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Summary 

The ulvophytes, comprising the green seaweeds, are of particular evolutionary interest 

because they display a wide morphological and cytological diversity with unique 

features among green algae. Unfortunately, the lack of a robust phylogenetic 

framework hampers a full appreciation of their evolutionary history. For example, up 

till the present day it is still not clear if green seaweeds can be traced back to a single 

origin or whether their diversity is the result of multiple independent transitions from 

unicellular, freshwater ancestors to the marine coastal environment. Elucidating this 

phylogenetic history is the principle aim of this thesis. 

In a first introductory chapter (Chapter 1), we describe green algal diversity in an 

evolutionary perspective, discuss recent progress towards understanding the genetic 

underpinning of highly specialized cyto-morphologies, such as siphonous cells, and 

describe the recent progress made towards the understanding of the peculiar and 

highly diverse chloroplast genomes found among ulvophyceans. We discuss the 

difficulties in resolving the ancient phylogenetic relationships among ulvophyceans, 

and the core Chlorophyta lineages, even when applying chloroplast phylogenomic 

analyses. Furthermore, we highlight the advantages and opportunities in using 

phylotranscriptomics as an alternative tool to resolve difficult phylogenetic 

relationships and to unveil the evolution of major cyto-morphological innovations and 

molecular features associated to them. 

In Chapter 2, we set up a phylotranscriptomic workflow and evaluated the impact of 

partial datasets (i.e.: transcriptomes) on comparative genomics pipelines designed to 

process genomic data.  We evaluated the performance of the commonly used 

available tools in annotating transcriptomes and estimating transcriptome 

completeness. Green algal gene features that could be detrimental to transcriptome 

annotation and to the phylotranscriptomic workflow were taken into account (e.g. 

alternative nuclear and chloroplast genetic codes). We further evaluated the 

relationships between depth of sequencing and transcriptome completeness and 

assessed the impact of missing data on gene family circumscription. Since gene family 

inference was robust and did not suffer from partial transcriptomic data, 

phylotranscriptomics downstream analyses are expected to be reliable. However, de 
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novo assembled transcriptomes seemed to overestimate the size of inferred gene 

families, suggesting that precautions should be taken before using transcriptomic data 

in gene family expansion, gain or loss analyses.  

In Chapter 3, we used the insights gained and the generated workflow to process 

transcriptome and genome data from 55 species of green algae. A dataset of 539 

single-copy nuclear genes was generated, and rigorous phylogenetic reconstructions 

resulted in a robust, highly supported reconstruction of the phylogenetic relationships 

and the divergence times of the major green algal lineages. Depending on whether a 

concatenation or a coalescent approach was used, analyses resulted in a clade 

composed by Bryopsidales and Chlorophyceae sister to the remaining Ulvophyceae 

or a radiation comprising Bryopsidales, Chlorophyceae and Ulvophyceae, 

respectively. Results are interpreted in relation to global-scale (de-)glaciations during 

the Cryogenian period of the Neoproterozoic (750-650 mya). This study narrows down 

the evolutionary history of green seaweeds to two competing scenarios. We argue that 

it represents a robust framework to build on the understanding of the molecular key 

features underlying the evolution of different and unique cyto-morphological features 

of ulvophyceans. 

In Chapter 4, we solved the long standing mystery over the nature of Cladophorales 

green seaweeds chloroplast genome. We describe a highly deviant chloroplast 

genome which is entirely fragmented into hairpin chromosomes. Short and long read 

high-throughput sequencing of DNA and RNA demonstrated that the chloroplast 

genes of Boodlea composita (Cladophorales) are encoded on 1-7 kb DNA contigs with 

an exceptionally high GC-content, each containing a long inverted repeat with one or 

two protein-coding genes and conserved non-coding regions putatively involved in 

replication and/or expression. These contigs correspond to linear, single-stranded 

DNA molecules that fold onto themselves to form hairpin chromosomes. The origin of 

this highly deviant chloroplast genome likely occurred before the emergence of the 

Cladophorales, and coincided with an elevated transfer of chloroplast genes to the 

nucleus. A chloroplast genome that is composed only of linear DNA molecules is 

unprecedented among eukaryotes and highlights unexpected variation in the plastid 

genome architecture. 
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In the General Discussion, our findings are integrated with the results of previous 

studies. We evaluate and interpret our current understanding of green algal 

diversification on the light of molecular evolution and ultrastructural features. Finally, 

future research perspectives are explored. 
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Samenvatting 

De Ulvophyceae of groene zeewieren zijn van bijzonder evolutionair belang door hun 

grote morfologische en cytologische diversiteit met unieke kenmerken onder de 

groenwieren. Het ontbreken van een stabiel fylogenetisch kader bemoeilijkt echter de 

studie van hun evolutionaire geschiedenis. Tot op heden is het bijvoorbeeld nog 

steeds niet duidelijk of groene zeewieren eenmaal ontstaan uit zijn in de evolutie, of 

dat hun grote diversiteit een gevolg is van meerdere onafhankelijke transities van 

eencellige zoetwatervoorouders naar de meercellige zeewieren de onze kusten hun 

typisch aspect verlenen. Dit proefschrift heeft als eerste belangrijk doel het ophelderen 

van de fylogenetische relaties van groenwieren. 

In een eerste inleidend hoofdstuk (hoofdstuk 1) beschrijven ik de diversiteit van 

groenwieren in een evolutionair perspectief, wordt de recente vooruitgang in het 

begrijpen van de genetische onderbouwing voor gespecialiseerde cyto-morfologische 

kenmerken zoals sifonale cellen besproken. Tevens beschrijf ik de recentste inzichten 

in de diversiteit en complexiteit van chloroplastgenomen in de Ulvophyceae. De 

moeilijkheden bij het ophelderen van de oude fylogenetische relaties binnen de 

Ulvophyceae en de “core Chlorophyta”, zelf op basis van volledige 

chloroplastgenomen, worden bediscussieerd. Verder bespreek ik potentieel van 

fylotranscriptomische analyses om deze moeilijke fylogenetische relaties op te 

helderen, en om de evolutie te ontsluieren van cyto-morfologische en geassocieerde 

moleculaire kenmerken. 

In hoofdstuk 2 beschrijven we een nieuw ontwikkelde fylotranscriptomische workflow 

en bestuderen we de impact van partiële transcriptoom datasets op “pipelines” die 

ontworpen zijn om genoomdata te verwerken. We evalueren de prestaties van 

veelgebruikte tools voor het annoteren van transcriptomen en voor het schatten van 

de volledigheid van transcriptomen. Specifieke genoomkenmerken van groenwieren 

die de annotatie van transcriptomen en fylotranscriptomische workflows mogelijk 

kunnen bemoeilijken, zoals alternatieve genetische codes, werden in aanmerking 

genomen. Verder evalueren we de relaties tussen sequencing-diepte en de 

volledigheid van het transcriptoom, en beoordelen we de impact van ontbrekende data 

op de afbakening van genfamilies. Aangezien de afbakening van genfamilies stabiel 
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was en niet negatief beïnvloed werd door onvolledige transcriptoomdata, wordt 

verwacht dat de “downstream” fylotranscriptomische analyses betrouwbaar zijn. Toch 

bleken de de novo geassembleerde transcriptomen de grootte van de afgebakende 

genfamilies te overschatten. Daarom is voorzichtigheid geboden is bij het gebruik van 

transcriptoomdata voor de evolutionaire analyse van genfamilies. 

In hoofdstuk 3 worden de verkregen inzichten en de ontwikkelde workflow uit 

hoofdstuk 2 gebruikt om transcriptoom- en genoomdata van 55 groenwiersoorten te 

verwerken. Dit resulteerde in een dataset van 539 “single-copy” nucleaire genen, die 

vervolgens geanalyseerd werd aan de hand van geavanceerde fylogenetische 

methodes. De analyses resulteerden in een sterk ondersteunde fylogenetische boom, 

en een tijdschaal voor de evolutie van de belangrijkste groenwiergroepen. Afhankelijk 

van het type van analyse (gebaseerd op een geconcateneerde dataset of een 

coalescentie-gebaseerde analyse),  werd een relatie tussen Bryopsidales en 

Chlorophyceae afgeleid, of een radiatie bestaande uit Chlorophyceae, Bryopsidales 

en de rest van de Ulvophyceae. De fylogenetisch resultaten worden geïnterpreteerd 

in het licht van wereldwijde glaciaties tijdens het Cryogenium (750-650 mya). De 

fylogenie vormt tevens een belangrijk kader voor verdere studies naar de evolutie van 

genoomkenmerken die aan de grondslag liggen van de cyto-morfologische variatie 

binnen de Ulvophyceae. 

