Renewable and Waste-Heat Utilisation Technologies

Understand the science and engineering behind conventional and renewable heat loss recovery techniques with this thorough reference guide. This book provides you with the knowledge and tools necessary to assess the potential waste-heat recovery opportunities that exist within various industries and select the most suitable technology. In particular, technologies that convert waste heat into electricity, cooling or hightemperature heating are discussed in detail, alongside more conventional technologies that directly or indirectly recirculate heat back into the production process. Essential reading for professionals in chemical, manufacturing, mechanical and processing engineering who have an interest in energy conservation and waste-heat recovery.

Nareshkumar B. Handagama is a chemical engineer with more than 35 years of research and development and industrial experience in some of the world's largest public and private utilities, chemical and petrochemical companies. Currently, he is the chief operating officer at Sri Lanka Nano and Advanced Technology Centre (SLINTEC). He is a licensed professional engineer (PE) in the USA, and a chartered engineer in the United Kingdom, a Fellow of the American Institute of Chemical Engineers (FAIChE) and a fellow of the Institution of Chemical Engineering (FIChemE, London, UK).

Martin T. White is a senior lecturer in Mechanical Engineering and member of the Thermo-Fluid Mechanics Research Centre at the University of Sussex.

Paul Sapin is a post-doctoral research associate and a leader of the Energy Division in the Clean Energy Processes (CEP) Laboratory at Imperial College London.

Christos N. Markides is a professor of Clean Energy Technologies at Imperial College London where he leads the Clean Energy Processes (CEP) Laboratory and coordinates the Experimental Multiphase Flow (EMF) Laboratory. He is also a co-founder and director of the recent spin-out company Solar Flow.

Renewable and Waste-Heat Utilisation Technologies

Thermal Energy Recovery, Conversion, Upgrading and Storage

NARESHKUMAR B. HANDAGAMA Sri Lanka Institute of Nanotechnology

MARTIN T. WHITE University of Sussex

PAUL SAPIN Imperial College London

CHRISTOS N. MARKIDES

Imperial College London

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781108480772 DOI: 10.1017/9781108691093

© Nareshkumar B. Handagama, Martin T. White, Paul Sapin and Christos N. Markides 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-48077-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Acronyms		<i>page</i> vii
1	Intro	1	
	1.1	Heat Engines	2
	1.2	Heat Pumps and Chillers	3
	1.3	Classification of Heat	4
	1.4	Importance of Low- and Medium-Temperature Heat	6
	1.5	Objective and Structure of This Book	7
2	Heat	9	
	2.1	Fundamental Thermodynamics	9
	2.2	Heat-Exchanger Fundamentals	20
	2.3	Plant Audit	25
3	Heat	27	
	3.1	Overview of Technologies	27
	3.2	Heat Engines	28
	3.3	Heat Pumps and Chillers	38
	3.4	Novel Technologies and Future Developments	44
	3.5	Summary and Focus of This Book	44
4	Technology-Agnostic Modelling		46
	4.1	Heat Engines	46
	4.2	Heat-Upgrade Heat Pumps	60
	4.3	Absorption Chillers	66
	4.4	Summary	73
5	Ranl	75	
	5.1	Thermodynamic Modelling of the Rankine Cycle	75
	5.2	Working-Fluid Selection	83
	5.3	Performance Evaluation of a Rankine Cycle	85
	5.4	System Components	100
	5.5	Advanced Optimisation and System Design	114
	5.6	Summary	122

