

Dionex DRS 600 / ERS 500e / ERS 500 Carbonate Suppressors

User Guide

031956 Revision 16 • January 2024

Special notices, symbols, and cautions

Make sure that you follow the special notices presented in this guide.

Table 1 Notices, symbols, labels, and their meanings

Notice, symbol, or label	Meaning
IMPORTANT	Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the product.
Note	Highlights information of general interest.
Tip	Highlights helpful information that can make a task easier.
	Caution: Read the cautionary information associated with this task.
<u>^</u>	Warning : Indicates a potentially hazardous situation which, if not avoided, could result in damage to equipment.
<u>^</u>	Danger : Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

Copyright and trademarks

© 2024 Thermo Fisher Scientific Inc. All rights reserved.

MASTERFLEX C/L is a registered trademark of Barnant Company.

All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

Thermo Fisher Scientific Inc. provides this document to its customers with a product purchase to use in the product operation. This document is copyright protected and any reproduction of the whole or any part of this document is strictly prohibited, except with the written authorization of Thermo Fisher Scientific Inc.

The contents of this document are subject to change without notice. All technical information in this document is for reference purposes only. System configurations and specifications in this document supersede all previous information received by the purchaser.

This document is not part of any sales contract between Thermo Fisher Scientific Inc. and a purchaser. This document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of Sale shall govern all conflicting information between the two documents.

For Research Use Only. Not for use in diagnostic procedures.

 Table 2
 Revision history

Revision	Date	Description
16	January 2024	Removed consumables monitoring disabled P/Ns. Removed references to constant voltage procedures. Updated hydration procedure.
15	November 2021	Added consumables monitoring disabled P/Ns
14	October 2019	Updated the suppressor power supply mode.
13	March 2018	Added information about the firmware, software and programming requirements to operate Dionex DRS 600 with Thermo Scientific Dionex ICS 6000 and Thermo Scientific Dionex Integrion HPIC systems.
12	January 2018	Added information to support the release of Dionex DRS 600 and the discontinuance of Dionex ERS 500.
11	January 2017	Updated the recommended suppressor hydration procedure. Added Dionex ERS 500e.
10	August 2015	Added support for the Neutralization mode. Added support for Carbonate Eluents.
09	November 2013	Updated External Water Mode flow rate recommendations. Updated hydration procedure.
08	April 2013	Rebranded for Thermo Scientific. Product name changed from Dionex SRS 300 to Dionex ERS 500.

Table of Contents

Chapter 1	Introduction	7
	Dynamically regenerated suppressors	8
	Suppressor design	9
	Suppression and neutralization modes	13
	Select an operation mode	13
	AutoSuppression recycle mode	15
	AutoSuppression external water mode	15
	MPIC suppression mode	16
	Neutralization mode	17
	Shipment and storage	19
Chapter 2	Installation	
	System requirements	
	Electrolytically regenerated suppressor control	
	Dionex reagent-free controller	24
	Assemble back pressure coils	25
	Assemble the gas separator waste tube	27
	Calculate the electrical current for the suppressor	29
	Operating DRS 600 suppressor with Chromeleon	32
	Firmware and software requirements	32
	Program the DRS 600 suppressor with Chromeleon	32
	Operate the DRS 600 with a method (Integrion and ICS 6000)	34
Chapter 3	Operation	36
	Chemical purity requirements	36
	Inorganic chemicals	36
	Solvents	36
	Deionized water	37
	Start-up	37
	Hydration	38
	Eluent flow path connections in the AutoSuppression Recycle Mode	47

	Regenerant flow path connections in the AutoSuppression Recycle Mode \dots	47
	Installation in thermal chamber	47
	Plumbing for the AutoSuppression External Water Mode	49
	Eluent flow path connections for the AutoSuppression External Water Mode	50
	Regenerant flow path connections in the AutoSuppression External Water Mode	51
	Regenerant flow path connections in the Auto Suppression External Water Mode with peristaltic pump	53
	Dionex SRD-10 Suppressor Regenerant Detector	54
	Plumbing for Chemical Suppression Mode	54
	Plumbing for MPIC Suppression Mode	54
	Eluent flow path connections in MPIC Suppression Mode	54
	Regenerant flow path connections in MPIC Suppression Mode using pressurized water delivery system	55
	MPIC Suppression Mode Operation	55
	Plumbing for Neutralization Mode	57
	Sample liquid line connections for Dionex DRS 600 in Neutralization Mode .	58
	Regenerant liquid line connections for Dionex DRS 600 in Neutralization Mode	58
	Install and regenerate the pump trap column	59
	Operating in Neutralization Mode	60
	Prepare the suppressor for storage	61
	Short-term storage (3 to 7 days)	61
	Long-term storage (more than 7 days)	61
Chapter 4	Example Neutralizer Mode applications	
	Anion system blank	
	Cation system blank	
	Condition the Dionex CDRS 600	
	System calibration	
	Analysis of acid samples containing high concentrations of transition metals	65
	Anion example applications	
	Dionex IonPac® AS11 Gradient	65
	Dionex IonPac AS11 Gradient Analysis of 10% Sodium Hydroxide	67
	Dionex IonPac AS12A Isocratic Analysis of 25% Sodium Hydroxide	69
	Dionex IonPac AS12A Isocratic Analysis of 20% Ammonium Hydroxide	72
	Dionex IonPac AS12A Isocratic Analysis of 25% Tetramethylammonium Hydroxide	73
	IonPac AS12A Isocratic Analysis of 25% Tetrabutylammonium Hydroxide	74

	Cation example applications	75
	Dionex IonPac CS12A Blank and Standard Analysis	75
	Dionex IonPac CS12A Analysis of 24% Sulfuric Acid	76
	Dionex IonPac CS12A Analysis of 25% Acetic Acid	77
	Dionex IonPac CS12A Analysis of 10% Hydrofluoric Acid	79
	Dionex IonPac CS12A Analysis of 22% Phosphoric Acid	80
Chapter 5	Troubleshooting	82
	Electrolytically regenerated suppressor displays an alarm state	82
	Small or increasing analyte peak areas	83
	Suppressor chemical regeneration	83
	Suppressor electrolytic regeneration	85
	Full or extended regeneration	85
	High background conductivity	86
	Drifting baseline	87
	Noisy baseline	87
	Decreased sensitivity for all analytes	88
	Decreased sensitivity for magnesium and calcium only (CDRS 600 and CERS 500e suppressors)	89
	System back pressure increases over time	89
	Liquid leaks	90
	Poor or unstable recovery of certain peaks	91
	Peaks and spikes in the absence of an injection	91
	Low sample response (Neutralization Mode only)	93
	Low neutralization capacity (Neutralization Mode only)	94
Chapter 6	Cleaning the suppressors	95
	Metal contaminants or precipitates	95
	Organic contaminants	96
Chapter 7	Current settings	98
	Optimum current settings for common eluents for Dionex ADRS 600 (4 and 2 mm) and Dionex AERS 500e (4 and 2 mm)	98
	Optimum current settings for common eluents for Dionex AERS 500 Carbonate (4 and 2 mm)	100
	Optimum current settings for common eluents for Dionex CDRS 600 (4 mm and 2 mm) and Dionex CERS 500e (4 mm and 2 mm)	102

Introduction

A suppressor is an integral part of an ion chromatography system that removes the eluent and sample counter-ions, replacing them with regenerant ions. This converts the eluent to a weakly dissociated form prior to detection, which enables the ion chromatography instrument to:

- Detect analyte ions, particularly with conductivity detection, against a low background
- Reduce the background signal and associated noise
- Convert analytes to more conductive acid or base form to enhance the signal, particularly for fully dissociated species

Suppressed ion chromatography improves detection limits and exceeds the noise performance of single column chromatography applications.

The suppressors from Thermo Fisher Scientific are designed for continuous operation and do not require any switching or offline regeneration. The standards and samples are always exposed to the same suppressor device when pursuing ion analysis, ensuring that the analytical parameters are consistent between calibration and analysis.

Thermo Fisher Scientific offers two types of continuous-operation suppressors:

- Electrolytically regenerated suppressors: Operates continuously with
 a water source as a regenerant. In the recycle mode of operation, the
 water source is derived from the suppressed eluent post-detection,
 which simplifies suppressor operation. When installed in a system with
 Eluent Recycle (ER) system, the device also permits eluent recycling. An
 electrolytic suppressor can also act as an electrolytically regenerated
 neutralizer for the neutralization of basic or acidic matrices prior to
 injection. By neutralizing the matrix ions, trace anionic or cationic
 species can be detected in strong base or acid samples.
- Chemically regenerated suppressors: Operates continuously with an external regenerant source.

See the following table for a list of suppressors covered in this guide.

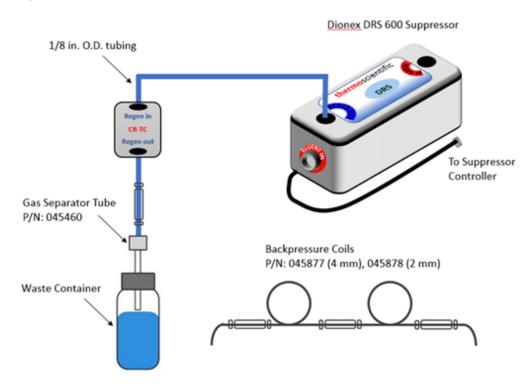
Suppressor	Part Number
Dionex Anion Dynamically Regenerated	Dionex ADRS 600 (4 mm) Item # 088666
Suppressor 600	Dionex ADRS 600 (2 mm) Item # 088667
Dionex Cation Dynamically Regenerated	Dionex CDRS 600 (4 mm) Item # 088668
Suppressor 600	Dionex CDRS 600 (2 mm) Item # 088670
NOTE: The DRS [™] 600 Suppressors replace the Dionex ERS [™] 500 Suppressors.	
Dionex Anion Electrolytically	Dionex AERS 500e (4 mm) Item # 302661
Regenerated Suppressor 500e	Dionex AERS 500e (2 mm) Item # 302662
Dionex Cation Electrolytically	Dionex CERS 500e (4 mm) Item # 302663
Regenerated Suppressor 500e	Dionex CERS 500e (2 mm) Item # 302664
Dionex Anion Electrolytically	Dionex AERS 500 Carbonate (4 mm) Item # 085029
Regenerated Suppressor 500 for Carbonate Eluents	Dionex AERS 500 Carbonate (2 mm) Item # 085028

The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate suppressors are available in 2 mm and 4 mm formats for use with 2, 3, 4, or 5 mm Ion Chromatography columns and systems. The 2 mm versions of the Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate are specially designed with reduced internal volume to ensure optimum performance with 2 and 3 mm columns and systems.

Dynamically regenerated suppressors

The Dionex Dynamically Regenerated Suppressor (DRS) 600 operates in the constant current mode and uses the same clean ion exchange components (screens and membranes) as the previous model (Dionex ERS 500). The high-capacity of the Dionex DRS 600 offers high capacity suppression while adding minimal delay volume to the analytical system, which significantly expands the capabilities and simplifies the operation of ion chromatography.

The Dionex DRS 600 is available in two versions:


- Anion Dynamically Regenerated Suppressor (Dionex ADRS™ 600):
 Provides continuous suppression of traditional eluents, and more
 concentrated eluents up to 200 mM NaOH.
- Cation Dynamically Regenerated Suppressor (Dionex CDRS[™] 600):
 Provides continuous suppression of concentrated eluents up to 100mN
 H₂SO₄ or MSA.

The Dionex DRS 600 system consists of the following:

Dynamically regenerated suppressor

- Suppressor control
- Back pressure coils
- Gas separator waste tube

Figure 1 DRS and accessories

You can find information on all of the different support services of Thermo Fisher Scientific by navigating the following website: https://www.thermofisher.com/us/en/home/technical-resources/contact-us.html

Suppressor design

The Dionex DRS 600 and Dionex ERS 500e design comprises of three channels defined by two ion exchange membranes. The central channel is the eluent channel and the two side channels are regenerant channels. The regenerant flow is arranged to be counter-current to the eluent flow. This orientation ensures complete regeneration of the device.

Electrodes are placed along the length of the regenerant channels to completely cover the eluent channel. In operation, when a DC voltage is applied across the electrodes and the voltage exceeds the standard potential for the electrolysis of water (approximately 1.5 V), water is electrolytically split to form electrolysis ions.

At the anode: $H_2O \rightarrow 2H^+ + 1/2O_2 + 2e^-$

At the cathode: $H_2O + 2e^- \rightarrow 2OH - + H_2$

The electrolysis ions are then available for the suppression reactions. The Dionex DRS 600 suppressor design allows facile transport of cations or anions depending on which type of suppressor is used for the application. For example, when pursuing anion analysis with a Dionex ADRS 600, cation exchange functionality extends across the electrodes. The function of this is to lower the resistance and aid in the transport of ions in and out of the eluent channel. In the Dionex DRS 600, the eluent channel is filled with ion exchange resin and provides a static capacity which is particularly useful when eluent is pumped into the device with the power off.

In operation, the electrolytically generated hydronium ions in the Dionex ADRS 600 are driven towards the cathode along with eluent cations by the applied voltage. The membrane allows hydronium ions to pass into the eluent chamber resulting in the conversion of the electrolyte of the eluent to a weakly ionized form. For each hydronium ion entering the eluent channel one hydronium or a cation exits the device and is driven towards the cathode. At the cathode, the cations combine with the electrolytically generated hydroxide ions to form water or base. Overall, the current dictates the concentration of hydronium and hydroxide ions.

The eluent suppression process for the ADRS 600 is as follows:

- 1. The water regenerant undergoes electrolysis to form hydroxide ions on the cathode surface along with hydrogen gas while hydronium ions are formed in the anode surface along with oxygen gas.
- 2. In the Anion Suppressor, cation exchange materials such as screens, membranes, and resins allow hydronium ions to move from the anode chamber into the eluent chamber to neutralize the hydroxide eluent.
- 3. Sodium ions or eluent or sample counter-ions in the eluent are driven by the applied electric potential towards the cathode and combine with the hydroxide ions generated at the cathode to form sodium hydroxide waste. Hydronium ions can also travel all the way to the cathode to form water, thus effecting suppression of the eluent and conversion of the analyte to typically a more conductive acid form.

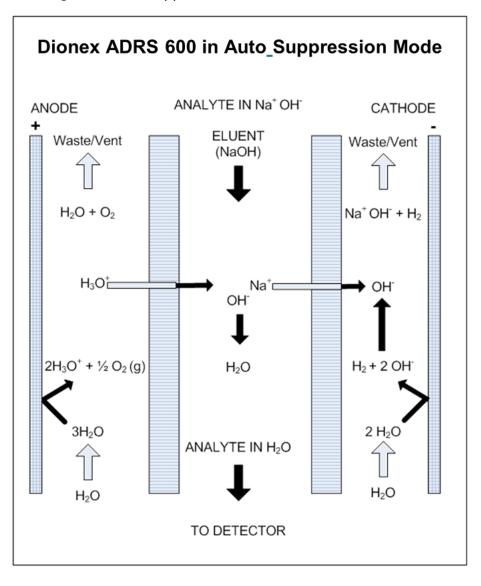


Figure 2 Auto Suppression with the Dionex ADRS 600

The eluent suppression process for the CDRS 600 is as follows:

- 1. The water regenerant undergoes electrolysis to form hydroxide ions in the cathode surface along with hydrogen gas while hydronium ions are formed in the anode surface along with oxygen gas.
- 2. In the cation suppressor, anion exchange materials such as screens, membranes, and resins allow hydroxide ions to move from the cathode chamber into the eluent chamber to neutralize the acid eluent.
- MSA ions or eluent or sample counter-ions in the eluent are driven by the applied electric potential towards the anode and combine with the hydronium ions generated at the anode to form methane sulfonic acid waste.

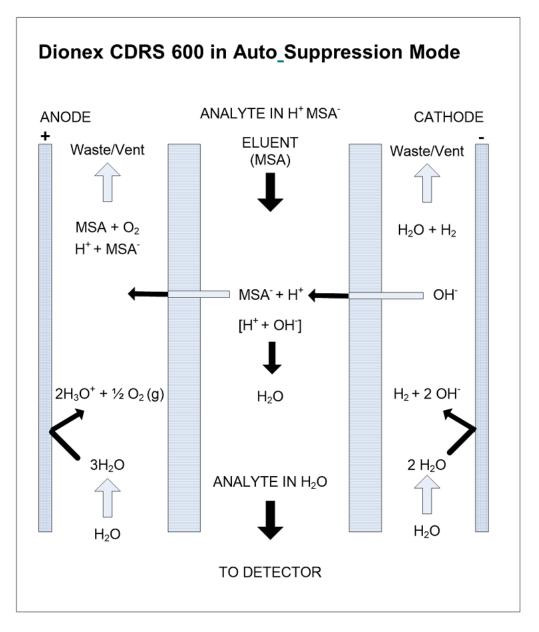


Figure 3 AutoSuppression with the Dionex CDRS 600

The Dionex DRS 600 (2 mm) suppressor is optimized for MS detection; the suppressor has been designed to have minimal interference for MS applications and is compatible with operation in external water mode. The 2-mm suppressor is recommended for applications that use MS detection due to the improved efficiency, and compatibility with lower operational flow rates typically employed with MS detection.

The Dionex Anion Electrolytically Regenerated Suppressor for Carbonate Eluents (Dionex AERS 500 Carbonate) is optimized for use with carbonate or carbonate/bicarbonate-based eluents. The Dionex AERS 500 Carbonate operates similarly to the Dionex ADRS 600 suppressor using electrolysis derived regenerant ions; however, it uses a three-electrode design for the electrolysis function. The cathode electrode is segmented into two portions with an electrical gap. These two portions are connected via a resistor thus

resulting in a lower applied current across the outlet section of the suppressor relative to the inlet section of the suppressor. This design results in decreased gas production at the outlet, and as a consequence, results in less variation in the suppressed background and is able to achieve low noise.

Suppression and neutralization modes

There are four basic suppression modes for the Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 suppressors:

- AutoSuppression Recycle Mode
- AutoSuppression External Water Mode
- MPIC Suppression Mode (Dionex DRS 600 and Dionex ERS 500e only)
- Neutralization Mode (Dionex DRS 600 and Dionex ERS 500e only)

NOTE: The Dionex DRS 600, Dionex AERS 500 Carbonate, and Dionex ERS 500e can also be used in Chemical Suppression Mode; however, the total suppression capacity is reduced compared to a chemically regenerated suppressor. Thermo Scientific recommends the use of a chemically regenerated suppressor such as the Dionex CRS 500 for chemical suppression applications.

Select an operation mode

The Dionex DRS 600 and Dionex ERS 500e operation modes depend mainly on the eluent composition, the analysis sensitivity requirements, and the sample matrix.

For example, eluents containing organic solvents that tend to oxidize easily are not compatible with the AutoSuppression Recycle Mode. The AutoSuppression External Water Mode should be used instead, or a Dionex CRS suppressor employed in Chemical Suppression Mode. The MPIC Suppression Mode is specifically designed for applications where ion-pair reagents and solvents are present in the eluent.

See the following table for eluent composition and suppression mode compatibility.

NOTE: Neutralization Mode can be used with any eluent composition.

