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Abstract

Contourites are now recognised as having a sigmfipotential as hydrocarbon
reservoirs in the subsurface, and several field® Heeen interpreted as comprising
bottom-current reworked turbidite sands. Howevery\ittle has been published on
the porosity characteristics of contourites. Thisdg documents porosity data from
IODP Expedition 339 sites in the Gulf of Cadiz. Wise grain size analyses,
porosity-depth plots and exponential models todyeelbetter understanding of grain
size characteristics and facies, porosity charsties, and the reservoir potential of
contourites in the subsurface.

New grain size data for over 350 samples from thdiLcontourites is presented,
building on earlier work. These data confirm thestidictive trends in textural
properties linked to depositional processes unideraction of bottom currents. The
finest muddy contourites (<20 microns) show norgrain size distributions, poor to
very poor sorting becoming better with decreasimging size, and zero or low

skewness. These are contourite-hemipelagite hybrMsaddy to fine sandy
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contourites (20 to 200 microns) trend towards betteting and initially fine-tail and

then coarse-tail skew. These represent typical sigpoal trends for contourites,
affected by current capacity and then increasedovuing at higher current speed.
Clean sandy contourites (around 200 microns) aee hibst sorted. Medium and
coarser-grained contourites show a trend towardsgpsorting. They result from the
action of dominant bedload transport, extensivenaming, and mixed sediment
supply.

Porosity-depth relationships from four Cadiz sghew a moderately high initial
porosity for both sand and mud facies (50-60%) asgstematic decrease with depth
to around 35-40% near 500 m burial depth. Accordmthe exponential models of
porosity with depth, contourite porosity should exd 10% at 2500 m burial depth.
We compare the data from the Gulf of Cadiz Conteubepositional System, with
those of the Eirik Drift, Newfoundland Drift, Gand®rift and Canterbury Slope
Drifts. Similar depth trends are observed, and stlow anomalies linked to
interbedded sandy and muddy facies, compositiorb@cete vs siliciclastic), and the
presence of hiatuses in the sediment record.

These data provide good insight into the likelyergsir characteristics of
contourites, for both conventional and unconvergtiomeservoirs. They are
comparable with those of existing contourite fieldsost of which are mixed

turbidite-contourite systems.

Keywords. Contourites, porosity-depth trends, grain sizarabteristics, reservoir

characteristics

1. Introduction

Contourites are deep-water sediments depositedulustantially reworked by
bottom currents. They are commonly interbedded wilier deep-water facies due to
the interaction of different kinds of currents (Rebo and Camerlenghi, 2008). Since

Hollister and Heezen (1972) first defined the cqceof contourites, the
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understanding of these sediments has increaseddecaisly, mainly focused on
sedimentary characteristics, facies models, anttaéng factors (Faugeres and Stow,
1993; Viana et al., 1998 ; Stow and Mayall, 200@wset al., 2002b; Rebesco and
Camerlenghi, 2008; Stow and Faugeres, 2008; Rebesab., 2014;). Contourite
drifts are widely distributed around the world (Rebo and Camerlenghi, 2008; Chen
et al. 2014; Rebesco et al., 2014; Wen et al., RG& are recognised as providing
significant opportunity for future petroleum exmton (Stow and Mayall, 2000;
Pettingill and Weimer, 2002; Viana et al., 2007a&mugam, 2012). Recent research
on sandy contourite systems, such as the Cadiz sheet (Stow et al., 2013b),
Falkland sand sheet (Nicholson and Stow, 2019pd-é8hetland Channel (Masson et
al., 2010), and Riffian Corridor contourite san@syella et al., 2017), combined with
better understanding of unconventional reservtiasie re-invigorated research into
the economic value of contourites. However, muclrkwie still needed to better
characterise contourites as potential reservanduding their texture, porosity and

permeability attributes (Viana et al., 2007; Braukege et al., 2018;).

This paper focuses in particular on the grain simd porosity of contourites,
presenting new data from the Gulf of Cadiz conteudiepositional system, offshore
Spain, derived from four sites (U1386, U1387, U1a88 U1389) of the International
Ocean Dirilling Program (IODP) Expedition 339. These combined with grain-size
data from CONTOURIBER sites (BC05, PC04, PC06 affdd as published by
Brackenridge et al.(2018) (Fig.1). We also accessgty data from four other IODP
sites for comparison, on Newfoundland drift, Eidift, Gardar drift and Canterbury

slope. In summary, the aims of this paper are l&ms:

1) To discuss new grain size data from Cadiz contesirédnd so develop our
understanding of contourite depositional processed their potential as
hydrocarbon reservoirs.

2) To present porosity-depth relationships for bote @adiz contourites and
comparative drift systems, and to use exponent@leats for evaluating the

potential porosities at reservoir depths.
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3) To consider these data in terms of the reserva@rateristics of contourites.

2. Methods and Database

2.1. Sitedata

The large Contourite Depositional System (CDS) off 6f Cadiz was deposited
under the influence of warm, high-salinity Meditarean Outflow Water from
Pliocene to Recent (Fig.1). It is now well estdidid as one of the prime contourite
depositional laboratories in the world (Maldonadoak, 1999; Stow et al., 2013b;

Herndndez-Molina et al., 2016a;).

Five sites were drilled during IODP Expedition 383he Gulf of Cadiz CDS, at
between 570-1100 m water depths. These recovei@dlaf 4.5 km of core material
using the advanced piston corer system, the extendes barrel system, and the
rotary core barrel system (Stow et al., 2013a; Stowal., 2014). This study mainly
focuses on geological data and core data (sedinsrtsphysical properties) from
four of these sites: U1386, U1387, U1388 and U13®8% further present
porosity-depth data derived from four other expeds that drilled contourite systems,
namely IODP 303 site 1305, IODP 317 site 1352, ICH#3R site U1410, and IODP
303 site 1304 (Channell et al., 2006; Fulthorpalet2011; Norris et al., 2014). This

database is summarised in Table 1.

Table.1 Data summary of site U1386, site U138% ki388, site U1389 of
IODP 339, site U1305 of IODP 303, site U1304 of P®BO03site, U1352 of IODP
317 and site U13410 of IODP 342 (Channell et &l0& Fulthorpe et al., 2011; Stow
et al., 2013a;Norris et al., 2014).

Expedition Site Number| Distance Lat/long Water|  Drift Total Porosity
of holes | between depth name core sample

adjacent (m) recovery| amount




holes (m) (m)
IODP 339 U1386 20 36°49.685 561 CDS of | 850.64 197
7°45.321W Gulf of
Cadiz
IODP 339 u1387 20 36°48.3210| 559 CDS of | 1084.95 213
7°43.1321W Gulf of
Cadiz
IODP 339 u1388 20 36°16.142 663 CDS of 121 47
6°47.648W Gulf of
Cadiz
IODP 339 U1389 20 36°25.5N\5 644 CDSof | 11235 200
7°16.683W Gulf of
Cadiz
IODP 303 U1305 20 57°28.5066| 3459 Eirik 867.13 31
48°31.8132V Drift
IODP 303 U1304 20 53 3.4007 3024 Gardar | 251.37 50
N; 33 Drift
31.7814 W
IODP 342 uU1410 20 41°19.6998 | 3387 | Newfoun| 748.8 143
49°10.184W dland
Drift
IODP 317 uU1352 20 44°56.2480) | 344 | Canterbu 1443.65 1268
172°1.361% ry Slope
Drift
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2.2. Facies and Porosity data

Sediment facies and their interpretation are wabtviin for the Cadiz sites, as
they have been extensively studied by several efpitesent authors (Stow et al.,
2013b; Hernandez-Molina et al., 2014; Alonso et2016; Hernandez-Molina et al.,
2016a; Brackenridge et al., 2018). One of us ([Ro8iow) has further examined
cores from each of the other four sites used i $hidy, and concurs with shipboard
scientists in their interpretation of mainly contite, pelagite and hemipelagite

sedimentation.

