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Abstract: A public ledger is used by Bitcoin, a digital currency, to keep track of transactions. The 

owner of the Bitcoin keeps their identity secret and is identified only by their unique address. This 

indicates that because Bitcoin offers anonymity, it may be utilized for illicit purposes on a regular 

basis. This study presents a supervised machine learning approach for predicting anonymous user 

activities on the Bitcoin Blockchain. As a training dataset to facilitate the user activities 

classification, we created a labelled dataset with over 4 million samples from exchanges, gambling, 

pools, and services whose identities and types were disclosed. The primary goal is to classify 

transactions on the blockchain in order to deanonymize them and distinguish between legitimate 

and illegitimate ones. On the class imbalanced dataset, we obtained impressive cross-validation 

(CV) accuracy using the Gradient Boosting, Random Forest,  and eXtreme Gradient Boosting with 

default parameters and hyperparameters. Using Random Forest helped achieve the best cross-

validation accuracy on default parameters and hyperparameters obtained using grid search on the 

class-balanced dataset using the Synthetic Minority Oversampling Technique, while Bagging and 

eXtreme Gradient Boosting were used on hyperparameters obtained using randomized search. 

Empirical results show that the recommended model is up to 98% accurate. 

Keywords:  Blockchain, supervised machine learning, ensemble learning, hyperparameter tuning, 

randomized search, grid search. 

1 Introduction  

Cryptocurrency, digital payments, contactless payments, and e-commerce have become more popular as 

a result of the COVID-19 crisis. Cryptocurrencies such as Bitcoin, Tether, Ethereum, Dogecoin, etc. tend 

to be digital assets that offer secure and verified transactions and the creation of new assets through the 

use of a decentralised control system and encryption [1]. The cryptocurrency known as Bitcoin first came 

to light in 2008 [2], [3]. Due to their distinctive features, such as the lack of centralised control, guarantee 

against ambiguity, and substantial level of anonymity, cryptocurrencies at large and specifically Bitcoin, 

have recently attracted greater interest from scientists from diversified disciplines of academia [4], [5] 

as well as practitioners. Bitcoin has been stated to be the perfect payment mechanism for illegitimate 

activities because of its comparatively high degree of anonymity. A well-known illustration in this 

context is the closure of the illicit drug marketplace Silk Road [6]. In addition, several publications [7], 

[8] allege that Bitcoin has previously been used for ransomware, theft, scams, and the funding of 

terrorism. Financial regulators, law enforcement organisations, intelligence agencies, and businesses that 

use the Bitcoin blockchain for transactions have developed a watchful eye towards technical 

advancements, business challenges, and social acceptance of Bitcoin [4], [9]. This research seeks to offer 

an enhanced comprehension of the diverse Bitcoin transactions in order to more effectively educate 

administrative and institutional factors connected to regulatory and compliance with laws. We achieve 

this by utilizing supervised machine learning's potential to de-anonymize the Bitcoin ecosystem in order 

to assist in the identification of high-risk counterparties and likely cybercriminal activities [10]. Legal 

constraints (such as those related to safeguarding against money laundering protocols) or reputational 

risk considerations may result in adverse outcomes for organizations when they communicate with 

counterparties who pose a high risk on the Bitcoin network. Governments face a significant challenge 

when it comes to the illegitimate adoption of Bitcoin for cybercrime, terrorism financing, and money 

laundering. In such circumstances, disclosing the true identities of the people in question would be 

ethically acceptable and permitted by law, but it could prove technically difficult, according to a common 
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misconception about how resilient anonymity is in the Bitcoin ecosystem. Nevertheless, earlier studies 

[11], [12] have proven that it is possible to classify Bitcoin addresses based on user activities and connect 

these classes to real-world individuals. The widely held belief that the identities of users and hence their 

addresses are secured when using Bitcoin is refuted by these results of research.  Here, we refer entities 

by Bitcoin user addresses. In this work, we have examined the blockchain’s transactions & 

deanonymized them using supervised ML approaches. 

1.1 Motivation 

The primary intent of this research is to enhance transparency in the Blockchain ecosystem and 

encourage consumers to accept Bitcoin as a legitimate mode of payment. This research will contribute 

towards economic growth without resorting to illegal tactics. The results will also be useful to lawmakers 

seeking data-driven sources for projections of the Bitcoin landscape, enterprises seeking compliance and 

effective risk evaluation of Bitcoin transactions, and law enforcement agencies looking to analyze and 

investigate Bitcoin addresses associated with illegal activities. Additionally, this study may assist in 

identifying illicit user addresses by linking such addresses to suspicious activities. 

1.2 Contribution 

The goal of the research is to use supervised ML clasiifiers to achieve deanonymization of 

blockchain transactions. The noteworthy additions to this work are as follows: 

 

▪ Scrapping the dataset samples from various repositories, preparing labelled dataset samples, 
cleaning them, and then normalizing them. 

▪ Resolve class imbalance problem using SMOTE and Weighted Mean (via, Weight of the User 
Activities). 

▪ Assessing the percentage of illegitimate and legitimate transactions in the Bitcoin 
Blockchain. 

▪ Optimize the classification accuracy by utilizing hyperparameters. 
▪ Use supervised machine learning techniques to deanonymize Bitcoin transactions. 

1.3 Organisation of the Paper 

The remainder of this paper is structured as follows: There is related work in Section 2. Section 3 

presents a formulation of the problem. Section 4 deals with the preliminaries for the proposed work. The 

proposed framework is presented in Section 5, and the analysis and results are presented in Section 6. In 

Section 7, the conclusion and the future scope are presented. 