Hoofdstuk 4 focust op de structuur van het chloroplastgenoom van groenwieren in de 

orde Cladophorales. We beschrijven een sterk afwijkend chloroplastgenoom dat 

volledig gefragmenteerd is in korte, haarspeld-vormige chromosomen. “High-

throughput” sequencing van DNA (korte en lange reads) en RNA toont aan dat de 

chloroplastgenen van Boodlea composita gecodeerd zijn op 1-7 kb DNA contigs met 

een uitzonderlijk hoog GC-gehalte, elk met een lange omgekeerde repeat met één of 

twee eiwitcoderende genen en geconserveerde niet-coderende regio’s die 

vermoedelijk betrokken zijn bij replicatie en/of genexpressie. Deze contigs zijn lineaire, 

enkelstrengige DNA-moleculen die zich vouwen in een haarspeld-vormige structuur. 

De evolutie van deze sterk afwijkende chloroplastgenomen in de Cladophorales valt 

samen met een verhoogde transfer van chloroplastgenen naar de kern. Een 

chloroplastgenoom dat enkel bestaat uit lineaire DNA-moleculen is uniek binnen de 
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eukaryoten, en benadrukt de grote structurele variatie in chloroplastgenomen binnen 

de Ulvophyceae. 

In de algemene discussie worden de resultaten van dit proefschrift geëvalueerd en 

geïnterpreteerd in het licht van eerdere studies. In het bijzonder worden nieuwe 

inzichten in de diversificatie van groenwieren en de evolutie van moleculaire en 

ultrastructurele kenmerken besproken. Tot slot worden onderzoeksperspectieven 

verkend. 
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Introduction 

How organisms evolve different morphologies is a central question in evolutionary 

biology, but in many taxonomic groups, including algae, answers remain elusive. 

Molecular phylogenetic and evolutionary approaches provide a powerful framework 

for investigating the history of morphological change, and the genetic basis of 

morphological diversification. Because they are morphologically and cytologically so 

diverse, the Ulvophyceae (green seaweeds) form an interesting group to investigate 

the evolution of morphological change, and the evolutionary forces shaping 

morphological divergence. 

Seaweeds are ecologically important primary producers in coastal ecosystems 

worldwide. Seaweeds are not a natural group, but evolved independently from the 

ancestors of red (Rhodophyta), green (Viridiplantae), and brown algae 

(Phaeophyceae). The red algae are an ancient lineage, most likely originating in the 

Mesoproterozoic in low-salinity environments, with a single origin of macroscopic 

growth in coastal habitats more than 1.1 Bya (Sánchez-Baracaldo et al., 2017). The 

brown algae, which are entirely restricted to the coastal environment, are much more 

recent, diverging only in the Lower Jurassic (Berney & Pawlowski, 2006; Brown & 

Sorhannus, 2015). Fossil evidence for the origin of the green algal lineage points 

towards a Neoproterozoic origin, somewhere between 1,000 and 500 mya (Falkowski 

et al., 2004a; Porter, 2004). Green algae comprise a wide diversity of unicellular and 

multicellular forms from freshwater, terrestrial, and marine environments. 

There is a general consensus that an early split in the evolution of green algae gave 

rise to two discrete clades. One clade, the Streptophyta, contains a wide diversity of 

green algae from freshwater and damp terrestrial habitats (known as charophytes), 

from which the land plants evolved in the Ordovician (McCourt et al., 2004). The 

second clade, the Chlorophyta, diversified as planktonic unicellular organism 

(prasinophytes), mainly in oceanic environments in the Neoproterozoic (Porter, 2004; 

Knoll et al., 2006). Prasinophytes later gave rise to the core Chlorophyta, which 

radiated in freshwater, terrestrial, and coastal environments (Leliaert et al., 2012). 

Traditionally, five classes are recognized in the core Chlorophyta, including the 

species-rich Ulvophyceae, Trebouxiophyceae and Chlorophyceae (also known as the 

UTC clade), and two smaller classes of unicellular algae from marine, freshwater and 
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soil habitats, Chlorodendrophyceae and Pedinophyceae. The Chlorophyceae and 

Trebouxiophyceae include unicellular and multicellular algae from freshwater and 

terrestrial environments. Green seaweeds are nearly exclusively restricted to the 

Ulvophyceae, but the class also includes some freshwater and terrestrial 

representatives (Škaloud et al., 2018).   

The Ulvophyceae is one of the major classes of green algae, comprising more than 

1,700 species (Guiry, 2012). Most species are macroscopic (Figure 1.1 and 1.2), but 

a substantial diversity of microscopic organisms are also present. Although the 

ulvophyceans are best known as marine species from rocky shores and coral reefs 

(Brodie et al., 2007), an increasing number of species is being uncovered in brackish, 

freshwater, and moist subaerial habitats such as soil, rocks, tree bark and leaves 

(Škaloud et al., 2018). Nine orders are currently recognized in the Ulvophyceae: 

Bryopsidales, Cladophorales, Dasycladales, Ignatiales, Oltmansiellopsidales, 

Scotinosphaerales, Trentepohliales, Ulotrichales and Ulvales.  

The Ulvophyceae display a wide variety of thallus and cellular organisations (Figure 

1.1 and 1.2). Four main cyto-morphological types have been distinguished by Cocquyt 

et al. 2010a (see Figure 1.2 caption). Type 1 includes flagellate or non-flagellate 

unicellular or colonial organisms with uninucleate cells. This type is present in some 

Ulvales, Ulotrichales, Scotinosphaerales, Oltmansiellopsidales, and the Ignatiales 

(Chihara et al., 1986; Nakayama et al., 1996; Friedl & O'Kelly, 2002; Watanabe & 

Nakayama, 2007; Škaloud et al., 2013). Type 2 consists of multicellular filaments or 

blades composed of uninucleate cells. This type occurs in the Ulvales, Ulotrichales 

and Trentepohliales. Type 3 is the siphonocladous thallus organisation, which is 

characterized by multicellular thalli composed of multinucleate cells with nuclei 

organized in regularly spaced cytoplasmic domains (McNaughton & Goff, 1990; 

Motomura, 1996). This type is found in the Cladophorales and Blastophysa and some 

members of the Ulotrichales (e.g., Urospora and Acrosiphonia). Type 4 is the 

siphonous thallus organisation, which is characterized by thalli consisting of a single 

giant tubular cell. It is present in the orders Bryopsidales and Dasycladales. In most 

species, the siphonous cells contain thousands of nuclei, but in several species of 

Dasycladales, the siphonous thallus remains uninucleate throughout much of their life 

cycle with a giant diploid nucleus that only divides at the onset of reproduction (Berger 
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& Kaever, 1992). Siphonous cells typically exhibit cytoplasmic streaming, transporting 

organelles, nutrients, and transcripts across the thallus (Menzel, 1987; Menzel, 1994; 

Mine et al., 2005). Some siphonous species form large seaweeds with thalli 

differentiated into distinct structures, including rhizoids, stolons and blades. The giant 

cells of siphonocladous and siphonous species are characterized by several 

cytological specializations, such as unique mechanisms of cell differentiation, cell 

division, and wounding response (Menzel, 1988; La Claire, 1992; Kim et al., 2001; 

Mine et al., 2008). 

 

Cyto-morphological evolution 

The phylogeny of Cocquyt et al. (2010a) provided a first important framework to 

understand the evolution and cyto-morphological diversification of ulvophyceans. 

Three alternative scenarios for the cyto-morphological diversification of ulvophyceans 

were hypothesized. In a likely scenario, ulvophyceans originated from an ancestral 

unicellular, uninucleate organism, and macroscopic growth emerged through different 

mechanisms several times independently during the evolution of the class, leading to 

the current variety of thallus organizations (Figure 1.2).  This view is supported by the 

fact that several early diverging clades of ulvophyceans (Oltmannsiellopsidales, 

Ignatiales and Scotinosphaerales, Figure 1.1A-1.1C) include unicellular uninucleate 

species, in addition to colonial forms (Watanabe & Nakayama, 2007; Leliaert et al., 

2009; Škaloud et al., 2013; Turmel et al., 2017; Škaloud et al., 2018). 

The Ulvales and Ulotrichales both contain a multicellular species with uninucleate cells 

(Figure 1.1D, 1.1E), and a number of unicellular uninucleate species (e.g. 

