; rather fixing, testing, and validating the goals of the

user threads is the key point.

3. Applicable Documents

The following documents can be used as requirements for the design and manufacture of ACIS

software and form a part of this document to the extent specified herein. The issue in effect at the

time of contract award shall apply unless otherwise listed below.

3.1 Contract Level Documents

META Contract and associated Contract Data Requirements List

3.2 ISIS Governing Documents

None applicable

3.3 Reference Documents

Broad Agency Announcement for Component, Context, and Manufacturing Model Library – 2

(C2M2L-2) From Tactical Technology Office DARPA-BAA-12-30 dated February 24,

2012 APPENDIX 1: PHILOSOPHICAL UNDERPINNINGS OF ADAPTIVE VEHICLE

MAKE and APPENDIX 2: DEPICTION OF THE META-IFAB INTEGRATED TOOL CHAIN

3

4. Program Management, Planning and Environment

As the only management level document that is a META program deliverable, the SQAP

also documents the basic management and planning functions performed in META.

4.1 The META SQA Plan

The META SQA plan is developed to provide META PM with the tools to deliver a

robust product for use by industry partners, AVM teammates, and other DARPA/NASA

projects. Data collection of metrics that characterize the software product and its quality

are central to achieving that goal. Program management and development staff must

understand what the metrics mean and take action accordingly. A portion of the project

management discipline is expended to review project metrics to ensure the actions taken

accomplished the intended results. Finally, the metrics collection, including defect burn

down, is an important component of the final delivered open source project.

4.2 Organization

The organization with ISIS is project focused R&D activity. Aside from the PIs, there is

little in the way of hierarchic structure. QA is not a diffuse activity however, since it

remains a major accountability of the project management team. The team’s organization

structure is depicted in Figure 1.

4

META Team Organization

4.3 Task Planning

Since the META program is being developed as an agile project, tasks are organized by a time

box. Typically each spiral is about 4 weeks with 3 sprints, major weeklong iterations, and a final

week for focused integration. Since the software is being continuously tested, the metrics are

available on a weekly basis and reviewed on a monthly basis as part of the release decision

process.

The Meta development plan is organized into four-week “Sprints” as depicted in Figure 2Figure 2:

Spiral Development Cycle. At the end of each sprint, a new version of the CyPhy-Meta tool is

released to the test community.

Figure 1: META Team Organization

5

Figure 2: Spiral Development Cycle

These four-week sprints are divided into two phases: feature development and stabilization. The

feature development phase is when the primary work of designing and implementing new

features takes place. The stabilization phase emphasizes deeper testing, as well as the preparation

of documentation for internal and external purposes, including BETA test scripts, example and

test models, and software architecture documentation.

The Spiral Development Cycle diagram depicts the relationship between META team

development cycles and BETA testing cycles. While the META team prepares release R+1, the

BETA testing group is working with the previous release R+0. Once the META sprint for R+1

has completed, the tools are released to the BETA team for testing, while the Meta team moves

on to R+2. During BETA testing of R+1, META tool updates will only be provided for issues

that significantly block the testing process.

While the next version of the tools is being developed, the previous version is released to beta

test. Figure 3 outlines the internal development cycle:

6

Figure 3: Internal Development/Testing Cycle

Each development group is responsible for collecting their own metrics and using it for planning

their work. At the transition between sprints and in dealings with external partners, the project

management team is responsible for identifying weaknesses based on the metrics.

4.4 Software Personnel Training

4.4.1 SQA Personnel

No training of SQA personnel is anticipated as the person tasked is the author of the SQA plan

and he is also the project manager for META.

7

4.4.2 Software Developer Training Certification

Each member of the software development team has recent software engineering coursework

including SQA. Project leads responsible for the largest chunks of META code have industry

knowledge of code standards and quality assurance techniques. No certification is required.

4.4.3 META project management

The techniques and metrics identified in this document are evolving and should be used based on

experience and gap analysis when QA levels are perceived to be dropping. The document

provides an organizing framework for collecting, analyzing the data so management can take

action and follow-up to verify results are in line with projections.

4.5 Tools and Environment

The high level architecture showing the relationships between Model Integration, Tool

Integration and Execution Integration platforms is depicted in Figure 4.

Figure 4: High Level Architecture Integration View

META generates tools for the design, exploration, specification, simulation, testing and

manufacturing of complex reliable robust systems. It also relies upon software tools for

development, synthesis, testing, analysis and reporting functions. The META toolchain entries

listed in Table 1 are current as of the end of Post Gamma.