2 Related Work 

This section provides a literature review of numerous approaches. In relation to current research into 

deanonymizing blockchain transactions in the broader context of cryptocurrencies, we will assess the 

state of the art at the moment. Starting with a quick assessment of related studies from the perspective 

of information systems, we’ll go on to a summary of various legal groups’ efforts to establish a regulatory 

framework for cryptocurrencies. We will also briefly outline the most recent advancements in de-

anonymizing cryptocurrency entities. 
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2.1 Information Systems & Cyber Threat Intelligence 

The current research that is pertinent to our work can be separated into two groups from the 

viewpoint of Information Systems (IS). The first section is empirical and relates to Cyber Threat 

Intelligence, and covers the literature that has been published on the subject; the second is conceptual 

and presents the literature in the context of Blockchain and Cryptocurrencies.  

The studies on anonymity, identifying dishonest traders, identifying cybercrime activities, and 

identifying financial fraud in relation to electronic markets and commerce channels are reviewed in [12], 

[13], [14]. A meta-learning framework that improved financial fraud detection is presented in [15] using 

a design science approach. [16] established the Writeprint technique for identifying anonymous traders, 

and they proposed the use of stylometric analysis to detect traders on the internet based on the writing 

style traces present in the posted feedback comments. With the goal of discovering possible long-term 

and important members, Benjamin et al. [13] suggested using a computational method to analyse the 

Internet relay chat (IRC) groups of cybercriminals. To examine IRC participation by hackers and better 

understand the key behaviours they display, the authors applied the extended Cox model. By utilising an 

automated and ethical web, data, and text mining approach for gathering and analysing massive volumes 

of dangerous hacker tools from significant, global underground hacker networks, Samtani et al. [14] 

made a significant contribution to the development of a cyber threat intelligence framework. The authors 

discovered numerous openly accessible harmful elements employing this framework, including 

keyloggers, crypters, web attacks, and database attacks. Recent breaches against companies like the 

Office of Personnel Management may have been brought on by some of these technologies. Abbasi et 

al. [16] suggested a novel method for identifying phishing websites employing a design science 

approach. The suggested genre tree kernel technique uses fraud cues connected to differences in intent 

between genuine and phishing websites, displayed via genre composition and design structure, leading 

to increased anti-phishing capabilities through the use of a genre theoretic perspective. Several tests were 

run on a testbed made up of numerous genuine and phishing websites in order to assess the genre tree 

kernel approach. Abbasi et al. [17] suggested the establishment of a new class of statistical learning 

theory-based fraudulent website identification systems in response to these shortcomings. They created 

a prototype system to show the potential utility of this class of technologies using a design-science 

approach. On a test bed of 900 websites, the authors ran a number of trials evaluating the suggested 

approach against several other fake website identification techniques. 

  

2.2 Blockchain and Cryptocurrencies 

The research regarding blockchain-based technologies has been carried out by Beck et al. [15], who 

predicted that in the near future, distributed ledger technology would be made available to organizations, 

enabling them to adopt solutions. These technologies will make it easier for decentralized autonomous 

organizations to emerge because they will allow organizations to manage contracts and transactions 

independently of one another without the need for separate legal bodies [18].  

Without having to provide their personal information, end users may generate pseudo-anonymous 

financial transactions using Bitcoin. This is accomplished by creating a user-generated pseudonym, often 

known as an “address”. On the one hand, users who respect their privacy were drawn to the seeming 

anonymity and convenience of setting up pseudo-anonymous financial transactions; on the other hand, 

hackers who wish to exploit it for ransomware and other illicit activities were drawn to it as well [19]. 

This study showed that mapping Bitcoin addresses to IP data allows for the identification of the address 

owners through real-time transaction relay traffic tracking. By simulating user actions and transactions 

on the Bitcoin Blockchain, simulation experiments were used to analyse the privacy guarantees of the 

cryptocurrency and reveal that, even when users take the privacy precautions that Bitcoin recommends, 

it is still possible to discover almost 40% of users' profiles [20]. Numerous researchers also 

emphasized the shortcomings of the Bitcoin Blockchain and looked forward to a few of the alternative 

cryptocurrencies in addition to ideas for enhancements and/or brand-new approaches to provide users 

with anonymity. A protocol allowing anonymous transactions in Bitcoin and other cryptocurrencies and 

depends on technology widely used by mixing services has been disclosed by some of the research's in-

depth examinations of Bitcoin's technological workings. These analyses highlighted technical faults in 

the system and offered suggestions for how to repair them. [21].  A noteworthy scientific effort in this 



4  

field is the development of Zerocash, a Bitcoin substitute with zero-knowledge proofs, and other ZKP 

uses for IMoT [22], as well as theoretically feasible privacy-enhancing overlays for Bitcoin [23].  

Existing literature has very few studies of anonymity attacks on blockchain transactions. An ML-

based approach to attacking blockchain bitcoin transactions is addressed in [24]. The authors employed 

an entity characterization strategy to challenge Bitcoin anonymity using an ML model with a suitable 

number of input attributes that were directly extracted from Bitcoin blockchain data, such as entity and 

address data, as well as developed via first motif and second motif principles. For several crucial Bitcoin 

entity classes, this model showed remarkable categorization results. 

By utilising supervised ML to forecast the characteristics of as-yet-unidentified entities, Harlev et 

al. [25] developed a way to decrease the anonymity of the Bitcoin blockchain. They developed classifiers 

that could distinguish between ten categories using a training set of 434 entities (with 200 million 

transactions) whose identity and kind had been made public. Their main finding was an estimation of the 

type of unknown creature. 