Porosity data was measured by determination obktm@ and density method
(Stow et al., 2013a) on discrete sediment samples.working halves divided from
whole-round cores were used for taking discretepéeento determine the porosity.
About 10 cni samples from soft sediments were collected byaatisl syringe and
sampled every other section per core at the 59at@asition. Dry sample volume
was measured by a hexapycnometer system of a K&dcecustom-configured
Micromeritics AccuPyc 1330TC helium-displacementpymeter. The measurement
focuses on the principal lithology of a sectiongd @voids small intelayers of different
grain size. Porosityp) data is calculated @&V ,w/Vwe: The determination procedures
of these physical properties refer to the Ameri€aciety for Testing and Materials
(ASTM) designation (D) 2216 (ASTM International, 9. The porosity data used in
this study from each of the four other IODP siteswalso measured and calculated by
the discrete moisture and density measurement ipoglnn(Channell et al., 2006;

Fulthorpe et al., 2011; Norris et al., 2014).

2.3. Grain Size Analysis

For this study, a total of 350 samples were andlylg grain size at the
University of Bordeaux, with a Malvern Laser PddiSize Analyser, following the
procedures used by Brackenridge et al (2018) im tkeent exposition of contourite
textural characteristics. This measured grain siresm 0.05 pm to 700 um. The
standard procedure for grain size analysis in lasanters was used (McCave et al.,

1986; Cooper, 1998; Martins, 2003). Distributioms given in a geometric (volume)



137 scaling rather than arithmetic (number) scale tsuem there is equal emphasis on
138 changes in clay, silt and sand content in the grsto (Blott and Pye, 2001). All
139  analysis was carried out in the software GRADISTBIott and Pye, 2001) using the
140  geometric graphical method as laid out by Folk ¥Weatd (1957) to ensure that each
141  set of analysis can be directly compared to othershe study. Key statistical
142 measures include: mean, sorting (standard devjatekewness, and kurtosis. The
143 formulae used for these measurements and the tuédoles for defining the sorting,
144 skewness and kurtosis are outlined in Blott and R@©1). After calculation of the
145  essential statistics, data were compared using @lds (Folk and Robles, 1964;

146  Martins, 2003); the sediment classes are as delipélentworth (1922).

147 3. Resaults

148  3.1. Sediment Facies and Distribution: Gulf of Cadiz

149 The principal sediment facies recovered from th®ROdrilling (Stow et al.,
150  2013a) throughout the six sites on the Cadiz CaitoDepositional System include
151  muds, silts and muddy sands. These are primafibiciastic in composition with a
152 minor to common (5-30%) calcareous biogenic fractidinor facies include: muddy
153 calcareous sediments (>50% Cafcénd foram-nannofossil ooze, which occur solely
154 within the Miocene succession at Sites U1386 and84d1 dolomitic mudstone and
155  dolostone, which occur locally at two sites (U13&7d U1391) within the early
156  Pliocene; and clean sandstone beds and chaotitridasunits, within the early
157 Quaternary and Pliocene at Sites U1386 and U1387.

158 These facies have been well documented in previguslications
159  (e.g.Hernandez-Molina, 2016a) and have been irdtgrin terms of depositional
160  processes as contourites, turbidites, reworkedditels, debrites and slump deposits,
161 pelagites and hemipelagites (Stow et al., 2013bonsd et al., 2016;
162  Hernandez-Molina et al.,, 2016a) (Figs. 2 and 3). ave very confident of these
163 interpretations, which are based on multiple datat different scales of observation:

164 small-scale sedimentary characteristics (structutestures, composition, fabric),
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medium-scale seismic features (drifts, moats, deigaties, widespread hiatuses),
and the large-scale geological and oceanograpttinge

Contourites are the dominant sediment type at th€BS sites (U1386-U1391),
making up the 95% of the Quaternary and about 5®%he recovered Pliocene
succession. This facies group includes sand-riclddy sand, silty-mud and mud-rich
contourites, all of which were deposited at mode(a0-30 cm/ka to very high (> 100
cm/ka) rates of sedimentation. Clean, well-cemerdadds are common in the
lowermost 20-40 m of the Quaternary successioiteat/d.386 and also present in the
same stratigraphic interval at site U1387. These iaterpreted as bottom-current
reworked turbidites.

Below a marked hiatus at three of the CDS site3881U1387 and U1391), there
is clear evidence for more common downslope seditien within the Pliocene.
This dominates the succession older than about 4oMlae base of the Pliocene, but
also occurs interbedded with contourites youngen tround 4.2 Ma. The downslope
facies are characterized by a mixed and exotic oaitipn that includes shelf-derived,
fragmented macrofossils and benthic microfossgsyall as some glauconite and a
higher proportion of opaque heavy minerals andclifrains. The turbidites show
clear normal grading from sand to mud above a stagsive base, but mostly lack
other sedimentary structures, except for some pattallel lamination. Debrites are
chaotic, with contorted slump folds, isolated laoigests, and common shell debris in
a sandy, muddy matrix.

The porosity and grain size data presented belevalafrom the contourite facies.
These sediments are remarkably uniform in their eshixsiliciclastic-biogenic
composition and textural attributes. They have aegd absence of primary
sedimentary structures, except for a somewhat disemus and widely-spaced silt
lamination within muddy contourites that show thghlest rates of sedimentation
(Site U1390). There is an intense, continuous bation throughout with a
distinctive, small-scale, monotonous ichnofacied &tal omission surfaces. Most
sections are characterized by bi-gradational sempgefiom inverse to normal grading,

but also include a range of partial sequences a¢wiine base-cut-out sequences are
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most common (Fig. 3). All these features are fulbnsistent with the established
facies model for fine and medium-grained contosr{i®tow et al., 2002b; Stow and
Faugeres, 2008).

Spatial distribution of the contourite elementsnglahe Cadiz continental margin
are closely linked with the decrease in bottom-entrispeed down-flow from the exit
of the Gibraltar Gateway (Stow et al., 2013b; Hedez-Molina et al., 2014;
Hernandez-Molina et al.2016b). The rocky substnast of Gibraltar gives way to an
extensive contourite sand sheet, which extendsgalanmid-slope terrace for
approximately 100 km before diverging into severahtourite channels around the
prominent seafloor relief created by mud volcanaed diapiric ridges. Seismic data
and one industry borehole (Buitrago et al., 200itidate that this sand sheet is at
least 800 m thick. Site U1388 penetrated 220 mhisf proximal sand sheet, before
the hole became too unstable to continue, and eeedvrapidly-deposited, late
Quaternary, sandy contourites. The areal extentventiital thickness of these clean
contourite sands display ideal reservoir charasties, were they to be more deeply

buried, and are therefore especially significantifie oil and gas industry.