Pseudoneochloris and Pirula). Multicellularity possibly evolved independently in the 

two clades, or alternatively, these unicellular species represent reductions from 

multicellular ancestral types. Multicellular thalli range from branched or unbranched 

filaments to more complex tubular and blade-like morphologies. An interesting aspect 

of multicellular growth comes from culture experiments on some multicellular Ulvales. 

When grown axenically, Ulva and Monostroma form callus-like colonies of 

undifferentiated cells. However, upon the addition of secretions from two distinct 

bacteria, from Roseobacter and Cytophaga for Ulva, and secretions from an 

uncharacterized member of the CFB group for Monostroma, the blade-like multicellular 
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Figure 1.1: Ulvophyceae diversity. 

(A) Light micrograph of Oltmannsiellopsis unicellularis (Oltmannsiellopsidales), a 
flagellate unicellular uninucleate ulvophyte. Image courtesy of NCMA at Bigelow 
Laboratory. (B) Light micrograph of Scotinosphaera lemnae (Scotinosphaerales), a 
non-motile unicellular uninucleate ulvophyte. Image courtesy of Pavel Škaloud, 
Charles University, Prague. (C) Light micrograph of Ignatius tetrasporus (Ignatiales), 
a non-motile unicellular uninucleate ulvophyte. Image courtesy of UT-Austin. (D) Light 
micrograph of Ulothrix (Ulotrichales), a multicellular filamentous ulvophyte with 
uninucleate cells. Image courtesy of Giuseppe Vago. (E) Ulva lactuca (Ulvales), a 
multicellular blade-forming ulvophyte with uninucleate cells. Image courtesy of Kristian 
Peters. (F) Trentepohlia aurea, a multicellular filamentous ulvophyceans with 
uninucleate cells. Image courtesy of Alain Gerault. (G) Valonia utricularis 
(Cladophorales), a multicellular multinucleate ulvophyte. Photo by Frederik Leliaert. 
(H) Caulerpa racemosa (Bryopsidales), a siphonous, unicellular multinucleate 
ulvophyte. Photo by Frederik Leliaert. (I) Acetabularia acetabulum (Dasycladales), a 
siphonous, unicellular uninucleate ulvophyte. Image courtesy of StudyBlue. For each 
species, the corresponding cyto-morphotype has been represented as in Figure 1.2. 

 

thallus composed of differentiated cells is restored (Matsuo et al., 2005; Spoerner et 

al., 2012). Some members of the Ulotrichales (e.g. Acrosiphonia and Urospora) have 
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evolved a siphonocladous thallus organization, separately from the Cladophorales 

(see below). In these Ulotrichales, all nuclei of the multinucleate cell migrate to the 

future plane of cell division before mitosis, and division of the nuclei is synchronous 

(Hudson & Waaland, 1974; Lokhorst & Star, 1983). This contrasts with the situation in 

Cladophorales, where mitosis is uncoupled from cytokinesis. 

The order Trentepohliales (Figure 1.1F) includes multicellular, branched filamentous 

or pseudoparenchymatous thalli, and likely evolved multicellularity independently from 

the other multicellular clades (Figure 1.2) (Cocquyt et al., 2010b; Brooks et al., 2015). 

The uninucleate cells have unique features among Chlorophyta, that are shared with 

land plants, such as phragmoplast-like cytokinesis and presence of plasmodesmata 

between vegetative cells (Chapman & Henk, 1985; Chapman et al., 2001). Motile 

reproductive cells have multilayered structures associated with flagellar bases instead 

of a cruciate flagellar root system, which is typical for most core Chlorophyta (Graham 

& McBride, 1975). The atypical cellular characteristics of Trentepohliales and their 

strictly terrestrial habitat suggest intriguing evolutionary parallelisms between this 

clade of ulvophyceans and the streptophytes. 

From a cytological perspective, the orders Cladophorales, Bryopsidales, and 

Dasycladales are the most peculiar clades of ulvophyceans, characterized by a 

siphonous or siphonocladous thallus organization, featuring highly specialized cellular 

characteristics.  

The Cladophorales (Figure 1.1G) are mostly macroscopic or sometimes microscopic 

plants with a siphonocladous architecture, i.e. multicellular plants composed of 

multinucleate cells. Thallus morphology is very diverse, ranging from unbranched or 

branched filaments to blade-like or giant-celled thalli with unique cytological traits and 

modes of cell division (Leliaert et al., 2007; Mine et al., 2008). Cells range in size from 

a few µm to several cm, and have a large central vacuole surrounded by a thin layer 

of cytoplasm containing numerous nuclei and chloroplasts. Chloroplasts are often 

interconnected by delicate strands forming a parietal network or a more or less 

continuous layer. The multinucleate cells present regularly-spaced nuclei in a 

stationary cytoplasm and arrays of internuclear microtubules which define regular 

cytoplasmic domains, one for each nucleus (McNaughton & Goff, 1990). This is in 

contrast with the situation in Bryopsidales and Dasycladales where the cytoplasm 
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exhibits vigorous streaming. Nuclear division is synchronous or circumscribed to 

discrete mitosis patches (Hori & Enomoto, 1978; Staves & La Claire, 1985; Motomura, 

1996; Okuda et al., 1997). Siphonocladous thallus organization is also found in the 

sister clade of Cladophorales, including the marine endophytic alga Blastophysa, 

where the nuclei divide in regular mitotic waves (Sears, 1967). 

The Bryopsidales (Figure 1.1H) and Dasycladales (Figure 1.1I) have mostly 

macroscopic or sometimes microscopic thalli with a siphonous architecture. The most 

striking feature of Bryopsidales and Dasycladales is that a single siphon can form 

complex and often large plants differentiated in root-like, stem-like and blade-like 

structures that present metabolic and transcript partitioning (Chisholm et al., 1996; 

Ranjan et al., 2015). Like in the Cladophorales, the cell consists of a large central 

vacuole, surrounded by a thin parietal layer of cytoplasm. However, both Bryopsidales 

and Dasycladales exhibit cytoplasmic streaming, which enables transportation of 

organelles and nutrients, as well as RNA transcripts, throughout the siphonous thallus. 

In Bryopsidales and some species of Dasycladales, the siphon contains thousands to 

millions of nuclei that divide by asynchronous mitosis. In most species of 

Dasycladales, however, the siphonous thallus contains a single giant diploid nucleus 

that only divides at the onset of reproduction (Berger & Kaever, 1992). This is for 

example the case in Acetabularia (mermaid’s wineglass), the best studied genus of 

Dasycladales, where the relationship between complex cytoskeleton organization, 

discrete transcripts distribution and complex thallus morphology has been well 

characterized (Menzel, 1994; Serikawa et al., 2001; Vogel et al., 2002; Mine et al., 

2005; Mine et al., 2008).  

Although Cladophorales, Bryopsidales, and Dasycladales share large multinucleate 

cells, Cocquyt et al. (2010a) suggested that their ancestor may have been an 

uninucleate organism that gained macroscopic growth through cell enlargement in two 

distinct evolutionary events, possibly as a result of selective pressures for macroscopic 

growth in marine benthic environments, eventually leading to siphonocladous or 

siphonous thalli. A multinucleate siphonous/siphonocladous thallus may have 

presented several advantages: multiple genome copies in a single cell grant a buffer 

against deleterious mutations and a higher metabolic rate due to additional copies of 

ribosomal DNA (rDNA) (Niklas, 2014). 
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Figure 1.2: Overview of core Chlorophyta molecular and cytomorphological 
features. 

Overview phylogeny of the core Chlorophyta with a focus on the Ulvophyceae. For 
each clade, the habitat, cyto-morphology and distribution of elongation factors and 
non-canonical nuclear genetic code is reported. Ulvophyte orders are reported in 
green, dashed lines between the orders indicate our current lack of knowledge on their 
phylogenetic relationships (see as well Figure 1.3). 

 

The ancestor of Bryopsidales and Dasycladales was possibly a uninucleate unicellular 

enlarged cell, as supported by the presence of a single macronucleus in Dasycladales 

and in the zygote of certain Bryopsidales (Burr & West, 1971; Liddle et al., 1976). In 

the scenario proposed by Cocquyt et al. (2010b), the evolution of siphonous thallus 

organization required two discrete steps. In the first step, the ancestral cell underwent 
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elongation and development of the macronucleus and cytoplasmic streaming. Beyond 

a certain cell size, however, the time required for macromolecules and especially 

messenger RNAs to travel from one side of the cell to the other increases drastically, 

which would have resulted in a switch to a multinucleate status (Niklas, 2014). 