8

Notes (criticality,

test tools, etc)

Dependencies

(other tools and

models) Current Version Tool or Model

 14.3.5 GME

 2.7.6 Python

 GME, Java, Python 14.03.25913 Open Meta-CyPhy

Meta-Link 7.0.550 Java

Dynamics 14.0.294 Dymola

CAD Creo 2.0 M070 ProE

Dynamics 1.9.1Beta2 OpenModelica

CFD 2.2.0 OpenFOAM

FEA 6.13-1 Abaqus

FEA 2013.1 Nastran

Blast/Ballistics

GME, Open Meta-

CyPhy, LS-Dyna 42 SwRI AVM Tools

Blast 4.1 LS-PrePost

Blast 7 (rev. 79055) LS-Dyna

Ballistics 10.3 CTH

VF tool

GME, Open Meta-

CyPhy 0.6.10.0 ForgePort

TDP editor 1.0.33 PSU-MAAT

 Creo 1.0.8 PSU-HuDAT

 2.2 PSU-RAMD

FOV

wxPython 2.8,

configobj, Envisage 4.3.1 Mayavi

 R2838 C2M2L Modelica Lib

 11 C2M2L Lib

 RC9 Seed Model

 6.4 FEA Seed

 2.5 Comp Spec

Table 1: AVM Tools at the End of Gamma Testing

9

5 SQA Program Requirements

This section defines the SQA review, reporting, and auditing procedures used at VU/ISIS to

ensure that internal and external software deliverables are developed in accordance with this plan

and contract requirements. Internal deliverables are items that are produced by software

development and then integrated with project builds using configuration control procedures.

External deliverables are items that are produced for delivery to the META Community. These

include scheduled program releases and final configuration deliverables.

5.1 User Threads as Requirements

During spiral planning, user threads to accomplish significant complex, chained tasks are

defined. These provide insight to developers and testers about the intended use of META. Test

cases are defined by external organization (Beta testers, and other AVM contractors) to examine

the META behavior in completing the user thread activities. Each release has identified user

threads as the major content.

5.2 Innovation and Improvement

ISIS as a learning organization has a practice of analyzing current conditions to seek

improvement, a structured approach for implementing changes on a small scale that can be

measured and a forum for broadcasting those changes and the results to the broader community.

Innovation is important to upgrade processes and integrate appropriate technology. ISIS

approach to innovation is to collect data to confirm where more effort is spent than value is

generated. Using group discussions, different approaches to process change, tool addition,

computer resources or other avenues are selected for pilot test. Once improvement is noticed,

then the changed is propagated to other groups.

5.3 Program Resources Allocation Monitoring

Program resources that are planned and monitored include personnel, computer systems, and

software licenses. At the start of each spiral, personnel are assigned to development and test

teams. Institutional computer systems are assumed for the development life cycle. Software

license needs may change for a variety of reasons, but adjustments are made to ensure the

delivered configurations will operate with the appropriate software licenses.

5.4 Best practices of software development

A sample of practices that ISIS has applied to their agile development process to increase the

quality of final products are listed below. Some of these approaches are a result of either process

improvement activities or innovation.

10

Two sets of eyes on every change is a general principle followed during development. Pair

programming, peer (code) reviews and commit reviews are all procedures used in order to follow

this principle.

Pair programming is used occasionally to ensure that code is inspected by 2 people and

knowledge is distributed within the team. This method works best in non-routine tasks (e.g.

writing new code or debugging a complex algorithm), and sessions should not last for more than

4 hours. Pair programming is also a good practice to quickly bring junior team members on

board.

Peer code reviews are conducted in order to verify the developed code is of good quality,

implements the desired functionality, and will integrate well. While code reviews help achieve

these goals, they will not substitute testing and other QA processes.

Commit reviews are done by a dedicated person who merges (integrates) the code. During this

procedure the person screens the changes made before merging it to the repository main (release)

branch.

Feature design documentation and reviews are recommended to ensure that the implementation

will fulfill the requirements, and developers working on the same feature have a common

understanding of the problem and the proposed solution. Before implementing a feature, team

members should discuss it and write a 1-3 page document, which would be informally reviewed

and accepted as the baseline for the work to be done.

Automated tools used for executing (code) tests and static code analysis are in place.

Automated test execution tools run tests as a part of the continuous integration process. The tests

are executed each time a change is integrated to the release branch. The test results are accessible

through a web interface. In case of a test failure, the person(s) who made the change are

automatically informed via email. This allows immediate discovery of code breaks.

Static code analysis is performed on the source code to ensure adherence to coding style,

standards, and to detect bad practices. The static code analysis is executed by the build system

for each build. These results are checked periodically by the developers; any significant concerns

are reviewed in greater detail.