3.2. Grain-Size Characteristics
The 350 new grain size analyses presented herealarfom contourites

recovered in four of the IODP 339 wells (U1386, 813U1388 and U1389). These
are plotted together with the 675 analyses of lwo® and piston core samples (BCO05,
PCO08, PC04, PCO06) previously recorded by Brackgeriét al (2018), thereby
yielding the largest contourite grain-size set pablished (Fig. 4). The grain size
parameters measured — mean size, sorting, skevandskurtosis — are presented as
cross-plots of mean-size vs sorting (Fig 4A), meae- vs skewness (Fig 4B), and

mean size vs kurtosis (Fig 4C).

The data show a wide range of values in all thesomea parameters. Mean
grain size ranges from clay to coarse sand (2 purh2@ pm, or 9 phi to 0 phi),

standard deviation (i.e. sorting) from very weltted to very poorly sorted(0.45 to
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3.06 phi), skewness from very fine skew to veryrseaskew (+0.7 to -0.6 phi), and
kurtosis from very platykurtic to very leptokurt(6.5 to 2.6 phi). Grain-size of the
sediment cores PC04, PC08, U1386, U1387 and Ul&8fainly from clay to very
coarse silt, whereas parts of cores PC06 and Udé38&in much more sand, and core
BCO5 is mostly dominated by fine to coarse sancer@li; fine to coarse sands have

better sorting than clay and silt grain sizes.

Each of the different cross-plots shown (Fig.4)esds a more or less sinusoidal
variation of parameters. The best sorted sedimerdsfine and very fine sand in
U1388 and PCO06, whereas the least well sorted emge aoarse silt in cores U1386,
U1387, U1388 and U1389. The sinusoidal trend (#89.shows a decrease in sorting
from clay to coarse silt (9 to 5.5 phi), an ince&®m coarse silt to fine sand (5.5 to
2.5 phi), and a decrease from fine sand to coasd .5 to 0 phi). However, the
trend is not everywhere so well-defined. The caagsain sizes show more scattered
sorting, as do the mean grain-sizes from ~6.5 pht+4.5 phi ando value from

~3.05 to ~2.3. Part of this scatter is due to slyotlifferent trends at different sites.

The mean-size vs skewness sinusoidal curve (Fig. i4Boffset from the
mean-size vs sorting curve. Skewness defines tmemsyry of the grain-size
distribution curve, such that the skewness valua aformal distribution is 0. The
lowest values (coarse and very coarse skew, -Oe6ataaround 6.5 and 1.5 phi, with
high values (very fine skew, +0.7) around 4 phi.sMof data points lie between
grain-sizes of ~7.5 to 6 phi (fine to coarse sltd skewness between ~0.1 to -0.2.
Sediments with the finest skewness are very casitséo very fine sand, whereas
medium and coarse sand has the coarsest skewnessofvthe normal distributions
with very low or zero skew are observed in verefsilt to coarse silt sediments, and

a very few can be found in fine sands.

The plot of mean grain-size versus kurtosis (FiQ) & less clearly sinusoidal.
Kurtosis defines the degree of peakedness of gtgluition curve, more concentrated
if they have leptokurtic distribution, and more mhssed if they have platykurtic

distribution. The finer grained sediment, clay tacse silt (9 to 4.5 phi), are mainly
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mesokurtic and platykurtic, with the lowest valusgsaround 5.5 to 4.5 phi. From
coarse silt to fine sand (4.5 to 3 phi), sedimshisw a rapid change from platykurtic
to very leptokurtic, and then a marked decline fifome to coarse sand (3 to O phi) to

very platykurtic distributions.

Plots of sorting versus skewness and kurtosis geskewness are also shown in
Figure 4D and 4E, with the data points arrangedrain size classes rather than by
site. These relationships are quite complex, buselwe to illustrate at least three
distinct grin-size clusters with an elongate tref@j:clay to fine silt (purple, black and
dark grey points) with poor to very poor sortingy(*+ 2.5 phi), zero to low skewness
(+0.2 — -0.2 phi), and platykurtic distribution;) (lmedium silt to fine sand (light grey
and green points) with very poor to good sorting%2— 0.5 phi), zero to coarse-tail
skew (0 — -0.6 phi), and very platykurtic to lepidc distribution (0.6 — 2.5 phi); and
(c) medium to coarse sand (dark green and pinkigoivith poor to good sorting (1.5
— 0.5 phi), zero to very coarse-tail skew (0 — 40hr), and platykurtic to leptokurtic
distribution (0.6 — 2.5 phi).

3.3 Porosity Profiles

We first present porosity-depth curves for the fGuitf of Cadiz wells (Fig. 5),

and then selected data from other contourite slygtems for comparison (Fig. 6).
3.3.1 Gulf of Cadiz Contourites

The porosity-depth profile at site U1386 is shownFigure 5. The sediments
above 420 m depth are exclusively contourites, edeerbelow this they become
interbedded with turbidites. According to this plafthe overall porosity range is
between 34-58% (with three outlier data pointsy] slowly decreases from ~50-60%
at the top to ~40-45% at the base of the well. d&i@a points appear more scattered
below 300 m, which corresponds to the beginninglight and dispersed cementation.
Although there are relatively few sandy contourpessent, we can discern different
sub-trends for muddy and sandy contourites as amelic by the yellow and green

trend lines, respectively. The porosity of muddytoaoirites gradually decreases in the
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first ~170 m, and then increases slightly beforerei@sing again with a faster rate up
to a depth of ~270 m. There is little further chafglow ~270 m so that the average

porosity of mud remains at ~40-45%.

The trend line of porosity with depth for silty sn(based on five data points)
shows a decrease from 45% at 20 m depth to arob#de® over 400 m depth. The
sands and sandy silts below 400 m are somewhataaos) with porosity values of

40-50%.

The porosity profile of site U1387 is shown in FHigub. Contourites are the
principal facies above ~460 m, after which they iaterbedded with turbidites and
related facies. The porosity-depth trend for contest shows an overall porosity
between 37-58%, with three outlier points in sasdgliments, which are most likely
due to cementation (Stow et al., 2013a). The aeepagosity is ~50-60% at the top
and decreases to 40-45% at the bottom, with thubdrends. Porosity data for sandy
contourites is insufficient to present any distirteend. The porosity of mud
contourites reduces to ~44% at a depth of ~340noreases by approximately 4%
over the next ~110m interval, and then decreasai® af a similar rate as the topmost

section. There are possible breaks in these trainai®und 400 m and at 700 m.

The amount of porosity data gathered from site B1i88nuch less than from the
other sites, due to the difficulty of core recovemthin these coarser-grained
sediments (Stow et al 2013a). However, there amesateresting trends apparent in
the 250 m of section recovered (Fig. 5). The poydss between 38-52% for muddy
contourites and relatively lower, 42-48%, for samdytourites. Both show an initial
decrease with depth ~150 m interval, and then &edabreak in trend and slight

increase to 47%.