Multinucleate siphons probably evolved in Bryopsidales and Dasycladales 

independently (Cocquyt et al., 2010b). 

 

Make-over of the translational apparatus 

Translation is the first stage of protein biosynthesis and an essential process in all 

living systems. It involves a complex interaction of several macromolecules, including 

messenger, ribosomal and transfer RNAs, ribosomal proteins and several associated 

protein factors. Although, the translation machinery is highly conserved across 

eukaryotes, lineage specific deviations exist, including alterations of the genetic code, 

lateral transfers and elevated evolutionary rates of essential genes. One of these 

lineages are the ulvophyceans, which features several atypical translation-related 

features in some representatives of the class. 

First, the ulvophyceans present a complex distribution of an alternative nuclear genetic 

code (Figure 1.2), according to the phylogeny recovered by Cocquyt et al. where 

Bryopsidales, Cladophorales, Dasycladales and Trentepohliales formed a distinct 

clade (Cocquyt et al., 2010a). While Cladophorales, Dasycladales and Trentepohliales 

evolved a non-canonical nuclear genetic code, where the stop codons TAG and TAA 

are reassigned to glutamine, Ignatiales and Bryopsidales conserve a standard nuclear 

genetic code (Gile et al., 2009; Cocquyt et al., 2010a). A stepwise acquisition model, 

involving ambiguous intermediates with a dual function of TAG and TAA as both 

coding and terminating codon (Santos et al., 2004), was suggested as an explanation 

for the observed pattern. 

Second, two distinct and mutually exclusive elongation factors, EF-1 and EFL, are 

scattered over the different lineages of ulvophyceans (Noble et al., 2007; Cocquyt et 

al., 2009; Gile et al., 2009; Cocquyt et al., 2010a). EF-1 and EFL function as 

translation initiation, elongation and termination by recruiting aminoacyl tRNAs to the 

ribosomes (Negrutskii & El'skaya, 1998; Keeling & Inagaki, 2004). While Ulvales have 
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the elongation factor EFL like the rest of chlorophytes; Bryopsidales, Cladophorales, 

Dasycladales and Ignatiales present instead the elongation factor EF-1 (Cocquyt et 

al., 2009). Although the model of Cocquyt et al. could not generate an unequivocal 

prediction for EFL acquisition in Chlorophyceae, the suggested step-wise 

transformation of the translational apparatus during the evolution of ulvophyceans is 

a likely scenario (Cocquyt et al., 2009; Cocquyt et al., 2010a). It has to be noted, 

however, that a complex EF-1 and EFL distribution is typical of most of the eukaryotic 

lineages (Keeling & Inagaki, 2004; Mikhailov et al., 2014), and that both elongation 

factors have been found to co-occur in distantly related eukaryotic clades (Kamikawa 

et al., 2013). A conservative model to describe the distribution of EF-1 and EFL 

among eukaryotes has not been formulated to date. 

At last, phylogenies inferred from nuclear encoded rDNA sequences show that several 

ulvophyte clades are preceded by extremely long branches, indicating lineage-specific 

rate acceleration of the rDNA genes (Leliaert et al., 2009). These factors combined 

provide clues that the diversification of ulvophyceans, and in particular the siphonous 

and siphonocladous lineages, coincided with profound changes in the translational 

machinery. A better understanding of the evolution of translation in the Ulvophyceae 

translation apparatus will require further analysis of the genetic code, codon usage, 

and characterisation of specific genes, including elongation factors, release factors, 

ribosomal proteins, and tRNAs in a phylogenetic framework. 

 

A shaky phylogeny of ulvophyceans 

A solid phylogeny of the Ulvophyceae is an important first step to understand the 

evolution of cyto-morphological types in the class. Unfortunately, as will be discussed 

below, the relationships among the main clades of ulvophyceans are still uncertain. 

Even monophyly of the class is under debate, as is the relationship of the Ulvophyceae 

with other classes of core Chlorophyta. 

The original circumscription of the class was based on a set of ultrastructural 

characteristics, including a counter-clockwise orientation of the flagellar root system, 

cytokinesis by furrowing, a closed persistent mitotic spindle and the absence of a 

phycoplast (Mattox & Stewart, 1984; O'Kelly & Floyd, 1984; Sluiman, 1989a; Floyd & 
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O'Kelly, 1990). Some species have flagellate reproductive cells with cell walls or 

flagella covered by organic body-scales (Sluiman, 1989a). However, because none of 

these characters are unique to the Ulvophyceae, the monophyly of the Ulvophyceae 

has been questioned. For example, a counter-clockwise orientation of the flagellar root 

system is also found in species of Trebouxiophyceae, cytokinesis by furrowing occurs 

in most green algae, a closed mitosis occurs also occur in the Chlorophyceae, a 

persistent mitotic spindle is also characteristic for many charophyte green algae, and 

a phycoplast is absent in prasinophytes (Mattox & Stewart, 1984; O'Kelly & Floyd, 

1984; Leliaert et al., 2012). Organic body-scales occur in a various green algae, and 

are generally regarded as an ancestral character of the green algae (Melkonian, 

1990). The order Trentepohliales, which has been affiliated with the Ulvophyceae 

based on nuclear rDNA data (Zechman et al., 1990), displays atypical ultrastructural 

features, such as the presence of a phragmoplast and multilayered structures 

associated with flagellar bases in motile cells, instead of a cruciate flagellar root 

system (Graham & McBride, 1975). The order is also highly atypical from an ecological 

point of view as they are entirely restricted to terrestrial habitats. 

Molecular systematics brought new hope to resolve ulvophyte relationships (Figure 

1.3). Phylogenetic analyses of nuclear ribosomal rDNA datasets (mainly 18S) have 

supported the circumscription of traditional orders but were not able to fully resolve the 

relationships among them (Chappell et al., 1991; Lopez-Bautista & Chapman, 2003; 

Watanabe & Nakayama, 2007; Leliaert et al., 2009). In addition, 18S phylogenetic 

analyses were also not able to solve the question of monophyly of the class: most 

studies recovered the Ulvophyceae as a monophyletic group, although never with 

strong phylogenetic support. Instead these studies consistently recovered two distinct 

clades: a first clade comprising the Ulvales and Ulotrichales along with the 

Oltmannsiellopsidales, Scotinosphaerales and Ignatiales, and a second clade 

consisting of Trentepohliales, Cladophorales, Bryopsidales and Dasycladales 

(Zechman et al., 1990; Watanabe et al., 2001; Lopez-Bautista & Chapman, 2003; 

Watanabe & Nakayama, 2007; Cocquyt et al., 2009; Škaloud et al., 2013) (Figure 1.3). 

The first study to support monophyly of ulvophyceans with high support was a 

phylogenetic analysis based on 10 genes (eight nuclear and two plastid) (Cocquyt et 

al., 2010b). This study also confirmed the divergence of the two main ulvophycean 

clades (Ulvales-Ulotrichales versus Bryopsidales-Cladophorales-Dasycladales-
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Ignatiales-Trentepohliales), which was also supported by other genetic features, such 

as presence of the elongation factor-1 alpha or elongation factor-like gene, and the 

presence of a non-canonical genetic code (Cocquyt et al., 2009; Gile et al., 2009; 

Cocquyt et al., 2010a). 

More recently, phylogenetic analysis based on chloroplast multi-gene data have again 

altered our view on ulvophyte relationships, and have indicated a polyphyletic 

Ulvophyceae, consisting of two or more separate lineages that are interspersed with 

other core chlorophytan clades (Leliaert et al., 2012; Fang et al., 2017). An early 

chloroplast phylogenetic analysis of 23 chloroplast (cp) genes recovered Caulerpa 

(Bryopsidales) as more closely related to Chlorella (Trebouxiophyceae) than to the 

other two ulvophycean taxa in the phylogeny (Oltmannsiellopsis and Tupiella) 

(Zuccarello et al., 2009), and a phylogeny inferred from 42 cp genes indicated a 

relationship between Bryopsis and Chlorophyceae (Lü et al., 2011). Phylogenomic 

analyses with increased taxon sampling (53 taxa, 7 cp genes + 18S; and 38 taxa, 53 

cp genes) suggested a relationship between Oltmannsiellopsis+ and Tetraselmis 

(Chlorodendrophyceae), and similarly to the two previous studies suggested polyphyly 

of the Ulvophyceae (Fučíková et al., 2014). More recent, chloroplast phylogenomic 

analyses were also unable to confirm monophyly of the ulvophyceans, but more 

importantly could not resolve relationships among the main core chlorophytan lineages 

(Leliaert & Lopez-Bautista, 2015; Melton et al., 2015; Sun et al., 2016; Turmel et al., 

2016a; Fang et al., 2018). However, increased taxon sampling (100 Chlorophyta, 

including 15 ulvophyceans) and increased chloroplast gene sampling (79 protein 

coding genes, 3 rRNA and 26 tRNA genes) recovered a monophyletic Ulvophyceae, 

although with relatively low support (Turmel et al., 2017). In this study relationships 

among some of the main ulvophyte clades (Ulvales, Ulotrichales, 

Oltmannsiellopsidales, Ignatiales, and Bryopsidales) were relatively well resolved. 