In the Bitcoin blockchain dataset, authors [26] performed the classification and prediction of the 

proportion of user activities that are lawful and unlawful. Approximately 27 billion samples, separated 

into nine user behaviours, five of which were unlawful while the other four were lawful, made up the 

dataset. To predict CV accuracy, the authors employed ensemble learning. Hyperparameter tuning was 

done to determine the ideal parameters for the most effective classification and prediction, which helped 

to increase the cross-validation accuracy. The classification of Ethereum blockchain addresses [27] using 

supervised machine learning models, encompassing linear, non-linear, and ensemble learning models 

that take into account non-malicious and non-malicious activities. The outcomes also demonstrate that 

it is easy to identify malicious users' Ethereum blockchain addresses. However, accuracy and efficiency 

are issues with ML-based approaches to deanonymizing blockchain transactions. 

3. Problem Formulation 

Significant challenges arise due to the illegitimate utilization of Bitcoin for cybercrime, terror 

funding, etc. A widely believed notion regarding the resilience of anonymity in the Bitcoin ecosystem 

states that while it would be ethically and legally right to publicly disclose the identities of the 

participants in these circumstances, nevertheless might be practically impossible. Additionally, the great 

majority of clusters across the Bitcoin Blockchain are still unclassified. Hence, it's required to classify 

and deanonymize the Bitcoin addresses used in illegitimate transactions based on user activities. 

4. Preliminaries   

This section outlines the primary concepts that motivate our research on utilising supervised ML to 

deanonymize the transaction carried out using the Bitcoin blockchain. In the context of decentralised 

networks like blockchain, we first provide fundamental principles and a brief discussion on the 

anonymity and deanonymity of blockchain transactions. We first briefly explore the fundamental 

concepts underlying blockchain technologies. Lastly, the fundamental principles behind the numerous 

supervised ML techniques used in this study will be covered. 

4.1 Anonymity 

Anonymity is a feature that has probably been crucial to the widespread adoption of 

cryptocurrencies. The ability for users to generate a limitless number of anonymous Bitcoin addresses 

for use in their Bitcoin transactions provides the foundation for anonymity on the Bitcoin network. The 

Bitcoin ecosystem is under surveillance, and the adversary can have access to the transactions coming 

from that address or its pseudonym. The Bitcoin ecosystem is an anonymity zone ℬ.  
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The level of anonymity of a transaction is the inability of the adversary to pinpoint the source address 

of the transaction 𝒯 (the anonymity set).  

This anonymity set 𝒯 ⊆  𝒯𝑡𝑜𝑡𝑎𝑙   with 𝒯𝑡𝑜𝑡𝑎𝑙 being the total number of transactions in ℬ. The entropy 

of the anonymity set is the measure of the anonymity of a transaction in the set. 

If all the addresses can be the source of transactions with equal probability, then the probability 𝑝𝑖 that 

the address 𝔸𝑖 under observation is the target, 

  𝑝𝑖   = 𝑃𝑟  (𝔸𝑖 = 𝔸), ∀ 𝑖 ∈  ℬ i and  ∑ 𝑝𝑖 
The entropy [28], [29] of the distribution of the anonymity set is: 

𝐻(𝑝) = − ∑ 𝑝𝑖 log2 𝑝𝑖 
For a transaction to be completely anonymous, all addresses involved should have an equal chance of 

being identified as the source. This means that the probability of any specific address, 𝔸𝑖, being the 

source should be the same, represented by the variable 𝑝𝑖 𝑝𝑖 =  1𝔸  

 Following the definition of the level of anonymity given by Wu and Bertino [30], we have 

𝔸𝑖 = 1 − 1 |𝔸|⁄  

With entropy 𝐻(𝑝) = − log2 𝔸  

In the context of the Internet and electronic communication, Froomkin [31], [32] proposed traceable 

anonymity, untraceable anonymity, traceable pseudonymity, and untraceable pseudonymity as the four 

unique kinds of anonymity/pseudonymity that may be used.  

Blockchain transaction deanonymity may also be referred to as traceable anonymity. When 

information is conveyed via traceable anonymity, the sender's identity is hidden from the recipient. The 

sender’s information is only accessible to the agent or system acting as the communication’s 
intermediary.   

4.2 Supervised Machine Learning 

The labelled dataset has been subjected to supervised ML techniques in order to identify patterns in the 

Bitcoin transaction data. This section provides a basic introduction to the numerous algorithms employed 

in our method as well as a brief explanation of the main notion underlying the machine learning 

algorithm. In the statistical literature, responsive variables—often referred to as outcomes or targets—
are computed to fit a prediction model, and the underlying function that describes the relationship 

between explanatory variables—often referred to as predictors—is computed to fit a prediction 

model[33].  Consider that there are n number of training examples(as shown in(1)): 

 

(x1, x2,x3, . . . xn)     -----   1 

 

where x represents the feature vector, xi for each individual feature component, and y stands for the 

responsive variable. The algorithm used in supervised ML seeks a function in which the input is x while 

the output is y. A multi-class classification issue, which is what the learning problem at hand 

recommends, can categorize Bitcoin user addresses in accordance with the actions of four different 

classes. This function(2) can be represented as[34]: 

 𝑦 = 𝑓(𝑥) + ⅇ   ----2 
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In the unlabelled dataset, supervised ML techniques are highly effective at discovering patterns and 

making predictions about categories that have not yet been assigned labels [34]. In this study, we 

employed supervised ML techniques to predict a subject's category. Using this method, we also wish to 

determine the scope of unethical and cybercriminal activities within the Bitcoin blockchain ecosystem. 