Overall range of porosity at site U1389 is maingivieeen 35-58%, as shown in
the porosity-depth profile, with 5 outlier poinaq. 5). The porosity in three samples
near the top is 60-70%, but rapidly decreases 16595 at the depth of tens of meters,
and then gradually decreases to 35-45% at a ddp#3@ m. There is a distinct



309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

break in trend associated with a minor hiatus & tlepth, after which the values
jump higher by 4-5%, and then proceed to decrease +49% to ~43% at a similar
rate as the topmost interval. The very low valueastund 500 m is due to
cementation, whereas the anomalously high val@®@tm has no clear explanation.
The trend in sandy contourite porosity values @nfr55-38%, at a similar rate of

decrease to the muddy contourites.
3.3.2 Other Contourite Porosity Profiles

To compare the porosity characteristics of contearfrom the Gulf of Cadiz
with those of different settings, we selected feibes from other IODP expeditions —
site U1305 (IODP 303) on the Eirik drift, site U¥3QODP 303) on the Gardar drift,
site U1410 (IODP 342) on the Newfoundland driftg aite U1352 (IODP 317) on the
Canterbury slope. Sites U1410 and U1305 from thefblendland and Eirik drifts are
at significantly greater water depths, in exces8@J0 m, than those sites from the
Gulf of Cadiz, whereas water depth of site U1352tm Canterbury slope is a little
shallower, but the depth of penetration below ta&flsor is much greater — close to
2000 m burial depth (Table.1). Sediments of aléhsites are less sandy than those of
IODP 339 and also generally more carbonate-rictaf@ll et al., 2006; Fulthorpe et
al., 2011; Norris et al., 2014).

Eirik Drift: Site U1305 is located south of Greenland and edtilbn the
south-western border of Eirik drift, which was geated by Norwegian Sea Overflow
Water during Pliocene and Quaternary (Channell.e@06). The sediments consist
of mixed terrigenous, biogenic and detrital carttenmaterial, deposited during
Pliocene to Pleistocene. At this site, the lithglagvery uniform, predominantly silty
clay with a relatively small amount of nannofossize and sandy clay, and no sandy
contourites. The majority of samples show porosibetween 50% and 77% (Fig. 6),
with two notable outliers. The original porosity rislatively high (~74-77%), and
decreases with depth to around 50-53% at the bo#@80 m depth). There is some

irregular oscillation apparent in this overall tien
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Gardar Drift: Site U1304 is located on the eastern flank of thd-Atlantic
Ridge, south of Iceland in the North Atlantic. Sednt recovery is fromi_ate
Pliocene to Holocene, and consists of interbeddethofossil ooze and diatom ooze
with silty clay (Channell et al., 2006). The potggiata points are relatively scattered
(Fig. 6). Range of overall data points is from 68%87% with one obvious outlier.
The original porosity is very high, around nearBf8 and there is almost no marked

decrease to the bottom of the hole (~240 m depth).

Newfoundland Drift:Site U1410 is located on the Newfoundland ridgerti
Atlantic, and recovered sediments from the Paleed®ecent Newfoundland drift
(Norris et al., 2014). It is divided into four déffent lithological units: Unitl (0-34 m)
is mixed clay sediments and foraminiferal ooze,tUni(34-64 m) mainly has clay
sediments with some nannofossil ooze, Uni(64-211 m) is dominated by clay and
nannofossil ooze, and Unilv (211-258 m) predominantly chalk and claystone.
Overall, the porosity decreases from an averag®at5% at the top to around 40-45%
at the bottom (Fig. 6). There is a marked porodégrease by 10-15% in the first 50
m interval, and then there only a very slight daseedown to 170 m. The rapid
decrease from 170 m appears to be linked to conopaanhd early cementation of

clay and ooze resulting in the formation of clapgt@nd chalk.

Canterbury SlopeSite U1352 is located on the upper slope of Chntgr
Bight, New Zealand, and recorded sediments depbsiteing late Eocene to early
Oligocene (Fulthorpe et al., 2011). It is dividedoi three main lithological units,
which mainly consist of interbedded clay and muhdy mud, muddy sand. There is
more siliciclastic content in the upper part andencarbonate in the lower part. The
three lithological units are: Unit (0-11 m) is dominated by mud-rich sediments and
interbedded sand; Unill (711-1853 m) mainly consists of uncemented sandg m
and cemented sandy marlstone; and Umi{1853-1924 m) consists of cemented
sandy and silty limestone. The porosity-depth pea§ relatively more marked at this
site because of the relatively deeper burial depimpared with contourites of the

other sites considered. The porosity range at tinace is ~40-56%, with one value
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of 65%, whereas the average porosity at the basd &% (Fig. 6). There is a modest
decrease in porosity in the upper 500 m intervalt With the beginning of

cementation from 500 m, the porosity points are anscattered, and the porosity
decreases more rapidly from 40% to 25% in the A%t m interval. Below that, the

porosity gradually decreases with depth from 9080L& to around 4-14%.

4.2. Exponential Models of the Por osity-Depth Relationship

The porosity-depth relationship is the principattéa to be considered for
evaluating the reservoir potential of any particidadimentary succession or facies.
Rubey and Hubbert (1959) established a general nexial equation for the

porosity-depth relationship under normal pressusbsch they formulated as:
f:foe_cz

(where f=porosity at normal pressurgsforiginal porosity, e=natural logarithm, c=

compaction coefficient, z=depth)

Using this equation, Rubey and Hubbert (1959) awmalythe porosity-depth

exponential relationship of shale and mudstone redse Sclater and Christie (1980)
found the exponential relationship for sandstonestuglying North Sea reservoirs.
The parameters from these previous studies carsduk as the normal values for sand

and mud (Table.2).

Table.2 Parameters for the normal exponential pyrdepth equation (Rubey and

Hubbert, 1959; Sclater and Christie, 1980)

Lithology Original porosity @) Compaction coefficient (c)
Sandstone 0.49 0.27x10-3'm
Mudstone 0.63 0.51x1m™
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According to these previous studies, therefore, dkpgonential porosity-depth
models can also be derived from porosity data efstudy area as presented above.
The parameters used in the exponential equatiangrasented in Table 3, showing
values for mud and sand facies separately. Inserfficcsandy contourite values from

Site U1387 precludes developing the exponentiah&gu in this case.