Table 3 Eluent Composition and Suppression Mode Compatibility

Eluent Composition	Recycled Eluent Mode	External Water Mode	Chemical Regeneration Mode ^a	MPIC Suppression
Aqueous Eluents (excluding Borate, Carbonate)	DRS 600 ERS 500e	DRS 600 ERS 500e	DRS 600 ERS 500e CRS 500	No
Aqueous Borate Eluents	s No	DRS 600 ERS 500e	DRS 600 ERS 500e CRS 500	No
Aqueous Carbonate Eluents	ADRS 600 AERS 500e AERS 500 Carbonate	ADRS 600 AERS 500e AERS 500 Carbonate	ADRS 600 AERS 500e AERS 500 Carbonate ACRS 500	No
Aqueous Eluents containing solvents up to 40%	No	DRS 600 ERS 500e	DRS 600 ERS 500e CRS 500	DRS 600 ERS 500e
Eluents containing solvents up to 100%	No	No	DRS 600 ERS 500e CRS 500	DRS 600 ERS 500e
Eluent containing Ion Pair Reagents	No	No	No	DRS 600 ERS 500e
Simple Aqueous Samples	DRS 600 ERS 500e AERS 500 Carbonate	DRS 600 ERS 500e AERS 500 Carbonate	DRS 600 ERS 500e AERS 500 Carbonate CRS 500	DRS 600 ERS 500e
Complex Aqueous Samples	No	DRS 600 ERS 500e AERS 500 Carbonate	DRS 600 ERS 500e AERS 500 Carbonate CRS 500	DRS 600 ERS 500e
Samples Containing Solvents	No	DRS 600 ERS 500e AERS 500 Carbonate	DRS 600 ERS 500e AERS 500 Carbonate CRS 500	DRS 600 ERS 500e

^a Although the Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate do support Chemical Suppression mode, the total suppression capacity is reduced. Use of a Chemically Regenerated Suppressor, such as the CRS 500 or equivalent, is recommended.

AutoSuppression recycle mode

The AutoSuppression recycle mode uses the suppressed conductivity cell effluent as the source of water for the regenerant.

NOTE: AutoSuppression recycle mode is the recommended method of operation for the Dionex DRS 600 and Dionex AERS 500 carbonate suppressors. The Dionex ERS 500e is also compatible with this mode.

The advantage of this mode of operation is simplicity and ease of use. This mode reliably provides AutoSuppression for most suppressed conductivity applications using solvent-free eluents. For solvents that are not easily oxidized, such as isopropyl alcohol, the AutoSuppression recycle mode is preferred. As the eluent passes through the suppressor's eluent channel it is converted to a weakly ionized form.

After detection, the cell effluent can be routed back to the regenerant channel to provide the water required for the electrolysis reactions. The amount of water flowing through the regenerant chambers is therefore limited to the eluent flow rate.

See Operation for complete operating instructions.

NOTE: The AutoSuppression Recycle Mode is not compatible with eluents containing Borate, or Organic Solvents that tend to oxidize easily, such as methanol or acetonitrile.

AutoSuppression external water mode

The AutoSuppression external water mode is used for any application requiring organic solvents in the eluent or sample, or for applications using borate as the eluent ion.

NOTE: AutoSuppression external water mode is the recommended method of operation for the Dionex ERS 500e. The Dionex DRS 600 and Dionex AERS 500 carbonate are also compatible with this mode.

This mode uses a constant source of deionized water from a pressurized bottle or another source of deionized water that delivers 0.25 to 2 mL/min for 2 mm applications and 1.0 to 5 mL/min for 4 mm applications, although the regenerant flow rate is typically recommended as double the eluent flow rate.

The amount of water flowing through the regenerant chambers is independent of the eluent flow rate. The AutoSuppression External Water Mode eliminates the potential for build-up of contaminating ions resulting from the oxidation of solvents.

It is also recommended when pursuing analysis with high concentrations of matrix ions, particularly transition metals. Any analysis performed using the AutoSuppression Recycle Mode can also be performed using the AutoSuppression external water mode.

See Operation for complete operating instructions.

MPIC suppression mode

The MPIC suppression mode can be used for both cation and anion applications.

- Anion MPIC
- Cation MPIC

Anion MPIC

The MPIC Suppression Mode is a combination of the AutoSuppression External Water Mode augmented with a chemical regenerant such as sulfuric acid (H₂SO₄). The MPIC Suppression Mode uses an applied current and a constant source of dilute sulfuric acid solution from a pressurized bottle delivery system. This mode must be used for MPIC applications requiring an ion pair reagent and organic solvents in the eluent.

The MPIC Suppression Mode reliably provides suppression of typical eluents for MPIC applications using suppressed conductivity detection. The ion pair reagents, such as tetrabutylammonium hydroxide (TBAOH), are used in concentrations typically ranging from 1.0 to 5.0 mM.

See Operation for complete operating instructions.

NOTE: The Dionex ADRS 600 and Dionex AERS 500e can be used for eluent suppression of Mobile Phase Ion Chromatography (MPIC or ion-pairing) eluents by using the MPIC Suppression Mode. MPIC Suppression Mode is not recommended on the Dionex AERS 500 Carbonate.

Cation MPIC

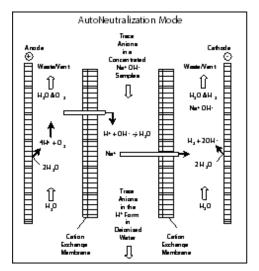
The MPIC Suppression Mode uses an applied current and a constant source of dilute boric acid regenerant solution from a pressurized bottle delivery system. Dilute boric acid is added to the water regenerant to enhance detection and improve the linearity of weak bases such as ammonia and amines. This mode is used for MPIC applications requiring an ion pair reagent and organic solvents in the eluent.

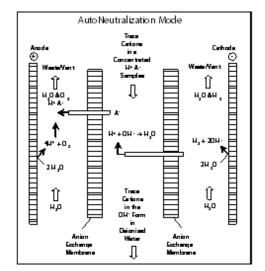
The MPIC Suppression Mode reliably provides suppression of typical eluents for MPIC applications using suppressed conductivity detection. The ion pair reagents, such as octanesulfonic acid (OSA), are used in concentrations typically ranging from 1.0 to 5.0 mM. Organic solvent concentrations should not exceed 40%.

See Operation for complete operating instructions.

NOTE: The Dionex CDRS 600 and Dionex CERS 500e can be used for eluent suppression of MPIC eluents by using the AutoSuppression external water mode or the MPIC suppression mode depending on the specific MPIC application.

Neutralization mode


The Dionex DRS 600 (4 mm), when operated in neutralization mode, requires a constant deionized water flow of 3 to 5 mL/min through the regenerant chambers. The regenerant water can be delivered from a pressurized bottle or pump.


IMPORTANT: The Dionex DRS 600 (2 mm), Dionex AERS 500e and Dionex AERS 500 Carbonate suppressors are not designed or validated for the Neutralization Mode. The Dionex DRS 600 (4mm) suppressor is the only suppressor recommended and validated for this mode.

Neutralization theory

When a potential is applied across the two electrodes, the water regenerant undergoes electrolysis, forming hydronium ions at the anode and hydroxide ions at the cathode. See the following figure.

Figure 4 AutoNeutralization of Concentrated Acid/Base with the Dynamically Regenerated Suppressor

- Dionex ADRS 600: Hydronium is transported from the anode towards the cathode and enters the sample chamber. At the same time, the matrix cations in the sample move towards the cathode and enter the cathode chamber. The matrix cations combine with the hydroxide ions at the cathode forming a base and are removed from the regenerant chamber. The net effect of this transport of ions is neutralization of the sample matrix ions to a weakly ionized form while the sample anions are typically converted to a strongly ionized form. The sample anions are now in a weakly dissociated matrix such as water and are ready for analysis.
- Dionex CDRS 600: Hydroxide is transported from the cathode towards the anion and enters the sample chamber. At the same time, the matrix anions in the sample move towards the anode and enter the anode chamber. The matrix anions combine with the hydronium ions at the anode forming an acid and are removed from the regenerant chamber. The net effect of this transport of ions is neutralization of the sample matrix ions to a weakly ionized form, while the sample cations are typically converted to a strongly ionized form. The sample cations are now in a weakly dissociated matrix such as water and are ready for analysis.

Trace ion analysis after neutralization

After neutralization, the sample can be fed into any Dionex Ion Chromatography system and operated in the concentrator mode. It is important that only low-pressure concentrator columns, such as the Dionex UTAC-XLP2 (Item # 072781) and Dionex TCC-XLP1 (Item # 063889), are used to protect the Dionex DRS 600 from damage.

Shipment and storage

The Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate should not be subjected to temperatures above 50°C for long durations during shipment, storage or operation, or for any duration above 80°C.

Ensure the suppressor is stored in a temperature-controlled environment away from direct exposure to sunlight or other sources of heat. Do not store the suppressor in environments where temperatures exceed 50°C, such as a parked car.

Installation

The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate suppressors are designed for different applications. See the following table for details.

 Table 4
 Suppressor models and suitable applications

Suppressor model	Suitable applications	Compatible ion chromatography system (ICS)
Dionex DRS 600	 Dionex ERS 500 suppressor Dionex SRS series suppressors^b (Dionex SRS I, Dionex SRS II, Dionex SRS ULTRA, Dionex SRS ULTRA II and Dionex SRS 300) Dionex SRN series neutralizers (Dionex SRN 300, Dionex SRN-II and Dionex SRN) Can be used in place of any of these suppressors where recycled eluent mode or external water mode is employed. 	Any Dionex Ion Chromatography System (ICS) equipped with an analytical Anion or Cation exchange column set and an electrolytic suppressor controller, including: • Thermo Scientific Dionex ICS-6000 • Dionex Integrion • Dionex Aquion NOTE: Some legacy systems require a standalone controller for installation. See Electrolytically
Dionex ERS 500e	External water applications where difficult sample matrices are being analyzed.	regenerated suppressor control.
Dionex AERS 500 Carbonate suppressor	Operation with carbonate and carbonate/bicarbonate eluents. Hardware design significantly improves noise performance with carbonate eluents without sacrificing performance	

^b The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate are not designed to be direct replacements for the Dionex SRS series of suppressors when used in Chemical Suppression Mode. If Chemical Suppression Mode is being used, the Chemically Regenerated Suppressor (Dionex CRS 500) or equivalent is recommended. The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate can be used in the Chemical Suppression Mode; however, the total suppression capacity is reduced compared to a Chemically Regenerated Suppressor.

Suppressor model	Suitable applications	Compatible ion chromatography system (ICS)
	or ease-of-use and delivers the lowest noise level of any electrolytic suppressor for carbonate eluents.	
Dionex CRS 500 (or equivalent)	Chemical suppression mode.	_

CAUTION: The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate suppressors are not designed to be run on Dionex Capillary Ion Chromatography Systems (ICS-4000), or on Dionex Ion Chromatography Systems that do not have an electrolytic suppressor controller (Dionex ICS-90A, Dionex ICS-600, Dionex ICS-900).

System requirements

The Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate suppressors are installed in the column compartment or detector compartment of the chromatography module immediately after the analytical column and before the conductivity detector cell. All components required for installation of the suppressor are included with the system:

Gas separator waste tube (Item # 045460)

CAUTION: The Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate must be operated with the Gas Separator Waste Tube (Item # 045460)

- Backpressure coil(s)
 - 4 mm (Item # 045877)
 - 2 mm (Item # 045878)

NOTE: Backpressure coils are only required when carbonate eluents are used, or with systems that do not have an inline eluent degasser.

Options:

 Dionex CRS/DRS/ERS Installation Kit (Item # 038018) (Pressurized Water Delivery System used with AutoSuppression External Water Mode, Chemical Suppression Mode, or MPIC Suppression Mode). Peristaltic Pump Kit (Item # 064508). (Water delivery system used with AutoSuppression External Water Mode, Chemical Suppression Mode, or MPIC Mode).

NOTE: ¼-28 or 10-32 ferrule/bolt style liquid lines might be required for installation and use of a Dionex DRS 600. See Dionex Liquid Line Fittings for complete details.

Dionex DRS and Dionex ERS controls are provided by power supplies that can deliver power in 1 mA increments up to 500 mA.

It is required to use a power supply that can deliver current in 1 mA increments, such as the Thermo Scientific Dionex RFC-10 or Dionex RFC-30. Compatible Dionex ERS Control is integrated into modern instruments, including the Dionex ICS series (excluding Dionex ICS-90, Dionex ICS-90A, Dionex ICS-600 and Dionex ICS-900), Dionex Integrion and Dionex Aquion.

See the following table for details.

Table 5 Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate Suppressor Requirements for Selected Ion Chromatographs

Dionex Ion Chromatograph Series Module	Dionex RFC-10 or Dionex RFC-30 Controller Required
2000i	Yes
QIC	Yes
2000 SP	Yes
4000i	Yes
4500i	Yes
8000	Yes
8100	N/A
8200	N/A
DX-100	Yes
Model DX 1-03	Yes
DX-120	Yes
DX-300	Yes
CDM-2, PED	Yes
CDM-3, PED-2	Yes
DX-320 with IC20 or IC25	Yes
DX-320 with IC25A	No
DX-500	Yes
DX-600 with CD25 or ED50	Yes

Dionex Ion Chromatograph Series Module	Dionex RFC-10 or Dionex RFC-30 Controller Required
DX-600 with CD25A or ED50A	No
DX-800 with CD25 or ED50	Yes
DX-800 with CD25A or ED50A	No
DX-80	N/A
ICS-90/90A	N/A
ICS-600/900	N/A
ICS-1000/1500/2000	No
ICS-1100/1600/2100	No
ICS-2500	No
ICS-3000	No
ICS-4000	N/A
ICS-5000	No
ICS-5000+	No
ICS-6000	No

CAUTION: The Dionex DRS 600, Dionex AERS 500e and Dionex AERS 500 Carbonate suppressors are not designed or validated for use with discrete power supplies (power supplies that deliver current at discreet 50, 100, 300 or 500 mA levels).

Discrete power supplies integrated into older systems, such as the CDM-3 and PED-2 of the Dionex DX-300, the Dionex DX-100 (Model 1-03), Dionex DX-120, Dionex DX-320 (IC20 and IC25 models), Dionex DX-500 (CD20 and ED40 detectors), and Dionex DX-600 (CD25 and ED50 detectors).

The use of discrete power supplies is no longer supported by Thermo Scientific.

Electrolytically regenerated suppressor control

CAUTION: Always turn the pump and the Dionex Suppressor Control on and off at the same time. Eluent flow through the suppressor is required for proper operation.

Flowing eluent without current will cause the membranes, resin, and screens in the suppressor to become exhausted resulting in small analyte peak areas.

If this should occur, perform the procedure in Small or increasing analyte peak areas.

CAUTION: The Dionex DRS 600, Dionex AERS 500e and Dionex AERS 500 Carbonate suppressors are not designed or validated for use with discrete power supplies (power supplies that deliver current at discreet 50, 100, 300 or 500 mA levels).

NOTE: If a DRS Mode is not available, select the equivalent ERS Mode or SRS Mode on the power supply to support the Dionex DRS 600 suppressor. The Dionex DRS 600 and Dionex ERS 500e are fully compatible with SRS settings.

NOTE: The Dionex AERS 500 Carbonate suppressor has different electrical current requirements than the Dionex AERS 500e suppressor and earlier Dionex AERS 500 and Dionex ASRS 300 suppressors. If an AERS Carbonate mode is not available, the current applied to a Dionex AERS 500 Carbonate should be adjusted by a factor of 1.30 compared to a standard AERS 500 suppressor.

Chromeleon 7.2 SR3 MUa and later versions have an option for selecting an AERS_Carbonate suppressor in the Instrument Method Wizard and Editor dialog box.

Selecting this suppressor from the drop-down list will automatically apply the recommended current setting for Dionex AERS 500 Carbonate suppressors.

Dionex reagent-free controller

The Dionex reagent-free controller (RFC) is an external power supply available in two versions. See the following table.

Table 6 Dionex reagant-free controllers

Controller	Compatible suppressors and components	Current
Dionex RFC-10	Dionex DRS 600, Dionex ERS 500e, Dionex AERS 500 Carbonate	1 mA resolution to the suppressor
Dionex RFC-30	 Dionex DRS 600, Dionex ERS 500e, Dionex AERS 500 Carbonate 	1 mA resolution to the suppressor, eluent generator; voltage to the Dionex CR-TC
	 Dionex Eluent Generator Cartridge (Dionex EGC), Dionex CR-TC Continuously Regenerated Trap Column 	

See the Dionex RFC Operator's Manual for suppressor operating and installation instructions with the following Dionex products:

- Dionex DX-320/320J
- Dionex DX-500, Dionex DX-600, or Dionex ICS-2500
- Dionex DX-120

NOTE: If a DRS Mode or ERS Mode is not available, select the equivalent SRS Mode on the power supply to support the Dionex DRS 600 or Dionex ERS 500e suppressor. The Dionex DRS 600 and Dionex ERS 500e are fully compatible with SRS settings.

NOTE: The Dionex AERS 500 Carbonate suppressor has different electrical current requirements than the Dionex AERS 500 suppressor. If an AERS Carbonate mode is not available, the current applied to a Dionex AERS 500 Carbonate should be adjusted by a factor of 1.30 compared to a standard AERS 500 suppressor.

Assemble back pressure coils

All detector cells require enough back pressure to prevent eluent in the cell from out-gassing due to abrupt volume changes between the small inner diameter of the connecting tube and the relatively larger volume of the cell; out-gassing creates bubbles in the cell and disrupts detector responsiveness.

For example, carbonate eluent is suppressed to carbonic acid, which is CO_2 gas in equilibrium with DI water, and CO_2 gas can come out of solution if adequate pressure is not applied. The above outgassing can trap bubbles in the cell causing high noise. Therefore, Thermo Scientific recommends the addition of 30-40 psi of backpressure after the cell for carbonate eluents.

For RFIC hydroxide or MSA applications, it may be possible to operate the cell without backpressure. However, for carbonate and/or bicarbonate applications, it is highly recommended to install backpressure coils.

Back pressure coil components are shipped with your system:

- For 4 mm systems, locate assembly Item # 045877.
- For 2 mm systems, locate assembly Item # 045878 (for 2 mm systems, the backpressure coils are available in the microbore tubing kit, Item # 052324).

See the following table for lengths and diameters of tubing necessary for proper back pressure. Adjust the tubing length to achieve a backpressure of approximately 40 psi.

Table 7 Coils for Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate Back Pressure Requirements

Suppressor Type	Flow Rate	I.D. of Tubing	Length of Each Coil	Number of Coils (Carbonate)	Number of Coils (KOH/ MSA)
4 mm	0.5-1.5 mL/min	0.010" (Black)	2.5 ft.	2	1
4 mm	1.5-3.0 mL/min	0.010" (Black)	2.5 ft.	1	0
2 mm	0.12–0.25 mL/ min	0.005" (Red)	1.0 ft.	2	1
2 mm	0.25–0.75 mL/ min	0.005" (Red)	1.0 ft.	1	0

CAUTION: If back pressure coils become damaged or plugged, they may cause irreversible damage to the suppressor.

Procedure

- 1. Slip PEEK liquid line bolts and ferrules onto the ends of the tubing.
- 2. Determine the correct number of coils required for your application based on the eluent flow rate.
- 3. Assemble the coils, then see the following figure for the proper placement of the completed coils and couplers between the suppressor and the gas separator waste tube.

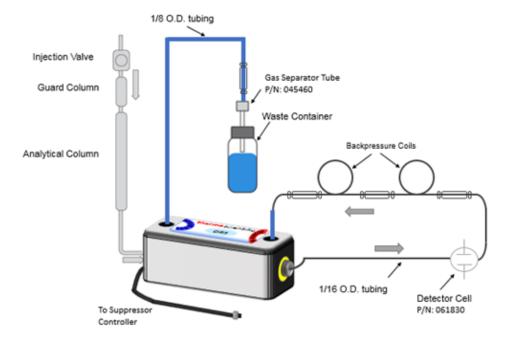


Figure 5 System with back coils

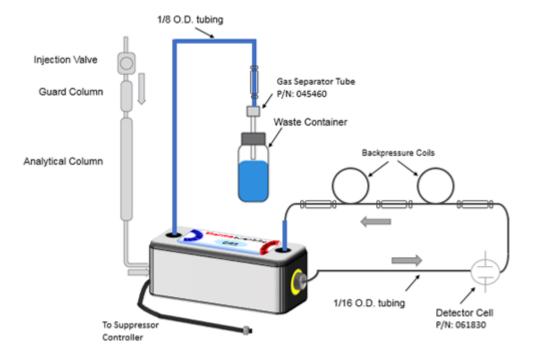
CAUTION: The correct amount of back pressure for optimum operation is 40 psi for carbonate eluents. Back pressure over 450 psi after the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate can cause irreversible damage.