 

4.3 Blockchain Transactions  

 

In the Bitcoin system, transactions amongst Bitcoin accounts are used to make payments. The 

movement of bitcoin from source addresses to destination addresses is indicated by a transaction. In a 

transaction, source addresses are called input addresses, while destination addresses are called output 

addresses. There can be one or more input addresses and one or more output addresses in a single 

transaction. For every input address, a transaction specifies how much bitcoin is to be transferred exactly. 

The output addresses, which show the total quantity of bitcoins that would be transferred to each account, 

are equivalent in this regard. The sum of the input addresses (the money's source) must be larger than or 

equal to the sum of the output addresses (the money's destination) in order for consistency.  Additionally, 

the Bitcoin protocol mandates that input addresses must spend the exact amount of a prior received 

transaction; as a result, any input address can unmistakably identify the transaction index in which the 

bitcoins were received while participating in a transaction. In order to establish his legitimacy as the 

account owner, the owner of the input addresses should lastly use his private keys to execute a digital 

signature[35]. This paper presents a concrete instance of employing supervised learning for the 

deanonymization of blockchain transactions. 

5   Proposed Framework 

This section presents the proposed supervised machine learning framework for the classification and 

deanonymization of blockchain transaction. The proposed framework comprises data collection & 

preparation, data preprocessing, class balancing, obtaining hyperparameters using randomized search 

and grid search, classification using default parameters and hyperparameters, and result analysis for 

finding the best model for classification and deanonymization as shown in Fig. 1. 

 
Fig. 1 Proposed Framework for Classification and Deanonymization 
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The methodology, which illustrates how each phase of the proposed framework progress, is displayed in 

Fig.2.

 
Fig. 2 Progression of Proposed Framework 

 

5.1  Data Collection, Preparation and Preprocessing 

 

The process of data collection, preparation and preprocessing to obtain the processed dataset samples 

ready for training and validation is depicted in Fig 3. 

 

Data Collection: The dataset employed for the research has been collected from the Blockchair  [36] 

and WalletExplorer[37]. repositories  Blockchair is a blockchain explorer that serves as a search engine 

for numerous different blockchains, such as Bitcoin, Ethereum, Litecoin, Ripple, etc. In addition to 

carrying out exhaustive searches on the blockchains, one can also filter and arrange blocks, transactions, 

and data within them using a variety of other parameters. There are a total of 22 features in every 

transaction obtained from this repository. Some of them are transaction hash, block_id, timestamp, size, 

weight, version, fee_used, etc. WalletExplorer is a Bitcoin blockchain explorer that offers an easy way 

to view public blockchain data, i.e., Bitcoin transactions corresponding to wallets. This repository 

provides sample datasets of the wallets mapped to the transactions for exchanges, pools, services, and 

gambling. It has a total of 7 features, and some of them are transaction hash, timestamp, received amount, 

wallet address of the sender, sent amount, wallet address of the receiver, and wallet balance.  

 

Data Preparation: In this phase, we have prepared the dataset with features, followed by 

preprocessing the dataset [36], [37]. We collected the Bitcoin blockchain's transaction history for the 

months of January, February, and March of the year 2023 from the Blockchair repository. The dataset 

that is available at Blockchair is unlabelled; however, those available at WalletExplorer are labelled. The 

transaction hash is a common feature in both datasets. Therefore, it has been used to merge the two 

datasets. As a result, a feature-enriched, labelled dataset with 29 features is obtained. 

 

Data Preprocessing: In data preprocessing, the dataset is then cleaned to eliminate the samples 

comprising null and inf values because the ML models cannot handle such values. String values are 

transformed into integer values by applying an encoder library in order to make the data suitable for ML 

models. The dataset samples are then normalised to the same scale using the feature-based min-max 

scaler. Min-max normalisation is one of the most frequently used data normalisation strategies. The 

minimum and maximum values for each feature are both set to 0, and all other values are set to a decimal 

between 0 and 1. The min-max normalisation technique is shown below[38]: 

 𝑣′ = [𝑣 − 𝑚𝑖𝑛(𝑝)] ∗ [𝑛ⅇ𝑤_ 𝑚𝑎𝑥(𝑝) − 𝑛ⅇ𝑤_𝑚𝑖𝑛 (𝑝)][𝑚𝑎𝑥(𝑝) − 𝑚𝑖𝑛(𝑝)] + 𝑛ⅇ𝑤_𝑚𝑖𝑛 (𝑝) 

(3) 

where min(p) = minimum value of the attribute p, max(p) = maximum value the of attribute p. The 

new_max(p) and new_min(p) denote the maximum and minimum values of the range, or the needed 

boundary values, respectively. 



8  

Fig. 3 Data Collection, Preparation and Preprocessing 

5.2 Class Balancing 

The data preparation method produced 427,625 transactions grouped among four categories, 

including exchange, pool, services, and gaming, which are included in the analysis-ready dataset samples 

that were obtained. It is evident, from Table 1,  that the dataset samples' proportion of user activity is 

unbalanced. As shown in Table 1, the dataset samples of user activities, pool, services, and 

gambling account for 12.95%, 7.98%, and 0.53% of the total dataset samples, respectively, while 

exchange accounts for 78.53%. A class imbalance issue resulted from the dataset samples where 

gambling, services, and pools remained unidentified and under-sampled. Due to the unexplained nature 

of their behaviour, which encourages the deployment of privacy-enhancing measures, many classes 

continue to be undersampled. They use peeling chain mixing, which combines a customer’s payments 

into a single address, to hide transactions. The remaining coins (change) are then sent to an address for 

recent changes, and the system begins sending extremely small amounts of money from that address to 

various other services. This procedure is repeated unless the last coin is expended. This generates a large 

number of change addresses, which makes it nearly impossible to identify and group addresses and hides 

the true source of a transaction. Performance can be attained by the prediction model; it has been 

demonstrated by Chawla et al. [39] by improving the sensitivity of the classifiers to the minority classes 

by increasing the sample size. The categories of the dataset samples must be balanced to a great extent. 