Some important ulvophyte clades, however, are currently missing from chloroplast 

phylogenomic analyses, including the Cladophorales and Scotinosphaerales, and for 

Trentepohliales and Dasycladales, only partial gene content is available. 

What is obvious is that it is extremely difficult to resolve the early divergences of the 

core Chlorophyta and Ulvophyceae because of the antiquity of these green algae, with 

divergences likely in the Proterozoic (Verbruggen et al., 2009), and the rapidity of the  
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Figure 1.3: Core Chlorophyta relationships inferred in different studies. 

Overview of the phylogenetic relationships among core Chlorophyta inferred from 
different studies. cp: Chloroplast genes; nucl: nuclear genes; sp.: species. B: 
Bryopsidales; C: Cladophorales; D: Dasycladales; O: Oltmannsiellopsidales; T: 
Trentepohliales; UU: Ulvales-Ulotrichales.  
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early evolutionary radiations, as evidenced by the very short branches leading to the 

main clades (Lemieux et al., 2014a; Leliaert & Lopez-Bautista, 2015; Turmel et al., 

2017). 

 

Evolution of complex chloroplast genome architectures in 
ulvophyceans 

Although chloroplast genomes of ulvophyceans are relatively poorly represented 

compared to other classes of Chlorophyta, the ulvophyte chloroplast genomes 

available to date hint to a complex evolutionary history unprecedented in the other 

clades of green plants. While several species of ulvophyceans have chloroplast 

genomes with a canonical gene content and structure, the chloroplast genomes of 

Cladophorales, Trentepohliales, and Dasycladales are still to be fully described and 

understood, and show unique and unprecedented features. 

The chloroplast genomes fully sequenced to date span between 81,997 bp 

(Ostreobium queketii) and 262,888 bp (Pleurastrum sarcinoideum) in length, coding 

for 96-110 genes commonly found in the chloroplast genomes of other green algae 

(Table 1.1). Since the ulvophyte chloroplast genomes sequenced to date share 95 

genes, the difference in genome size is mostly due to variation in the number of introns 

and length of intergenic regions (Turmel et al., 2017). The circular chloroplast genome 

of most green algae and land plants has a conserved quadripartite structure where a 

large inverted repeat sequence (IR, typically containing the rDNA operon and various 

other genes) divide the genome into two single-copy (SC) regions (Wicke et al., 2011; 

Jansen & Ruhlman, 2012; Lang & Nedelcu, 2012). IRs have been lost independently 

several times in the Viridiplantae, and at least three times during the evolution of 

ulvophyceans. While Ignatiales and Oltmannsiellopsidales have retained the 

quadripartite structure (Pombert et al., 2006b; Turmel et al., 2017), Bryopsidales have 

lost the IRs (Leliaert & Lopez-Bautista, 2015; Marcelino et al., 2016; Cremen et al., 

2018). Moreover, within the Ulvales, the genus Ulva has lost the IRs, while 

Pseudoneochloris has retained them (Melton et al., 2015; Turmel et al., 2017). Within 

the Ulotrichales, the genera Pleurastrum and Rhexinema have lost the IRs (Turmel et 

al., 2016a). While other Ulotrichales for which the chloroplast genome sequence is 



17 
 

available seems to have retained both copies of IRs, Chamaetrichon capsulatum 

chloroplast genome shows three IRs copies, an event unprecedented in green plants 

(Pombert et al., 2005; Turmel et al., 2017). Furthermore, Ignatiales, Pseudoneochloris 

marina  and Chamaetrichon capsulatum (Ulotrichales) showed divergent IR copies, 

an additional unique feature which has never been reported before for green plants 

(Turmel et al., 2017). 

The trend of chloroplast genome expansion due to increase of non-coding sequences 

is most apparent in the Dasycladales. Complete chloroplast genome data are still 

unavailable for this order, but for Acetabularia, the chloroplast genome has been 

relatively well characterized. Classical molecular studies reported a substantial 

fraction (up to 80%) of chloroplasts lacking DNA (Woodcock & Bogorad, 1970; Luttke, 

1988); in DNA containing chloroplasts, evidence based on electron microscopy was 

provided for an extremely large chloroplast genome. The Acetabularia chloroplast 

genome has been estimated to be about 10 times larger than the typical chloroplast 

genome of Viridiplantae based on electron microscopy, restriction enzymes patterns 

and renaturation kinetics, making it more similar in size to a small bacterial genome 

(Burton & Hugh, 1970; Padmanabhan & Green, 1978; Herrmann & Possingham, 1980; 

Tymms & Schweiger, 1985). The chloroplast genome appears to be bloated by long 

(10 kb) repetitive sequences tandemly arranged, with no similarity to rDNA/IRs of 

green algae, based on hybridization of restricted chloroplast DNA (Tymms & 

Schweiger, 1985). In addition, several minicircles with sequence similarity to 

chloroplast DNA have been isolated from chloroplasts of Acetabularia cliftonii (Green, 

1976; Ebert et al., 1985) and Acetabularia acetabulum (Mazza et al., 1980). Only 

recently, by a Whole Genome Shotgun sequencing approach, 63 contigs for a total of 

almost 300 kb were assembled from Acetabularia acetabulum chloroplast DNA, 

coding for 51 chloroplast genes (de Vries et al., 2013). The assembled contigs showed 

exceptionally long intergenic regions (several kb long) and long Open Reading 

Frames, up to 7,785 bp in length, with no similarity to known protein-coding genes (de 

Vries et al., 2013). An even more exceptional chloroplast genome structure has been 

recently described in the Cladophorales. For years the structure and gene content of 

the chloroplast genome for this order has been elusive: universal primers for 

ulvophyceans chloroplast genes failed to amplify any product and virtually no 
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Table 1.1: Ulvophyte chloroplast genome sequences published. 

Adapted from Turmel et al. 2017. 

Taxon Accession Genome Size 
(bp) 

IR A + T (%) # Genes Introns 

Bryopsidales 

Tydemania expeditionis FL1151 NC_026796 105,200 — 67.2 109 11 

Bryopsis hypnoides NC_013359 153,426a — 66.9 108a 12 

Bryopsis plumosa West4718 NC_026795 106,859 — 69.2 108 13 

Caulerpa racemosa  UNA00072801 NC_032042 176,522 — 66.4 106 18 

Caulerpa cliftonii KX808498 131,135 — 62.4 105 11 

Ostreobium quekettii  LT593849 81,997 — 68.1 110 6 

Derbesia sp. KX808497 115,765 — 70.3 107 12 

Halimeda discoidea KX808496 122,075b — 67.8 104 14 

Cladophorales 

Boodlea composita FL1110 ?c — 43.5 22 ? 