NOTE: RFIC hydroxide and MSA applications may be operated with as little as 10 psi of backpressure, or even without any backpressure coils.

Assemble the gas separator waste tube

The gas separator waste tube (Item # 045460) is an integral part of the Dionex DRS 600 system. It separates any electrolytic gases generated in the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate during electrolysis. The gas separator waste tube is used to avoid concentrating the gases (particularly hydrogen gas) in the waste container. The gas separator waste tube is shipped in one of the ship kits of your system.

CAUTION: Do not cap the waste reservoir.


DANGER: The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate generate 24 mL of hydrogen gas per hour at 50 mA; this level of gas is not dangerous unless the gas is trapped in a closed container and allowed to concentrate.

The gas separator waste tube must be open to the atmosphere and not in a confined space to operate properly.

Procedure

- 1. Assemble and install the gas separator waste tube and waste line following the steps below. See the following figure.
- 2. Depending on the waste container depth, use one or two couplers (Item # 045463) to connect two or three lengths of $\frac{1}{2}$ " i.d. black polyethylene tubing (Item # 045462). Extend the top of the waste separator tube above the top of the waste container.
- 3. Place the gas separator waste tube with the 1/8" O.D. tubing attached to the waste container. Ensure the following:
 - The bottom of the gas separator waste tube is resting on the floor of the waste container.
 - The top of the device (where the white 1/8" o.d. tubing meets the black ½" o.d. tubing) is above the top of the container.
 - Both the gas separator waste tube and the waste container are open to the atmosphere.

Figure 6 Auto suppression recycle mode plumbing diagram

Calculate the electrical current for the suppressor

The Dionex DRS 600 requires electrical current to be set during operation. Optimal current improves performance for the Dionex DRS 600 (Legacy Mode), Dionex ERS 500e and Dionex AERS 500 Carbonate suppressors. Excess current through the suppressor devices causes excess heat generation and over time will cause the ion exchange materials to degrade, thus shortening suppressor lifetime.

Excess current can also cause poor recoveries of certain analytes, particularly magnesium, manganese, and phosphate. No more than 10% above the optimum current setting is recommended for extended periods of time.

Cooling the suppressor also provides improved noise and lifetime performance. A temperature setting of 20°C for the thermal compartment, such as the DC, is recommended.

The optimum current setting depends on the following:

- Eluent concentration
- Sample counterion concentration
- Flow rate
- Mode of operation

If the sample counterion concentration exceeds the eluent concentration, use the sample counterion concentration in the calculation discussed below. These calculations are specific for the type of suppressor. These settings are also applicable in the presence of standard solvents such as methanol or isopropyl alcohol for anion applications and acetonitrile for cation applications.

NOTE: When operated in Neutralization Mode, the Dionex DRS 600 current should always be set to 500 mA.

Current (mA) = FlowRate (mL/min) × [Eluent] × Suppressor Specific Factor

The factors are listed in the table below. The unit for eluent concentration is mN (not mM).

Table 8 Optimum Suppressor Settings

Suppressor Type	Suppressor Specific Factor
Dionex ADRS 600 (Legacy Mode) and Dionex AERS 500e	2.47

Suppressor Type	Suppressor Specific Factor
Dionex CDRS 600 (Legacy Mode) and Dionex CERS 500e	2.94
Dionex AERS 500 Carbonate	3.22

NOTE: Always round the calculated optimum current up to the nearest whole integer.

All modern Thermo Scientific Dionex detectors and suppressor power supplies can be used to set the current at the calculated value with a minimum current resolution of 1 mA. A Dionex RFC-10 or Dionex RFC-30 is required for older systems that only set the current in discrete values of 50, 100, 300 or 500 mA.

NOTE: A lower flow rate requires a lower current. A 2 mm Dionex DRS 600 or Dionex ERS 500e should never be operated at a current above 150 mA. A 2 mm Dionex AERS 500 Carbonate should never be operated at a current above 30 mA.

NOTE: Chromeleon 7.2 SR3 MUa and later have an option for selecting an AERS_Carbonate suppressor in the Instrument Method Wizard and Editor dialog box. Selecting this suppressor from the drop-down list will automatically apply the recommended current setting for the Dionex AERS 500 Carbonate suppressors. Earlier versions of Chromeleon do not include the correct Suppressor Specific Factor; therefore, the correct current must be calculated and entered manually if the Dionex AERS 500 Carbonate suppressor is use.

The maximum suppression capacity (MSC) depends on the eluent concentration and flow rate. The MSC can be calculated using the following equation.

MSC (mN * mL/min) = flow rate (mL/min) * sum of eluent concentration (mN)

Table 9 Maximum Suppression Capacity for Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate suppressors

Suppressor	Flow Rate (mL/min)	Max. Suppression Capacity
Dionex ADRS 600 (4 mm) Dionex AERS 500e (4 mm)	0.5 – 3.0	≤ 200 µeq.
Dionex AERS 500 Carbonate (4 mm)	0.5 – 3.0	≤ 30 µeq.

Suppressor	Flow Rate (mL/min)	Max. Suppression Capacity
Dionex ADRS 600 (2 mm) Dionex AERS 500e (2 mm)	0.25 – 0.75	≤ 50 µeq.
Dionex AERS 500 Carbonate (2 mm)	0.5 – 3.0	≤ 7.5 µeq.
Dionex ADRS 600 (2 mm) Dionex AERS 500e (2 mm)	0.10 – 0.25	≤ 30 µeq.
Dionex CDRS 600 (4 mm) Dionex CERS 500e (4 mm)	0.5 – 3.0	≤ 100 µeq.
Dionex CDRS 600 (2 mm) Dionex CERS 500e (2 mm)	0.25 – 0.75	≤ 35 µeq.
Dionex CDRS 600 (2 mm) Dionex CERS 500e (2 mm)	0.10 – 0.25	≤ 20 µeq.

When using a Dionex ADRS 600, Dionex AERS 500e or Dionex AERS 500 Carbonate, the sum of the eluent concentration can be calculated from the equations below.

Table 10 Sum of eluent concentration

Suppressor	Eluent concentration equation
Dionex ADRS 500 (4 mm) Dionex AERS 500e (2 mm) Dionex AERS 500 Carbonate (4 mm)	Sum of eluent concentration (mN) = {2* Carbonate (mM) + Bicarbonate (mM) + hydroxide (mM) + 2 * Tetraborate (mM) + custom eluent cation (mN)}
	where Tetraborate is <= 50 mM
Dionex AERS 500 (2 mm) Dionex AERS 500e (2 mm) Dionex AERS 500 Carbonate (2 mm)	Sum of eluent concentration (mN) = {2 * Carbonate (mM) + Bicarbonate (mM) + hydroxide (mM) + 2 * Tetraborate (mM) + custom eluent cation (mN)}
	where Tetraborate is <= 75 mM
	Custom eluent cation (mN) can be calculated from the normality ^c of the eluent concentration.
Dionex CERS 500	Sum of eluent concentration (mN) ={2 * Sulfuric Acid (mM) + MSA (mM) + custom eluent anion (mN)}
	Custom eluent anion (mN) can be calculated from the normality ^d of the eluent concentration.

 $^{^{\}circ}$ Normality is Equivalents/L of solution. For example, 20.0 mM sodium acetate (CH $_{3}$ COONa) has 20.0 mN sodium as the cation and 20.0 mM sodium sulfate (Na $_{2}$ SO $_{4}$) has 40.0 mN sodium as the cation.

^d Normality is Equivalents/L of solution. For example, 20.0 mM sodium sulfate (Na₂SO₄) has 40.0 mN sulfate as the anion.

Operating DRS 600 suppressor with Chromeleon

Firmware and software requirements

See the following table for the firmware and software requirements for the DionexTM Integrion and DionexTM ICS 6000 systems.

 Table 11
 Firmware and software requirements

System	Minimum firmware	Chromeleon version
Thermo Scientific [™] Dionex [™] Integrion [™] HPIC [™] System	Version 1.7.0 or later	Version 7.2.7 or later ^e
Thermo Scientific [™] Dionex [™] ICS 6000 [™] HPIC [™] System	Included with system	Version 7.2.7 or later

Program the DRS 600 suppressor with Chromeleon

The power mode of operation for a Dionex DRS 600 suppressor is the Legacy Mode (Constant Current).

Procedure

- 1. Establish the power mode of operation (Legacy/Constant Current is default).
- 2. Create a new method from the Instrument Method Wizard and include this in a sequence.

For most applications, using the wizard will be adequate to establish a DRS compatible method as described in Operate the DRS 600 with a method (Integrion and ICS 6000)

Change the mode in the e-panel with ICS 6000

The default power mode is Legacy (constant current). Once the Legacy mode is selected, the DRS functions under constant current mode as shown in the following figure. The current can be set from the system wizard or from the Instrument Method.

To set optimum current setting for the suppressor, see Calculate the electrical current for the suppressor.

Procedure

1. In the system ePanel, select the **DC** tab.

[°] If an earlier version of Chromeleon is installed, the suppressor will operate exactly like the previous Thermo Scientific™ Dionex™ ERS 500 suppressor.

2. In the Suppressor section, select **Legacy** from the Mode dropdown.

DC CD - Right **Q**ueue Sampler Pump_1 **EluentGenerator** Startup 250 0--250--500 -750 -1000-Relays/TTL Valves Compartment Set 15.00 [°C] -Actual 15.05 Suppressor - Right Column

Figure 7 Constant Current Mode

Change the mode in the Chromeleon Settings with ICS 6000

Setpoint

Legacy

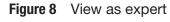
ADRS_2mm at 13 [mA]

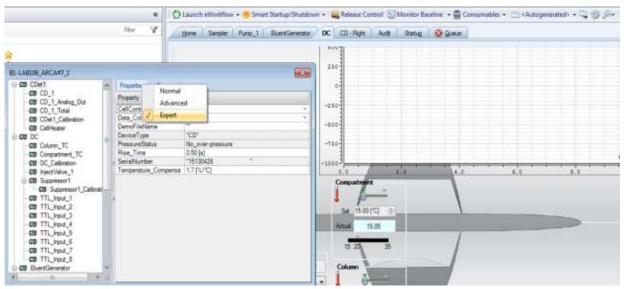
You can change the current mode for the ICS 6000 from Chromeleon. The current can be set from the System wizard or from the Instrument Method.

30.01

Set 30.00 [°C]

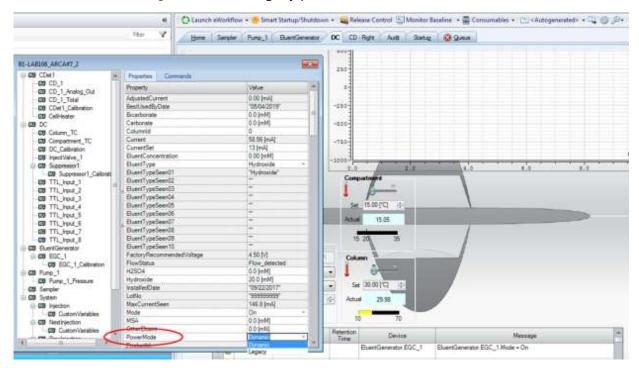
Actual


10


-

70

Procedure


- 1. Press F8, or select the **Settings** icon.
- 2. On the window that opens, right-click the **Properties** tab, then select **View as Expert**.

- 3. On the left-side panel, select **DC**, then select **Suppressor**.
- 4. Under Power Mode, select Legacy.

Figure 9 Select legacy power mode

Operate the DRS 600 with a method (Integrion and ICS 6000)

See the following table for information on the instrument methods used with the DRS 600.

Table 12 Modes used with the DRS 600

Mode	Description
New method (ICS 6000 and Integrion)	When operating the DRS 600 under Legacy mode (Constant Current), you can create a new Instrument method from the CM Wizard and run the new method in a sequence.
	In the ICS 6000 Chromeleon Instrument Method Wizard, you can select the Legacy (CC) power mode.
	In the Integrion the mode is chosen or viewed as Constant Voltage or Constant Current, as shown in Operating the DRS 600 with Integrion with the Legacy Instrument Method.
	By matching the Mode as described in Operating DRS 600 suppressor with Chromeleon with the mode in the Instrument Method Wizard, the Legacy (Constant Current) operation can be pursued.
Legacy instrument method (ICS 6000 and Integrion)	The DRS 600 operates in the legacy (constant current) mode by default.
	The legacy instrument method will operate without any error in the constant current mode for the entire sequence. The audit trail will capture the applied current information from the method.

Operation

This section provides instructions for the start-up and operation of the Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate suppressors, including the selection process and suppression modes of operation.

Chemical purity requirements

Precise and accurate results require eluents free of ionic impurities; chemicals and deionized water used to prepare eluents must be pure, as described in this section. Low trace impurities and low particulate levels in eluents and regenerants also help protect the suppressor and system components from contamination. Suppressor performance is not guaranteed when the quality of the chemicals and water used to prepare eluents has been compromised.

Inorganic chemicals

Reagent-grade inorganic chemicals should always be used to prepare ionic eluents. Preferably, a lot analysis on each label will certify each chemical as meeting or surpassing the latest American Chemical Society standard for purity, a universally accepted standard for reagents.

Solvents

Since solvents used with the Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate are added to ionic eluents to modify the ion exchange process or improve sample solubility, the solvents used must be free of ionic impurities. However, since most solvent manufacturers do not test for ionic impurities, the highest grade of solvents available should be used.

Currently, several manufacturers are making ultra-high purity solvents that are compatible with HPLC and spectrophotometric applications. These ultra-high purity solvents will usually ensure that your chromatography is not affected by ionic impurities in the solvent. Dionex has obtained consistent results using High Purity Solvents manufactured by Burdick and Jackson and Optima® Solvents by Thermo Fisher Scientific.

Deionized water

The deionized water used to prepare eluents should be degassed Type I Reagent Grade Water with a specific resistance of 18.2 megohm-cm. The water used for the AutoSuppression External Water Mode should have a specific resistance of 18.2 megohm-cm or greater. The deionized water should be free of ionized impurities, organics, microorganisms and particulate matter larger than 0.2 μ m.

It is good practice to filter eluents through a 0.2 µm filter whenever possible. Bottled HPLC-Grade Water should not be used since most bottled water contains an unacceptable level of ionic impurities. Finally, thoroughly degas all deionized water prior to preparing any eluents or regenerants.

Start-up

The Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate are installed in the column or detector chamber of the chromatography module right after the analytical column and before the conductivity detector cell.

The mounting location varies depending on the IC system:

- Dionex ICS-6000: Suppressor mounts on the conductivity detector module in the DC.
- **Dionex Integrion**: Suppressor mounts on the conductivity detector module in the detector compartment.
- Dionex Aquion: Suppressor mounts on the component panel behind the front door.

Refer to the Dionex IC System Operator's Manual for further details.

Procedure

- Orient the suppressor with the ELUENT IN port and the cable at the top if installed vertically; align the slots on the back of the suppressor with the tabs on the panel.
- 2. Press in, and then down to lock the suppressor in place.
- 3. Lift up and pull out to remove the suppressor.
- 4. Ensure the suppressor is plumbed properly according to the selected mode of operation.

Refer to Installation for complete installation instructions.

WARNING: Keep the regenerant chambers full with the appropriate regenerant solution or water. The membranes and screens in the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate must be completely hydrated to maintain liquid seals and chromatographic performance.

CAUTION: The correct amount of back pressure on the conductivity detector for optimum operation is 40 psi for carbonate eluents; less for RFIC hydroxide and MSA eluents. Connect the back-pressure coil(s) appropriate for your column i.d. and flow rate. Back pressures over 450 psi after the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate can cause irreversible damage.

CAUTION: Do not cap the waste reservoir.

DANGER: The Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate generate 24 mL of hydrogen gas per hour at 50 mA; this level is not dangerous unless the gas is trapped in a closed container and allowed to accumulate. The gas separator waste tube must be open to the atmosphere, and not in a confined space, to operate properly.

Hydration

Before putting the new suppressor to use, we recommend measuring the backpressure to the suppressor, ensuring that the suppressor is not exposed to high backpressure inadvertently. Do not exceed 100 psi of backpressure to the suppressor (150 psi for 2 mm anion versions). The backpressure to the suppressor comes from any tubing, detector cell, backpressure coils, or any other components that are fluid-connected to the eluent out port of the suppressor.

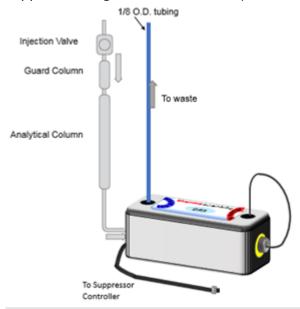
NOTE: Hydrating the suppressor ensures that the ion exchange materials are in a swollen form for proper operation. A 20-minute static step is recommended during first time installation or after long suppressor idle time to ensure complete hydration. Failure to follow proper hydration protocols may result in leakage upon installation.

Use the following checklist to measure the backpressure to the suppressor.

Table 13 Ba	ckpressure	Check	of Detector	Cell and	Backpressure	Coils
-------------	------------	-------	-------------	----------	--------------	-------

Step 1: Disconnect the column out/eluent in tubing from the old suppressor and direct it to waste. Turn on the pump at the application flow rate for 10 minutes. Record the system pressure 1 (P1) and turn off the pump.	
P1 , psi	
Step 2: Connect the column out/eluent in tubing to the detector cell inlet , remove the backpressure coils after the detector cell if installed, and direct the detector cell outlet tubing to waste. Turn on the pump at the application flow rate for 10 minutes. Record the system pressure 2 (P2) and turn off the pump.	
P2 ,psi	
Calculate the backpressure across the detector cell (BP1):	
BP1 = P2 – P1 =psi	
The backpressure of the detector cell is typically ≤ 70 psi at a flow rate of 2 mL/min. If the backpressure exceeds this specification, see Detector Cell Backflush Section	
Step 3: Connect the recommended number of backpressure coil(s) (see table below) to the detector cell outlet and direct the backpressure coil outlet to waste. Turn on the pump at the application flow rate for 10 minutes. Record the system pressure (P3) and turn off the pump.	
4 mm Chromatography	_
P/N: 045877	
1 Coil = 1.5 – 3.0 mL/min	
2 Coils = 0.5 – 1.5 mL/min	_
2 mm Chromatography	
P/N: 045878	
1 Coil = 0.37 – 0.75 mL/min	
2 Coils = 0.12 – 0.37 mL/min	
P3 , psi	
Calculate the backpressure across the backpressure coil(s) (BP2):	
BP2 , = P3 – P2 = psi	
Pass: 30-40 psi for carbonate eluent or 10-40 psi for other eluents	
If the back pressure exceeds the specification, see Assemble back pressure coils.	

Before putting the new suppressor to use, hydrate it properly first.



CAUTION: Improper hydration will result in irreversible damage to suppressor and will void the warranty.

Use the following checklist to hydrate and check the backpressure of the suppressor.

Table 14 Hydration & Backpressure Check of Suppressor

Step 4: Connect the **column out** tubing to the suppressor **Eluent Inlet** and direct the suppressor **Eluent Outlet** to the **Regen Inlet** of the suppressor using ~ 6" of green PEEK tubing (ID 0.030") provided with the system ship kit. Direct the suppressor **Regen Outlet** to waste (see the following figure).

Turn on the pump and flow ≤10 mM eluent or DI water at **0.5 mL/min** for 4mm suppressor or **0.125 mL/min** for 2mm suppressor for 20 minutes. **The power to the suppressor must be turned off during this step.**

Allow the suppressor to **rest undisturbed** for 20 minutes to fully hydrate the resin, \Box screens, and membranes.

Turn on the pump at the application flow rate for 10 minutes; record the system pressure 4 (**P4**) and turn off the pump.