vi	Cont	ents	
6	Heat Pumps and Chillers		
	6.1	Introduction	123
	6.2	Working Principle and Performance Indicators	124
	6.3	Thermodynamic Modelling	126
	6.4	Working-Fluid Selection	137
	6.5	Performance of Heat Pumps and Chillers	141
	6.6	System Components	145
	6.7	Summary	149
7	Application of Heat Conversion and Upgrading Technologies		151
	7.1	Iron and Steel	151
	7.2	Aluminium Manufacture	155
	7.3	Chemical Industry	158
	7.4	Food Manufacturing Industry	162
	7.5	Engine Waste-Heat Recovery	162
	7.6	Renewable Heat Sources	164
	7.7	Summary and Conclusions	167
8	Thermal Energy Storage		169
	8.1	Selection and Design of a Thermal Energy Storage System	170
	8.2	Sensible Heat Storage	174
	8.3	Latent Heat Storage	177
	8.4	Chemical Thermal Energy Storage	180
	8.5	Thermodynamic Modelling	181
	8.6	Summary	193
Appendix:	ix: Commercial Systems		195
	References		196
	Index		206

Acronyms

Roman Symbols	
A	heat-transfer area, m ²
с	velocity, m/s
c_p	specific-heat capacity, J/(kg K)
$\overset{P}{C}$	cost, \$
C_0	total investment cost, \$
C _c	cost of electricity, \$/kWh
C _g	cost of natural gas, \$/kWh
$C_{0\&m}$	operation and maintenance costs, \$/kWh
$d_{\rm h}$	hydraulic diameter, m
D	diameter, m
D_8	specific diameter
\mathcal{D}	thermal diffusivity, m ² /s
e_{th}	thermal effusivity, $J/m^2/s^{1/2}/K$
f	friction factor
F	Martinelli parameter
g	acceleration due to gravity, m/s ²
h	enthalpy, J/kg
k	thermal conductivity, W/(m K)
L	length, m
LCOE	levelised cost of electricity, \$/kWh
т	mass, kg
<i>m</i>	mass-flow rate, kg/s
n	operating hours per annum
Ns	specific speed
Nu	Nusselt number
NPV	net-present value, \$
Р	pressure, Pa
ΔP	pressure drop, Pa
$P_{\rm r}$	reduced pressure
PB	payback period, years
PP	heat-exchanger pinch point, K
Pr	Prandtl number

viii	Acronyms	
	q	heat transfer per unit mass, J/kg, vapour quality
	$\stackrel{Q}{\dot{Q}}$	heat transfer, J
	Q	heat-transfer rate, J/s, volumetric flow rate m ³ /s
	r	discount rate, %
	Re	Reynolds number
	S	entropy, J/(kg K)
	S	annual savings, \$
	SIC	specific investment cost, \$/kW
	t	time/year
	T	temperature, K
	$\Delta T_{ m k}$	endo-reversible heat-pump temperature difference, K
	ΔT_{\log}	log-mean temperature difference, K
	$\Delta T_{ m sh}$	amount of superheat K
	w	specific work, J/kg
	W	work, J
	\dot{W}	power, W
	U	internal energy, J, overall heat-transfer coefficient W/(m ² K)
	x	fluid composition
	X	exergy, J
	Ż	exergy rate, J/s
	Ζ	height, m
	Greek Symbols	
	α	heat-capacity ratio, heat-transfer coefficient, W/(m ² K)
	eta	heat-conductance ratio
	ε	heat-exchanger effectiveness
	η	thermal efficiency/isentropic efficiency
	θ	non-dimensional heat source temperature drop
	μ	dynamic viscosity, Pa s
	ρ	density, kg/m ³
	ϕ	coefficient of performance (power-driven)
	ψ	coefficient of performance (heat-driven)
	ω	rotational speed, rad/s
	Subscripts	
	0	dead state
	с	cold
	ch	chiller
	ci	cold-fluid inlet
	ср	cold-fluid pinch
	co	cold-fluid inlet
	cr	critical point
	e	expander
	ev	evaporator
	h	hot

Acronyms

іх

hi	hot-fluid inlet
hp	hot-fluid pinch, heat pump
ho	hot-fluid outlet
i	inner
1	saturated liquid
min	minimum
max	maximum
n	net
0	outer
р	pump
ph	preheat
S	conditions after isentropic expansion
sh	superheater
V	saturated vapour
wf	working fluid
/	saturation conditions