Dasycladlaes 

Acetabularia acetabulum HG18425-
HG18474, 
HG794360 

?d ?e 68.4 51 8f 

Ignatiales 

Ignatius tetrasporus UTEX 2012 KY407659 239,387 2 63 107 9 

Pseudocharacium americanum 
UTEX 2112 

KY407658 239,448 2 63 107 9 

Oltmannsiellopsidales 

Oltmannsiellopsis viridis NIES 360 NC_008099 151,933 2 59.5 104 5 

Dangemannia microcystis SAG 2022 KY407660 166,355 2 66.3 106 8 

Ulvales 

Pseudoneochloris marina UTEX 
1445 

KY407657 134,753 2 70.7 102 15 

Ulva sp. UNA00071828 KP720616 99,983 — 74.7 100 5 

Ulva fasciata NC_029040 96,005 — 75.1 100 5 

Ulva linza QD08 NC_030312 86,726 — 78.5 96 5 

Ulotrichales 

Chamaetrichon capsulatum UTEX 
1918 

KY407661 189,599 3 69.2 104 16 

Tupiella akineta UTEX 1912 NC_008114 195,867 2 68.5 105 27 

Trichosarcina mucosa SAG 4.90 KY407656 227,181 2 62.8 103 14 

Rhexinema paucicellulare SAG 
29.93g 

KX306824 221,431 — 68.5 104 31 

Pleurastrum sarcinoideum UTEX 

1710g 

KX306821 262,888 — 68.5 104 27 

a Based on the reannotated version of Leliaert and Lopez-Bautista, 2015. 
b Halimeda has one scaffold with an unknown number of repeats annotated with 100 Ns. 
c 91,391 bp assembled in 34 contigs. 
d 295,664 bp assembled. The size of the chloroplast genome is estimated around 2 Mb. 
e No information available. 
f introns identified in the currently available sequence. The actual number may be larger. 
g Gloeotilopsis planctonica and Gloeotilopsis sarcinoidea were reassigned to Rhexinema paucicellulare and 
Pleurastrum sarcinoideum respectively, according to (Škaloud et al., 2017) 
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sequence for chloroplast genes was available (Cocquyt et al., 2010b; Deng et al., 

2013; Fučíková et al., 2014). The Cladophorales have been characterized by the 

presence of abundant plasmid-like molecules in the chloroplasts, referred as Low 

Molecular Weight DNA. These plasmid-like molecules were characterized as single-

stranded DNA with extensive repetitive sequences (La Claire et al., 1997). The 

plasmids were expressed, had poor sequence similarity to some chloroplast genes 

and appeared to be associated with the chloroplast pyrenoid (La Claire et al., 1997; 

La Claire et al., 1998; La Claire & Wang, 2000; La Claire & Wang, 2004). While circular 

and linear plasmids can naturally occur in the chloroplast of green algae in addition to 

the canonical chloroplast genome (Green, 1976; Mazza et al., 1980; Ebert et al., 1985; 

Turmel et al., 1986), a canonical circular chloroplast genome appears to be lost in 

Cladophorales. Whole Genome Shotgun sequencing of a chloroplast-enriched fraction 

showed that only plasmid-like molecules are present in the chloroplast of Boodlea 

composita, a representative of Cladophorales (Del Cortona et al., 2017), Chapter 4. 

These plasmid-like molecules are long palindromic single-stranded molecules, 1-7 kb 

long, that fold intramolecularly to form hairpins. 34 hairpins were assembled, coding 

for 22 chloroplast genes. The genes presented atypical features, such as high 

divergence from orthologous algal genes, an alternative genetic code and 

exceptionally high GC content. In addition to the plasmid-like molecules, the 

sequenced chloroplast DNA abounded with retrotransposons. Del Cortona et al. 

(2017) suggested that hairpins were generated by an ancient retrotransposon 

invasion, which first led to an expansion of an ancestral circular chloroplast genome, 

followed by its reduction and fragmentation in hairpin plasmids, next to a massive 

transfer of chloroplast genes to the nucleus. Intriguingly, the gene set retained in the 

fragmented chloroplast genome of Boodlea composita is similar to the gene set found 

in the reduced and fragmented chloroplast genome of peridinian dinoflagellates (Howe 

et al., 2008), suggesting a minimal set of required genes for a functional photosynthetic 

chloroplast. 

For the remaining orders of ulvophyceans, little information is available regarding the 

chloroplast genome structure and content. Chloroplast genes in the terrestrial order 

Trentepohliales are rather divergent in sequence compared to corresponding 

orthologous genes in other ulvophyceans. For this order, only sequences from seven 

chloroplast genes are available (Rindi et al., 2009; Fučíková et al., 2014). For the order 
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of Scotinosphaerales, only a small number of partial chloroplast genes are available, 

and no data is present on chloroplast genome structure (Škaloud et al., 2013). 

 

Phylotranscriptomics: a new and powerful tool to resolve 
difficult phylogenetic relationships 

The phylogenetic studies to date, whether they were based on single gene, or on 

chloroplast or nuclear multi-gene data, failed to reach an overall consensus on the 

phylogenetic relationships among the main clades of ulvophyceans and core 

chlorophytes. This indicates that much larger amounts of data will be needed to 

resolve phylogenetic relationships in these green algae. New tools, such as 

phylotranscriptomics, are rapidly developing and may help to shed light on these 

obscure relationships. 

The advent of Next Generation Sequencing (NGS) has lowered the resources and the 

investments needed to sequence DNA and RNA, resulting in an accumulation of 

publicly available sequence data (van Dijk et al., 2014; Muir et al., 2016). The ability 

to sequence massive amount of data for a reasonable price in a timely manner allowed 

the rise of initiatives and international consortia that aim to generate sequences for 

thousands of samples and/or species, such as 1,000 Plants project (1KP) (Matasci et 

al., 2014), 5,000 Insect Genomes (i5k) (i5k-Consortium, 2013), the vertebrates 

Genome 10K (Koepfli et al., 2015), the 1,000 fungal genome project 1KFG (Grigoriev 

et al., 2014), the Tara Oceans (Pesant et al., 2015), and the Marine Microbial 

Eukaryote Transcriptome Sequencing Project (MMETSP) (Keeling et al., 2014). 

Transcriptome sequencing provides a cheaper and faster alternative to genome 

sequencing, allowing an immediate overview of a wide array of expressed genes, 

without the burden of gene-prediction and other difficulties of de novo genome 

assembly and annotation. In fact, whole-genome sequencing projects often suffer from 

intrinsic obstacles: extracting high quality DNA may be complicated, repetitive 

elements and polymorphism associated with large diploid or polyploid eukaryotic 

genomes may fragment or prevent the assembly, large gene families may be 

collapsed into chimeric sequences, gene prediction itself may be difficult in absence 

of sequence data from close relative species (Baker, 2012; Schatz et al., 2012). In 



21 
 

addition, transcriptomes allow to overcome the sparse taxonomic sampling of whole-

genome projects (Keeling et al., 2014). Moreover, user-friendly platforms for the 

analysis of non-model species transcriptomes have been developed (Van Bel et al., 

2013). As a result, an increasing community of scientists is applying RNA-seq 

technology to investigate a wide variety of scientific hypotheses and to answer 

phylogenetic and evolutionary questions. 

Phylotranscriptomic analysis has proven to be a powerful tool to resolve ancient and 

difficult phylogenetic relationships, such as the early branching fungi and metazoans, 

Lepidoptera, Ostracoda, and Pancrustacea (Torruella et al., 2012; Oakley et al., 2013; 

Kawahara & Breinholt, 2014). In the Viridiplantae, a phylotranscriptomic approach has 

been applied to resolve phylogenetic relationships among its major lineages, mainly 

focussing on charophyte green algae and the origin and early diversification of land 

plants (Finet et al., 2010; Wodniok et al., 2011; Finet et al., 2012; Laurin-Lemay et al., 

2012; Timme et al., 2012; Wickett et al., 2014). Phylotranscriptomics can also help to 

trace the evolution of major innovations and the associated molecular features in a 

broad phylogenetic context, as shown by Janouškovec et al. (2017) in a study on 

dinoflagellates evolution. Analysis of a phylogeny inferred from 101 nuclear protein 

coding genes revealed the genetic underpinning of major molecular innovations, such 

as the coincidence of the origin of the theca and the radiation of cellulase 

(Janouškovec et al., 2017). Other examples of phylotranscriptomics as key tool to 

resolve the phylogeny and trace molecular innovations in non-model species are the 

studies of female sex organ evolution in pleurocarpous mosses (Johnson et al., 2016), 

independent gain and losses of flagella and chitin synthase in opisthokonts (Torruella 

et al., 2015), and parallel losses of complex multiphase life cycle in amoebae (Kang 

et al., 2017). 

Even though analysis and handling of large datasets is not trivial, a semi-automated 

in house phylotranscriptomics pipeline can be set up. Modular and customizable code 

for each step has been made publically available for the scientific community to use 

(Grant & Katz, 2014). The workflow of a phylotranscriptomics pipeline could be divided 

into three major steps: collection and generation of the sequences, orthologous groups 

identification and species tree inference (Figure 1.4). In order to address and resolve 

the outstanding phylogenetic questions, an adequate taxon sampling is necessary. 
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Figure 1.4: Phylotranscriptomic pipeline. 

Common workflow for phylotranscriptomics analyses reposting the steps necessary to 
infer a species tree starting from RNA-seq reads. 