P4, _____ psi

Calculate the backpressure across the suppressor (**BP3**):

BP3 = **P4** - **P1** = _____ psi **Pass:** ≤ 200 psi

If the backpressure exceeds this specification, see **Suppressor Backflush with DI Water** section

Step 5: Connect the suppressor **Eluent outlet** tubing to the detector cell **inlet.** Then connect the detector cell **outlet** tubing with backpressure coil(s) to the **Regen Inlet** of the suppressor, as shown in **Figure 2**, for the Auto Suppression Recycle Mode Configuration. **For External Water Mode Configuration, refer to the suppressor manual for detailed installation guide.**

The suppressor is now ready to be installed and configured (see the following figure). Normal operation using the application eluent strength, flow rate, and recommended current/voltage power settings can be applied.

Injection Valve
Guard Column

Gas Separator Tube
P/N: 045460

Waste Container

Analytical Column

To Suppressor
Controller

To Suppressor
Controller

Figure 10 AutoSuppression Recycle Mode Configuration

Troubleshoot flow restriction or blockage

Flow restriction or blockage from detector cell or backpressure coils should be eliminated first to avoid irreversible damage to the suppressor.

Table 15 Troubleshooting tasks

Task	Procedure
Backflush the detector cell	Procedure
	 Bypass the suppressor and connect the column outlet tubing to the detector cell outlet port and direct the detector cell inlet tubing to waste.
	Turn on the pump and flow eluent at the application flow rate for 10 minutes. Turn off the pump. Re-measure the detector cell backpressure by following the steps in Hydration.
	NOTE : Repeat the backflush procedure if the backpressure remains high. If the backpressure of the detector cell doesn't come below 70 psi after multiple attempts, replace the detector cell.
Adjust backpressure coil	Procedure

1. Do one of the following:

Task Procedure

- If the pressure is greater than 40 psi for carbonate eluent or other eluents, trim the backpressure coil and repeat the backpressure coil test in Hydration.
- 2. If it is less than 30 psi for carbonate eluent or less than 10 psi other eluents, add more tubing and repeat the backpressure coil test in Hydration.

NOTE: Backpressure coils help to prevent gases generated during AutoSuppression from out-gassing by compressing the bubbles. The bubbles can be occasionally trapped in the detector cell causing noise. For example, carbonate eluent is suppressed to carbonic acid, which is CO_2 gas in equilibrium with DI water, and CO_2 gas can come out of solution if adequate pressure is not applied. Therefore, we highly recommend the addition of 30-40 psi for carbonate eluent or 10-40 psi for other eluents.

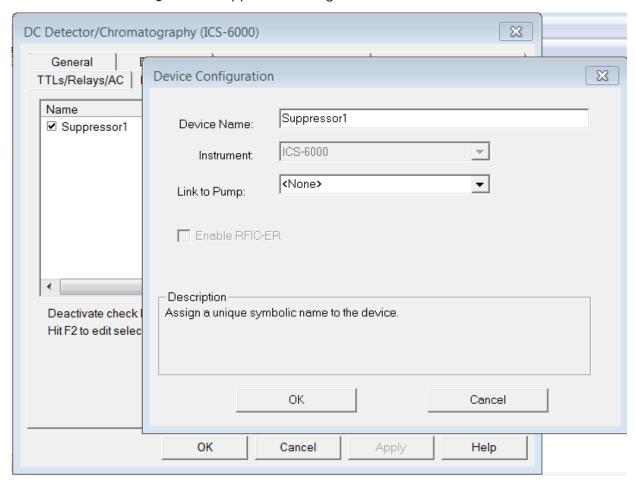
Backflush suppressor with DI water

Procedure

- Turn off the pump and disconnect the column outlet and cell inlet tubing from the suppressor eluent ports (if not already disconnected).
- Connect the DI water tubing from the pump outlet directly to the suppressor eluent out port and direct the eluent in tubing to waste. (Effectively plumbing the eluent ports backwards to reverse flow through the eluent chamber).
- 3. Turn on the pump and flow DI water at 1.0 mL/min for 4 mm suppressor and 0.25 mL/min for 2 mm suppressor for 10 minutes. Turn off the pump. Re-measure the suppressor backpressure by following the steps in Hydration.

NOTE: Repeat the backflush procedure if the backpressure remains high. If the backpressure of the suppressor doesn't come below 200 psi after multiple attempts, replace the suppressor or contact your Service Engineer or Technical Support team.

Configure a new suppressor


This topic details the configuration process for a new suppressor in CM Configuration.

Procedure

- 1. Plug in the new suppressor, then open **CM Configuration**.
- 2. Do one of the following:
 - Select the **Suppressor** tab (ICS-6000).
 - Select the **Electrolytics** tab (Integrion).

3. Double-click the suppressor option, then select **OK** to confirm the new configuration.

Figure 11 Suppressor configuration in ICS-6000 DC Detector

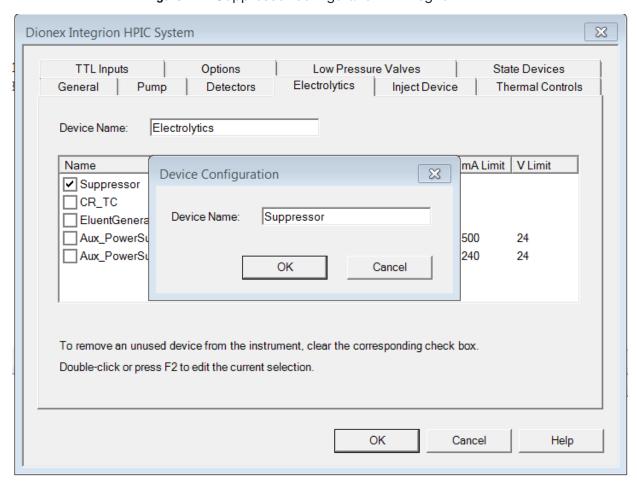
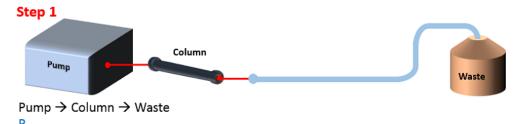
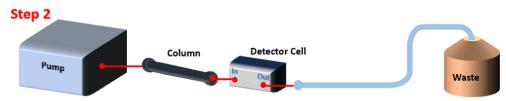


Figure 12 Suppressor configuration in Integrion

4. Close the Instrument Controller.

You are prompted to confirm changes to the configuration.


5. On the window that appears, select Save.


Figure 13 Save changes to the instrument configuration

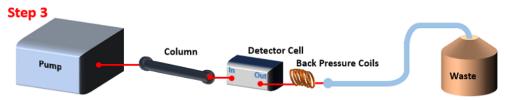
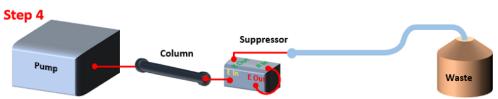
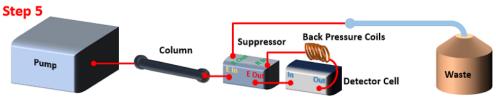

NOTE: If you do not save your changes, CM will not recognize the new suppressor.

Figure 14 Installation summary




Pump → Column → Detector Cell → Waste P_2 BP₁, psi = P_2 - P_1 Pass: \leq 70 psi

Pump \rightarrow Column \rightarrow Detector Cell \rightarrow Back Pressure Coils \rightarrow Waste P₃ BP₂, psi = P₃-P₂ Pass: 30-40 psi for carbonate or 10-40 psi for other eluents

 $\begin{array}{ll} \text{Pump} \rightarrow \text{Column} \rightarrow \text{Suppressor} \ (\text{Eluent In} \rightarrow \text{Eluent Out} \rightarrow \text{Regen In} \rightarrow \text{Regen Out}) \rightarrow \text{Waste} \\ P_4 & \text{BP}_3, \ \text{psi} = P_4 - P_1 & \text{Pass:} \leq 200 \ \text{psi} \end{array}$

 $\begin{array}{l} \text{Pump} \rightarrow \text{Column} \rightarrow \text{Suppressor} \left(\text{Eluent In} \rightarrow \text{Eluent Out} \right) \rightarrow \text{Detector Cell} \rightarrow \\ \text{Back Pressure Coils} \rightarrow \text{Suppressor} \left(\text{Regen In} \rightarrow \text{Regen Out} \right) \rightarrow \text{Waste} \end{array}$

CAUTION: Only use the AutoSuppression Recycle Mode for eluents and samples without organic solvents or metallic contaminants such as iron.

Eluent flow path connections in the AutoSuppression Recycle Mode

Depending on the specific components (analytical column, conductivity cell, back pressure coils) in the system, ¼-28 or 10-32 ferrule/bolt liquid lines may be required. All necessary tubing and fittings are supplied in the detector or Dionex RFC-10 or Dionex RFC-30 Ship Kits. To purchase or assemble ¼-28 or 10-32 ferrule/bolt liquid lines, refer to, "Dionex Liquid Line Fittings."

Thermo Scientific recommends the use of PEEK Viper fittings for all suppressor connections. If not available, use 0.005" i.d. PEEK tubing (red) with 10-32 ferrule/bolt fittings on 2 mm systems, and 0.010" i.d. PEEK tubing (black) with 10-32 ferrule/bolt fittings on 4 mm systems. Avoid adding dead volume to the system by keeping all eluent lines as short as possible.

Procedure

- 1. Install the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate inside the Dionex ICS Module.
- 2. Connect the outlet of the analytical column to the ELUENT IN of the suppressor.
- 3. Connect the ELUENT OUT port of the suppressor to the inlet of the conductivity cell.

Regenerant flow path connections in the AutoSuppression Recycle Mode

Connect the back-pressure coil(s) between the CELL OUTLET port and the REGEN IN port. The back-pressure coils for 4 mm systems are provided in the Gas Separator Waste Tube Components Assembly (Item # 045825). The back-pressure coils for 2 mm systems are provided in the microbore tubing kit (Item # 052324).

CAUTION: The Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate must be operated with the Gas Separator Waste Tube (Item # 045460).

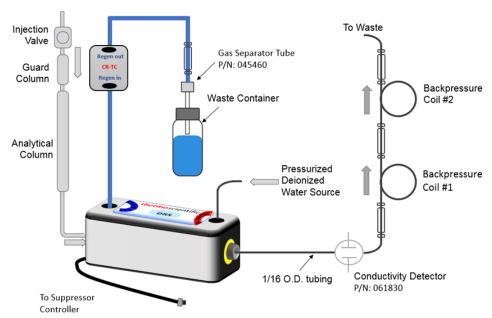
Installation in thermal chamber

Table 16 Installation instructions

System	Installation instructions
Dionex ICS-3000/5000/5000+/ 6000 DC	Install the suppressor using the suppressor holder on the CD in the upper compartment.

System	Installation instructions
	 Ensure the upper compartment temperature is set to a value no greater than 40°C and temperature control is turned on.
	It is recommended that the upper compartment is kept cooler than the lower compartment. If using a single zone DC, do not set the temperature above 40°C. For best noise performance the upper compartment should be set to 20° C.
Dionex Integrion	Procedure
	 Install the suppressor using the suppressor holder on the Conductivity Detector in the detector compartment (bottom right door).
	 If the Dionex Integrion is fitted with detector compartment temperature control, ensure the detector compartment temperature is set to a value less than 40°C and temperature control is turned on.
	It is recommended that the detector compartment is kept cooler than the column compartment (left door). For best noise performance the detector compartment should be set to 20° C.
Dionex Aquion, Dionex ICS	Procedure
1100/1600/2100, AS50 thermal chamber TC and CC	1. Install the suppressor using the suppressor holder.
	The suppressor is installed outside the heated column enclosure. It can support all high-temperature applications up to 60° C.
	2. Add a length of tubing (up to 20", 50 cm) between the column outlet and the suppressor inlet to allow time for the eluent to cool to room temperature if operating the column above 35°C.
LC30 and LC25 ovens	Procedure
	 For all ANION and CATION applications up to 40° C, install the suppressor in the oven using the suppressor holder.

System	Installation instructions
	 For operation above 40° C and up to 60° C, it is recommended that the suppressor is installed outside the oven; this ensures optimal performance of the suppressor in terms of noise and background.
	The Dionex CDRS 600 and Dionex CERS 500e suppressors are fully compatible with operation up to 60° C. The noise performance would be slightly inferior at 60° C versus 30° C.


NOTE: For best performance and suppressor longevity, the suppressor should be kept as cool as possible; 20° C is ideal.

If using a Dionex DRS 600 in Legacy Mode, a Dionex ERS 500e or Dionex AERS 500 Carbonate, set the required current based on your specific application requirements for column flow rate and temperature in addition to eluent concentration. If using Chromeleon software, the Wizard can greatly assist you in determining the correct requirements.

Refer to Calculate the electrical current for the suppressor for suppressor current calculations and Appendix A for examples.

Plumbing for the AutoSuppression External Water Mode

Figure 15 The AutoSuppression External Water Mode Plumbing Diagram

Any analysis that can be performed using the AutoSuppression Recycle Mode can be done using the AutoSuppression External Water Mode. A constant source of deionized water having a specific resistance of 18.2 megohm or greater is supplied to the regenerant chambers to generate hydronium or hydroxide ions for suppression.

NOTE: AutoSuppression External Water Mode is used when organic solvents or metallic contaminants are present in the eluent or sample, borate is used as the eluent, or a destructive detection technique such as PCR-UV/Vis or Mass Spec is employed.

NOTE: Because of its simplicity and equivalent performance, Thermo Fisher Scientific recommends the use of AutoSuppression Recycle Mode unless organic solvents or metallic contaminants are present in the eluent or sample, borate is used as the eluent, or a destructive detection technique such as PCR-UV/Vis or Mass Spec is employed.

For installation in the thermal chamber, see Installation in thermal chamber.

Eluent flow path connections for the AutoSuppression External Water Mode

Depending on the specific components in the system (such as an analytical column, conductivity cell, and back pressure coils), 1/4-28 or 10-32 ferrule/ bolt liquid lines may be required. All necessary tubing and fittings are supplied in the detector, or Dionex RFC-10, or Dionex RFC-30 Ship Kits. To purchase or assemble 1/4-28 or 10-32 ferrule/bolt liquid lines, refer to, "Dionex Liquid Line Fittings." Always use 0.005" i.d. PEEK tubing with 10-32 ferrule/bolt fittings on 2 mm systems. When possible, use 0.010" i.d. PEEK tubing with 10-32 ferrule/bolt fittings on 4 mm systems. Avoid adding dead volume to the system by keeping all eluent lines as short as possible.

Procedure

- 1. Install the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate in the first slot inside the Chromatography Module.
- Connect the outlet of the analytical column to the ELUENT IN of the suppressor.
- 3. Connect the ELUENT OUT port of the suppressor to the inlet of the conductivity cell.
- 4. Install a waste line from the conductivity cell that generates 30 40 psi (carbonate eluents) or 10 – 40 psi (other eluents) of back pressure at the flow rate required by the application. Use the appropriate i.d. tubing depending on your application requirements. See Assemble back pressure coils for the correct back pressure tubing requirements.

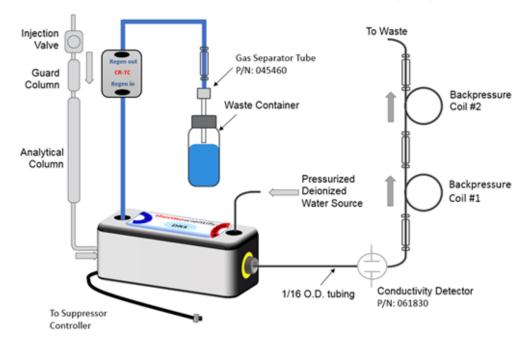


Figure 16 AutoSuppression External Water Mode plumbing diagram

Install and adjust the flow rate of water from the pressurized water delivery system to the regenerant chambers of the suppressor (see the table in Regenerant flow path connections in the AutoSuppression External Water Mode).

Regenerant flow path connections in the AutoSuppression External Water Mode

The Suppressor Pressurized Bottle Installation Kit (Item # 038018) contains all of the components needed to install and operate the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate with a pressurized water reservoir. The kit contains the Dionex Suppressor Installation Parts Kit (Item # 039055), a 25-psi regulator (Item # 038201), and a 4-liter water reservoir (Item # 039164).

Procedure

- 1. Make the following air line connections:
 - a. Locate the pieces of tinted 1/8" o.d. plastic tubing (Item # 030089) supplied in the Installation Parts Kit.
 - b. Push the end of one piece of 1/8" o.d. tubing over the barbed fitting of the regulator. Connect the other end of the tubing to the source of air pressure.
 - c. Push one end of the second piece of 1/8" o.d. tubing over the other barbed fitting of the regulator. Push the other end of this tubing over the barbed fitting (Item # 030077) in the pressure inlet of the plastic reservoir (see the following figure).

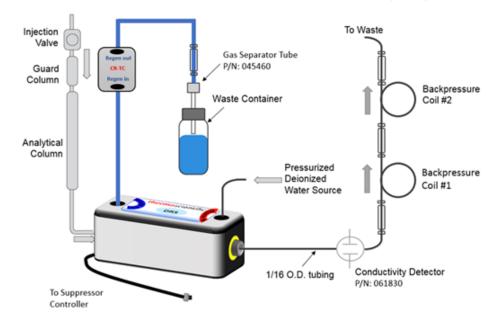
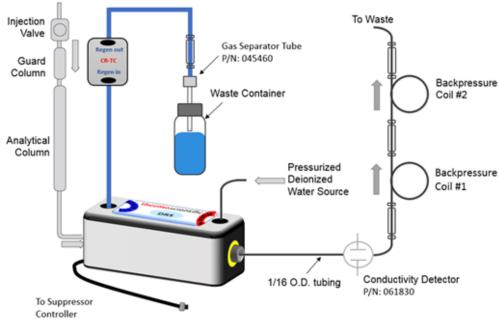


Figure 17 AutoSuppression External Water Mode Plumbing Diagram

- 2. Make the following water line connection:
 - a. Use a coupler (Item # 039056) to connect one end of the 30" tubing assembly (Item # 035727) that comes in the Installation Kit to the water reservoir. Connect the other end of this tubing to the REGEN IN port of the suppressor.
 - b. Using a coupler (Item # 039056) and a 1/8" o.d. piece of tubing (Item # 035728) from the Installation Kit, connect one end of this line to the REGEN OUT port of the suppressor and then connect the other end of the line to the Gas Separator Waste Tube.
- 3. Fill the water source reservoir. Make sure that the O-ring is inside the cap of the reservoir before screwing the cap onto the reservoir. Screw the cap onto the reservoir tightly and place the reservoir near the Chromatography Module.
- 4. With applied current, adjust the external water flow rate to match the eluent flow rate by using a graduated cylinder and measuring the flow from the REGEN OUT waste line. The pressure applied to the reservoir can vary from 0–25 psi (the lower and upper-pressure limits of the water reservoir) but the typical operating pressure is between 5 10 psi. Please note that this value is highly system dependent and may vary from one suppressor to the next. In summary, the final external water flow rate is dependent on two factors: the pressure applied to the water reservoir and the power setting. It is best to measure it with the power on since the application of current can affect the final flow rate significantly.

DANGER: A safety relief valve on the reservoir regulator prevents pressure greater than 25 psi from being applied to the water reservoir.


Table 17 Recommended External Water Flow Rate for Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate

Minimum External Water Flow Rate	v Recommended External Water Flow Rate	Maximum External Water Flow Rate
Equivalent to the eluent flow	2x the eluent flow rate	2 mL/min (2 mm suppressors)
rate		5 mL/min (4 mm suppressors)

Regenerant flow path connections in the Auto Suppression External Water Mode with peristaltic pump

For peristaltic pump plumbing refer to the "MASTERFLEX® C/L® Peristaltic Pump Quick Start Guide" (Item # 065203). For the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate plumbing, refer to the following figure and pump the Deionized water into the "Regen in" port of the suppressor using the peristaltic pump at the same flow rate as the eluent flow rate.

Figure 18 AutoSuppression External Water Mode plumbing diagram

For installation in the thermal chamber, see Installation in thermal chamber.