5.5 Inspections

During each sprint within a spiral, code and design are informally reviewed within the

development team. These results are often captured informally with the team leaders’ notes.

Prior to final delivery, a plan is generated by the project manager to identify the highest impact

and highest risk modules for latent defects in the scheduled final delivery. These modules should

be the subject of a formal design and code review. Recommended changes should be analyzed

for likely impact in earlier deliveries.

11

 The first step is an analysis of the JIRA data base and Beta test results to find the most

common types of defects. This list is part of the code review package.

 Second is the principal engineer for the modules being reviewed to provide annotations on

what has changed, what test cases have changed to accommodate the code change, and

whether any downstream dependencies have been identified.

 Third is the selection of the review team and chair. Date and time should be set for the

review with guidance on how long the time period should be from the appendix on Review

and Inspection Guidance.

 Once the review is complete, the team lead and the principal engineer should list all actions

to be taken, identify latent defects, and identify additional testing as necessary. The final

review team report should include the closeout of actions, testing, and defect removal and

analysis.

5.6 Test Case Management

Test cases are developed for both unit testing and thread testing. Unit test cases should be

successfully run before spiral integration. Thread test cases should be run during Beta Testing.

The results of these test cases are used to define the META capabilities for each release.

The META Project Manager maintains a RYG status board of test bench status and META

thread capability Status for each delivery. Typically these status charts are presented at the PI

meetings or other venues for the META user community.

5.7 Defect Reports and Change Requests

Defects in the delivered products are documented by the open tickets generated by the Beta Test

Team. Internally discovered defects are covered by the JIRA data base.

The most important metrics for management and reporting are:

1. Defect Rate: this is analyzed for module occurrence density, defect source, and time to

closure.

2. Defect Insertion Ratio: this is the rate of defects as a result of fixes to other defects. This

analysis includes source, missed opportunities to find or prevent the defect, and time to

discover it after insertion.

3. Failure Interval is a valuable metric for measuring improvement in stability.

5.8 Software and Project Document Deliverables

The META project Manager is responsible for reviewing deliverable software documentation

including the META Final Report. Review checklists will be used to review these documents.

12

These reviews will help ensure that documentation is in compliance with applicable contract

instructions.

Final Report software documentation should include R&D results as well as product

documentation. Important contents include: User Thread definitions and their status, user

documentation for build, execution and test, and a High Level System Architecture Diagram

describing vision and details of the architecture to the development team.

Software documentation must be based on some published convention such as found in IEEE

Software Engineering Standards Source code commenting requirements should be spelled out in

an appropriate appendix. Both Software documentation and comments are covered in code

reviews.

5.9 Requirements Traceability

Traceability is identified through the use of a spreadsheet matrix which will tie individual

Contract End Item (CEI) deliverables and document entries to lower level entries. These

Traceability products are produced and maintained by the project manager.

5.10 Software Development Process

The META program is developed using an agile process. Control over spiral and sprint contest

is established by consensus of the development team and its customers in the META/AVM

community at kick off meetings each month. The project manager and team leads review

progress during the month and evaluate test results, execution notes, and other teammate’s

analysis at the end of the period in build release decisions.

5.11 Project reviews

5.11.1 Formal Reviews

Given the R&D nature of the project and the agile method of development, formal reviews are

minimized. Almost all decisions are the result of informal meeting or telecons with the extended

AVM/META team.

5.11.2 Informal Reviews

Where the module interfaces with components generated by other organizations, there is an

informal design review held with all organizations affected.

The project manager or team lead will ensure all action items generated during this review

process are identified and tracked during development. The project management team is

responsible for ensuring all action items have been closed.

13

5.11.2.1 Code Walk-throughs

Because of the wide range of languages and tools for auto-generated code, the Code reviews

should be tailored based on recent experience for the languages and toolsets used. It is also

important to highlight change history and defect history for the modules in review. Eventually,

enough history in reviews will build up that bug classes will become important to consider.

5.11.2.2 Baseline Quality Reviews

This review ensures that: (1) the code has been tested and meets module specifications, except as

noted; (2) that any changes to applicable software module design documents have been

identified; (3) that appropriate validation tests have been run; (4) that the functionality of the

baseline is documented. (5) that all software design documentation complies with this plan. (6)

that tool and techniques used to produce and validate the Software Sub-System are identified and

controlled.