ML algorithms frequently create subpar classifications if faced with unbalanced datasets. The 

classification result is unexpected if the event that was predicted falls to the majority class or the minority 

class in any unbalanced data set. Samples from the training and testing datasets are distributed at 60% 

and 40%, respectively. Only the samples from the training dataset were used for class balancing, and the 

samples from the testing dataset were retained separately. The class balancing issue is resolved using 

Weighted Mean[41] and the Synthetic Minority Oversampling Technique(SMOTE)[39]. 

 
Table 1. Categorization of Samples 

User Activities No. of Transactions per User 

Activities 

Percentage-wise share of 

Activities (%) 

Exchanges 335,847 78.53 

Pool 55,390 12.95 

Services 34,124 7.98 

Gambling 2,254 0.53 

Total 427,625 

 

• Synthetic Minority Oversampling Technique (SMOTE) 
The fundamental concept is to interpolate between a number of nearby minority class examples 

to create new minority class samples. As a result, the overfitting issue is avoided, and the boundaries 

of decision-making over the minority class are expanded into the space of the majority class [40]. This 

method operates in “feature space” rather than “data space,” generating synthetic instances of samples 
in a less application-specific manner. By taking each minority class sample and inserting synthetic 

samples along the line segments connecting any or all of the k minority class nearest neighbours, the 

minority class is oversampled. Randomly selected neighbours from the k-nearest neighbours are 

determined by the volume of oversampling necessary [39]. 
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• Weighted Mean 

The Weight of user activities is taken into account when calculating the Weighted Mean[41]. It is 

utilised to decide whether to over- or under-sample the dataset as needed. The resulting dataset samples 

have a balanced distribution of user activities. 

 

5.3 Hyperparameter Tunning 

 

Non-parametric models' corresponding hyperparameters need to be optimized in order to achieve 
stable performance results. Additional focus on this crucial stage should be given because default 
hyperparameter settings cannot provide the best performance of machine learning techniques [42]. 
Grid search is one of the most basic techniques since it evaluates each potential combination of the 
discrete parameter spaces that are provided. Continuous parameters have to first be discretized. 
Another method is randomized search, which selects hyperparameter values at random (for example, 
from a uniform distribution) from a predetermined hyperparameter space [43]. 

 

• Randomized Search 

The randomized search approach evaluates the hyperparameters while selecting the best results 
[44], [45]. It then randomly attempts a number of specified combinations. Randomized search 
is effective and effectively handles data with several dimensions [46]. 

 

• Grid Search 

Grid search, in actuality, is an in-depth search based on subsets, whose hyperparameters are 
established by employing a lower limit, an upper limit, and the number of steps [47]. The grid 
technique will thoroughly investigate all alternatives by creating a grid, which will then be 
assessed to determine which grid offers the best value [48]. Data execution correctness is a 
benefit of the grid search approach [49]. 

 

5.4 Classification using Default Parameters & Hyperparameters 

 

This phases includes ensemble learning (adaptive boosting, bagging, extra trees, gradient boosting, 
extreme gradient boosting), bayesian learning(gaussian naïve bayes), decision tree(classification 
and regression tree) and instance-based learning(k-nearest neighbour), has been employed for the 
classification in the research work. The classifiers are trained and tested using Scikit-learn libraries. 
The user activities are used as the 𝑦-axis and the remaining features as the 𝑥-axis for training the 
model and predicting the user activities, i.e., 𝑦. 

6.  Experimental Evaluation 

This section evaluates the efficacy of the proposed supervised machine learning framework used to 

deanonymize Bitcoin blockchain transactions. The experiments were conducted in Python 9.10.2 and 

Visual Studio Code 1.79.2. The processor employed for this work is the Intel(R) Core(TM) I9-10900, 

2.81 GHz, with 32 GB of RAM. The user activity exchange dominated, with the highest share among 

the available classes in the dataset samples, followed by the pool, services, and gambling. A total of 4.0 

million of data are used for the experiment. Fig. 4 depicts the proportion of various user activities from 

the dataset gathered. 
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Fig. 4 Percentage-wise Share of Dataset Samples of Blockchain Transactions 

This uneven proportion of dataset samples led to the issue of class imbalance. To overcome this issue, 

we employed, SMOTE [39], and Weighted Mean [41]. The dataset samples after the balancing of classes 

of user activities are given in Table 2. 

Table 2. Balanced Dataset 

User Activities 
Generated Dataset Samples for Training 

Unbalanced SMOTE Weighted Mean 

Exchanges 335847 201580 64143 

Gambling 55390 201580 64143 

Pool 34124 201580 64143 

Services 2254 201580 64143 

 

6.1 Results 

We have evaluated the classification models from ensemble learning, bayesian learning, instance-

based learning and decision trees that were initially trained and tested using a 60:40 ratio, respectively. 