Dionex SRD-10 Suppressor Regenerant Detector

The Dionex SRD-10 Suppressor Regenerant Detector is a stand-alone device that monitors liquid flow to a suppressor. If the flow is restricted or stops, the Dionex SRD-10 automatically disables the eluent pump via a TTL command, thus preventing irreversible damage being done to the suppressor. In the external water mode, if the water runs out in the source reservoir, then the suppressor would be powered without any regenerant flow; this condition results in irreversible damage to the suppressor. Installing the Dionex SRD-10 suppressor regenerant detector avoids this issue, as the system is turned off if the regenerant flow is interrupted either due to a plumbing leak or due to the source reservoir becoming empty.

Plumbing for Chemical Suppression Mode

The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate can be used in the Chemical Suppression Mode; however, the total suppression reduced compared to a Chemically Regenerated Suppressor. Thermo Scientific recommends the use of a Chemically Regenerated Suppressor such as the Dionex CRS 500 for chemical suppression applications.

Plumbing for MPIC Suppression Mode

The Dionex DRS 600 and Dionex AERS 500e can be used with current applied to the suppressor augmented by dilute sulfuric acid in the regenerant solution. If you intend to use an AutoRegen Accessory, configure the system as described in Plumbing for the AutoSuppression External Water Mode, and use the appropriate sulfuric acid concentration instead of water. The Dionex CDRS 600 and Dionex CERS 500e can be used with current applied to the suppressor augmented by diluted boric acid in the regenerant solution.

NOTE: The following installation instructions are based on a system configured with a pressurized water delivery system but apply equally well to peristaltic pump delivery systems.

NOTE: The Dionex AERS 500 Carbonate suppressor is not compatible with the MPIC Suppression Mode of Operation.

Eluent flow path connections in MPIC Suppression Mode

To operate a system in the MPIC Suppression Mode, configure the system as described in Eluent flow path connections for the AutoSuppression External Water Mode.

Regenerant flow path connections in MPIC Suppression Mode using pressurized water delivery system

The Dionex Suppressor Installation Kit (Item # 038018) contains all of the components needed to install and operate a Dionex DRS 600 or Dionex ERS 500e with a pressurized regenerant reservoir. The kit contains:

- Suppressor Installation Parts Kit (Item # 039055)
- A 25-psi regulator (Item # 038201)
- A 4-liter regenerant reservoir (Item # 039164)

To operate a system in the MPIC Suppression Mode, configure the system and use the appropriate sulfuric acid concentration as described in MPIC Suppression Mode Operation.

MPIC Suppression Mode Operation

See the following topics for information:

- Anion MPIC
- **Cation MPIC**

Anion MPIC

The Dionex ADRS 600 or Dionex AERS 500e can be used for suppression of MPIC (ion-pairing) eluents by using the MPIC Suppression Mode. The MPIC Suppression Mode is a combination of the Auto Suppression External Water Mode augmented with a chemical regenerant such as sulfuric acid (H₂SO₄). When a Dionex ADRS 600 or Dionex AERS 500e is operating in this mode, it uses an applied current and a constant source of dilute sulfuric acid solution from a pressurized bottle delivery system or additional pump.

The following table lists the eluent concentrations and flow rates of standard eluents used in Anion MPIC separations and the current level and regenerant flow rate required to suppress them.

NOTE: The Dionex AERS 500 Carbonate suppressor is not recommended for use with the MPIC Suppression Mode of Operation. The Dionex ADRS 600 or Dionex AERS 500e should be used.

Table 18 Matching the Current Setting and Regenerant Flow Rate to the Eluent Concentration and Flow Rate for the Dionex ADRS 600 (4 mm) or Dionex AERS 500e (4 mm) in the MPIC Suppression Mode

Eluent	Eluent Flow Rate (mL/min)	Current (mA)	Regenerant Flow Rate (mL/min) ^f	Regenerant Concentration (mN)
0.1–2.0 mM TBAOH	0.5–2.0	50/100	3–5	5–10
2.0–5.0 mM TBAOH	0.5–1.0	100/300	3–5	10
	1.1–1.5	300/500	3–5	10

NOTE: For lower eluent concentration in a given range, choose lower corresponding current; for higher eluent concentration, choose a higher current setting. Higher current settings require higher pressures applied to the pressurized regenerant delivery bottle to maintain adequate regenerant flow.

Cation MPIC

The Dionex CDRS 600 or Dionex CERS 500e can be used for suppression of MPIC (ion-pairing) eluents by using the Auto Suppression External Water Mode or the MPIC Suppression Mode depending on the specific MPIC application. The MPIC Suppression Mode is a combination of the Auto Suppression External Water Mode augmented with a chemical regenerant if necessary, such as boric acid (H₃BO₃). When the Dionex CDRS 600 or Dionex CERS 500e is operating in this mode, it uses an applied current and a constant source of dilute boric acid solution from a pressurized bottle delivery system.

The separation of alkanolamines by ion-pairing using the Dionex CDRS 600 or Dionex CERS 500e requires adding 10 mM boric acid to the regenerant to increase the ionization of the ethanolamine's, thereby increasing the conductivity of the alkanolamines. Boric acid regenerant should not be used for the separations of the fully ionized alkali and alkaline earth metals as the borate will displace the hydroxide counter-ion and reduce the conductance of these ions. The following table lists the eluent concentrations and flow rates of standard eluents used in cation MPIC separations and the current level and regenerant flow rate required to suppress them.

^f Measured with power ON using a graduated cylinder.

Table 19 Matching the Current Setting and Regenerant Flow Rate to the Eluent Concentration and Flow Rate for the Dionex CDRS 600 (4 mm) or Dionex CERS 500e (4 mm)

Eluent	Eluent Flow Rate (mL/min)	Current (mA) ^g	Regenerant Flow Rate (mL/min) ^f
0.1-2.0 mM Hexanesulfonic acid (HSA)	0.5–1.0	50/100	3–5
2.0-5.0 mM Hexanesulfonic acid	0.5–1.0	100/300	3–5
0.1–2.0 mM Octane sulfonic acid (OSA)	0.5–1.0	50/100	3–5
2.0-5.0 mM OSA	0.5–1.0	100/300	3–5
0.1–2.0 mM Nonafluoropentanoic acid	0.5–1.0	50/100	3–5
2.0-5.0 mM Nonafluoropentanoic acid	0.5–1.0	100/300	3–5

NOTE: For the lower eluent concentration in a given range, choose the lower corresponding current; for the higher eluent concentration, choose the higher current setting. Higher current settings require higher pressures applied to the pressurized regenerant delivery bottle to maintain adequate regenerant flow. Organic eluent solvents levels should be kept below 40%.

Plumbing for Neutralization Mode

For detailed information on installation of the Dionex DRS 600 on Dionex ICS systems for Neutralization Mode, refer to Thermo Scientific Dionex Application Notes 93 and 94.

NOTE: The Dionex ERS 500e and Dionex AERS 500 Carbonate suppressors are not recommended for use with the Neutralization Mode of Operation. The Dionex DRS 600 should be used.

⁹ CERS 500 applications will operate best at current settings of 300 mA or lower. Operating the CERS 500 at current settings over 300 mA can reduce the life of the suppressor and produce unnecessary baseline noise.

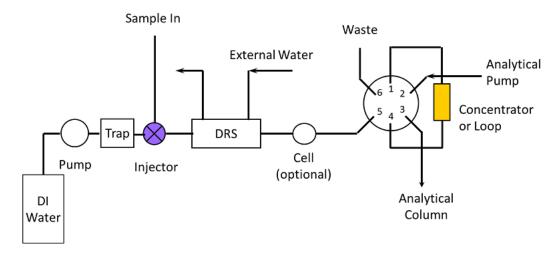


Figure 19 The Dionex DRS 600 Neutralization Mode Plumbing Diagram

Sample liquid line connections for Dionex DRS 600 in Neutralization Mode

Procedure

- 1. Install the Dionex DRS 600 in the chromatography module.
- 2. Connect the eluent line from the Sample Injection Valve to the ELUENT IN port of the Dionex DRS 600.
- 3. Connect the ELUENT OUT port of the Dionex DRS 600 to Port 5 of the Injection Valve in the analytical system.

Regenerant liquid line connections for Dionex DRS 600 in Neutralization Mode

The SP10 Auto Neutralizer Ship Kit (Item # 047950) contains all the components needed to install and operate the Dionex DRS 600 in Neutralization Mode with a pressurized water reservoir.

Procedure

- 1. Make the following air line connections:
 - a. Locate the pieces of tinted 1/8" OD plastic tubing (Item # 030089) supplied in the Ship Kit.
 - b. Push the end of a piece of 1/8" OD tubing over the barbed fitting of the regulator. Connect the other end of the tubing to the source of air pressure.
 - c. Push one end of the second piece of 1/8" OD tubing over the other barbed fitting of the regulator. Push the other end of this tubing over the barbed fitting (Item # 030077) in the pressure inlet of the plastic reservoir.
- 2. Make the following liquid line connections:

- a. Use a coupler (Item # 039056) to connect one end of the 30" tubing assembly (Item # 035727) that comes in the Auto Neutralization Ship Kit to the water reservoir. Connect the other end of this tubing to the REGEN IN port of the Dionex DRS 600.
- b. Using a coupler (Item # 039056) and a 1/8" OD piece of tubing (Item # 035728) from the Auto Neutralization Ship Kit, connect one end of this line to the REGEN OUT port of the Dionex DRS 600 and then connect the other end of the line to the Gas Separator Waste Tube.
- c. Fill the reservoir with water. Make sure the O-ring is inside the cap of the reservoir before screwing the cap onto the reservoir. Screw the cap onto the reservoir tightly and place the reservoir near or on top of the instrument in a secondary waste container such as the Dionex EO.

Install and regenerate the pump trap column

See the following table for details on pump trap column installation and regeneration.

Table 20 Pump trap column installation and regeneration

Task	Description	
Install the Dionex IonPac ATC-HC Trap Column	The Dionex IonPac ATC-HC Trap Column (Item # 059604) is used to trap anions that may be in the carrier solution that could result in high blanks. The Dionex IonPac ATC-HC should be regenerated prior to installation.	
Regenerate the Dionex IonPac ATC-HC Trap Column	Using a pump other than the carrier pump, the Dionex IonPac ATC-HC should be regenerated and rinsed:	
	Procedure	
	 Regenerate the Dionex IonPac ATC-HC with 0.5 M NaOH for 50 minutes at a flow rate of 1 mL/min. 	
	 Rinse the Dionex IonPac ATC-HC with deionized water for 30 minutes at a flow rate of 1 mL/min. If the carrier solution is different from water, equilibrate it to the carrier solution for 30 minutes at a flow rate of 1 mL/min. 	
Install the Dionex IonPac CTC-1 Trap Column	The Dionex IonPac CTC-1 Trap Column (Item # 040192) is used to trap cations that may be in the carrier solution that could result in high blanks. The Dionex IonPac CTC-1 should be regenerated prior to installation.	
Regenerate the Dionex IonPac CTC-1 Trap Column	Using a pump other than the carrier pump, the Dionex IonPac CTC-1 should be regenerated and rinsed:	

Task	Description		
	Procedure		
	 Regenerate the Dionex IonPac CTC-1 with 0.5 M H₂SO₄ for 50 minutes at a flow rate of 1 mL/min. 		
	 Rinse the Dionex IonPac CTC-1 with deionized water for 30 minutes at a flow rate of 1 mL/min. If the carrier solution is different from water, equilibrate it to the carrier solution for 30 minutes at a flow rate of 1 mL/min. 		

Operating in Neutralization Mode

For detailed operation of Dionex IC systems, consult the accompanying product manuals.

NOTE: The Dionex AERS 500 Carbonate suppressors are not recommended for use with the Neutralization Mode of Operation. The Dionex DRS 600 should be used.

Neutralization pretreatment coupled with Ion Chromatography involves the following steps:

- 1. The concentrated sample is loaded into the sample loop of the "Sample Valve" with either a syringe or an Autosampler.
- 2. The sample loop is switched in-line and flushed with a stream of deionized water.
- 3. The deionized water pushes the sample through the Dionex DRS 600, where neutralization begins.
- 4. Common bases or acids that have been diluted fourfold or more can be completely neutralized after one pass through the Dionex DRS 600 at flow rates ≤ 0.5 mL/min.
- 5. After complete neutralization, the sample is delivered to the injection valve of the Dionex Ion Chromatography system and a low-pressure trap column such as the Dionex IonPac UTAC-XLP2 (Item # 072781) for the Dionex ADRS 600 (4 mm) or Dionex IonPac TCC-XLP1 (Item # 063889) for the Dionex CDRS 600 (4 mm).
- 6. The trace ions are then analyzed by the Dionex Ion Chromatography system.

For detailed information on the timing and configuration of the Sample Valve, and Injection Valve, refer to Thermo Scientific Dionex Application Note 93 or 94, or to the Dionex SP10 AutoNeutralizer Operator's Manual (Document Number 034980).

Prepare the suppressor for storage

The Dionex DRS 600, Dionex ERS 500e and Dionex AERS 500 Carbonate are shipped with deionized water as the storage solution. If the suppressor will not be used for more than three days, prepare it for storage. The resin, screens, and membranes in the suppressor must be completely hydrated to maintain the liquid seal and chromatographic performance. Plug all of the ports after hydration.

See the following topics for more information:

- Short-term storage (3 to 7 days)
- Long-term storage (more than 7 days)

Short-term storage (3 to 7 days)

Procedure

- 1. Using a plastic syringe, push 5 mL of deionized water through the REGEN IN port, and 3 mL of Deionized Water through the ELUENT IN port until all bubbles are removed. Plug all the ports (both REGEN and ELUENT ports).
- 2. To resume operation, connect the suppressor to the system. Allow the system to equilibrate before starting the analysis.

NOTE: If the eluent last used contained organic solvents, flush the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate with deionized water for 10 minutes through both chambers before plugging the fitting ports.

Long-term storage (more than 7 days)

Procedure

- 1. Connect the eluent and regenerant chambers in series and flush the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate with deionized water for 10 minutes at 1.0 mL/min (4 mm) or 0.25 mL/ min (2 mm).
- 2. Plug all suppressor ELUENT ports and REGEN ports.
- 3. To resume operation, complete the hydration steps as outlined in Hydration and connect the suppressor to the system. Allow the system to equilibrate before starting the analysis.

Example Neutralizer Mode applications

The following examples are presented to highlight the analysis of trace anions or cations found in the concentrated matrices that have been treated using a Dionex Dynamically Regenerated Suppressor (Dionex DRS 600) in Neutralizer Mode.

The analysis may be done on any one of several Dionex anion or cation exchange column sets. Please refer to the Product Manual for the anion or cation exchange column set installed in your system for detailed operation and troubleshooting information.

Because of its low operating pressure, the Dionex IonPac UTAC-XLP2 (Item # 072781) or Dionex IonPac TCC-XLP1 (Item # 063889) should be used to concentrate the trace anions or cations in the sample neutralized by the Dionex DRS 600. The use of other concentrators may result in excessive back pressure to the Dionex DRS 600, thus damaging the suppressor.

NOTE: The Dionex AERS 500 Carbonate suppressors are not recommended for use with the Neutralization Mode of Operation. The Dionex DRS 600 or ERS 500e should be used.

Anion system blank

Trace anion contamination in the deionized water used for the carrier solution, the Dionex ADRS 600 and eluent create the analytical blank. For trace analysis, the analytical blank usually determines the detection limits of the system.

Anion contaminants in deionized water can be removed by installing Dionex IonPac ATC-HC column between the sample carrier pump and the Sample Valve. The major source of sulfate contamination is usually from the Dionex ADRS 600. Since this device uses high capacity surface sulfonated ion exchange screens and membranes, sulfate is released from the screen and membrane surfaces, especially in a newly installed Dionex ADRS 600.

To reduce the sulfate blank, follow the Dionex DRS 600 startup procedure in Start-up. The sulfate blank is normally reduced to a constant level after 24 hours of operation. Typical blanks are shown in Dionex IonPac AS11 Gradient Analysis of 10% Sodium Hydroxide.

Finally, anion contaminants in the eluent (e.g., Na₂CO₃/NaHCO₃ and NaOH) also contribute to the analytical blank. A choice of high purity chemicals helps to reduce the blank concentrations.

Cation system blank

Trace cation contamination in the deionized water used for the carrier solution, the Dionex CDRS 600 and eluent create the analytical blank. For trace analysis, the analytical blank usually determines the detection limits of the system.

Cation contaminants in deionized water can be removed by installing Dionex IonPac CTC-1 Column between the sample carrier pump and the Sample Valve. The major source of ammonia and amine contamination is usually from the Dionex CDRS 600. Since this device uses high capacity aminated ion exchange screens and membranes, ammonia and amines are released from the screen and membrane surfaces, especially in a newly installed Dionex CDRS 600.

To reduce the amine blank, follow the Dionex DRS 600 start-up procedure in Start-up. The amine blank is normally reduced to a constant level after 24 hours of operation.

A typical blank is shown in Dionex IonPac CS12A Blank and Standard Analysis. The use of high purity chemicals helps to reduce the blank concentrations.

Condition the Dionex CDRS 600

Since the Dionex CDRS 600 is a high-capacity anion exchange device which supplies the high concentration of hydroxide for acid neutralization, the hydrolysable ions such as Mg2+ and Ca2+ in hydroxide forms may be precipitated in the Dionex CDRS 600.

In general, when standard cation in water solutions are employed for system calibration, it is possible that Mg2+ and Ca2+ may be precipitated due to the high hydroxide concentration. These cations are then "carried over" to the first acid run.

To avoid the hydrolysis of the alkaline earth metals during standard calibration, the Dionex CDRS 600 is "conditioned" by running a complete pretreatment cycle of acid (preferably 24% sulfuric acid) prior to standard runs.

Follow the Dionex CDRS 600 acid treatment procedure below prior to each standard run.

- 1. Confirm that the system functions properly.
- 2. Set "Sample Valve" to Load Position and load 24% sulfuric acid.
- 3. Switch the sample valve to Inject position and flush the sample loop with deionized water.
- 4. After the sulfuric acid passes through the neutralizer and IC injection valve (approximately 4–6 minutes with the collection coil installed or 1-2 minutes without the collection coil installed), the system is ready for standard injection.

The above steps are applied only when standard calibration is performed. However, if the standard injection is made immediately after the sample runs (acid samples) the Dionex CDRS 600 acid pretreatment is not required.

If the standard run is not started within 20 minutes after the acid calibration step, the overall process must be repeated. When multiple point calibration is performed, the Dionex CDRS 600 acid pretreatment can be made any time after the beginning of the analytical separation.

System calibration

The analytical blank should be incorporated into the calibration curve. One or two-level standards are usually required to calibrate the Ion Chromatograph. For trace analysis, typical standard concentrations are 2 to 5 times sample concentrations.

- For anions, if the sample contains 50 ppb each of Cl-, NO³- and SO₄²⁻, the standard calibration should not exceed 250 ppb each of these anions.
- For cations, if the sample contains 10 ppb each of K+, Mg2+, and Ca2+, the standard calibration should not exceed 50 ppb each of these cations.

Analysis of acid samples containing high concentrations of transition metals

If a sample contains transition metals in ppm (mg/L) levels, these elements may interfere with cation detection by suppressed conductivity. The addition of a complexing agent such as pyridine-2,6-dicarboxylic acid (PDCA, Item # 039671) to the CS12A eluent is required to selectively remove transition metals from the eluent via the suppression system.

Table 21 Detection Limits of Dionex DRS 600 Sample Pretreatment and Subsequent Ion Chromatography

Anion	ppb ^h	Cation	ppb ⁱ
Chloride	4	Lithium	0.03
Bromide	20	Sodium	1.0
Chlorate	30	Potassium	2.0
Nitrate	20	Magnesium	0.6
Phosphate	50	Calcium	0.8
Sulfate	30		
Oxalate	50		

Anion example applications

The following examples demonstrate sample neutralization can be performed with the Thermo Scientific Dionex IonPac AS11A and AS12A columns using the ADRS 600 suppressor

Dionex IonPac® AS11 Gradient

Without Guard

• Eluent 1: Type I DI Water

Eluent 2: 5.0 mM NaOH

Eluent 3: 100 mM NaOH

• Eluent Flow Rate: 2.0 mL/min

Table 22 Without guard

TIME (min)	% E1	% E2	%E3	Comments
Equilibration	1			
0	90	10	0	0.5 mM NaOH for 7 min
7.0	90	10	0	

^h Estimated values in NaOH matrix.