Table. 3 Parameters and exponential equationsetefiom IODP339 data

Mud:

Site Original porosity@ | Compaction coefficient (c Equation
U1386 0.4937 0.4xTdm™* f=0.4937¢#10" (312
U1387 0.4457 0.2xTdm* f=0.4457&2*10"(3)z
u1388 0.4406 0.6x1dm™ f=0.4406& 1097
U1389 0.4958 0.3x1dm™* f=0.4958&-3*10%(3)z

Sand:

Site Original porosity@ | Compaction coefficient (c Equation
U1386 0.4716 0.6xIdm™* f=0.4716& 1032
u13s7 | e
U1388 0.4578 0.4xTdm™* f=0.4578&+10"(3)2
U1389 0.4797 0.5x1Om™* f=0.4797&-5*10%(3)z

Using these models, the exponential curves have ldeawn and shown in
comparison with the curves for mud and sand undemal compaction pressure.
These show predicted trends of porosity change degpth for each of the Gulf of
Cadiz sites (Fig.7). It should be noted that theseves simply provide an
approximation of likely trends in porosity-depth reess, with predicted values

extended to a depth of 2500m. Note that the porgsadictions are based solely on
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the exponential equations derived from IODP 33%.dahe actual values will be
subject to a range of more complicating variabgesgh as differential cementation,

long-duration hiatuses in the sediment record,smadn.

Contourite mudsThe exponential curves of porosity for sites U13a86 U1389
each show trends comparable with that for normal.nbwe to the locally increasing
porosity intervals of U1387 and U1388, these cuimdgate an increasing trend, so
that the exponential curves of these two sitesresaid. The original porosity ¢ of
U1386 of around 50% is ~13% less than that of nbmmad, but by reason of its
lower compaction coefficient, the rate of porositycrease for U1386 is relatively
slower, so that by 2500 m depth, the predicted gityrof U1386 is very close to that
of normal mud - at about 18%. A similar result jpparent for site U1389, for which
the exponential model predicts a decrease from &08te surface to ~24% at 2500 m

depth, or about 6% higher than that for normal mud.

Contourite sands:With relatively less data points available (and excdior
U1389), the exponential curves for contourite sporbsity are less robust. From a
surface porosity of between 45-55%, each of theetlsites is predicted to decrease to
between 10-17% at 2500 m depth. These exponertiakpy curves compare with

that for normal sand, which decreases from 49%%86 at 2500 m.

4. Discussion

4.1. Grain size of contourites

Grain size parameters are one of the fundamentahcteristics of sediments,
strongly linked with sedimentary environment, seeltnsupply, current energy and
depositional process. Sediment texture is alsoyaakigibute for assessing the nature
of reservoirs and seals in the subsurface. There hmeen many hundreds of
publications on sediment textures over the pastepbades, since some of the early
work that focussed largely on continental sedimgn¢avironments (Folk and Ward,
1957; Mason and Folk, 1958; Martins, 1965; PollaiR61; Friedman, 1992).

Important syntheses of this work, including marared deep marine environments,
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are published in a number of key sedimentologystéitatt, 1992; Friedman, 1992;
Leeder, 1999; Stow, 2005; Bridge and Demicco, 2@efjgs, 2009;). The strong link
between grain size and porosity-permeability chargstics is highlighted by Selley
(2000), and Gluyas and Swarbrick (2004), amondgstrst However, there are still
relatively few papers documenting the grain-sizarabteristics of contourites and
almost none that are directly linked with reservoatential (Stow and Holbrook,

1984; Stow and Faugeres, 2008; Mulder et al., 2Bt&;kenridge et al., 2018;).

This last paper (Brackenridge et al., 2018) isr@iqdarly important synthesis of
grain-size data from the Gulf of Cadiz contouriteased mainly on gravity and box
core samples from near-surface sediments. We Imaeeporated these data with our
new grain-size analyses from the IODP wells, anel ¢éxpanded cross-plots of
grain-size parameters clearly re-inforce the vlidif relationships and sinusoidal
trends established previously. The new data pagjrgatly extend information on clay
to coarse silt, and some very fine sand contourit®® further develop the
interpretation and discussion below, with referetoca simplified overlay of the three
cross plots — mean size vs sorting, mean size essrsss, and mean size vs kurtosis
(Fig. 8A). Using the mean size vs sorting as a basedefine three main contourite

types as follows (Fig. 8B).

Clay to fine silt contouritesThese very fine-grained contourites (mean 9 to 5.5
phi, 2-20 um) show a general poor to very poorisgrtrend, low to zero skewness,
and a platykurtic distribution. These characterssiire compatible with deposition in
the absence of current control (i.e. hemipelagmod#ion) to that beneath very weak
bottom currents (< 10 cm/s). Much of the materidll mave been transported as larger
flocs, so that the disaggregated grain-size chardtistrated here is difficult to fully
interpret. The broad scatter of points as wellltesdlustered trends from individual
sites are most likely due to intensive bioturbaglomixing, as well as to different

proportions of principal components, as suggesyeithd platykurtosis.

Medium silt to fine sand contouritesShis range of contourite grain sizes (mean

5.5 to 2.25 phi, 20-200 um) are strongly influenbgdoottom-current deposition and
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winnowing. We refer to the distinctive trends oéigrsize parameters (Fig. 8) as the
standardcontourite depositional trendhese are from very poor to well-sorted, zero
to fine-tail to coarse-tail skewness, and from velatykurtic to leptokurtic. Overall,
sorting of coarser sediments is better than finedisents. We concur with
Brackenridge et al. (2018) that the finer sedimemithin this range are mainly
deposited from suspended load, whereas the saltéiad becomes progressively
more prevalent as the grain size increases fromseaslt to fine sand. The change
from fine-tail to coarse-tail skewness follows thiend, and indicates transition from
a deposit controlled principally by the maximum rgarg capacity of the current
(10-20 cm/s), to one affected by progressive winngwat higher current speeds

(15-25 cm/s).

Medium and coarse sand contouritddhese purely sandy contourites (mean
2.25 to -0.5 phi, 200-1250 um) are strongly inflcesh by bottom current action. They
show a general trend in grain-size parameters, sathe degree of scatter, from well
to poorly sorted, coarse and very coarse-tail skeerero skew, and from mesokurtic
to platykurtic. Strong current winnowing, and grasaltation is augmented by
widespread bedload traction, which increases inomance with increase in
grain-size. The suspended load is swept downstfeam the depositional site. The
greater scatter of data points in this sector sstdunnate variability in current speed,
and a distinctly mixed supply of different sourceaterial, both siliciclastic and

bioclastic.

These interpretations of the different contourttaingrsize classes are compatible
with work by previous authors (Allison and LedbettE982; Brunner, 1984; McCave,
1984; Viana et al., 1998; Faugéres and Mulder, 204bnso et al., 2016;
Brackenridge et al., 2018). Our three classes canrdbated to the contourite
end-member models proposed by Brackenridge e2@L8) as follows: clay to fine
silts (model B), medium silt to fine sand (modelsa@d D), and medium to coarse

sands (model A). The principal controls on thegéutal properties are: current speed,
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sediment supply, flocculation, and bioturbation. YWake a few further observations

on the first two of these controls.

Current speedThe link between contourite grain size and bottamrent speed
has long been recognised (Ledbetter and Ellwoo80;18cCave, 1984; McCave,
2008), and is proposed as the principal contraxplain the standard bi-gradational
sequence model for contourites (Gonthier et al841%tow et al., 2002b; Stow and
Faugeres, 2008). The (de-carbonated) grain-siz¢idrabetween 10-63 um, known
assortable silt (SS)is commonly used as a proxy for current speedQde et al.,
1995; McCave, 2008). However, the sortable sile sange currently used matches
only one trend on the mean size vs skewness (FigwBereas the distinctive
contourite depositional trend, which we identifytims paper from the grain-size vs
sorting cross-plot, is from 20-200 um. We therefprepose that a new sortable silt
and sand proxy (SSS) should be developed to betfiect the full grain-size range
that is strongly controlled by current speed. Wakcurrently in progress on this

topic.