The models are AdaBoost (AB), Bagging (BG), Extra Trees (ET), Gradient Boosting(GB), Random 

Forest (RF), eXtreme Gradient Boosting (XGB), Classification And Regression Trees(CART), Gaussian 

Naive Bayes (GNB), K-Nearest Neighbour (KNN). We have evaluated the proposed model in three 

scenarios: an imbalanced dataset, balanced dataset using SMOTE, and balanced dataset using Weighted 

Mean. The metrics considered is Cross Validation(CV) Accuracy with non-parameteric classification, 

and hyperparameteric classification, i.e., randomized search and grid search. The hyperparameters for 

the supervised machine learning classifiers employed in the research are shown in table 3 as those found 

using randomized search, and table 4 as those obtained using grid search. 

 

  



11 

Table 3. Hyperparameters Obtained using Randomized Search  

Supervised ML 
Classifiers 

Hyperparameters Obtained using Randomized Search 

AB {'n_estimators': 100, 'learning_rate': 1.03, 'algorithm': 'SAMME'} 

BG {'n_estimators': 100, 'max_samples': 20, 'max_features': 10} 

ET 
{'max_depth': 9, 'max_features': 'sqrt', 'min_samples_split': 6, 'n_estimators': 
10} 

GB 
{'learning_rate': 0.456, 'max_depth': 7, 'min_samples_leaf': 4, 
'min_samples_split': 10, 'n_estimators': 50, 'subsample': 0.701} 

RF 
{'n_estimators': 140, 'min_samples_split': 5, 'min_samples_leaf': 1, 
'max_features': 'auto', 'max_depth': None, 'bootstrap': False} 

XGB 
{'min_child_weight': 1, 'max_depth': 5, 'learning_rate': 1, 'gamma': 0.3, 
'colsample_bytree': 0.4} 

GNB {'var_smoothing': 1e-06} 

CART {'max_depth': 9, 'min_samples_split': 6} 

KNN {'n_neighbors': 1} 
 

Table 4. Hyperparameters Obtained using Grid Search  

Supervised ML 
Classifiers 

Hyperparameters Obtained using Grid Search 

AB {'learning_rate': 0.01, 'n_estimators': 200} 

BG 
{'base_estimator__max_depth': 8, 'base_estimator__min_samples_leaf': 2, 
'max_features': 1.0, 'max_samples': 1.0, 'n_estimators': 50} 

ET 
{'max_depth': None, 'max_features': 'auto', 'min_samples_split': 2, 
'n_estimators': 100} 

GB {'learning_rate': 0.1, 'max_depth': 7, 'n_estimators': 100} 

RF {'bootstrap': True, 'max_depth': None, 'max_features': 'auto', 'n_estimators': 14} 

XGB 
{'subsample': 0.978, 'n_estimators': 500, 'min_child_weight': 9, 'max_depth': 4, 
'learning_rate': 0.360, 'colsample_bytree': 0.845} 

GNB {'var_smoothing': 1e-07} 

CART {'max_depth': None, 'min_samples_split': 2} 

KNN {'n_neighbors': 1} 

 

Scenario 1: Performance over Dataset Samples with Imbalanced Classes 

Table 5 displays the cross-validation accuracy-based classification report for the supervised machine 

learning classifiers employed in this research. It contrasts the classifiers with and without the usage of 

hyperparameters across the samples from an class imbalanced dataset.  

Table 5: Comparison of Classifiers over Class Imbalanced Dataset Samples 

Supervised ML 

Classifiers 

Cross Validation Accuracy (%) 

Non-Parametric Randomized Search Grid Search 

AB 58.20 95.10 91.50 

BG 98.70 92.30 97.49 

ET 91.70 95.50 98.00 

GB 98.73 98.79 98.88 

RF 98.30 98.40 98.47 

XGB 98.50 98.39 98.40 

CART 95.85 97.50 97.10 

GNB 35.16 34.50 34.50 

KNN 96.92 96.80 97.10 
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The graphs in Fig. 5 displays the performance of classifiers on class imbalanced dataset samples.

 

 

   

 

 

Fig. 5 Performance over the Dataset Samples with Class Imbalanced Dataset Samples 

 

A detailed description of accuracy is as follows: 

 

• Non-Parametric Classification: As shown in Fig. 5a, the best and most accurate classifiers are 
GB, and BG with a CV accuracy of 98.73%, and 98.70%. XGB and RF are next, with CV 
accuracies of 98.50% and 98.30%, respectively. With CV accuracy of 58.20% and 35.16%, AB 
and GNB are the least accurate classifiers.  

 

• Hyperparametric Classification using Randomized Search: Using the hyperparameters that have 
been obtained through the randomized search technique, the classification accuracy of AB, ET, 
and CART has been optimized from 58.2% to 95.10%, 91.8% to 95.48%, and 95.83% to 98.37%, 
respectively. There has been a modest improvement in RF and XGB. As depicted in Fig. 5b, the 
GB, RF, and XGB are the most accurate with CV accuracy of over 98%, while the GNB is the least 
accurate. 

 

(a) Non-Parametric Classification 

(c) Hyperparametric Classification 

(Grid Search) 

(d) Non-parametric Vs Hyperparametric 

Classification 

(b) Hyperparametric Classification  

(Randomized Search) 
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• Hyperparametric Classification using Grid Search: It can be clearly observed from Fig. 5c that 
the grid search technique yielded hyperparameters that were used to optimize the classification 
accuracy of AB, ET, and CART. These values increased from 58.20% to 91.50%, 91.8% to 98.33%, 
and 95.85% to 97.10%, respectively. As before, GB, RF, XGB, and ET are the most accurate with 
CV accuracy over 98%, and GNB is the least. 

