SHELLFISH PRODUCTION - DELIVERING BENEFITS "MORE WITH MOLLUSCS"

> Aad Smaal, Henrice Jansen* Wageningen University & Wageningen Marine Research

ASSG conference, Oban 30/10-01/11 2019

OUTLINE

Review Goods & Services of Molluscs

Bivalves as a framework for sustainable management by integration of functions

	Goods & Services	Beaumont et al, 2007
Provisioning	Products obtained from the Ecos	system
Supportive	Necessary for the production of ecosystem services, but do not y benefits to humans.	all other yield direct
Cultural	Non-material benefits people ob ecosystems	tain from
Regulating	Benefits obtained from the regu ecosystem processes	lation of

BACKGROUND : ECOSYSTEM G&S CONCEPT

How to include environmental impacts in decision making?

- 1920+ : environmental economics: external effects need to be internalised as cost factor. How to valorize?
- 1970+ : valorize nature: what is the price of nature?
- 1992: Convention on Biodiversity, Rio de Janeiro,
 = ecosystem approach, holistic
 = paradigm shift: from *impacts* to *ecosystem functions*
- 2003: Millennium Ecosystem Assessment: quantification
- 2009: TEEB project: The Economics of Ecosystem functions and Biodiversity: case studies
- 2019: Goods and Services of Marine Bivalves
 23 review papers + introductions

Aad Smaal - Joao G. Ferreira - Jon Grant Jens K. Petersen - Oivind Strand *Editors*

Goods and Services of Marine Bivalves

GOODS AND SERVICES OF Marine Bivalves

I - PROVISIONING:

products obtained from the bivalves

PROVISIONING: PEARLS

Pearl production and yield decreased due to overproduction of fresh water pearls from China Marine pearls have much higher value

PROVISIONING: SHELLS AS RAW MATERIAL

ISOLATION

BUILDING

ANNUAL PRODUCTION: 14 MTON = 4 MTON MEAT 10 MTON SHELL

Tremendous resource : FURTHER APPLICATIONS ?

SEED COLLECTORS; SUBSTRATE

Opportunities for:

- Circular economy
- Climate robust economy

Goods & Services					
Provisioning	Food production: aquaculture $$ Pearl production $$ Raw material: shells $$				
Supportive	Biologically mediated habitat: shellfish reefs nutrient cycling <i>Do not yield direct benefits to humans</i>				
Cultural	Cultural heritage and identity: scallop shells Cognitive benefits: sclerotology Leisure and recreation: shell collection Feel good or warm glow: decoration				
Regulating	Bioremediation of waste Gas and climate regulation: C sequestration Disturbance prevention: eco-engineering				

II SUPPORTIVE: HABITATS

Shellfish assemblages are biodiversity hotspots for sessile and mobile fauna (Creaymeersch & Jansen 2019)

Fig. 7. Diagrammatic representation of cross-sectional view of a small *Mytilus* island. Many associated animals use several micro-habitats (shell surface of *M. edulis*, space in the patch, algae, sediments, etc.). Several inhabitants, *Typosyllis adamanteus kurilensis, Perinereis cultrifera, Notoplana humilis, Collisella heroldi, Littorina brevicula, Acanthochiton rubrolineatus, Hyale grandicornis, Jassa falcata and Hemigrapsis sanguineus*, and 2 kinds of algae, *Sargassum* and *Laurencia* are shown. *Chthamalus challengeri* are seen around the island

BIODIVERSITY WILD BEDS / CULTURE PLOTS

Survey on wild mussel beds, oyster beds, and mussel culture plots; 2008 – 2010: 568 stations in 3 yrs

shellfish beds = biodiversity hot spots

SPECIES NR WILD BEDS / CULTURE PLOTS

- 84 species on <u>wild beds</u> (5 unique)
 > barnacles, sea anemone
- 102 species on mussel <u>culture plots</u> (23 unique)
 > ragworm, crab, starfish
- Salinity, spatial issues important
- Combine exploitation and nature conservation? Profit & Planet

Enhanced Production of Finfish and Large Crustaceans by Bivalve Reefs

Hancock & Ermgassen (2019)

