Amphiprotic Species (ions or molecules)

- are found on both sides of the table e.g.) HSO_{4}^{-}
- can act as acids (donate H^{+}, s) or as bases (accept H^{+},)
- to look at an amphiprotic species as an acid, you must find it on the left side:

$\mathrm{HCO}_{3}{ }^{-}$is a \qquad er acid than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
$\mathrm{HCO}_{3}{ }^{-}$is a \qquad er acid than $\mathrm{H}_{2} \mathrm{O}_{2}$
- to look at an amphiprotic species as a base, you must find it on the right side: for HCO_{3} as a base:

$$
\begin{array}{llll}
\text { e.g. }) & \stackrel{\mathrm{H}^{+}+\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}}{\leftrightarrows} & \begin{array}{l}
\text { Base } \\
\text { Strength } \\
\leftrightarrows
\end{array} \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \leftarrow & \begin{array}{l}
\text { Increases }
\end{array} \\
& \leftrightarrows & \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{3-}
\end{array}
$$

$\mathrm{HCO}_{3}{ }^{-}$is a \qquad er base than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{3-}$
$\mathrm{HCO}_{3}{ }^{-}$is a \qquad er base than $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}$
$\mathrm{HSO}_{4}{ }^{-}$in shaded region on top right will not act as a base in water (Too weak of a base)

- However, it is not a spectator! (like $\mathrm{NO}_{3}{ }^{-}$is) Why not?
$\left(\mathrm{HSO}_{4}{ }^{-}\right.$is also found on the left side quite a way up, it is a relatively "strong" weak acid.)

The Leveling Effect for Acids

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$?
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in $1.0 \mathrm{M} \mathrm{HNO}_{3}$?
\qquad

What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$i 1.0 MHCl ?
\qquad
What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in 1.0 M HCl ? \qquad
Acids from HClO_{4} to $\mathrm{H}_{2} \mathrm{SO}_{4}$ are 100% ionized in water
only solvent used in Chem 12 (and most Chemistry)

- so even though HClO_{4} is above HCl on the chart, it is no more acidic in a water solution. Therefore the top six strong acids have been levelled.
$\mathrm{H}_{3} \mathrm{O}^{+}$is the strongest acid that can exist in an undissociated form in water solution.
all stronger acids ionize to form $\mathrm{H}_{3} \mathrm{O}^{+}$
(NOTE: although $\mathrm{H}_{2} \mathrm{SO}_{4}$ is diprotic, the $\mathrm{H}_{3} \mathrm{O}^{+}$produced from the second ionization is very little compared to that from the first)
$1^{\text {st }}$ ionization: $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$

$2^{\text {nd }}$ ionization: $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}{ }^{2-}$ ~1M (WA)

Leveling Affects of Bases

The strongest base which can exist in high concentrations in water solution is OH^{-} The two stronger bases below it will react with water completely to form $\mathrm{OH}^{\boldsymbol{-}}$.

What is the final $\left[\mathrm{O}^{2-}\right]$ in $1.0 \mathrm{M} \mathrm{Na}_{2} \mathrm{O}$?
Answer: 0 M

- All the O^{2-} will react with water to form OH^{-}
$1.0 \mathrm{M} \xrightarrow{2 / 1} 2.0 \mathrm{M}$

$$
\mathrm{O}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-} \text {so }\left[\mathrm{OH}^{-}\right]=2.0 \mathrm{M}
$$

Write an equation for NH_{2}^{-}reacting with $\mathrm{H}_{2} \mathrm{O}$.
Answer: \qquad

Write out the definition of the levelling effect from page 125

- Do Ex. 26-27 Pg. 126

