Amphiprotic Species (ions or molecules)

- are found on **both** sides of the table e.g.) HSO₄
- can act as acids (donate H⁺'s) or as bases (accept H⁺'s)
- to look at an amphiprotic species as an <u>acid</u>, you must find it on the <u>left</u> side:

$$HCO_3^-$$
 is a _____ er acid than C_6H_5OH HCO_3^- is a ____ er acid than H_2O_2

- to look at an amphiprotic species as a <u>base</u>, you must find it on the <u>right</u> side: for HCO₃ as a **base**:

e.g.)
$$\stackrel{\leftarrow}{\hookrightarrow}$$
 $H^+ + Al(H_2O)_5(OH)^{2+}$ Base Strength Increases $\stackrel{\leftarrow}{\hookrightarrow}$ $H^+ + C_6H_5O_7^{3-}$

$$HCO_3^-$$
 is a _____er base than $C_6H_5O_7^{3-}$
 HCO_3^- is a ____er base than $Al(H_2O)_5(OH)^{2+}$

HSO₄ in shaded region on top right will **not** act as a base in water (Too weak of a base)

- However, it is **not** a spectator! (like NO₃ is) Why not?

(HSO₄ is also found on the left side quite a way up, it is a relatively "strong" weak acid.)

The Leveling Effect for Acids

What is
$$[H_3O^+]$$
 in 1.0 M H_3O^+ ?

What is
$$[H_3O^+]$$
 in 1.0 M HNO₃?

What is
$$[H_3O^+]$$
 in 1.0 M HCl?

Acids from HClO₄ to H₂SO₄ are 100% ionized in water

only solvent used in Chem 12 (and most Chemistry)

- so even though HClO₄ is above HCl on the chart, it is no more acidic in a water solution. Therefore the top six strong acids have been levelled.

 H_3O^+ is the <u>strongest acid</u> that can exist in an undissociated form in water solution. all stronger acids <u>ionize</u> to form H_3O^+

(NOTE: although H_2SO_4 is diprotic, the H_3O^+ produced from the second ionization is very little compared to that from the first)

1st ionization:
$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4$$

$$\uparrow \qquad \qquad \uparrow$$

$$1M(SA) \qquad 1M$$

$$2^{\text{nd}}$$
 ionization: $HSO_4^- + H_2O \iff H_3O^+ + SO_4^{2^-}$
~1M (WA)

Leveling Affects of Bases

The strongest base which can exist in high concentrations in water solution is OH The two stronger bases below it will react with water completely to form OH.

Eg)
$$O^{2-} + H_2O \rightarrow OH^- + OH^-$$
SB
Or
 $O^{2-} + H_2O \rightarrow 2OH^-$
Single Arrow

What is the final $[O^2]$ in 1.0 M Na₂O? Answer: 0 M

- <u>All</u> the O^2 will react with water to form OH

1.0M $\xrightarrow{2/1}$ > 2.0 M O^2 + H₂O \Rightarrow 2OH so $[OH^2]$ = 2.0 M

Write an equation for NH₂⁻ reacting with H₂O.

Answer:

Write out the definition of the levelling effect from page 125