Status Flat Oysters in Europe: Threatened

TNC REPORT 2009

		3 2 1 0				
Ecoregion	Bay	Condition	Species	References		
Adriatic Sea			O. edulis	(1-8)		
	Grado lagoon		O. edulis	(5, 7)		
	Gulf of Trieste		O. edulis	(7,9)		
	Po Delta lagoons		O. edulis	(1, 8)		
	Venezia (lagoon)		O. edulis	(2, 3)		
	Limski Kanal		O. edulis	(4)		
	Mali Ston Bay		O. edulis	(10)		
Aegean Sea			O. edulis	(11, 12)		
	Thessaloniki Bay		O. edulis	(11, 12)		
Baltic Sea		· · · ·	O. edulis	(14-16)		
Black Sea			O. edulis	(33, 34)		
Celtic Seas			O. edulis	(50-64)		
	Belfast Lough		O. edulis	(50-52, 65, 66)		
	Bertraghboy Bay		O. edulis	(52, 67)		
	Cardigan Bay		O. edulis	(50, 62, 66)		
	Carlingford Lough		O. edulis	(50-52, 65, 66)		
	Galway Bay		O. edulis	(51, 52, 68-70)		
	Kilkieran Bay		O. edulis	(51, 52, 67, 69)		
	Lough Foyle		O. edulis	(50-52, 65, 66, 68, 71)		
	Menai Strait		O. edulis	(50, 54, 62)		
	Milford Haven		O. edulis	(50, 53, 54, 62)		
	Strangford Lough		O. edulis	(51, 72, 73)		
	Swansea		O. edulis	(50, 53, 62)		
North Sea			O. edulis	(107, 108)		
	Dogger Bank English Channel		O. edulis	(50)		
	Firth of Forth		O. edulis	(50, 54, 59)		
	Rivers Crouch and Roach		O. edulis	(50, 53, 57, 58)		
	The Wash		O. edulis	(50)		
	Wadden Sea		O. edulis	(14, 15, 109-119)		

(Airoldi & Beck, 2007)

Background: History of North Sea Flat Oysters

Olsen map **1883**:

- = North Sea oyster grounds
- = Wadden Sea
- = Belgian coast
- = English channel
- **Extensive Flat Oyster stocks**

have occurred

New offshore area's Multi-use of space **Potential for restoration** Enhance biodiversity If successful: harvest potential?

SUPPORTIVE: NUTRIENT CYCLING

- biofiltration and biodeposition by bivalves
- stimulates nutrient regeneration and phytoplankton turnover
- motor in nutrient cycle
- *feedbacks* by the filter feeders

Goods & Services						
Provisioning	Food production: aquaculture $$ Pearl production $$ Raw material: shells $$					
Supportive	Biologically mediated habitat: shellfish reefs \checkmark nutrient cycling \checkmark					
Cultural	Cultural heritage and identity: scallop shells Cognitive benefits: sclerotology Leisure and recreation: shell collection Feel good or warm glow: decoration Non-material benefits					
Regulating	Bioremediation of waste Gas and climate regulation: C sequestration Disturbance prevention: eco-engineering					

CULTURAL SERVICES

Mythical: Venus Goddess of love

Religious La Toja San Sebastian church Pilgrims carry Scallop Shells

Golden ages "Eat oysters Love longer"

SCIENCE and EDUCATION

Shells as Archives

Archeology: record of human food habits and resources management

Sclerochronology: history traits and reconstruction of environmental and climatic changes through space and time

Education

Shellfish restoration: Many projects in the US

Involves schools, local communities

In Europe flat oyster restoration initiated by WWF (NGO)

RECREATION & LEISURE

- Collecting shells
- Sea gardening
 - Community issue
 - Experience in Denmark

	Goods & Services
Provisioning	Food production: aquaculture Pearl production Raw material: shells
Supportive	Biologically mediated habitat: shellfish reefs nutrient cycling
Cultural	Cultural heritage and identity: scallop shells Cognitive benefits: sclerotology Leisure and recreation: shell collection Feel good or warm glow: decoration
Regulating	Bioremediation of waste Gas and climate regulation: C sequestration Disturbance prevention: eco-engineering Climate robust management, Blue-green solutions, circular economy
WAGENINGEN UNIVERSITY & RESEARCH	

REGULATING: BIOFILTRATION

Mitigate turbidity; Mitigate eutrophication

Biofiltration: reduction of turbidity due to dredging

Fine sediment remains in suspension

until quiescent water is encountered

Far-field Plume

Hours

Essentially passive plume

BIOREMEDIATION: diffuse N&P sources

- Nutrient extraction through harvest
- Denitrification
- Enhance transparency
- Nutrient regeneration

To be considered: How effective is it Where to locate What to do with the product

INTEGRATED MULTITROPHIC AQUACULTURE IMTA

BIVALVE CARBON SEQUESTRATION

Bivalve shell formation involves :

Respiration: $CH_2O + O_2 \rightarrow CO_2 + H_2O$ Biogenic calcification: $Ca^{2+} + 2HCO_3^- \leftrightarrow CaCO_3 + CO_2 + H_2O$

C Sequestration: CaCO3 formation

DEBATE: WHAT IS NET EFFECT ON C BUDGET ?

Filgueira et al., 2015

CARBON SEQUESTRATION

Table 1. Carbon fluxes in different bivalve species: sequestration (carbon content in the shell), biocalcification (carbon released during biogenic calcification), respiration (carbon released through respiration of organic matter), balance (sequestration minus biocalcification and respiration), ratio balance/sequestration, and bibliographic references.