5.12 Test Benches

Test benches represent environment inputs and composed models connected to a range of testing

and verification tools for key performance parameters. Test benches work by composing a user

designs and executing the designs in the environment specified in the Test Bench. Tests can

range from Finite Element Analysis in the thermal and structural domain to multi-domain

analysis using the Modelica language to Manufacturing cost and lead time analysis. The major

components of a Test Bench are the workflow definition which defines which analysis tools

should be used, the top level system under test which defines the user design(s) that should be

tested, the environment inputs which are specific for each type of analysis, and the metrics of

interests which will be used to compare designs against a set of requirements for that design.

Test benches offer user the ability to rapidly compose designs for a variety of different analysis

by using one source model. The goal of this design is to allow users to create a virtual test

environment once and run numerous designs through this environment without having to

manually set-up each individual design. This also ensures that each design is subjected to the

same environment to allow for the best possible comparison of designs. Ultimately the goal is

that users spend less time setting up analysis and more time analyzing results to design the best

possible product for the requirements.

Another goal of Test Benches is to enable rapid response to changing requirements of a design.

Again instead of a user manually setting up one of a number of designs in a new environment to

assess designs against new requirements, they can modify a few parameters in the Test Bench

and begin the analysis of the designs with the updated environment in a matter of minutes instead

of days.

14

5.13 Software Configuration Management

Software configuration management is the progressive, controlled definition of the shape and

form of the software deliverables. It integrates the technical and administrative actions of

identifying, documenting, changing, controlling, and recording the functional characteristics of a

software product throughout its life cycle. It also controls changes proposed to these

characteristics. As the software product proceeds through requirements, analysis,

implementation, test, and acceptance, the identification of programs are identified in the SDP.

This assurance process occurs during the Baseline Quality Review mentioned above as its

configuration becomes progressively more definite, precise, and controlled. Software

configuration management is an integral part of the project configuration management, using the

same procedures for identification and change control that are used for documents, engineering

drawings, test verification procedures, etc.

5.14 Release Procedures and Software Configuration Management

The need for control increases proportionally to the number of individuals that use the products

of software development. As a result, different control procedures will be used depending on use.

The ISIS software configuration management process revolves around the disciplined use of two

tools: software version-control system (Subversion) and a ticket-based tracking system (JIRA).

Figure 5 presents an issue summary page from JIRA which is typically reviewed while making

work or release decisions.

All development tasks are tracked in the JIRA system. Each sprint is associated with a future

software release version, with these versions making up the milestones used within the system.

All development tasks are tracked with JIRA tickets, including new features, improvements,

refactoring, and correction of defects. Each ticket includes a “Target Version,” marked either

with an upcoming milestone or with a “backlog” tag.

All work for a given ticket typically occurs in a Subversion branch dedicated only to that task.

Once the task is completed and has passed alpha testing, the code changes are scheduled to be

merged into the relevant software release lines. These dedicated branches create a clear

definition of the changes related to a specific issue, allowing the team to reliably apply or

remove them to the correct software release versions based on changing conditions, or defer

changes to future sprints.

Branches are merged during a weekly “Merge Day”. On this day, all completed tasks are merged

to the relevant software release lines. The Subversion repository and the JIRA system are also

reviewed for inconsistencies, and are corrected if necessary.

15

Figure 5: JIRA Issue Summary page for META

5.15 Change Control

Change control for software will begin during the integration phase and must start when software

identified with a numeric release is given to someone outside of software development for use in

their work.

5.16 Problem Reporting

The Meta team tracks tasks and reports bugs internally using the previously mentioned JIRA

system. Bugs found through informal reviews and unit testing are reported by the developers in

JIRA directly.

Bugs identified through Beta testing are reported by the test community into the VehicleFORGE

(VF) ticket tracking system, depicted in Figure 6. When an issue is verified, the ISIS support

16

team creates a JIRA task based on the VF ticket. This process eliminates “bugs” related to user

error, inadequate documentation, etc.

Figure 6: Beta Testing Issue Reporting (Beta.VehicleFORGE.org)

5.17 Continuous Build

The ISIS Meta project utilizes an automated build and testing system to track our tool

development. The build and test system, Jenkins
1
, is an open source continuous integration tool.

Jenkins is written in Java and is a web-based platform. We have deployed a NUnit plugin to

enhance our testing capabilities. This process maximizes the level of working software during

our development process. Each build is triggered by a developer’s repository check-in.

1 http://jenkins-ci.org/

17

Figure 7: Jenkins interface showing the status of the Meta development branch

The Jenkins system regularly, after every source code change in our version control system,

compiles the Meta tools as they are being developed. Builds that do not compile can be

diagnosed, with fixes merged into the appropriate build. Figure 7 presents a Jenkins Status Page.

The following lists outlines the automate test battery all newly committed code will be tested

against. Note that there are several tests within each category; the number is listed in the far

right column of Table 2 below.