Sediment supplyThe sediment source and supply route also havgrafisant
influence on grain-size properties. For contousystems, there can be supply from
vertical settling of pelagic material, slow hemgmgk advection, lateral input from
turbidity currents, and directly from the bottomrments via local or more distant
seafloor erosion. Stow et al. (2008) attempt tost@mn an overall sediment budget
from these different sources for a ‘typical’ comitei drift, but readily acknowledge
that different drifts and different parts of tharsadrift will receive material from

these sources in varying proportions.

For the Gulf of Cadiz contourites documented irs thaper, we interpret the
broad scatter of data points as in part due teemfft sedimentary material from a
range of sources. This is especially true for timest (clay-silt) and coarsest
(medium-coarse sand) contourites for which curspeted is not the sole or principal
control on grain size. The locations of sites U138805, PC04, PC06 and PCO08 are
much closer to Gibraltar gateway than U1386, Ul138d U1389 (Fig.1), and are
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therefore affected by both different current speadd different sediment supply.
Brackenridge et al. (2018) pointed out samples fRD®4 and PC06 have parallel but
separated trends, which they interpret as sedinsepplied to PC04 from the
Southern Channel, which transports sediments froen Gibraltar gateway and its
adjacent margins, and sediment supplied to PCOGlyniiom downslope processes.

We note similar partial sepation of trends for sites U1386, U1387 and U1389.

4.2. Porosity-Depth Relationships

For the Gulf of Cadiz contourites, both the actlatia plots and the exponential
porosity-depth curves show some significant depestdrom the normal trends for
sand and mud, as proposed by Rubey and Hubber®)E9tsl Sclater and Christie
(1980) under normal conditions of pressure. Inipaldr, the Cadiz sites, (a) have
lower porosity values at the surface, and (b) slmwegularities and breaks in the
porosity depth profiles. In general, porosity deses is mainly dominated by the
mechanism of physical compaction above ~500 m bdapth, through which grain
rearrangement accommodates to the overlying preg#uhy, 1930; Busch, 1989).
Below 500 m, porosity reduction takes place as spaese to a combination of

compaction, cementation and dissolution.

There are several possible factors that may havddethe abnormal porosity
profiles for the Cadiz contourites. Firstly, thenpary porosity of surface sediments
may be different where deposited under the perdistdluence of bottom currents,
perhaps as a result of different sediment fabrlas Tmight explain the lower than
normal surface porosity observed. Secondly, theéspaf the depth profiles with
higher than expected porosity values suggest akalopressure or overpressure

conditions and hence the relative under-compactidhe sediments (Fig.9).

This condition can arise during sediment compactibrere pore fluids cannot
readily escape or the fluid expulsion rate is Very (Osborne and Swarbrick, 1997;
Waples and Couples, 1998). High sedimentation ré&té8cm/ka) of fine-grained

sediment is known to lead to overpressure in maaynsentary basins in the world.
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Sedimentation rates for the Cadiz sites certairgginthis criterion (Stow et al., 2013a)
— 15-35 cm/ka at U1386, 15-25 cm/ka at U1387, upOtem/ka at U1388, and 30-40
cm/ka at site U1389.

Furthermore, dolomite cementation occurred justWwethe major hiatus at site
U1387, and is believed to be widespread acrosdltiftesystem. If this is the case,
then it may act as a local seal and hence bawidluid expulsion and so generate
overpressure and decrease the porosity reductioang@h, 2010). Other locally
cemented or partially cemented zones may accouwtifier areas of overpressure and
porosity anomaly. Certainly, overpressure is aitiefit way to preserve porosity in
the subsurface (Jansa and Urrea, 1990; StrickerJands, 2018). Scherer (1987)
estimated porosity retention of nearly 2% for evel@00 psi overpressure in

sandstone reservoirs.

4.3 Comparison of Porosity Profiles

The porosity profiles of the Cadiz contourite siges all quite similar, although
they each show some anomalous variation and digtiodile breaks (Fig. 10). The
sandy contourite site (U1388) has slightly lowerrgsity values on average.
Comparing these with the other contourite systeatsishented herein reveals further
interesting information. The two drift sites thate adistinctly more biogenic in
composition (Newfoundland drift is carbonate-ricili;ardar drift is mixed
carbonate-siliceous biogenics) have significantighbr surface porosities than in
Cadiz (Fig. 10B and 10C). The Newfoundland site aleadergoes relatively early
cementation, so that porosities decrease rapidiywbabout 170 m depth. The Eirik
drift site also has higher surface porosities, Whiten decrease quite rapidly (Fig.
10A). This site is located on a distal part of tdeft and is also relatively
biogenic-rich in the upper 100 m. It seems evidéat biogenic contourite systems
have higher primary depositional porosity thancgilastic and mixed drifts, and are

then more prone to early and differential cemeorati
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By contrast, the Canterbury slope contourites havesimilar siliciclastic
composition and show very similar surface porosite those of Cadiz, as well as a
closely parallel trend of decrease, at least daw@6Om depth (Fig.10D). Below that
depth, the Canterbury contourites are more carkemett and become more subject
to variable cementation. All sites are charactdrisg some anomalous trends and
breaks in profile, which we suggest are typicataftourite systems, especially those

with widespread hiatuses and mud-rich or biogertic-composition.

4.4 Reservoir Potential

4.4.1 Modern analogues

There is considerable interest at present in comésuas potential reservoirs,
both conventional and unconventional, with somé&anst suggesting that they will be
at the forefront of deep-water exploration in tleening decades (Shanmugam, 2006;
Viana, 2008; Stow et al., 2011; Shanmugam, 2012n&ielez-Molina et al., 2016b;
Stow et al., 2013b). Recent studies have documehiegresence and widespread
extent of contourite sand sheets in slope settifigsse include siliciclastic examples
in the Gulf of Cadiz (Buitrago et al., 2001; Stotwvag, 2013b; Brackenridge et al.,
2018), Hebridean margin (Stow et al., 2002a), amdhe Falkland slope (Nicholson
and Stow, 2019), as well as biogenic carbonate plesmon the Bahama Banks
(Shanmugam, 2017) and offshore the Maldives (Ludn®ral., 2018; Lidmann et al.,
2013). These modern analogues provide good infaoma&in contourite architecture,
showing extensive sand sheets covering 4,000-25%06@nd with thicknesses from
a few tens of metres to several hundreds of meliles.sediment properties reveal
both clean sands and muddy bioturbated sandspedded with muddy contourite

intervals.

Most of the contourites documented in this studyrfthe Gulf of Cadiz are fine
grained (muds and silts), although these are iatkted in parts, especially proximal
to the Gibraltar gateway, with sandy contouriteke Wery fine and medium sands
show the best sorting characteristics, with lil@y matrix, and would offer the best

reservoir properties in terms of porosity and pexpiléy when buried. These
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well-sorted contourite sands have been subjectexttive winnowing away of fine

silts and clays by moderately strong bottom cusentoarse-grained sandy
contourites are slightly less well sorted, partly a result of intermittent bedload
traction and partly due to a more mixed sedimeppbu In some areas, this supply

was most likely from downslope turbidity currents.