Species (Habitat)	Sequestration gC m ⁻² y ⁻¹	Biocalcification gC m ⁻² y ⁻¹	Respiration gC m ⁻² y ⁻¹	Balance gC m ⁻² y ⁻¹	Balance/ Sequestration	Reference
Potamocorbula amurensis	23.9ª	18.0	37.0	-31.1	-1.30	Chavaud et al. 2003
Mytilus edulis (sheltered)	3.8	2.3ª	1.9	-0.4	-0.09	Hily et al. 2013
Mytilus edulis (semiexposed)	129.2	77.4*	44.3	7.6	0.06	Hily et al. 2013
Mytilus edulis (exposed)	45.0	27.0ª	19.6	-1.6	-0.03	Hily et al. 2013
Crassotrea gigas (sheltered)	286.8	172.0ª	11.9	103.0	0.36	Hily et al. 2013
Crassostrea gigas	15.5ª	11.1	32.7	-28.3	-1.83	Lejart et al. 2012
Chlamys farreri	78.1	54.0	71.7	-47.6	-0.61	Jiang et al. 2014
Ruditapes philippinarum	98.2	66.7	272.4	-241.0	-2.45	Mistri & Munari 2012
Arculata senhousia	46.0	11.7	50.4	-16.1	-0.35	Mistri & Munari 2013
Mytilus galloprovincialis	1639.2	1041.6	2253.6	-1656.0	-1.01	Munari et al. 2013

shell dissolution is included in this term

Most studies: no net sequestration through bivalves

CARBON SEQUESTRATION of bivalve culture

Filgueira et al (2015) :

- Bivalves are culture for consumption, not as C sink
- Meat and shell formation to be considered separate
- Respiration for shell formation 10 % of C intake

Results: effective net C sequestration

		Biocalcificati				
Species (Habitat)	Sequestration	on	Respiration	Balance	Balance/	Reference
	$gC m^{-2}y^{-1}$	$gC m^{-2}y^{-1}$	$gC m^{-2}y^{-1}$	$gC m^{-2}y^{-1}$	Sequestration	
Potamocorbula amurensis	23.9	18.0	3.7	2.2	0.09	Chavaud et al. 2003
Crassostrea gigas	15.5	11.1	3.3	1.1	0.07	Lejart et al. 2012
Chlamys farreri	78.1	54.0	7.2	16.9	0.22	Jiang et al. 2014
Ruditapes philippinarum	98.2	66.7	27.2	4.2	0.04	Mistri & Munari 2012
Arculata senhousia	46.0	11.7	5.0	29.3	0.64	Mistri & Munari 2013
Mytilus galloprovincialis	1639.2	1041.6	225.4	372.2	0.23	Munari et al. 2013

Significant biogenic carbonate masses

brenda.walles@nioz.n

Pictures from http://projects.tnc.org/coastal/

BUILDING WITH NATURE

Hard barriers => Soft transition zones

Oyster reefs in the Eastern Scheldt:

Form structures
Collect sediment
Dampen waves
Form habitat

Consumer-resource interactions are affected by reefs far beyond the boundaries of the reefs

Distribution of sediment organic matter content in relation to the distribution of oystercatchers. Black dots represent the positions of the birds. Zee *et al.* 2012

High densities of cockles coastward of a mussel bed in the intertidal flats of Schiermonnikoog, The Netherlands. Donadi *et al.* 2013

IN CONCLUSION

Sediments

THIS SETS AN AGENDA FOR

- AN INTEGRATED APPROACH
- BASED ON CASE STUDIES
- DEVELOPMENT OF TOOLS AND MODELS FOR <u>QUANTIFICATION</u>

PERSPECTIVES: find synergies

Combination of services: WHY?

- To provide food for the growing world population, low food chain aquaculture is a must
- Given the worldwide loss of bivalve beds and reefs, shellfish restoration is a must as well
- Climate change and sea-level rise ask for eco-engineered solutions, shellfish reefs: urgent
- Bioremediation of nutrient input through bio-accumulation in bivalves is needed for diffuse nutrient sources control: need

These applications will profit from an integrated approach, as they all require space, technology and social acceptance

FURTHER READING:

Aad Smaal · Joao G. Ferreira · Jon Grant Jens K. Petersen · Oivind Strand Editors

Goods and Services of Marine Bivalves

Goods and Services of Marine Bivalves 595 p

Available online for Free / Hard copies:

D Springer Open

www.springer.com

A global review of the ecosystem services provided by bivalve aquaculture

Andrew van der Schatte Olivier¹, Laurence Jones², Lewis Le Vay¹, Michael Christie³, James Wilson⁴ and Shelagh K. Malham¹

- 1 School of Ocean Sciences, Bangor University, Menai Bridge, UK
- 2 Centre for Ecology and Hydrology, Bangor, UK
- 3 Aberystwyth Business School, Aberystwyth University, Aberystwyth, UK
- 4 Deepdock Ltd, Bangor, UK

Schelpdier conferentie

16 + 17 januari 2020

6TH INTERNATIONAL SHELLFISH CONFERENCE

THE NETHERLANDS

JANUARY 16 AND 17, 2020

WWW.SCHELPDJERCONFERENTIECOM

© 2006 Europa Technologies Image © 2006 TerraMetrics Image © 2006 NASA

Pointer 52*10'55.58" N 0*05'19.39" E

Streaming |||||||| 100%

Eye alt 3893.81 mi

Thank you