 

Therefore, the first step of a phylotranscriptomics study is to retrieve genomic and 

transcriptomic data from publicly available repositories and to generate RNA-seq data 

for the species of interest that are still missing. Usually, it is possible to retrieve the 

nucleotide sequences and the corresponding amino acid translations for annotated 

genes in a published genome. For most publicly available transcriptomic studies, 

however, only the raw sequenced reads are disclosed. As a consequence, a quality 

control step is required on both retrieved and generated RNA-seq datasets: removal 

of sequencing adapter, trimming of reads and filtering based on quality scores 

(Andrews, 2010; Wysoker et al., 2013; Bolger et al., 2014). Trimmed high quality reads 

are then assembled into contigs, where each contig ideally corresponds to a 

transcribed gene (Grabherr et al., 2011). Transcripts with high sequence similarity are 
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clustered together, and usually only the longest one or the highest expressed isoform 

is retained as a representative for downstream analysis (Li & Godzik, 2006; 

Schvartzman et al., 2018). Given the fragmented nature of transcriptomic data and the 

noise deriving sequencing and assembling errors, predicting the Open Reading Frame 

(ORF) of each transcript is a challenging task. Frame correction of the transcripts 

based on orthologous sequences is recommended (Gouzy et al., 2009). Since simple 

ORF prediction based on presence of an in-frame start and a stop codon would 

generate misleading results, an orthology-guided approach is preferred (Van Bel et 

al., 2013). Unless the RNA-seq data were generated from axenic monocultures, a 

taxonomical profiling of the transcripts is necessary to eliminate sequences from 

contaminants. Each selected sequence should have an unique identifier which 

possibly reports as well a unique species-code to keep the traceability and simplify the 

interpretation of the results (Grant & Katz, 2014). 

In the second step, the collection of the selected coding sequences for all the species 

of interest are clustered together into Orthologous Groups (OGs). This is a crucial step 

since it is fundamental to distinguish between orthologs, inparalogs and outparalogs 

sequences in order to infer the correct phylogenetic relationships between species 

(Moreira & Philippe, 2000; Gabaldón, 2008). Despite all being genes descending from 

a common ancestor, they refer to distinct relationships: orthologs genes in the 

compared species derived from a single ancestral gene in the common ancestor; 

inparalogs genes result from species-specific duplications; while in outparalogs genes 

the duplication occurred before the speciation event (Koonin, 2005). 

For orthology inference, the selected sequences are compared to a set of pre-defined 

orthologous (Chen et al., 2006; Powell et al., 2014; Simão et al., 2015). Alternatively, 

de novo clustering of the sequences is obtained after all-against-all comparison and 

Markov graph-based clustering (Li et al., 2003; Emms & Kelly, 2015). These methods 

have high sensitivity but are prone to the inclusions of outparalogous in the OGs, 

therefore several approaches for phylogenetic-guided pruning of the paralogous have 

been implemented (Boussau et al., 2013; Kocot et al., 2013; Yang & Smith, 2014; 

Ballesteros & Hormiga, 2016). The sequences in each OG are then aligned and the 

alignment refined to trim poorly-align regions (Talavera & Castresana, 2007; Katoh & 

Standley, 2013). After sequence alignment, relevant OG are selected for the 



24 
 

downstream analysis, generally based on the number of species represented in the 

OG. 

In the third step, multiple phylogenetic analyses are performed on the curated 

sequence alignment for each selected OG to decipher their phylogenetic signal and 

build a resolved species tree. A plethora of strategies are usually adopted in order to 

solve outstanding phylogenetic questions. The analyses can be ran on the nucleotide 

and/or on the corresponding amino acid sequences. When resolving ancient 

relationships, the nucleotide analysis is often restricted to the first and second codon 

position due to possible high among-lineage variation of the GC content in the third 

codon position and saturation of the phylogenetic signal (Breinholt & Kawahara, 2013; 

Wickett et al., 2014), although other methods of site-stripping have been proposed to 

more selectively remove fast-evolving sites, e.g (Verbruggen & Theriot, 2008). 

Analyses can be performed with or without partitioning of the genes and codon 

positions into model parameters classes. Partitioned analyses better handle rate 

heterogeneity across genes and across fast-evolving positions within each gene 

(Lanfear et al., 2012). The alignments of the selected OGs can either be concatenated 

for supermatrix analyses (but see Philippe et al. 2017 and Shen et al. 2017) or each 

OG tree can be inferred independently in a coalescence-based analysis for co-

estimation of species and gene trees (Boussau et al., 2013; Mirarab et al., 2014). 

Despite different phylogenetic analyses not always converge to a unified answer, 

results are often largely consistent, as shown by the 52 distinct analyses performed to 

resolve the relationships between land plants (Wickett et al., 2014; Shen et al., 2017). 

 

Transcriptomics insights into development of siphonous 
ulvophyceans  

The first insights in the morphogenesis of siphonous ulvophyceans were gained even 

before the formalization of the “central dogma in molecular biology” (Crick, 1958), 

when the role of RNA in development was postulated but not unequivocally 

demonstrated (Caspersson & Schultz, 1939). In early graft experiments, the role of the 

macronucleus contained in the rhizoids in controlling the morphogenesis of grafted-

caps in different Acetabularia species was investigated (Hämmerling, 1953). 
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Hämmerling found that the macronucleus continuously creates an apical-basal 

gradient of “nucleus-dependent morphogenetic substances” that controls the 

development and determines the morphology of the cap. These substances were 

furthermore described as “products of gene action, which stand between the gene and 

character” (Hämmerling, 1953). 

More recently, the role of cytoskeleton organization and discrete transcripts 

distribution was molecularly characterized, confirming the hypothesis that messenger 

RNAs (mRNAs) are the “nucleus-dependent morphogenetic substances” described by 

Hämmerling and collaborators (Mine et al., 2008). Four distinct classes of Acetabularia 

mRNAs were identified based on their differential distribution. The first class of 

transcripts is uniformly distributed, the second and third class have an apical/basal or 

a basal/apical gradient matching the asymmetrical distribution of specific metabolic 

activities, and the last class has a developmental-specific pattern of localization 

(Serikawa et al., 2001; Vogel et al., 2002). Actin filaments of the cytoskeleton are 

involved in the transport and compartmentalization of the transcripts, since actin-1 

inhibitor cytochalasin D would disrupt these differential distribution (Menzel, 1994; 

Vogel et al., 2002; Mine et al., 2005). Interestingly, mRNAs and rRNAs are transported 

to the apex of Acetabularia at two different speeds, with mRNAs moving much faster 

than the rRNAs. Moreover, the number of ribosomes would not be sufficient to bind all 

mRNAs synthetized in the macronucleus. This observation suggests that in 

Acetabularia mRNAs are not transported as ribosome-mRNA complexes, but rather 

as an alternative form of messenger-ribonucleoprotein complexes (Kloppstech & 

Schweiger, 1975b; Kloppstech & Schweiger, 1975a). 

Similarly, the contribution of differential transcripts accumulation in the metabolic and 

morphological partitioning of the multinucleate siphonous algae of the Bryopsidales 

was demonstrated by transcriptomic analysis of Caulerpa taxifolia (Chisholm et al., 

1996; Coneva & Chitwood, 2015; Ranjan et al., 2015). Comparative transcriptomics 

between different subcellular structures of Caulerpa evidenced a strong apical-basal 

transcript distribution, with transcripts of genes responsible for different function 

accumulated in different subcellular locations. In the basal region of Caulerpa 

(holdfast, stolon, base) there is an enrichment for genes responsible for housekeeping 

functions and DNA replication, repair and expression. The apical region (apex, 
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pinnules, rachis) is instead enriched for genes responsible for RNA translation, protein 

metabolism and vesicle movements. Interestingly, there is a gradient of accumulation 

of small interfering RNAs toward the apical region of Caulerpa (Ranjan et al., 2015). 

Unlike in Acetabularia, the most probable mean of transcript transport in Caulerpa is 

cytoplasmic streaming, which is generated by bundles of cortical microtubules (Sabnis 

& Jacobs, 1967; Kuroa & Manabe, 1983). 