The porosity measurements reported here from th#izCsystem record the
dominance of extensive muddy contourites, and rd#ss sandy contourites. Both
show slightly lower than normal porosities (typlgab0-60%) in near-surface
sediments, which is around 10-15% lower than farrimal’ muds and sands. The
observed decrease in the first few hundreds ofemeind the predicted values from
exponential porosity-depth curves for both muddg sandy contourites indicate that
they are likely to preserve good porosity valueseaervoir depths — 16% for sands
and 18-24% for muds at 2500 m burial depth. Howelrecause of the commonly
interbedded nature of these facies, as well ast¢herrence of widespread hiatuses in
contourite systems, the porosity-depth profiles #ikely to show anomalies.
Over-pressured zones with higher than normal pbessivere observed in the Cadiz

wells.

Comparison with porosity-depth profiles compilednfr four other contourite
systems confirms the patterns observed in Cadihencase of the Canterbury slope
system, but also reveal some differences for babiclacarbonate and siliceous)
contourites. These have higher primary porositietha surface, but then are more
subject to cementation and dissolution with deftbusial. All the contourite systems

examined here show that anomalous porosity-deuifiigs are most likely the norm.

Whereas we do not have permeability measurements tlie mainly
unconsolidated sediments presented in this studg, san use a standard
porosity-permeability cross plot for different grasizes (Chilingar, 1964) in order to
infer likely permeabilities of our contourite sedints in the subsurface (Fig. 11).
Taking an average porosity of around 14% for sazahtourites and 20% for muddy
contourites (as predicted at 2500 m burial depgthjmeabilities would be 100-1000
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mD for sands and 30-150 mD for muds. These arectsiple values for conventional

and unconventional reservoirs, respectively.
4.4.1 Subsurfacereservoirs

Contourite reservoirs are beginning to be recoghise¢he subsurface, especially
those interpreted as bottom-current reworked titdsd These include the upper parts
of the giant Marlim oilfield in the Campos Basin ¢kes et al., 2007; Mutti and
Carminatti, 2012), the Mzia and Coral super-gia@as dields off Mozambique
(Fonnesu et al., 2020; Intawong et al., 2019; Radeet al., 2014; Sansom, 2018), the
Yinggehai basin and Baiyun sag in the northern IS@ltina Sea (Gong et al., 2016;
Huang et al., 2017), and the Snorre field on thewdgian slope (Rundberg and
Eidvin, 2016). In the case of the Marlim field, thevorked facies are interpreted as
highly bioturbated fine to medium contourite sarrétatively more poorly sorted than
the associated turbidite sands with a muddy maititve porosity is typically 20~30%
and the permeability around tens of millidarcidthaigh some mud-rich intervals
with very low permeability form baffles or barrietdowever, according to Moraes et
al. (2007), the contourites have good lateral oy, and even those contourites

with bioturbation and cement still form good qualiéservoir.

In the Santos basin, offshore Brazil, Mutti et §014) interpret both
bottom-current reworked turbidite reservoirs anddyacontourite reservoirs with
little evidence of downslope supply, although VigR@08) also notes the existence of
coarse-grained turbidites as the likely source xdémsive redistribution by bottom
currents. Seismic attribute mapping from 3D seisnsisow a number of
morphological features attributed to bottom cumsentcluding large abyssal sand
dunes, barchan dunes, sand ribbons, sand wavdsiramgs, all with an along-slope
orientation. These sandy contourites are mainlg fiands, well sorted with low clay
matrix, and show good primary porosity (over 35%piaces) and high permeability.

They are laterally extensive and up to hundredseters in thickness.
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In the study of Bein and Weiler (1976), parts oé tGretaceous Talme Yafe
Formation are described as including carbonate-dohtourites deposited on a
continental slope. This formation is over 3 km khand covers a large area of the
Arabian Craton in Israel. The sediments mainly dwted by very fine to very
coarse-grained siliciclastics, but also includengigant biochemical carbonate and
carbonate skeletal fragments. Deposition is inetgal as due to both gravity currents
and bottom currents. Some of the coarser sedimam@sbelieved to have been
supplied by bottom-current generated by storms. Helez-Brur-Kokhaw oil field is
reservoired in the Talme Yafe Formation, with samhéhe production coming from

carbonate and mixed bioclastic-siliciclastic comti®s (Bein and Sofer, 1987).

Unconventional reservoirs are now a hugely imparéama growing source of oil
and gas exploration and production worldwide. Galherthese reservoirs consist of
fine-grained sediment (mud and silt), have very kmwow porosity values (below
10%), low to very low permeability (below 20 mDpdahigh total organic carbon
content (normally over 2 wt%) (Zhu et al., 2012;nBgad et al., 2013; Bruna et al.,
2013; Haris et al., 2017; Mahmood et al., 2018; ¢fa2018). Some authors have
suggested that the highly productive shale-gasvess of the Interior Seaway in the
USA may be contourites in part (Viana, 2008). A iminterpretation has recently
been proposed for the Ordovician-Silurian Longnsdle-gas formation in China (Li
et al., 2016). We have reservations about botretirgsrpretations, but further work

is required.

However, the data presented in this study does estigthat fine-grained
contourites have many of the characteristics thatuldv make them good
unconventional reservoirs. The interbedding of nsiterich and mud-rich layers, the
porosity-depth profiles, anomalies and over-presgsurones, as well as their great
thickness and lateral extent are all favourablebaiies. We are currently studying the
total organic carbon (TOC) content and type fortoaorite systems globally, and

preliminary results show many with high values @ Z0OC). Shipboard data from
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the Cadiz contourites show 1-2% TOC for most ofrtheddy contourites, increasing

to 4% for some of the interbedded contourite-tutbidection (Stow et al., 2013a).

5 Conclusions

This study presents new grain-size data for contmifrom the Gulf of Cadiz,
which has led to improved understanding of the @arite depositional process and
primary information for reservoir characterisationthe subsurface. Furthermore, it
presents contourite porosity data for the firstetirom four Cadiz sites and from four
other IODP contourite sites, for comparison. Pdyedepth profiles, and exponential
models for porosity prediction at reservoir depthse considered in the light of
growing interest in the hydrocarbon prospectivitycontourites. The key findings of

significance are:

» Contourite facies can be considered according tr tprincipal grain-size
properties. We recognise three main types, aswsllo

» Clay to fine silt contourites (2-20 um) show norrgadin-size distributions, poor
to very poor sorting becoming better with decreggrain size, and zero or low
skewness. These are deposited by settling from Wwetikm currents with a very
fine suspension load and by hemipelagic settling they are
contourite-hemipelagite hybrids. Flocculation ok thinest material is of key
importance.

* Medium silt to fine-grained sandy contourites (20 200 microns) show a
distinctive contourite depositional trend towardsttér sorting and coarse-tail
skew. The weaker currents deposit material dirdotign suspended load (limited
by current capacity), and then, as current velorityeases, more of the finest
fraction remains in suspension, and increased wwmg and saltation becomes
more important.