Builds that do not pass the test battery are not possible to merge with the main development

branch.

18

All Tests

Package Duration Fail Skip Pass Total Tests

CADTeamTest 41 sec 0 0 17 17

ComponentAndArchitectureTeamTest 3.7 sec 0 0 25 25

ComponentExporterUnitTests 29 sec 0 0 10 10

ComponentImporterUnitTests
1 min 4

sec
0 0 12 12

ComponentInterchangeTest
1 min 56

sec
0 0 47 47

ComponentLibraryManagerTest 5.6 sec 0 0 20 20

CyPhyPropagateTest 52 sec 0 0 14 14

CyberTeamTest 0.16 sec 0 0 1 1

CyberTeamTest.Projects 1.2 sec 0 0 3 3

DesignExporterUnitTests 49 sec 0 0 24 24

DesignImporterTests 4.9 sec 0 0 9 9

DesignSpaceTest 2.3 sec 0 0 5 5

DynamicsTeamTest 0.99 sec 0 0 1 1

DynamicsTeamTest.Projects
2 min 17

sec
0 0 266 266

ElaboratorTest 38 sec 0 0 59 59

MasterInterpreterTest.Projects
1 min 57

sec
0 0 214 214

MasterInterpreterTest.UnitTests 3.1 sec 0 0 6 6

ModelTest 1.1 sec 0 0 1 1

PythonTest 1 sec 0 0 1 1

Table 2: Automated Tests

http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CADTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CADTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentAndArchitectureTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentAndArchitectureTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentExporterUnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentExporterUnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentImporterUnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentImporterUnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentInterchangeTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentInterchangeTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentLibraryManagerTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ComponentLibraryManagerTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CyPhyPropagateTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CyPhyPropagateTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CyberTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CyberTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CyberTeamTest.Projects/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/CyberTeamTest.Projects/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DesignExporterUnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DesignExporterUnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DesignImporterTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DesignImporterTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DesignSpaceTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DesignSpaceTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DynamicsTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DynamicsTeamTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DynamicsTeamTest.Projects/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/DynamicsTeamTest.Projects/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ElaboratorTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ElaboratorTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/MasterInterpreterTest.Projects/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/MasterInterpreterTest.Projects/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/MasterInterpreterTest.UnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/MasterInterpreterTest.UnitTests/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ModelTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/ModelTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/PythonTest/
http://build.isis.vanderbilt.edu/job/META_ReleaseCandidate_14.08/lastCompletedBuild/testReport/PythonTest/

19

5.18 Services and Resources Provided to AVM

ISIS will configure and maintain a remote execution service to provide execution of Meta Test

Benches for the Gamma Test period and pretest period testing.

ISIS will, under this contract, manage and maintain the following items:

 Installation and configuration Meta Job Execution Server (Jenkins)

 Installation and configuration of Meta CyPhy Software installers and dependencies

 Installation and configuration of 3rd Party Software necessary for Gamma Test

 Remote Execution.

 Note the physical computational resources will be provided by ISIS. Currently 160 VM’s

and 20 physical machines have been allocated as remote processing nodes for the Gamma

period. The Meta remote processing nodes use the virtual machine environment provided

by VehicleFORGE.

 Installation and configuration Meta Job Server (Jenkins1)

 The Meta Job Server will need to be updated when the CyPhy software is updated to

reflect the proper CyPhy version numbers, etc. so that the remote jobs are routed to the

correct job servers.

 Installation and configuration of Meta CyPhy Software distributions

 The Meta CyPhy software will be updated on the dates in the schedule below as well as

any other times the Meta CyPhy software updates are released to the Gamma Test

community.

 ● November 27, 2013 Meta 13.18 Install

 ● December 10, 2013 Meta 13.19 Install

 ● January 6, 2014 Meta 14.01 Install

 ● January 13, 2014 Meta 14.01 Final Install following jury period.

 ● January 27 May 15, 2014 Gamma updates as needed.

 ● ~ March 28, 2014 Mid Gamma Content Upgrade.

 Installation and configuration of 3rd Party Software necessary for Gamma Test

20

 The third party software necessary for the Gamma Test falls in two categories:

 ● Software from AVM performers

 ● Commercial Software.

AVM Performer Software:

 ● SwRI Blast Tools**

 ● SwRI Ballistics Tools**

 ● SwRI Corrosion Tools*

 ● Ricardo Python Based Tools*

 ● PSU/iFAB Detailed Analysis tool configuration (analysis is performed on PSU

resources)

 ● iFAB Conceptual Analysis Tool*

 ● iFAB Structural Analysis Tool

 ● iFAB RAMD Analysis Tool**

 *Local Execution **Local and Remote

COTS Software:

 Creo CAD Software***

LSDYNA (Livermore Software Technology Corporation)

CTH Impact Simulation Software (Sandia National Laboratories)

OpenFOAM for CFD computations

Abaqus for FEA computation

Dymola for Dynamics computation

**Local and Remote

Remote Processing Node support plan

ISIS will be actively available to support Gamma participants during Central/Eastern time zone

business hours.