 

• Randomized Search Vs Grid Search: Based on the results shown in Figure 5d, the classification 
performance of AB, ET, and CART has been optimized using hyperparameters obtained using 
randomized search and grid search. The cross-validation accuracy of AB and CART is significantly 
better with hyperparameters obtained using randomized search, while the cross-validation 
accuracy of ET is more optimized with hyperparameters obtained using grid search. Slight 
improvements and declines can be observed with the other classifiers. 

 

Scenario 2: Performance over Class Balanced Dataset Samples Oversampled using SMOTE 

Table 6 presents the classification report for the supervised machine learning classifiers used in this 

research, comparing the classification with and without the employment of hyperparameters on class 

balanced dataset samples obtained by oversampling performed using SMOTE. 

Table 6: Comparison of Classifiers over Class Balanced Dataset Samples Oversampled using SMOTE 

Supervised ML 

Classifiers 

Cross Validation Accuracy (%) 

Non-Parametric Randomized Search Grid Search 

AB 55.20 90.14 59.53 

BG 98.51 98.53 94.57 

ET 91.79 91.99 98.25 

GB 94.32 97.57 98.83 

RF 98.23 98.37 99.31 

XGB 97.84 98.22 96.36 

CART 92.18 94.53 93.66 

GNB 26.66 27.92 26.75 

KNN 94.32 95.53 95.55 

 

The performance of classifiers on over the dataset samples oversampled using SMOTE to balance the 

classes is displayed in Fig 6. 

 

 (a) Non-parametric Classification  (b) Hyperparametric Classification 

(Randomized Search) 
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Fig. 6 Performance over Class Balanced Dataset Samples Oversampled using SMOTE 

 

A detailed description of accuracy is as follows: 

 

• Non-Parametric Classification: With a CV accuracy of 98.51%, BG is the most accurate 
classifier, as seen in Fig. 6a. With CV accuracies of 98.23%, 97.84%, 94.32%, and 94.32%, 
respectively, RF, XGB, GB, and KNN are the next in order. Classifiers AB and GNB have the 
lowest CV accuracy, at 55.20% and 26.66% respectively. 

 

• Hyperparametric Classification using Randomized Search: The CV accuracy of AB, GB, CART, 
and KNN has been optimized from 55.2% to 98.53%, 94.32% to 97.57%, 92.18% to 94.53%, and 
94.32% to 95.53%, respectively, using the hyperparameters that were obtained by the randomized 
search technique. For RF and XGB, there has been a little improvement. The most accurate are the 
BG, RF, and XGB, with CV accuracy above 98%, while the least accurate is the GNB, with CV 
accuracy under 30%, as shown in Fig. 6b. 

 

• Hyperparametric Classification using Grid Search: Fig. 6c makes this evident: the grid search 
method generated hyperparameters that were utilized to optimize the classification accuracy of 
AB, ET, GB, RF, CART, and KNN. From 55.20% to 91.50%, 91.79% to 98.25%, 94.32% to 
98.33%, 98.23% to 99.31%, and 92.18% to 93.66% and 94.32% to 95.55%, respectively, were 
improvements in the accuracies. GNB has the lowest accuracy- below 30%, whereas RF has the 
highest accuracy—over 99%. 

 

• Randomized Search Vs Grid Search: Based on the findings displayed in Figure 6d, 
hyperparameters derived from grid search and randomized search have been used to optimize the 
classification performance of AB, ET, GB, RF, CART, and KNN. While the cross-validation 
accuracy of ET, GB, and RF is more optimal with hyperparameters obtained using grid search, the 
cross-validation accuracy of AB, XGB, and CART is much better with hyperparameters obtained 
using randomized search. 
 

Scenario 3: Performance over Class Balanced Dataset Samples Oversampled and Undersampled  

using Weight of the User Activities(Weighted Mean) 

 

The classification report for the supervised machine learning classifiers utilized in this study is shown in 

Table 7, which contrasts the classification on class-balanced dataset samples produced by oversampling 

and undersampling using Weight Mean with and without the use of hyperparameters. 

 

(d) Non-parametric Vs Hyperparametric 

Classification 

(c) Hyperparametric Classification 

(Grid Search) 
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Table 7: Comparison of Classifiers over Class Balanced Dataset Samples Oversampled and Undersampled using 

Weighted Mean 

Supervised ML 

Classifiers 

Cross Validation Accuracy (%) 

Non-Parametric Randomized Search Grid Search 

AB 86.53 92.67 49.89 

BG 98.37 91.10 93.58 

ET 91.72 92.16 98.08 

GB 94.41 97.78 97.68 

RF 97.99 98.42 97.98 

XGB 97.97 98.12 98.22 

CART 92.30 95.39 93.74 

GNB 92.10 92.52 92.52 

KNN 97.75 98.12 98.12 

 

The performance of classifiers on over the dataset samples oversampled and undersampled using the 

Weighted Mean to balance the classes is displayed in Fig. 7. 

 

 
 

 
 

 

Fig. 8 Performance over Class Balanced Dataset Samples Oversampled & Undersampled using Weight of the User 

Activies 

 

(a) Non-parametric Classification  

(d) Non-parametric Vs Hyperparametric 

Classification 

(c) Hyperparametric Classification 

(Grid Search) 

(b) Hyperparametric Classification 

(Randomized Search) 



16  

A detailed description of accuracy is as follows: 

• Non-Parametric Classification: As shown in Fig. 7a, BG is the most accurate classifier with a 
CV accuracy of 98.37%. Next in order are RF, XGB, and KNN, with respective CV accuracies 
of 97.98%, 97.96%, and 97.75%. With 86.52%, AB has the lowest CV accuracy. 
 