* Medium to coarse sandy contourites (200-1200 mgy@mow a trend towards

poorer sorting. They result from the action of doamt bedload transport,
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extensive winnowing, and only intermittent bedlaadvement of the coarsest
fraction at high current speeds.

The nature of sediment supply to the bottom currg@iagic, hemipelagic,
bottom-current erosion, shelf-slope spillover amgvdslope turbidity currents) is
of key importance for all contourite facies.

Porosity-depth relationships from the four Caditesishow a relatively high
initial porosity for both sand and mud facies (349, although these values are
lower than ‘normal’ deep-water muds and sands, g@tdue to the persistent
bottom current activity.

Porosity shows a decrease with depth to around03b-+#ear 500 m burial depth.
According to the exponential models of porosityhaitepth, contourite porosity
should 10-17% for sands and 18-24% for muds at 25@@rial depth.

Similar porosity-depth trends are present in thikENewfoundland, Gardar and
Canterbury Slope drifts, although the surface sedis show 10-20% higher
primary porosity where the contourites are domilyanibclastic in composition.

All sites reveal anomalies and breaks in the poratepth trends, linked to the
interbedding of sandy and muddy facies, compostiamriation (carbonate vs
siliciclastic), and the presence of widespreadusieé in the sediment record.
Over-pressure and higher than normal porosities @aamon. Differential
cementation begins below a few hundred metres liejah.

These results give good insight into the likely eresir characteristics of
contourites, for both conventional and unconvertioreservoirs. They are
comparable with those of existing contourite fieldthough most of these are
mixed turbidite-contourite systems. We now needeéibdrate search for the

contourite play in the subsurface.
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Figure Captions

Fig. 1 Morphological map of the Gulf of Cadiz. Thellow circles show the locations of the
sites U1386, U1387, U1388 and U1389 of IODP 33% tire green pentagons show the
locations of BC04, PC04, PC06 and PCO08 of the CONRBER-1 expedition. The red

lines mark the principal bottom-currents associatéti the Mediterranean Outflow Water.

Modified from Hernandez-Molina et al. (2006) andoEgition 339 Scientists (2013).

Fig. 2 Summary well logs for IODP 339 sites U138@387, U1388 and U1389 in the Gulf
of Cadiz, with schematic representation of the nfames present, and principal hiatuses.

mbsf = metres below sea floor.

Fig. 3 Core photographs of the principal contoutiiebidite, debrite and hemipelagite facies
recovered IODP 339 sites in the Gulf of Cadiz. Badpational and partial contourite

sequences as shown.

Fig. 4 Grain-size parameters cross-plots of ov@0l€amples from Gulf of Cadiz contourites.
Cores BCO05, PC08, PC04 and PCO06, after Brackenatlge(2018); samples from IODP 339
sites U1386, U1387, U1388 and U1389, new for thudys (A) mean grain size versus sorting,
(B) mean grain size versus skewness, (C) mean gizeénversus kurtosis indicate finest and
coarsest sediments have similar kurtosis, (D) mprtiersus skewness, (E) kurtosis versus

skewness. A-C indicate sites from which samplegareved; D-E indicate grain-size classes



of each sample plotted.

Fig. 5 Porosity-depth profiles for sites U1386, 873 U1388 and U1389. Because of
problems with core recovery of sandy sediments,88183as much less data points than the
others. Different sites are shown in different cofo The green and yellow lines are estimated
trends for mud and sand respectively. These arélyramtourite facies. Below about 400 m

at sites U1386 and U1387 (see Figure 2) the suocesemprises interbedded contourites,
turbidites, debrites and hemipelagites. Blue ambda&shed lines show the minor hiatus and

major hiatus in U1386, U1387 and U1389 respectively

Fig. 6 Porosity-depth profiles of Eirik drift (U180IODP 303), Gardar drift (U1304, IODP
303), Newfoundland drift (U1410, IODP 342) and Gabtry slope (U1352, IODP 317).

Sediments types of Newfoundland drift are showindifferent colours.

Fig. 7 Exponential models for porosity-depth pesilof sand (A) and mud (B) contourites,
derived from porosity data of U1386, U1387, U1388I &J1389. Predictions are made to
likely reservoir depths of 2500m, although the atporosity data for these sites is between
250-850m depth. The parameters of normal sand amdl ane provided after Rubey and
Hubbert (1959) and Sclater and Christie (1980).al8ee of the lack of sand porosity data for
U1389, only sand porosity models of U1386, U138d &ii388 are derived. Due to some
anomalous porosity values (i.e. increasing trends)1388 and U1389, the exponential

curves cannot be derived for these sites.



Fig. 8 Summary grain-size cross plots and thearpretation.

(A) Schematic representation of best-fit trend lingsnfiean size vs sorting (red), mean
size vs skewness (green), and mean size vs skeybiasy Upper peak values show
mean grain size for poorest sorting, most fine-s&kibw, and most leptokurtic
distribution. Lower peak values show mean graine sfar best sorting, most
coarse-tail skew, and most platykurtic distribution

(B) Schematic representation of best-fit trend line rie@an grain size vs sorting (as
above), noting grain-size attributes of the threeqggpal facies classes of contourites,
and the inferred depositional processes for eable. 9mall curves adjacent to the
trend line illustrate the general shape of grame-siistribution curves at different

points along the line.

Fig. 9 Abnormal pressure intervals defined by abmabrporosity change trends are shown in
the porosity-depth profiles of U1386, U1387, U128&l U1389, indicating the occurrence of
overpressure zones. This is an effective way tegmeporosity decrease during burial and

retain high porosity values, at least locally.

Fig. 10 Comparison of porosity-depth relationshgtween (A) U1305 (Eirik drift) and
U1388 (Gulf of Cadiz); (B) U1304 (Gardar drift) attll388 (Gulf of Cadiz); (C) U1410
(Newfoundland drift) and U1388 (Gulf of Cadiz); afid) U1352 (Canterbury slope) and

U1387 (Gulf of Cadiz).



Fig. 11 Typical relationships among permeabilitgrgsity and grain-size, modified from

Chillingar (1964). Different colour lines are foiffdrent grain-size of sediments. According
to Chillingar (1964), coarse to very coarse sangains more than 50% of 0 ~ -1 phi fraction,
medium to coarse sand contains more than 50% df pht fraction, fine sand contains more
than 50% of 3 ~ 2 phi fraction, silty (sandstoneftains more than 10% of silt fraction, and

clayey (sandstone) contains more than 7% of clagtifin.
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Contourite Porosity, Grain Size and Reservoir Characteristics
Xiaohang Y u, Dorrik Stow, Zeinab Smillie, Ibimina Esentia, Rachel Brackenridge, Xinong

Xie, Shereef Bankole, Emmanuelle Ducassou, Estefania Llave

HIGHLIGHTS

» First publication of comprehensive porosity data for contourites.

» Derivation of exponential models of porosity-depth plots to reservoir depths.
* New understanding of contourite depositional processes from grain-size data.

» Potential reservoir characteristics of contourite systems.
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