During the Gamma period, ISIS will perform assessments of the remote processing

infrastructure. If resources are judged to be insufficient, more resources will be allocated from

VehicleFORGE. Long term solutions to inefficiencies, job failures and node allocation will be

considered during these weekly assessments. In the event of job failures, the necessary remote

personnel will prioritize the resolution above other tasks to insure the fix in a timely manner.

Assessments will take place weekly on Thursdays from 2-3pm Central.

21

5.19 Software Testing

5.19.1 Unit Test

All code will be unit tested to ensure that the individual unit (class) performs the required

functions and outputs the proper results and data. Proper results are determined by using the

design limits of the calling (client) function as specified in the design specification defining the

called (server) function. Unit testing is typically white box testing and may require the use of

software stubs and symbolic debuggers. This testing helps ensure proper operation of a module

because tests are generated with knowledge of the internal workings of the module.

5.19.2 Integration Test

There are two levels of integration testing. One level is the process of testing a software

capability. During this level, each module is treated as a black box, while conflicts between

functions or classes and between software and appropriate hardware are resolved. Integration

testing requirements are shown in Attachment 2. Test cases must provide unexpected parameter

values when design documentation does not explicitly specify calling requirements for client

functions. A second level of integration testing occurs when sufficient modules have been

integrated to demonstrate a scenario or user thread.

5.19.3 Alpha Testing

Once a developer has completed a new feature, improvement, major bug fix or development

task, a package or zip of installers and documentation are wrapped. The documentation includes

a background description, user tool instructions, and any other notes. These are then sent to

multiple internal ISIS alpha testers for testing.

Alpha testers will first address the specific software update that has been implemented into the

tools using the latest installer. If the alpha tester is able to successfully complete the task, they

will notify the tester and then proceed to testing other core Meta GUI and Test Bench features. A

standard checklist is used to sign-off on the core tools by the alpha tester. This process ensures

that the new code implementation did not negatively affect other core Meta features. An example

of this checklist is seen in Figure 8.

http://acis.mit.edu/acis/sqap/sqap.r1.html#A2

22

Figure 8: Installer Acceptance Test Checklist

If an alpha tester is unable to successfully test the new feature, the tester records the issues in a

JIRA ticket and assigns it to the developer’s original ticket. The variety of issues seen can

include: software errors, documentation or instruction errors, or a new error with the core Meta

tools that was not occurring in a previous version.

Once the developer fixes the issue, the alpha tester installs the new version of the tools and re-

tests the feature and core tools using the same or updated documentation. A Meta version is not

released until two versions of the alpha-sign form is filled out below, stating successful results.

5.19.4 Beta Testing

Once there is alpha sign-off on the new tool or feature, as well as sign off on the corresponding

Meta tool version, all of the items required are prepped to be sent out for beta testing. The beta

testing process is seen in the diagram below:

23

The beta testing cycle begins with the tool installer and documentation being released and posted

to the beta community on the VehicleFORGE resource page. Once everything is posted, the

testers sent an email with a brief summary of what has been released. Also, URL link locations

are posted within the email for each of the following:

● Tool installers: Tool installers such as and updated Open Meta-CyPhy version, HuDAT,

SwRI tool, etc.

● Meta-CyPhy Release Notes: These list the latest new features, improvements, bug fixes,

or tasks that were implemented in the Open Meta-CyPhy version. Updated subversion

release notes, will be the same as the version they originated from, but will have

highlighted items indicated what is new in the subversion. For example, 14.03.2 release

notes will be the same as 14.03.1, except for the new items listed which are highlighted

on the notes.

● New tool or feature overview and user instructions: This documentation will contain

all pertinent information necessary to for testers to understand and use the tool. The

sections in this document are the purpose, procedures, installation notes, tool background,

24

requirements tested (Test Bench document), theory of operation, instructions for use,

metrics, troubleshooting, and future enhancements.

● Specific testing instructions: These instructions are written in a “task” through

VehicleFORGE’s ticket system. Tasks usually include brief background context and

instructions for testing. Tasks will sometimes be assigned to testers depending on what

needs to be tested.