• Hyperparametric Classification using Randomized Search: With slight optimization observed 
for ET, RF, XGB, and KNN, the most accurate are KNN, RF, and XGB, with CV accuracy above 
98%, as illustrated in Fig. 7b. The CV accuracy of AB and CART has optimized from 86.52% 
to 92.29%, and 92.29% to 95.39%, respectively. 

 

• Hyperparametric Classification using Grid Search: This is clearly shown in Fig. 7c, where the 
classification accuracy of ET, GB, and KNN was optimized from 91.72% to 98.08%, 94.40% to 
97.67%, and 97.75% to 98.11%, respectively, using the hyperparameters that were generated by 
the grid search approach. While KNN and ET have the highest accuracy—more than 98%—AB 
has the lowest accuracy—less than 50%. 

 

• Randomized Search Vs Grid Search: The classification performance of AB, ET, GB, CART, 
and KNN has been optimized through the utilization of hyperparameters obtained from grid 
search and randomized search, as indicated by the results presented in Figure 7d. While the 
cross-validation accuracy of ET is better when the hyperparameters are obtained through grid 
search, AB, XGB, and CART perform significantly better when the hyperparameters are obtained 
through randomized search. Both GB and KNN have the same accuracy. 

 

Figs. 5-7 provide an illustration of the final results of the proposed methodology for de-anonymization 

using supervised machine learning. The results demonstrate that for the class balanced dataset samples, 

the has significantly improved accuracy, i.e. upto 98%. For the randomized search, the hyperparameter 

algorithm which uses Stagewise Additive Modeling using a Multi-class Exponential(SAMME) has tuned 

the accuracy of Adaptive Boosting(AB). It is boosting algorithm that is used to improve the accuracy of 

machine learning models. For Guassian Naive Bayes(GNB), the variance of the distribution is artificially 

increased by the hyperparameter, var_smoothing, whose default value is taken from the training data set, 

by a user-defined value. In essence, this "smooths" out the curve and allows for a greater number of 

samples that deviate from the distribution mean. Hence, optimizing the accuracy in the context of grid 

search.   Additionally, the effectiveness of the classifiers has been assessed using training to test ratios 

of 70:30 and 80:20. 

 
 

  
(a) Non-parametric Classification  (b) Hyperparametric Classification 

(Randomized Search) 
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Fig 8. Comparative Analysis of Classifiers across Different Training: Testing Ratios over Unbalanced Dataset 

Samples 

The experimental results depicted in Fig. 8 show that accuracy of classification carried out 

over the class imbalanced dataset samples is roughly the same for above said ratios is nearly 

same and is more than 98% for BG, GB, RF,and XGB. 

  

 

(c) Hyperparametric Classification  

(Grid Search) 

(a) Non-parametric Classification  (b) Hyperparametric Classification 

(Randomized Search) 
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Fig 9. Comparative Analysis of Classifiers across Different Training: Testing Ratios over Class 

Balanced Dataset Samples(SMOTE) 

The experimental results, which are shown in Fig. 9, demonstrate that the classification 

accuracy over the class balanced dataset samples obtained using SMOTE, is approximately 

the same for the aforementioned ratios and is greater than 98% for RF. 

 
 

(a) Non-parametric Classification  (b) Hyperparametric Classification 

(Randomized Search) 

(c) Hyperparametric Classification  

(Grid Search) 
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Fig 10. Comparative Analysis of Classifiers across Different Training: Testing Ratios over Class Balanced Dataset 

Samples(Weighted Mean) 

According to the experimental results, which are displayed in Fig. 10, the classification accuracy over 

the class balanced dataset samples generated by Weighted Mean is almost the same for the previously 

indicated ratios and is more than 97% for RF, XGB, and KNN. 

7.      Conclusion and Futures Work 

This paper uses supervised machine learning for the deanonymization of blockchain transactions. We 

have performed a thorough multi-class classification in order to deanonymize transactions conducted on 

the Bitcoin blockchain. The Blockchair [36] and WalletExplorer [37] repositories were the sources of 

the dataset samples that were scraped. By applying the supervised machine learning, an average cross-

validation accuracy of 83.23% was attained. Furthermore, the work employs Weighted Mean and 

SMOTE which has enhanced the classification performance, particularly that of Adaptive Boosting and 

Gaussian Naive Bayes. Additionally, this study uses Grid Search and Randomized Search to improve 

the accuracy of optimization cross-validation. The classifiers' accuracy has increased thanks to these 

hyperparameter tuning techniques. A notable improvement in accuracy is evident from the data.  

The outcomes demonstrate that it is feasible to classify the user addresses based on their activities carried 

out on Bitcoin Blockchain which is a decentralized infrastructure environment. This opposes the notion 

that Bitcoin is truly anonymous, as it allows for the disclosure of the class of a substantial number of 

user addresses on the blockchain. Potentially, the proposed framenwork could help with both criminal 

investigations and regulatory compliance. The unavailability of labelled datasets is the biggest challenge 

to carrying out the research. An organization using the Bitcoin Blockchain for transactions may have to 

demonstrate that the funds it received were not purposefully used for illegal purposes. Our research opens 

the door to identifying and detecting high-risk transactions for such compliance activities, allowing 

organizations to protect their reputation and adhere to local laws. 

In the future, we will propose hybrid models and other approaches to improve results, along with 

collecting datasets from multiple sources and preparing the labelled dataset, which may have imbalanced 

classes. 

(c) Hyperparametric Classification  

(Grid Search) 
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