¹ Estimated values in H₂SO₄ matrix.

TIME (min)	% E1	% E2	%E3	Comments
Analysis				
0.0	90	10	0	0.5 mM NaOH, Inject
0.2	90	10	0	Inject Valve to Load Position
2.0	90	10	0	0.5-5.0 mM NaOH in 3 min
5.0	0	100	0	5.0-38.25 mM NaOH in 10 min
15.0	0	65	35	

With Guard

• Eluent 1: Type I DI Water

• Eluent 2: 5.0 mM NaOH

• Eluent 3: 100 mM NaOH

Eluent Flow Rate: 2.0 mL/min

Table 23 With guard

TIME (min)	% E1	% E2	%E3	Comments
Equilibration				
0	90	10	0	0.5 mM NaOH for 7 min
7.0	90	10	0	
Analysis				
0.0	90	10	0	0.5 mM NaOH, Inject
0.2	90	10	0	Inject Valve to Load Position
2.5	90	10	0	0.5-5.0 mM NaOH in 3.5 min
6.0	0	100	0	5.0-38.25 mM NaOH in 12 min

TIME (min)	% E1	% E2	%E3	Comments
18.0	0	65	35	

NOTE: The steps for sample neutralization can be performed while the Thermo Scientific Dionex IonPac AS11 is equilibrating with the starting eluent (90% E1/10% E2).

Seven minutes are required at the beginning of the above program for equilibration of the Dionex IonPac AS11 with E1 prior to injecting the next sample.

If the system is not used continuously, that is, the run program (equilibration plus analysis) is not started exactly every 22 minutes (without Dionex IonPac AG11) or 25 minutes (with Dionex IonPac AG11), the run program can be modified to start with 2 minutes of the highest eluent concentration for regeneration and then to equilibrate with E1 for 7 minutes with the next injection 9 minutes into the program.

Dionex IonPac AS11 Gradient Analysis of 10% Sodium Hydroxide

Sample	100 µL of 10% NaOH neutralized in the SP10 AutoNeutralizer
Concentrator Column	Low-Pressure Trace Anion Concentrator (i.e., Dionex IonPac UTAC-XLP2, Item # 072781)
Trap Column	Anion Trap Column (i.e., Dionex IonPac ATC-HC 500, Item # 075978)
Guard Column	Dionex IonPac AG11 Guard Column
Analytical Column	Dionex IonPac AS11 Analytical Column
Eluents	E1: Type I Deionized Water
	E2: 5.0 mM NaOH
	E3: 100 mM NaOH
Eluent Flow Rate	2.0 mL/min (4-mm)
Electrolytic Suppressor	Dionex Anion Dynamically Regenerated Suppressor, Dionex ADRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Anion Chemically Regenerated Suppressor, Dionex ACRS 500
Chemical Regenerant	50 mN H ₂ SO ₄

Expected Background Conductivity	0.5 mM NaOH: 1 μS	
	35 mM NaOH: 3.5 μS	
Expected System Operating Back	Without Guard: 1,600 psi (11.03 MPa)	
Pressure	With Guard: 1,850 psi (12.75 MPa)	

Figure 20 Dionex IonPac AS11 Gradient Analysis of Blank, Standard, 10% NaOH Sample and Spiked 10% NaOH Sample

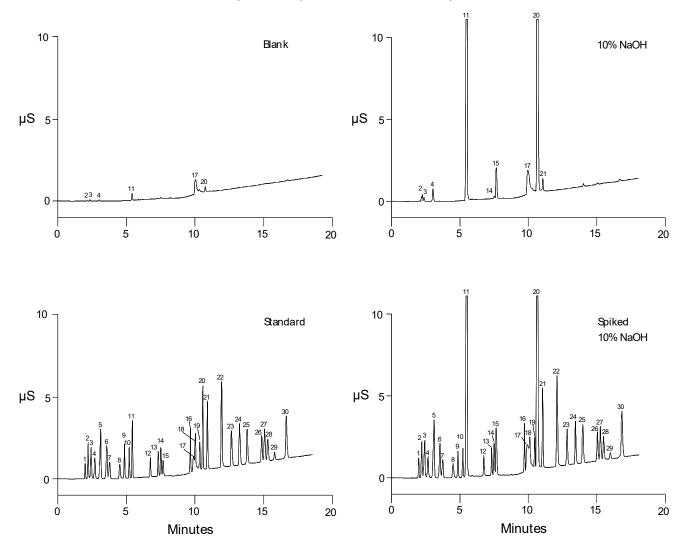


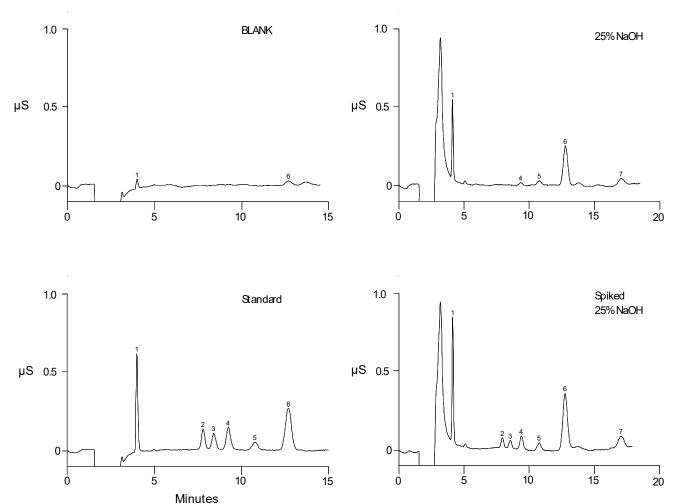
Table 24 Recovery Data for the Dionex IonPac AS11 Analysis of 10% NaOH

	Standard Conc. (mg/L)	10% NaOH Conc. (mg/L)	Expected Spiked Value Conc. (mg/L)	10% NaOH Spiked Conc. (mg/L)
Quinate	1.000	NDI	1.000	1.435
Fluoride	0.200	0.030	0.230	0.2444
Acetate	1.000	0.081	1.081	1.301
Propionate	1.000	ND	1.000	1.069

ND = None Detected

	Standard Conc. (mg/L)	. 10% NaOH Conc. (mg/L)	Expected Spiked Value Conc. (mg/L)	10% NaOH Spiked Conc. (mg/L)
Formate	1.000	0.213	1.213	1.216
Methylsulfonate	1.00	ND	1.000	1.070
Pyruvate	1.000	ND	1.000	1.103
Valerate	1.000	ND	1.000	1.009
Monochloroacetate	1.000	ND	1.000	0.811
Bromate	1.000	ND	1.000	1.036
Chloride	0.400	8.750	9.150	9.095
Trifluoroacetate	1.000	ND	1.000	1.055
Bromide	0.600	ND	0.600	0.640
Nitrate	0.600	0.048	0.648	0.657
Chlorite	0.600	1.178	1.778	1.870
Selenite	1.000	ND	1.000	0.990
Carbonate				
Malonate	1.000	ND	1.000	1.303
Maleate	1.000	ND	1.000	1.026
Sulfate	1.000	9.842	10.842	10.925
Oxalate	1.000	0.166	1.166	1.244
Tungstate	2.000	ND	2.000	2.201
Phthalate	2.000	ND	2.000	2.086
Phosphate	2.000	ND	2.000	2.120
Chromate	2.000	ND	2.000	2.287
Citrate	2.000	ND	2.000	2.214
Tricarballylate	2.000	ND	2.000	2.098
Isocitrate	2.000	ND	2.000	2.112
cis-Aconitate	2.000	ND	2.000	1.512
trans-Aconitate	2.000	0.072	2.072	2.303

Dionex IonPac AS12A Isocratic Analysis of 25% Sodium Hydroxide


The following examples demonstrate sample neutralization can be performed with the Thermo Scientific Dionex IonPac AS12A column using the ADRS 600 suppressor

Sample	100 μL of 25% NaOH neutralized in
	the SP10 AutoNeutralizer

4 Example Neutralizer Mode applications

Anion example applications

Concentrator Column	Low-Pressure Trace Anion Concentrator (i.e., Dionex IonPac UTAC-XLP2, Item # 072781)
Column	Dionex IonPac AG12A + Dionex IonPac AS12A
Eluent	2.7 mM Na ₂ CO ₃ /0.3 mM NaHCO ₃
Eluent Flow Rate	1.5 mL/min
Electrolytic Suppressor	Dionex Anion Dynamically Regenerated Suppressor, Dionex ADRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Anion Chemically Regenerated Suppressor, Dionex ACRS 500
Chemical Regenerant	50 mN H ₂ SO ₄
Expected Background Conductivity	14–16 μS
Peak Assignment/Sample Concentration	See the table below.

Figure 21 Dionex IonPac AS12A Isocratic Analysis of Blank, Standard, 25% NaOH Sample and Spiked 25% NaOH Sample

Table 25 Recovery Data for the Dionex IonPac AS12A Analysis of 25% NaOHk

	Spiking Standard Conc. (mg/L)	25% NaOH Conc. (mg/L)	Expected Spiked Value Conc. (mg/L)	25% NaOH Spiked Conc. (mg/L)
Chloride	0.100	0.155 ± 0.003	0.25	0.258 ± 0.004
Bromide	0.100	NDI	0.100	0.099 ± 0.008
Chlorate	0.100	ND	0.100	0.099 ± 0.009
Nitrate	0.100	0.011 ± 0.006	0.111	0.199 ± 0.013
Phosphate	0.100	0.106 ± 0.025	0.206	0.183 ± 0.017
Sulfate	0.200	0.348 ± 0.004	0.548	0.553 ± 0.011
Oxalate	0.100	0.134 ± 0.028	0.234	0.238 ± 0.022

^k Based on 8 runs

Dionex IonPac AS12A Isocratic Analysis of 20% Ammonium Hydroxide

Sample	100 µL of 20% NH4OH neutralized in the SP10 AutoNeutralizer
Concentrator Column	Low-Pressure Trace Anion Concentrator (i.e., Dionex IonPac UTAC-XLP2, Item # 072781)
Column	Dionex IonPac AG12A + Dionex IonPac AS12A
Eluent	2.7 mM Na ₂ CO ₃ /0.3 mM NaHCO ₃
Eluent Flow Rate	1.5 mL/min
Electrolytic Suppressor	Dionex Anion Dynamically Regenerated Suppressor, Dionex ADRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Anion Chemically Regenerated Suppressor, Dionex ACRS 500
Chemical Regenerant	50 mN H ₂ SO ₄
Expected Background Conductivity	14–16 µS

Analyte

- 1. Chloride
- 2. Bromate
- 5. Nitrate
- 7. Sulfate
- 8. Oxalate

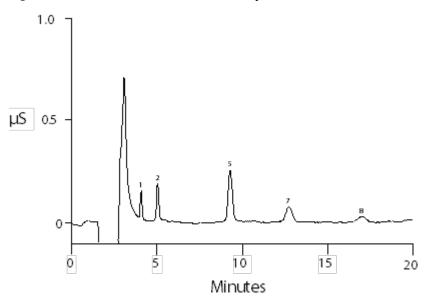
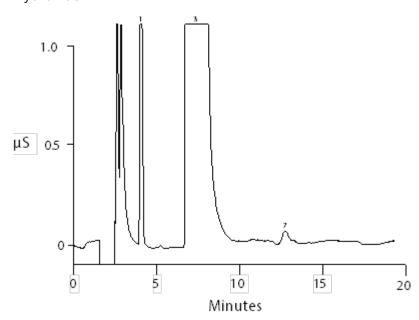


Figure 22 Dionex IonPac AS12A Analysis of 20% Ammonium Hydroxide

Dionex IonPac AS12A Isocratic Analysis of 25% Tetramethylammonium Hydroxide

Sample	100 µL of 25% TMAOH neutralized in the SP10 AutoNeutralizer
Concentrator Column	Low-Pressure Trace Anion Concentrator (i.e., Dionex IonPac UTAC-XLP2, Item # 072781)
Column	Dionex IonPac AG12A + Dionex IonPac AS12A
Eluent	2.7 mM Na ₂ CO ₃ /0.3 mM NaHCO ₃
Eluent Flow Rate	1.5 mL/min
Electrolytic Suppressor	Dionex Anion Dynamically Regenerated Suppressor, Dionex ADRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Anion Chemically Regenerated Suppressor, Dionex ACRS 500
Chemical Regenerant	50 mN H ₂ SO ₄
Expected Background Conductivity	14–16 μS

Analyte


- 1. Chloride
- 7. Sulfate
- 8. Oxalate

IonPac AS12A Isocratic Analysis of 25% Tetrabutylammonium Hydroxide

Sample	100 μL of 25% TBAOH neutralized in the SP10 AutoNeutralizer
Concentrator Column	Low-Pressure Trace Anion Concentrator (i.e., Dionex IonPac UTAC-XLP2, Item # 072781)
Column	Dionex IonPac AG12A + Dionex IonPac AS12A
Eluent	2.7 mM Na ₂ CO ₃ /0.3 mM NaHCO ₃
Eluent Flow Rate	1.5 mL/min
Electrolytic Suppressor	Dionex Anion Dynamically Regenerated Suppressor, Dionex ADRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Anion Chemically Regenerated Suppressor, Dionex ACRS 500
Chemical Regenerant	50 mN H₂SO₄
Expected Background Conductivity	14–16 μS

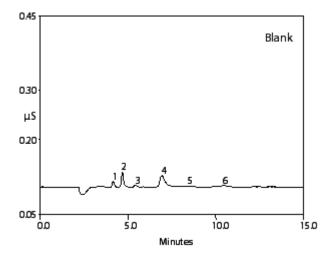
Analyte

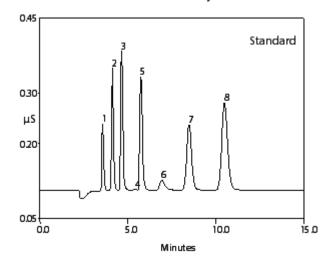
- 1. Chloride
- 3. Nitrate
- 7. Sulfate
- 8. Oxalate

Figure 23 Dionex IonPac AS12A Analysis of 25% Tetrabutylammonium Hydroxide

Cation example applications

The following examples demonstrates sample neutralization can be performed with the Thermo Scientific Dionex IonPac CS12A column using the CDRS 600 suppressor.


Dionex IonPac CS12A Blank and Standard Analysis


Sample	100 μL of Standard or Blank neutralized in the Dionex CDRS 600
Concentrator Column	Low Pressure Trace Cation Concentrator (i.e. Dionex IonPac TCC-XLP1, Item # 063889)
Guard Column	Dionex IonPac CG12A Guard Column
Analytical Column	Dionex IonPac CS12A Analytical Column
Eluent	20 mM Methanesulfonic acid
Eluent Flow Rate	1.0 mL/min
Electrolytic Suppressor	Dionex Cation Dynamically Regenerated Suppressor, Dionex CDRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Cation Chemically Regenerated Suppressor, Dionex CCRS 500

Chemical Regenerant	100 mN TBAOH
Expected Background Conductivity	20 mM MSA: <1 μS
Expected System Operating Back	Without Guard: 1,400 psi (9.65 MPa)
Pressure	With Guard: 1,850 psi (12.75 MPa)

Conc. (μg/L)
5.0
20.0
25.0
В
50.0
В
25.0
50.0

Figure 24 Dionex IonPac CS12A Blank and Standard Analysis

Dionex IonPac CS12A Analysis of 24% Sulfuric Acid

Sample	100 µL of 24% sulfuric acid neutralized in the Dionex CDRS 600
Concentrator Column	Low Pressure Trace Cation Concentrator (i.e. Dionex IonPac TCC-XLP1, Item # 063889)
Guard Column	Dionex IonPac CG12A Guard Column
Analytical Column	Dionex IonPac CS12A Analytical Column
Eluent	20 mM Methanesulfonic acid (MSA)
Eluent Flow Rate	1.0 mL/min

Electrolytic Suppressor	Dionex Cation Dynamically Regenerated Suppressor, Dionex CDRS 500
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Cation Chemically Regenerated Suppressor, Dionex CCRS 500
Chemical Regenerant	100 mN TBAOH
Expected Background Conductivity	20 mM MSA: <1 μS
Expected System Operating Back Pressure	Without Guard: 1,400 psi (9.65 MPa)
	With Guard: 1,850 psi (12.75 MPa)

Figure 25 Dionex IonPac CS12A Analysis of 24% H₂SO₄ Sample

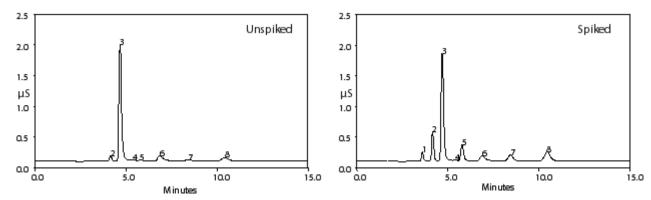


Table 26 Recovery Data for the Dionex IonPac CS12A Analysis of 24% H₂SO₄

	Spiking Standard Conc. (μg/L)	24% H ₂ SO ₄ Unspiked Value ^k Conc. (μg/L)	Expected Spiked Value Conc. (µg/ L)	
Lithium	2.0	NDI	2.0	1.993 ± 0.008
Sodium	8.0	7.4 ± 0.4	15.4	14.3 ± 0.1
Ammonium	B ^m	В	В	В
Dimethylamine	В	В	В	В
Potassium	20.0	3.3 ± 0.5	23.3	22.5 ± 0.2
Trimethylamine	В	В	В	В
Magnesium	10.0	2.0 ± 0.2	12.0	12.2 ± 0.2
Calcium	20.0	10.6 ± 0.1	30.6	33 ± 1

Dionex IonPac CS12A Analysis of 25% Acetic Acid

Sample	100 µL of 25% acetic acid neutralized
	in the Dionex CDRS 600

m B = Blank

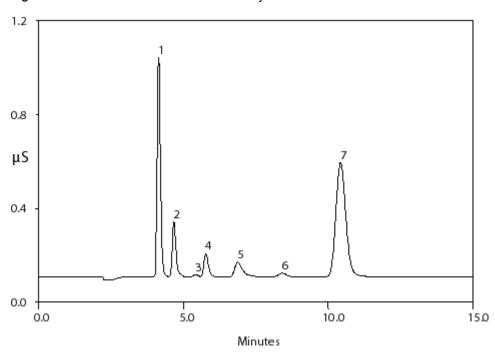
Concentrator Column	Low Pressure Trace Cation Concentrator (i.e. Dionex IonPac TCC-XLP1, Item # 063889)
Guard Column	Dionex IonPac CG12A Guard Column
Analytical Column	Dionex IonPac CS12A Analytical Column
Eluent	20 mM Methanesulfonic acid (MSA)
Eluent Flow Rate	1.0 mL/min
Electrolytic Suppressor	Dionex Cation Dynamically Regenerated Suppressor, Dionex CDRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Cation Chemically Regenerated Suppressor, Dionex CCRS 500
Chemical Regenerant	100 mN TBAOH
Expected Background Conductivity	20 mM MSA: <1 μS
Expected System Operating Back	Without Guard: 1,400 psi (9.65 MPa)
Pressure	With Guard: 1,850 psi (12.75 MPa)
Analyte	Conc. (µg/L)
Sodium	86.7
Ammonium	33.7
Dimethylamine	В
Potassium	21.6
Trimethylamine	В