Beta testers will begin the testing process by downloading and installing the tools, reading

through the tool documentation, and using the instructions on the VehicleFORGE task for

specific testing instructions. Testers will submit feedback tickets for both specific issues with the

task-at-hand, as well as general suggestions. There are several different types

5.19.5 Gamma Test

Gamma testing follows a similar flow to Beta, except the users are much less familiar with the

META approach. There is more effort expended in ensuring minimal defects are released and a

broader community is involved in deciding both what should be fixed and what should be

released [and when].

There are checklists for release readiness, release agreement, and certifications that both tools

and Test Benches function properly. The two forms shown in Figure 9 and Figure 10 were used in

the Gamma Release process.

25

Tool Functions Properly

Component Importer

Meta-Link

Component Authoring Tool

CLM Light

DESERT

Master Interpreter

PCC

Project Analyzer

Figure 9: Core CyPhy Tools Test Checklist

Test Bench Remote Local Scoring

Blast

Ballistics

Conceptual MFG

Detailed MFG

Completeness

Ergonomics

Ingress/Egress

FOV

Field of Fire

Transportability

Counting

Dynamics (Surrogate)

Figure 10: Core Test Bench Functionality Checklist

26

5.20 Meta Release Schedule

Meta releases are available for every code change; however public releases undergo a more

involved release process. External public releases follow our 4-week internal development

sprints. Below in Figure 11 is the release schedule for 2014

Figure 11: 2014 META Release Schedule

5.21 Quality Metrics

Most metrics have been mentioned before, but the following are important to characterize

maturity, complexity, maintainability and quality of the final software products:

 Total Defects

 Top 10 modules for defects

 Defect Sources

 Failure Interval

 Closure rate

 Time to closure

 Maximum time to closure

 Burndown rate

 Number of defects with closure rates longer than 4 spirals

 Defect Insertion rates

27

 Time to detect inserted defects

 Complexity Number per module

 Number of modules with Complexity greater than 10.

 Rework Size and efforts

This section lists outlines the metrics collected to assess our QA efforts. While the number

cannot capture the entire process, they are useful points of information. We have prioritized

metrics that are lightweight to collect given our tight development schedules.

Continuous Builds – Every time a developer commits code to our build server, an automated

build and test is triggered. We collect data on the numbers of successful builds across the team

and on an individual developer level.

Bugs & Bugs fixed – Our JIRA system tracks and details bugs and other issues. We are able to

assess the numbers of bugs reported, the time required to fix it, and successfully fixed bugs.

User feedback – We have a number of methods of collecting user feedback. The primary

method is VehicleFORGE tickets emerging from beta testers, FANG competitors, and other

users. These tickets can be assessed in terms of quantity, turnaround time, and by issue category.

Successful user threads – The AVM effort is organized into user threads that make up all

actions a FANG user would conduct. This organization method allows us to assess our progress

with the overall program and understand where we are being successful.

Execution of Development Plan – Our development is organized into four-week sprints with

goals outlines and tracked throughout the phase. Following a sprint, we analyze the previous

sprint's progress.

28

6 Appendix

6.1 Coding Documentation Requirements

 A high level language shall be used except when approved by SPM.

 Each method, function and class will be identified with their own comment header. The

contents of the header should identify the purpose and any assumptions the user or caller

must be aware of.

 Coding documentation will, at a minimum, describe reasons for code branching and a

description of each variable name at their point of memory allocation.

 Naming conventions shall be used that clearly distinguish literal constants, variables,

methods and class/object names. Class/object names should be nouns, methods should be

verbs. Variables shall not be re-used for different purposes, except in trivial cases such as

loop counts and indices. In addition, all names will contain at least 2 (two) characters to

facilitate global pattern searches.

 Coding complexity conventions for a Class shall be established, such as the use of the

Cyclomatic Complexity Matrix. A description of how to calculate Cyclomatic complexity

index can be found in Chap 13 of Software Engineering a Practitioners Approach by

Roger S. Pressman.; McGraw-Hill. The design will not exceed a complexity index value (

Vg) of 10, without the approval of the SPM.

 Dispatcher logic shall include a default clause, and loops shall include an escape clause

except in forever loops.

6.2 Testing Requirements

a. Unit Testing:

Environment; Specify testing environment. i.e. if and when stubs and drivers and/or other

application routines, special hardware and/or conditions are to be used.

Logic Complexity: Calculate the Cyclomatic complexity matrix index which specifies the

number of test cases required to ensure that all code is executed at least once. A description of

how to calculate Cyclomatic complexity index can be found in Chap 13 of Software Engineering

a Practitioners Approach by Roger S. Pressman, McGraw-Hill.