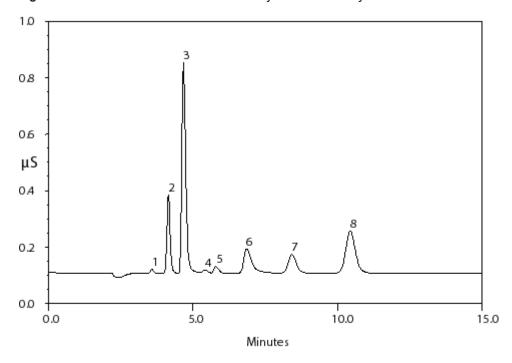
2.5

133.0

Magnesium

Calcium



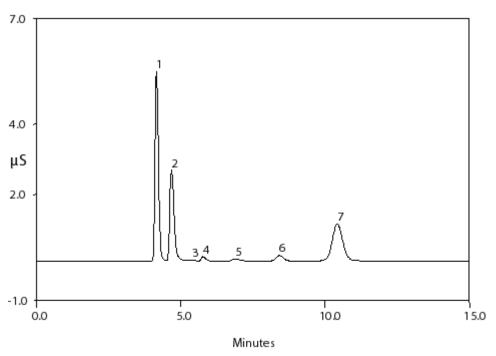

Figure 26 Dionex IonPac CS12A Analysis of 25% Acetic Acid

Dionex IonPac CS12A Analysis of 10% Hydrofluoric Acid

Sample	100 µL of 10% hydroflouric acid neutralized in the Dionex CDRS 600
Concentrator Column	Low Pressure Trace Cation Concentrator (i.e. Dionex IonPac TCC-XLP1, Item # 063889)
Guard Column	Dionex IonPac CG12A Guard Column
Analytical Column	Dionex IonPac CS12A Analytical Column
Eluent	20 mM Methanesulfonic acid (MSA)
Eluent Flow Rate	1.0 mL/min
Electrolytic Suppressor	Dionex Cation Dynamically Regenerated Suppressor, Dionex CDRS 600
	Recycled Eluent Mode
or Chemical Suppressor	Dionex Cation Chemically Regenerated Suppressor, Dionex CCRS 500
Chemical Regenerant	100 mN TBAOH
Expected Background Conductivity	20 mM MSA: <1 μS
Expected System Operating Back Pressure	Without Guard: 1,400 psi (9.65 MPa)
	With Guard: 1,850 psi (12.75 MPa)

Analyte	Conc. (µg/L)
Lithium	0.4
Sodium	66.7
Ammonium	110.5
Dimethylamine	В
Potassium	8.4
Trimethylamine	В
Magnesium	15.3
Calcium	59.6

Figure 27 Dionex IonPac CS12A Analysis of 10% Hydrofluoric Acid


Dionex IonPac CS12A Analysis of 22% Phosphoric Acid

Sample	100 μL of 22% phosphoric acid neutralized in the Dionex CDRS 600
Concentrator Column	Low Pressure Trace Cation Concentrator (i.e. Dionex IonPac TCC-XLP1, Item # 063889)
Guard Column	Dionex IonPac CG12A Guard Column
Analytical Column	Dionex IonPac CS12A Analytical Column
Eluent	20 mM Methanesulfonic acid (MSA)
Eluent Flow Rate	1.0 mL/min

Electrolytic Suppressor	Dionex Cation Dynamically Regenerated Suppressor, Dionex CDRS 600		
	Recycled Eluent Mode		
or Chemical Suppressor	Dionex Cation Chemically Regenerated Suppressor, Dionex CCRS 500		
Chemical Regenerant	100 mN TBAOH		
Expected Background Conductivity	20 mM MSA: <1 μS		
Expected System Operating Back	Without Guard: 1,400 psi (9.65 MPa)		
Pressure	With Guard: 1,850 psi (12.75 MPa)		

Analyte	Conc. (μg/L)
Sodium	509.1
Ammonium	438.6
Dimethylamine	В
Potassium	25.8
Trimethylamine	В
Magnesium	22.4
Calcium	144.1

Figure 28 Dionex IonPac CS12A Analysis of 22% Phosphoric Acid

Troubleshooting

The purpose of this section is to help you solve operating problems that may arise while using the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate. For more information on problems that originate with the Ion Chromatograph System or the specific exchange column set in use, refer to the Troubleshooting Guide in the appropriate product manual. If you cannot solve the problem on your own, contact the Thermo Fisher Scientific Regional Office nearest you.

CAUTION: Do not allow eluent to flow through the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate without the power turned on for more than a few minutes. Doing so will cause noticeable reduction of analyte peak areas. If this should occur, perform the procedure in Small or increasing analyte peak areas.

Electrolytically regenerated suppressor displays an alarm state

The DRS, ERS or SRS alarm state indicates that there is high electrical resistance or an open circuit in the suppressor device typically in the regenerant channel or there is an issue with the connectivity of the suppressor to a power supply.

High resistance or an open circuit occurs when:

- The suppressor is not connected to the power supply or has a
 defective cable. In this state, the only indicator from the system is a
 high voltage alarm. In this state, no current can be applied to the
 suppressor.
- 2. The suppressor is operated with higher currents than the recommended currents.
 - Refer to the current settings section to determine the correct current and lower the current.
- 3. The suppressor is exposed to contaminants such as iron, other metals or organics.

Refer to the appropriate cleanup procedure and implement the recommended cleanup. In cases when the contamination is continuous, a routine cleanup step on a weekly basis is recommended as part of preventive maintenance.

NOTE: If the above problem is encountered on a routine basis, particularly with samples containing high levels of metals or solvents, the chemical mode of operation is recommended. The Dionex CRS 500 is recommended for the chemical mode of operation; the Dionex DRS 600 can be operated in the chemical mode, but with reduced suppression capacity.

Small or increasing analyte peak areas

This problem is caused by running eluent through the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate with the power off while using the AutoSuppression Recycle Mode or the AutoSuppression External Water Mode.

It may also be caused by application to too little current to the suppressor for an extended period of time.

A regeneration protocol is needed to ensure good operation.

NOTE: The Dionex AERS 500 Carbonate suppressor has different electrical current requirements than the Dionex ADRS 600 and Dionex AERS 500e suppressors. If an AERS Carbonate mode is not available, the current applied to a Dionex AERS 500 Carbonate should be adjusted by a factor of 1.30 compared to a standard ADRS 600 suppressor. Chromeleon 7.2 SR3 MUa and later versions have an option for selecting an AERS_Carbonate suppressor in the Instrument Method Wizard and Editor dialog box. Selecting this suppressor from the drop-down list will automatically apply the recommended current setting for Dionex AERS 500 Carbonate suppressors.

See the following topics for more information:

- Suppressor chemical regeneration
- Suppressor electrolytic regeneration
- Full or extended regeneration

Suppressor chemical regeneration

For fast regeneration, it is recommended to follow the steps below for chemical regeneration of the suppressor.

Procedure

- 1. Disconnect the eluent line from the analytical column attached to the ELUENT IN port of the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate at the analytical column end of the line. Direct this line to a separate waste beaker.
- 2. Disconnect the eluent line from the ELUENT OUT port of the suppressor.
- 3. Do one of the following:
 - (Dionex ADRS 500, Dionex AERS 500e or Dionex AERS 500 Carbonate): Using a plastic syringe, push approximately 3 mL of 200 mN H2SO4 through the ELUENT OUT port and approximately 5 mL of 200 mN H2SO4 through the REGEN IN port. Flush with 3 mL degassed, deionized water through the ELUENT OUT port and 5 mL degassed, deionized water through the REGEN IN port.
 - (Dionex CDRS 500 or Dionex CERS 500e): Using a plastic syringe, slowly push approximately 3 mL of freshly prepared 200 mN NaOH (made up using degassed, deionized water) through the ELUENT OUT port and approximately 5 mL of 200 mN NaOH through the REGEN IN port. Flush with 3 mL degassed, deionized water through the ELUENT OUT port and 5 mL degassed, deionized water through the REGEN IN port.
- 4. Reconnect the eluent line from the ELUENT IN port of the suppressor to the analytical column and the eluent line from the eluent out port of the suppressor to the conductivity detector cell.
- 5. Do one of the following:
 - (Auto Suppression Recycle mode of operation): Begin pumping eluent and immediately turn on the power. DO NOT let the eluent flow through the SUPPRESSOR FOR MORE THAN A FEW MINUTES without turning on the Power.
 - (Auto Suppression External water mode of operation): Establish water flow through the regenerant chambers, begin pumping eluent, and immediately turn on the power.

IMPORTANT: Do not let the eluent flow through the suppressor for more than a few minutes without turning on the power.

Suppressor electrolytic regeneration

The Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate can be regenerated electrolytically. Although this is slower than Chemical Regeneration, it does not require the suppressor to be disconnected or the use of any reagents.

Procedure

- 1. Turn on the system with the normal application settings. If using gradient elution, set the eluent concentration to the maximum value usually seen in the gradient.
- 2. (Dionex ERS 500e, and Dionex AERS 500 Carbonate) Set the current of the suppressor to 60% higher than the optimal current (e.g., if the optimal current is 50 mA, set the current to 80 m). This is the maximum suppressor current reported by Chromeleon in the Instrument Program settings.
- 3. Leave the system running with the suppressor set to the higher current (Dionex ERS 500e and Dionex AERS 500 Carbonate only) for a minimum of 3 hours, up to 6 hours.
- 4. Set the current back to the optimal current (Dionex ERS 500e and Dionex AERS 500 Carbonate only) and return to normal operation.

CAUTION: Do not exceed the maximum allowed current for the suppressor:

- Dionex AERS 500e (4 mm): 500 mA
- Dionex CERS 500e (4 mm): 300 mA
- Dionex AERS 500e (2 mm): 150 mA
- Dionex CERS 500e (2 mm): 110 mA
- Dionex AERS 500 Carbonate (4 mm): 125 mA
- Dionex AERS 500 Carbonate (2 mm): 30 mA.

Full or extended regeneration

Depending on the extent of capacity loss of the suppressor, the regeneration procedure outlined in Suppressor electrolytic regeneration may be inadequate to fully regenerate the suppressor.

In order to fully regenerate the suppressor, an extended rinse (for at least two hours) with 200 mN sulfuric acid (for Dionex AERS 600, Dionex AERS 500e or Dionex AERS 500 Carbonate) or 200 mN NaOH (for Dionex CDRS 600 or Dionex CERS 500e) at the application flow rate is needed.

Procedure

- 1. Pump the acid or base (as the case may be) through the eluent out port of the suppressor, with a line connecting the eluent in port to the regen in port.
- 2. Divert a line from the Regen out port to waste. A standalone pump or a trap column/suppressor clean-up kit (Item # 059659) could be used for the above regeneration.

Alternatively, pursue the regeneration as outlined in Step 3 of Suppressor chemical regeneration and then allow the acid or base to soak in the suppressor overnight. In the morning, repeat Step 3 of Suppressor chemical regeneration and then displace the acid or base with DI water.

If the correct peak areas are not observed following two injections of a standard test solution, contact the nearest Thermo Fisher Scientific Regional Office (see Thermo Fisher Scientific Worldwide Offices on the Reference Library CD-ROM).

NOTE: The sulfuric acid in the above steps could be replaced with a non-oxidizing strong acid such as Methanesulfonic acid (MSA) which is recommended when pursuing MS applications.

NOTE: Do not use the Analytical pump for regeneration, as this would contaminate the pump.

High background conductivity

Procedure

- Check the Dionex DRS 600 (Legacy Mode), Dionex ERS 500e or Dionex AERS 500 Carbonate current settings. Refer to Calculate the electrical current for the suppressor.
- 2. Check for eluent flow out of the suppressor ELUENT OUT port.
 - If there is no flow out of the suppressor ELUENT OUT port, make sure that eluent is entering the suppressor at the ELUENT IN port. If there is no flow at this point, trace the eluent flow path backward through the system to find and remove the blockage.
 - If there is flow into the suppressor but not out, and there are no
 visible leaks from the rear seam of the suppressor, a break in the
 suppressor seal is probably allowing eluent to leak into the
 regenerant chambers. If this is the case, then the suppressor should
 be replaced. The suppressor is sealed during manufacture;
 attempting to open it will destroy it.

DANGER: Do not attempt to disassemble the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate.

- If there is flow from the ELUENT OUT port, but no eluent suppression, the membrane may have been contaminated. Try to restore system performance by cleaning the membrane (see Suppressor electrolytic regeneration..
- 3. Remake the eluent to be sure that the concentration is correct. Be sure that chemicals of the required purity were used to make the eluent (see Chemical purity requirements). If the eluent concentration is high, the suppressor may not be set up to suppress the high concentration resulting in high background conductivity.

Refer to the tablers in Current settings for more information.

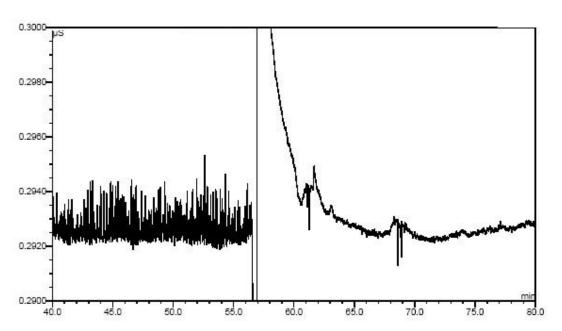
Contact the nearest Thermo Fisher Scientific Regional Office if you cannot solve the problem on your own.

Drifting baseline

If the baseline drifts steadily upward, increase the current setting by 5-10% to reduce the background conductivity. As the background conductivity decreases, the baseline drift should decrease.

Noisy baseline

If the baseline is noisy (> 3 nS with hydroxide or MSA eluents, > 10 nS with borate eluents, > 7 nS with carbonate or carbonate/bicarbonate eluents and the Dionex ADRS 600 or Dionex AERS 500e, > 2 nS with carbonate or carbonate/bicarbonate eluents and the Dionex AERS 500 Carbonate), it could be caused by trapped air bubbles in the cell or tubing.


Procedure

 Burp or release the trapped bubbles by gently tapping on the cell while the fittings are slightly loosened or bleeding the tubing.

In the following figure, a bubble is released from ELUENT IN line by loosening and tightening the fitting at 56.6 minutes into the run.

Noise:

- ~2.5 nS before
- < 0.5 nS after

Figure 29 Effect of Air Bubbles on Baseline Dionex ADRS 600 (4 mm), Recycle Eluent Mode

Decreased sensitivity for all analytes

Procedure

- 1. Check for leaks throughout the system. If a fitting is leaking, tighten it carefully until the leak stops. Do not over tighten.
 - If the suppressor is leaking from the center or bottom seam, see Liquid leaks.
- Ensure that the injection valve is operating correctly. Refer to the valve manuals that accompany the chromatography module for troubleshooting assistance. For slider valves, be sure to check the slider port faces for damage.
- 3. Regenerate the suppressor as outlined in Small or increasing analyte peak areas.
- 4. If sensitivity remains low, clean the suppressor membrane as outlined in Cleaning the suppressors.
- 5. Check the backpressure coils. Verify that they are not exceeding 40 psi in the current plumbing configuration and flow rate.
- 6. Replace the suppressor if cleaning the suppressor membrane does not restore sensitivity.

Contact the nearest Thermo Fisher Scientific Regional Office if you cannot solve the problem on your own.

Decreased sensitivity for magnesium and calcium only (CDRS 600 and CERS 500e suppressors)

Procedure

- 1. Check for leaks throughout the system. If a fitting is leaking, tighten it carefully until the leak stops. Do not over tighten.
 - If the suppressor is leaking from the center or bottom seam, see Liquid leaks.
- 2. Ensure that the injection valve is operating correctly. Refer to the valve manuals that accompany the chromatography module for troubleshooting assistance. For slider valves, be sure to check the slider port faces for damage.
- 3. Regenerate the suppressor:
 - a. Pump approximately 15ml of 500mM MSA through the suppressor to re-dissolve any calcium or magnesium hydroxide precipitates that may be present. Flush with 10 mL degassed, deionized water through the ELUENT OUT port and REGEN IN port.
 - b. Pump 15 mL of freshly prepared 200 mN NaOH (made up using degassed, deionized water) through the ELUENT OUT port and REGEN IN port. Flush with 10 mL degassed, deionized water through the ELUENT OUT port and REGEN IN port.
- 4. Replace the suppressor if cleaning the suppressor membrane does not restore sensitivity.

Contact the nearest Thermo Fisher Scientific Regional Office if you cannot solve the problem on your own.

System back pressure increases over time

If the increased back pressure does not affect system performance, no maintenance is necessary.

Procedure

1. Check the inlet frits on the guard and analytical column and replace them if necessary. The most common cause of increasing system back pressure is a contaminated frit in the analytical or guard column inlet end fitting.

The complete instructions for replacing column bed support assemblies are in Document No. 032285. Recheck the system back pressure. If it remains high, go on to the next step.

- Check the backpressure coils. If removing the backpressure coils
 lowers the pressure by more than 40 psi, replace the coils or remove
 the blockage causing the increased pressure. Backpressure over 450
 psi after the suppressor can cause irreversible damage.
- 3. Find and eliminate any system blockage. Bypass the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate by coupling the lines attached to the ELUENT IN and ELUENT OUT ports. If the back pressure decreases by less than 150 psi with the suppressor out of line, a blockage in the system rather than in the suppressor is causing the high pressure.
- 4. Remove a blockage from the suppressor by reversing the eluent flow. If the back pressure decreases by more than 150 psi with the suppressor out of line, the high pressure may be caused by a blockage in the suppressor. Reverse the direction of flow of both the eluent and the external water through the suppressor. After the pressure drops, allow eluent, or eluent and regenerant, to flow to waste for several minutes after the pressure drops. Perform Step 1 of Start-up and reinstall the suppressor in the appropriate configuration.
- 5. Clean the suppressor membranes if reversing the flow through the suppressor does not decrease the pressure (see Cleaning the suppressors).
- 6. Replace the suppressor if cleaning the suppressor membrane does not reduce the pressure.

Contact the nearest Thermo Fisher Scientific Regional Office if you cannot solve the problem on your own.

Liquid leaks

Procedure

- If there is leakage from the side seam of the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate, check for leakage from one of the four ports of the Dionex ERS 500 into the housing and check the back pressure after the suppressor.
- 2. If there is liquid coming out of any of the four ports of the Dionex DRS 600, Dionex ERS 500e, or Dionex AERS 500 Carbonate, carefully tighten the fittings in the leaking port the fittings do not need to be more than ¼-turn past finger tight. If tightening the fittings does not stop the leak, replace the ferrules and bolts on the tubing.
- 3. If the system backpressure is greater than 450 psi, the leaks are likely caused by excessive back pressure downstream from the suppressor. Find and eliminate the source of the pressure. The suppressor will

usually recover from momentary overpressure conditions if allowed to stand approximately 20 minutes with the membranes fully hydrated. SeeStart-up.

If the suppressor continues to leak when operated within the proper back pressure range, it must be replaced.

Poor or unstable recovery of certain peaks

If one or two peaks are experiencing poor or unstable recoveries while the other peaks are stable, the current to the suppressor might be set too high. Recalculate the correct current setting (see Calculate the electrical current for the suppressor, or use the "signal parameters" tool in Chromeleon). Do not exceed the recommended current setting unless necessary to stabilize a drifting baseline.

Alternatively, the system may be contaminated with a transition metal that is binding to the analyte of interest (see Metal contaminants or precipitates).

Peaks and spikes in the absence of an injection

See the following table for troubleshooting tips.

Table 27 Peaks and spikes in the abscence of an injection

Issue **Procedure** Excessive current applied to **Procedure** the Dionex DRS 600 (Legacy 1. Recalculate the optimum current and apply; never apply Mode). Dionex ERS 500e or more than 10% above the optimum current except when Dionex AERS 500 Carbonate executing the Electrolytic Regeneration Steps. 2. When operating with gradient eluents, apply the minimum current setting for the maximum eluent concentration at the eluent flow rate. **NOTE**: During a low flow method (stand-by mode), ensure that the current is lowered to the optimal value based on the reduced flow rate and/or eluent concentration. **Procedure** Precipitation on the suppressor membrane or Follow the procedure in Metal contaminants or precipitates. screens (calcium, magnesium, and other metals) To prevent contaminants from reaching the suppressor, a CP1 cation polisher column (Item # 064930) can be used during anion analysis to strip cationic contaminants from the sample. Refer to the CP1 Operator's Manual for detailed instructions.