Boundary Analysis: Specify tests that will execute code using boundaries at n-1, n, n+1. This

includes looping instructions, while, for and tests that use LT, GT, LE, GE operators.

Error handling: Design tests that verify the recording of all detected and reportable errors that a

program is designed to find and report.

Global parameter modification: When a program modifies global variables, design tests that

verify the modification. That is; initialize the variable independent of the program, verify

memory contents, run the program, check that memory contents have been modified.

Mathematical limit checking: Design tests that use out of range values that could cause the

mathematical function to calculate erroneous results.

29

Cessation of test: Specify the conditions under which a testing session stops and a new build is

made. Regression testing is required, according to steps 2 through 6 above, of all lines of code

that have been modified.

Documentation: The documentation must show that the tests have shown that the topics in items

2 through 6 above have been addressed.

b. Integration Testing;

This type of testing addresses the issues associated with the dual problems of verification and

program construction. Integration is a systematic technique for constructing the program

structure while at the same time conducting tests to uncover errors associated with interfacing.

The objective is to take unit tested modules and build a program structure that has been dictated

by design. The following topics are addressed in the STP.

Critical module definition: Decide which classes/modules contain critical control operations.

These class/modules should be unit tested as soon as possible and not wait for subordinate

class/object completion. Use of program stubs may be necessary.

Object grouping: Decide what modules comprise an integration group by use of scenarios and

appropriate architecture diagrams. It is desirable to integrate at low levels to make bug definition

easier. Choose objects that are related to a specific function like command uplink.

Depth vs. breadth testing: Decide how to test a group of objects/classes. It is suggested that

breadth testing be used when interfacing with the hardware. Use stubs, if required, to test

dispatcher control modules. Use depth testing when a function is well defined and can be

demonstrated, e.g. and application mode like timed exposure.

Regression testing: Integration regression testing is required whenever an interface attribute has

been changed, e.g. the value of a passed parameter.

Top down vs. bottom up: Use top down testing to verify major control or decision points. Use

bottom up to test hardware driver type programs.

c. System testing:

System testing is actually a series of different tests whose primary purpose is to fully exercise the

computer-based system. Each test may have a different purpose, but all work to expose system

limitations. System testing will follow formal test procedures based on hardware, software and

science requirements as specified in the STP.

d. Validation Testing

The purpose of validation is to prove that the META software performs as specified in the User

Threads.

Validation tests/procedures will identify a testing method and pass/fail criteria.

When ranges are specified in the requirements, tests cases will include boundary values at n-1, n,

n+1 where possible.

When LT or GT limits are specified, the measured value should be recorded.

30

e. Testing Documentation:

Testing documentation must be sufficient to provide evidence that the testing objectives as stated

in the preceding sections or the STP have been met.

6.3 Inspection and Code Review Guidance

Time required: About 200 LoC can be scheduled for review in an hour. Reviews should be no

more than 90 minutes long.

Location: Free of distraction, environmentally comfortable, support for several laptops and a

projector [with screen or appropriate flat surface].

Planning for each review session should include access to user threads, code, test cases, Test

Benches, and results of the Test Benches. All previous Bugs and JIRA tickets for that module

should also be available.

 Principal engineer should provide informal notes on the changes and their expected impacts,

defects, design choices, etc.

Reviewers should include a chair with overall view of the META program, a domain specialist, a

language lawyer, and one other technical contributor in addition to the principal engineer.

The Chair and Principle engineer document the actions, changes, defects, downstream issues,

and expected results within 24 hours of the review session.

Within 2 weeks, a subset of the review teams to verify the closure of action items, defect

removal and analysis, and Test Bench results.

Attachment 4: Defect Types

As a minimum, the following defect types should be covered:

• Documentation

• Syntax

• Build, package

• Assignment

• Interface

• Checking

• Data

• Function

• System

• Environment

31

6.4 Sample Checklist

 Language

 All functions are complete

 “Includes” are complete

 Check variable and parameter

initialization

 At program initialization

 At start of every loop

 At entries

 Calls [Pointers, Parameters, use of

&]

 Names [Consistent, within

declared scope, use of “.” for

structure/class refs.]

 Strings [Identified by pointers,

terminated in NULL.]

 Pointers [Initialized NULL, only

deleted after new, always deleted

after use if new.]

 Output format [line stepping

proper, spacing proper]

 Ensure {} are proper and matched

 Logic Operators [Proper use,

proper ().]

 Line Checks [Syntax, Punctuation]

 Standards compliance?

 File Open and Close [properly

declared, opened, closed]

 Meaningful error messages

 Consistent style

 Clean style

 Computation considerations

 Unused Code

 Security Issues

 Adequacy of Comments