Issue	Procedure			
Outgassing or trapped	Procedure			
bubbles in the suppressor regenerant chambers	 Ensure that the external water (if used) is degassed before use; do not pressurize the external water with air, use nitrogen or helium. 			
	Eliminate causes of excessive backpressure between the cell outlet and the regenerant inlet if recycled eluent mode is used.			
Excess suppressor	Procedure			
temperature	1. Do the following:			
	 Ensure liquid entering the suppressor is at or less than 35°C. 			
	 Ensure the suppressor is operated in an environment that does not exceed 35°C during operation. 			
	Refer to Installation in thermal chamber. 20°C is the optimum temperature for Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate operation.			
Large changes to the flow	Procedure			
rate or applied current of the suppressor	 When changing eluent concentration or flow rate, recalculate the optimum current using the attached calculator; do not allow the suppressor to operate for more than 5 minutes with excessive or insufficient current. 			
	If the current is changed, allow the suppressor a few hours to reestablish baseline stability.			
	Ensure that shut-down, stand-by and start-up methods are applying the correct suppressor current.			

power but no eluent or regenerant flow

Operating the suppressor with Operation of the suppressor without flow may irreversibly damage the suppressor, depending on the amount of applied current and duration.

Procedure

- 1. Do the following:
 - Ensure that the regenerant lines are connected and flow is established when powering on the suppressor at all times.
 - Ensure that during external water operation that the suppressor is never operated without regenerant flow. When operating properly, bubbles interspersed with liquid exiting the regenerant chamber indicates good flow.
 - Replace the suppressor if operation without flow is known to have occurred.

Issue	Procedure			
	 Confirm that the minimum pressure limit on the pump is set to a non-zero value to ensure that the system turns off in the event of a leak. 			
Incorrect current setting	Procedure			
during shutdown, stand-by or startup method	 Shut-down methods should shut the pump flow off at the same time as the suppressor current. 			
	Stand-by methods should reset the suppressor current to the optimum level for the reduced flow rate and/or concentration.			
	 Do not reduce the flow rate on RFIC-EG systems; this will lower the backpressure on the degasser below 2,000 psi and cause out-gassing. 			
	 Stand-by methods for RFIC-EG systems should reduce eluent concentration to preserve Dionex EGC ion count; reset the suppressor current accordingly. 			
	Do not turn the Dionex EGC concentration to zero with flow; use a low setting.			
	 Consider using the smart-shutdown and smart-startup feature of Chromeleon instead of standby conditions and configure the system for smart-startup two hours before use is anticipated so the system is equilibrated and ready to run. 			
	 Consider using RFIC-ER; no shut-down, stand-by or start-up procedure is needed with an Always On, Always Ready system. Start-up settings should turn on the pump flow and suppressor current simultaneously. 			

Low sample response (Neutralization Mode only)

Procedure

- 1. If the Dionex DRS 600 is observed to be leaking, see Liquid leaks.
- Ensure the Sample Injection Valve and Recycle Valve are operating correctly. Refer to the valve manuals that accompany the valves. Be sure to check the port faces for damage.
- 3. If the neutralization requires excessive recycling, clean the suppressor membranes (see Cleaning the suppressors).
- 4. If cleaning the suppressor membranes does not restore neutralization efficiency, the suppressor may need to be replaced.

If you cannot solve the problem on your own, contact the Thermo Scientific Regional Office nearest you.

Low neutralization capacity (Neutralization Mode only)

For the Dionex ADRS 600, this problem is caused when the ion exchange sites in the suppressor are converted from the hydronium form to the salt form. They must be converted back to the hydronium form for efficient operation.

For the Dionex CDRS 600, this problem is caused when the ion exchange sites in the suppressor are converted from the hydroxide form to a salt form. They must be converted back to the hydroxide form for efficient operation.

Procedure

 Regenerate the suppressor as outlined in Small or increasing analyte peak areas. If capacity remains low, clean the suppressor membrane (see Cleaning the suppressors).

Cleaning the suppressors

This section describes routine cleanup procedures for the Dionex DRS 600, Dionex ERS 500e, and Dionex AERS 500 Carbonate suppressors in the case of contamination.

See Troubleshooting to first determine that the system is operating properly. If the suppressor is determined to be the source of higher than normal back pressure, higher than anticipated conductivity, decreased suppression capacity or decreased sensitivity, cleaning the membrane may restore the performance of the system.

See the following topics for instructions on cleaning the membrane:

- Metal contaminants or precipitates
- Organic contaminants

Metal contaminants or precipitates

NOTE: For the Dionex DRS 600 in Legacy Mode, as well as the Dionex ERS 500e and Dionex AERS 500 Carbonate, the suppressor voltage is a good indicator of the resistance across the suppressor. Higher voltage may indicate contamination of the suppressor. For more information regarding monitoring the voltage, see Document No. 031841-02 "Removal of Iron Contamination from Electrolytic Suppressors."

Procedure

- 1. Turn off the suppressor power and system pump.
- Disconnect the analytical (and guard) column(s) from the injection valve and the suppressor. Refer to the specific analytical column Product Manual for column cleanup procedures.
- 3. If you are running in the Auto Suppression External Water Mode, turn off the external water and disconnect the external water line from the suppressor REGEN IN port.
- 4. Disconnect the liquid line from the suppressor ELUENT OUT port to the cell at the cell fitting and reconnect it to the REGEN IN port.

5. If iron is present, then connect a temporary line from the priming block or the low-pressure tee on the isocratic or gradient pump to a container with a solution of 0.2 M oxalic acid. For 4 mm systems pump this solution through the suppressor at 1 – 2 mL/min for 30 minutes. For 2 mm systems pump this solution through the suppressor at 0.25–0.50 mL/min for 30 minutes.

NOTE: Bypassing internal pump manifolds when temporarily pumping high concentration cleaning solutions significantly reduces the time required to re-equilibrate the system to low concentration eluents.

- 6. Perform an extended regeneration, as outlined in Full or extended regeneration.
- 7. Reinstall the analytical (and guard) column(s). Begin pumping eluent through the system at the flow rate required for your analysis and equilibrate the system and resume normal operation.

NOTE: Chromeleon 6.5 and later includes a feature to trend various parameters. Trend plotting the suppressor voltage will reveal if there is a build-up of metal contaminants or precipitates in the suppressor. A slow but steady increase in voltage indicates such a contamination build-up

Organic contaminants

Procedure

- 1. Turn off the suppressor power and system pump.
- Disconnect the analytical (and guard) column(s) from the injection valve and the Dionex DRS 600, Dionex ERS 500e or Dionex AERS 500 Carbonate. Refer to the specific analytical column Product Manual for column cleanup procedures.
- 3. If you are running in the Auto Suppression External Water Mode, turn off the external water and disconnect the external water line from the suppressor REGEN IN port.
- 4. Disconnect the liquid line from the suppressor ELUENT OUT port to the cell at the cell fitting and reconnect it to the REGEN IN port.
- 5. Connect a temporary line from the priming block or the low-pressure tee on the isocratic or gradient pump to a container with a solution of freshly prepared 10% 1.0 N methane sulfonic acid or sulfuric acid and 90% acetonitrile or methanol. Acid/acetonitrile solutions are not stable during long-term storage, so this cleanup solution must be made immediately before each column cleanup. Alternatively, it can be proportioned from 1 bottle containing 1.0 N acid and another bottle

containing 100% acetonitrile. For 4 mm systems pump this solution through the suppressor at 1 – 2 mL/min for 30 minutes. For 2 mm systems, pump this solution through the suppressor at 0.25–0.50 mL/min for 30 minutes.

NOTE: Bypassing internal pump manifolds when temporarily pumping high concentration cleaning solutions significantly reduces the time required to re-equilibrate the system to low concentration eluents.

- 6. Flush the suppressor with deionized water for 10 minutes.
- 7. Reinstall the analytical (and guard) column(s). Begin pumping eluent through the system at the flow rate required for your analysis and equilibrate the system and resume normal operation.

Current settings

See the following topics for optimum current settings:

- Optimum current settings for common eluents for Dionex ADRS 600 (4 and 2 mm) and Dionex AERS 500e (4 and 2 mm)
- Optimum current settings for common eluents for Dionex AERS 500 Carbonate (4 and 2 mm)
- Optimum current settings for common eluents for Dionex CDRS 600 (4 mm and 2 mm) and Dionex CERS 500e (4 mm and 2 mm)

Optimum current settings for common eluents for Dionex ADRS 600 (4 and 2 mm) and Dionex AERS 500e (4 and 2 mm)

The Dionex ADRS 600 and Dionex AERS 500e use water as the regenerant and have the ability to provide continuous suppression. The tables in Dionex IonPac CS12A Analysis of 24% Sulfuric Acid and Optimum current settings for common eluents for Dionex AERS 500 Carbonate (4 and 2 mm) list the eluent concentrations and flow rates of commonly used mobile phases used in anion separations and the optimum / recommended current level to suppress the eluent. The operation of the Dionex ADRS 600 and Dionex ERS 500e requires a constant flow of water over the electrodes in a direction that is countercurrent to the flow of the eluent.

In the AutoSuppression Recycle Mode, the eluent leaving the conductivity cell is recycled through the regenerant chambers as the water supply. This eliminates the need for an external regenerant water supply and delivery system. When the Dionex ADRS 600 or Dionex AERS 500e is operating in this mode, the amount of water flowing through the regenerant chambers is limited to the eluent flow rate. The AutoSuppression Recycle Mode cannot be used with eluents containing any organic solvents.

The AutoSuppression External Water Mode requires an external source of deionized water for the regenerant chambers. When the Dionex ADRS 600 or Dionex AERS 500e is operating in this mode, the amount of water flowing

through the regenerant chambers is independent of the eluent flow rate. Because of this, higher regenerant flow rates are achievable. See the following table.

The AutoSuppression External Water Mode is the mode used if organic solvents (up to 40%) are present in the eluent. It eliminates the potential for buildup of contaminating ions resulting from the oxidation of solvents.

Table 28 Optimum Current Settings for the Dionex ADRS 600 (Legacy Mode) and Dionex ERS 500e in the Auto Suppression Recycle and External Water Modes

Column	Eluent	Eluent Flow Rate (mL/m		Optimum Current (mA)	
		(2 mm)	(4 mm)	(2 mm)	(4 mm)
AS4A-SC	1.8 mM CO ₃ ²⁻ / 1.7 mM HCO ₃ -	0.5	2.0	7	27
AS9-HC	9.0 mM CO ₃ ²⁻	0.25	1.0	12	45
AS12A	2.7 mM CO ₃ ²⁻ / 0.3 mM HCO ₃ -	0.38	1.5	6	22
AS14	3.5 mM CO ₃ ²⁻ / 1.0 mM HCO ₃ -	0.3	1.2	6	24
AS14A	8.0 mM CO ₃ ²⁻ / 1.0 mM HCO ₃ -	0.5 ⁿ	1.0	21	42
AS22	4.5 mM CO ₃ ²⁻ / 1.4 mM HCO ₃ -	0.3	1.2	8	31
AS23	4.5 mM CO ₃ ²⁻ / 0.8 mM HCO ₃ -	0.25	1.0	7	25
AS10	80 mM OH-	0.25	1.0	50	198
AS11	12 mM OH-	0.25	1.0	8	30
	38.3 mM OH-	0.5	2.0	48	190
AS11-HC	30 mM OH-	0.38	1.5	29	112
	60 mM OH-	0.38	1.5	57	223
AS15	38 mM OH-	0.3	1.2	29	113
	40 mM OH-	0.5 ⁿ		50	
AS16	35 mM OH-	0.25	1.0	22	87
	55 mM OH-	0.38	1.5	52	204
AS17-C	15 mM OH-	0.25	1.0	10	38
	40 mM OH-	0.5	2.0	50	198
AS18	23 mM OH-	0.25	1.0	15	57
	39 mM OH-	0.25	1.0	25	97
AS19	20 mM OH-	0.25	1.0	13	50

ⁿ 3 mm format

Column	Eluent	Eluent Flow Rate (mL/min)		Optimum Current (mA)	
		(2 mm)	(4 mm)	(2 mm)	(4 mm)
	45 mM OH-	0.25	1.0	28	112
AS20	35 mM OH-	0.25	1.0	22	87
	55 mM OH-	0.25	1.0	34	136
AS21	15 mM OH-	0.35		13	
AS24	55 mM OH-	0.30		41	
AS25	36 mM OH-	0.25	1.0	23	92
AS26	55 mM OH-	0.30	1.2	41	164

The Dionex ADRS 500 and Dionex AERS 500e are not compatible with legacy systems that only provide discrete (50, 100, 300 and 500 mA) current settings. For optimum performance, it is recommended to use a Dionex RFC-10 or Dionex RFC-30 power supply to provide fine current control with the optimum setting.

Table 29 External Water Flow Rates for Dionex ADRS 600 and Dionex AERS 500e (4 and 2 mm)°

Minimum External Water Flow Rate	v Recommended External Water Flow Rate	Maximum External Water Flow Rate
Equivalent to the eluent flow rate	2x the eluent flow rate	2 mL/min (2 mm suppressors) 5 mL/min (4 mm suppressors)

Optimum current settings for common eluents for Dionex AERS 500 Carbonate (4 and 2 mm)

The Dionex Anion Electrolytically Regenerated Suppressor for Carbonate Eluents (Dionex AERS 500 Carbonate) uses water as the regenerant and can provide continuous suppression. The following table lists the eluent concentrations and flow rates of commonly used mobile phases used in anion separations and the optimum / recommended current level to suppress the eluent. The operation of the Dionex AERS 500 Carbonate requires a constant flow of water over the electrodes in a direction that is countercurrent to the flow of the eluent.

In the AutoSuppression Recycle Mode, the eluent leaving the conductivity cell is recycled through the regenerant chambers as the water supply. This eliminates the need for an external regenerant water supply and delivery system. When the Dionex AERS 500 Carbonate is operating in this mode, the amount of water flowing through the regenerant chambers is limited to the eluent flow rate. The AutoSuppression Recycle Mode cannot be used with eluents containing any organic solvents.

[°] Measured with power ON using a graduated cylinder.

The AutoSuppression External Water Mode requires an external source of deionized water for the regenerant chambers. When the Dionex AERS 500 Carbonate is operating in this mode, the amount of water flowing through the regenerant chambers is independent of the eluent flow rate. Because of this, higher regenerant flow rates are achievable. See the following table.

The AutoSuppression External Water Mode is the mode used if organic solvents (up to 40%) are present in the eluent. It eliminates the potential for buildup of contaminating ions resulting from the oxidation of solvents.

Table 30 Optimum Current Settings for the Dionex AERS 500 Carbonate in the AutoSuppression Recycle and External Water Modes

Column	Eluent	Eluent Flow Rate (mL/min)		Optimum Current (mA)	
		(2 mm)	(4 mm)	(2 mm)	(4 mm)
AS4A-SC	1.8 mM CO ₃ ²⁻ / 1.7 mM HCO ₃ -	0.5	2.0	9	34
AS9-HC	9.0 mM CO ₃ ²⁻	0.25	1.0	15	58
AS12A	2.7 mM CO ₃ ²⁻ / 0.3 mM HCO ₃ -	0.38	1.5	7	28
AS14	3.5 mM CO ₃ ²⁻ / 1.0 mM HCO ₃ -	0.3	1.2	8	31
AS14A	8.0 mM CO ₃ ²⁻ / 1.0 mM HCO ₃ -	0.5 ⁿ	1.0	28	55
AS22	4.5 mM CO ₃ ²⁻ / 1.4 mM HCO ₃ -	0.3	1.2	11	41
AS22-Fast	4.5 mM CO ₃ ²⁻ / 1.4 mM HCO ₃ -	0.5	2.0	17	67
AS23	4.5 mM CO ₃ ²⁻ / 0.8 mM HCO ₃ -	0.25	1.0	8	32

The Dionex AERS 500 cannot be used with legacy systems that only provide discrete (50, 100, 300 and 500 mA) current settings.

Table 31 External Water Flow Rates for Dionex AERS 500 Carbonate (4 and 2 mm)^p

Minimum External Water Flow Rate	v Recommended External Water Flow Rate	Maximum External Water Flow Rate
Equivalent to the eluent flow rate	2x the eluent flow rate	2 mL/min (2 mm suppressors) 5 mL/min (4 mm suppressors)

^p Measured with power ON using a graduated cylinder.

Optimum current settings for common eluents for Dionex CDRS 600 (4 mm and 2 mm) and Dionex CERS 500e (4 mm and 2 mm)

The Dionex CDRS 600 and Dionex CERS 500e use water as the regenerant and can provide continuous suppression. The following table lists the eluent concentrations and flow rates of commonly used mobile phases used in cation separations and the optimum / recommended current level to suppress the eluent. The operation of the Dionex CDRS 600 and Dionex CERS 500e requires a constant flow of water over the electrodes in a direction that is countercurrent to the flow of the eluent.

In the AutoSuppression Recycle Mode, the eluent leaving the conductivity cell is recycled through the regenerant chambers as the water supply. This eliminates the need for an external regenerant water supply and delivery system. When the Dionex CDRS 600 and Dionex CERS 500e are operating in this mode, the amount of water flowing through the regenerant chambers is limited to the eluent flow rate. The AutoSuppression Recycle Mode cannot be used with eluents containing any organic solvents.

The AutoSuppression External Water Mode requires an external source of deionized water for the regenerant chambers. When the Dionex CDRS 600 and Dionex CERS 500e is operating in this mode, the amount of water flowing through the regenerant chambers is independent of the eluent flow rate. Because of this, higher regenerant flow rates are achievable. See the following table.

Higher regenerant flow rates translate into improved signal-to-noise ratios compared to the AutoSuppression Recycle Mode. The AutoSuppression External Water Mode is the mode used if organic solvents (up to 40%) are present in the eluent. It eliminates the potential for buildup of contaminating ions resulting from the oxidation of solvents.

Table 32 Optimum Current Settings for the Dionex CDRS 600 (Legacy Mode) and Dionex CERS 500e in the AutoSuppression Recycle and External Water Modes

Column	Eluent	Eluent Flow Rate (mL/min)		Optimum Current (mA)	
		(2 mm)	(4 mm)	(2 mm)	(4 mm)
CS12A	20 mM MSA	0.25	1.0	15	59
	33 mM MSA	0.25	1.0	25	98
CS12A-5µm	20 mM MSA	0.5 ⁿ		30	
	33 mM MSA	0.5 ⁿ		49	
CS14	10 mM MSA	0.25	1.0	8	30
CS15	$10 \text{ mM H}_2\text{SO}_4/9\%$ AcN q	0.3	1.2	18	71

^q Compatible with External Water Mode only

Column	Eluent	Eluent Flow Rate (mL/min)		Optimum Current (mA)	
		(2 mm)	(4 mm)	(2 mm)	(4 mm)
	14 mM H ₂ SO ₄	0.3	1.2	25	99
CS16	30 mM MSA	0.36 ⁿ	1.0 ^r	32	89
	48 mM MSA	0.36 ⁿ	1.0 ^r	51	142
CS17	6 mM MSA	0.25	1.0	5	18
	40 mM MSA	0.25	1.0	30	118
CS18	5 mM MSA	0.25		4	
CS19	8 mM MSA	0.25	1.0	6	24
	60 mM	0.3	1.2	53	212

The Dionex CDRS 600 and Dionex CERS 500e are not compatible with legacy systems that only provide discrete (50, 100, 300 and 500 mA) current settings. For optimum performance, it is recommended to use a Dionex RFC-10 or Dionex RFC-30 power supply with these systems to provide graduated current control with the optimum setting.

Table 33 External Water Flow Rates for Dionex CDRS 600 and Dionex CERS 500e (4 mm and 2 mm)^s

Minimum External Water Flow Rate	v Recommended External Water Flow Rate	Maximum External Water Flow Rate
Equivalent to the eluent flow rate	2x the eluent flow rate	2 mL/min (2 mm suppressors) 5 mL/min (4 mm suppressors)

^r 5 mm format

^s Measured with power ON using a graduated cylinder.