An interesting lesson that can be learnt from siphonous ulvophyceans is that transcript 

patterning is uncoupled from cellular patterning, and that the association between 

cytoskeleton and transcript patterning generates the protoplast morphology. These 

observations represent an intriguing parallelism to vascular plants, where morphology 

and cell fate are determined by positional clues and constrained by physical 

boundaries rather than determined by the cell germlines, like it happens in metazoans 

(Sulston et al., 1983; Hamant et al., 2008; Salazar-Ciudad, 2010). Certainly the 

symplastic connectivity between cells in vascular plants remembers the ulvophyceans 

siphonous organization. Independence of morphology determination from cell division 

was shown as well in tobacco and wheat, where irradiated seedlings would develop 

proper first leaf foliage even when cell division was hampered (Haber, 1962; Haber & 

Foard, 1963). These observations are in agreement with the independence of 

morphology from multicellularity, as described by the organismal-theory (Sharp, 1926; 

Kaplan & Hagemann, 1991). According to this theory, multicellularity is a consequence 

of the unified protoplast compartmentalization into discrete portions by the cell 

membranes/walls deposition, rather than the result of single cells aggregation and 

subsequent specialization, like proposed by the cell-theory (Kaplan & Hagemann, 

1991). Although being very controversial, a theoretical reconstruction of the geometric 

constrains regulating the development and morphology of the embryo was recently 

proposed for vertebrates as well, where the embryo geometry regulates patterns of 

gene expression and vice versa (Edelman et al., 2016).  

 

Outstanding questions 

The path to solve the intriguing mysteries of ulvophyceans is disseminated with 

opportunities and challenges. Due to the scarce availability of green algal nuclear 

genome sequences compared to land plants, difficult and ancient relationships within 
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Viridiplantae have been resolved through sequencing of chloroplast genomes of 

relevant clades and phylogenomics analysis of their genes (Lemieux et al., 2014b; 

Lemieux et al., 2014a; Lemieux et al., 2015; Turmel et al., 2015; Leliaert et al., 2016; 

Turmel et al., 2016a; Fang et al., 2018). However, as discussed previously, 

ulvophyceans are poorly represented in these studies, and nuclear and chloroplast 

data fail to converge to the same topology. Even ulvophyceans monophyly is under 

debate, and a polyphyletic Ulvophyceae would scramble the current interpretation of 

cyto-morphological evolution in this group. While the amount of available sequence 

data is indeed growing at a rapid rate, their interpretation and analysis in non-model 

organisms is not as easy and straightforward as in model organisms, where genetic 

and molecular basis are available. 

Despite being a very promising approach to solve outstanding problems regarding 

phylogeny and molecular evolution, phylotranscriptomics analyses have intrinsic 

challenges. It is inherently difficult to avoid systematic data errors using high-

throughput sequencing technologies during the construction and automated analysis 

of phylogenomics supermatrices (Philippe et al., 2017). In addition to that, a handful 

of genes drive uncertainties in phylogenomic studies. This implies careful analysis, 

moreover, it was suggested to label as unresolved those phylogenetic relationships 

that are determined by a handful of positions or genes (Shen et al., 2017). 

Furthermore, while phylogenomics and phylotranscriptomics can capture innovations 

in gene content, they fail to account for innovations arising from gene regulatory 

complexes and from epigenetic mechanisms (Sebé-Pedrós et al., 2016).  

Despite all the challenges and the fact that that RNA-seq data available is currently 

sparse in the core Chlorophyta, and ulvophyceans in particular (Xu et al., 2012; Zhang 

et al., 2012; Li et al., 2014; Ranjan et al., 2015; Del Cortona et al., 2017), a 

phylotranscriptomic approach will likely prove useful to resolve the phylogenetic 

relationships of ulvophyceans, the evolution of their complex morphologies and of the 

make-over of their translational apparatus. Comparative transcriptomic data will also 

provide clues toward the genetic underpinning of mechanisms of nuclear and cell 

division, cell differentiation, polarity and growth, delimitation of nuclear-cytoplasmic 

domains in Cladophorales, and cytoplasmic streaming in siphonous ulvophyceans. In 

order to solve these outstanding questions, RNA-seq data from representatives of 
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ulvophyceans major lineages and of each cyto-morphological type should be 

generated. Apart from representatives from the main clades of ulvophyceans (Ulvales, 

Ulotrichales, Trentepohliales, Bryopsidales, Dasycladales and Cladophorales), crucial 

taxa to be analysed include Oltmannsiellopsidales, Scotinosphaerales and Ignatiales, 

as these taxa represent uninucleate unicellular and colonial organisms that probably 

diverged early from the rest of the ulvophyceans before any changes in the 

translational apparatus and before the evolution of complex morphologies (Pombert 

et al., 2006b; Cocquyt et al., 2010a; Škaloud et al., 2013). Additional species expected 

to provide useful information on the evolution of ulvophyceans complex morphologies 

are representatives of the genus Ostreobium, which is the earliest diverging lineage 

of Bryopsidales (Verbruggen et al., 2009; Verbruggen et al., 2017) and Blastophysa 

rhizopus, an endophytic algae that appears to be cytologically related to the 

Cladophorales (Sears, 1967; Chappell et al., 1991; Cocquyt et al., 2010b). As a 

fundamental support for a phylotranscriptomic analysis of ulvophyceans, Ulva 

mutabilis genome, a rising model system to study morphogenesis, was sequenced 

(De Clerck et al., 2018).  

 

Objectives and outline of this thesis 

Two major hypothesis have been addressed in this investigation: 

1. Did green seaweeds have a single origin, with macroscopic growth evolving 

from simpler organisms to more complex cytological organisations? 

2. Has the chloroplast genome of Cladophorales been completely transferred to 

the nucleus? 

The first hypothesis of this thesis implies resolving the phylogenetic relationships 

among the main lineages of the core Chlorophyta, with special care for the 

phylogenetic placement of the Ulvophyceae and relationships within this class. In 

addition, the dynamics and the timing of green seaweeds diversification need to be 

elucidated. In order to achieve this goal, we combined deep genome and 

transcriptome sequencing with publicly available datasets to obtain a balanced and 

representative taxon sampling of the major clades of Chlorophyta. By using a careful 
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selection of the markers, complementary phylogenetic analyses, models of evolution, 

and partition strategies we hope to obtain a resolved phylogeny of green algae, and 

green seaweeds in particular. 

The second hypothesis involves sheding light on the chloroplast genome architecture 

of Cladophorales, which has remained a mystery up till now. Chloroplast isolation 

coupled with DNA and RNA sequencing with innovative technologies will provide an 

exhaustive overview of chloroplast and nuclear encoded genes, and of the genome 

architecture. Furthermore, the abundant LMW (plasmid-like) fraction in the 

chloroplasts will be sequenced as well, to provide a profile of these pervasive 

molecules that characterize Cladophorales green seaweeds. 

Because just like any other technique, phylotranscriptomics comes with its own 

potential problems, Chapter 2 provides a critical overview of transcriptome assembly 

and annotation in the absence of a reference genome. Different approaches to 

evaluate transcripts and gene space completeness were tested. Moreover, potential 

pitfalls, such as the impact of partial and missing data on gene family inference and 

gene family sizes estimation are assessed and discussed. 

In Chapter 3, a green algal phylogenetic reconstruction based on 539 nuclear markers 

mined from genomes and transcriptomes of 55 species is inferred to unravel the 

evolutionary history of the Chlorophyta, and green seaweeds in particular. The 

topologies inferred with complementary phylogenetic analyses are evaluated with 

rigorous statistical testing to present a robust and highly supported phylogenetic 

reconstruction. 

In Chapter 4, the deviant chloroplast genome of Cladophorales is presented. DNA 

and RNA libraries from 10 Cladophorales species are analysed to describe the nature 

of this highly aberrant organellar genome. 

In the general discussion (Chapter 5), I interpret and describe the significance of the 

phylogenetic analyses in light of what was already known about the biology and 

evolution of the core Chlorophyta, and expand on aspects of chloroplast genome 

evolution in green algae. Finally, I discuss future research avenues. 
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Chapter 2 - A pipeline for gene family inference in green 
algal transcriptomes 

Andrea Del Cortona, François Bucchini and Klaas Vandepoele3 

 

 

 

 

“Produci, consuma, crepa 

Produci, consuma, crepa 

Produci, consuma, crepa 

Sbattiti, fatti, crepa 

Sbattiti, fatti, crepa 

Sbattiti, fatti, crepa 

Cotonati i capelli, riempiti di borchie, rompiti le palle, rasati i capelli 

Crepa, crepa, crepa” 

CCCP - Morire 

 

                                                             
3 Authors contribution: A.D.C., K.V.: study design; A.D.C.: data analysis; F.B.: TRAPID plugin and PLAZA4.0 build; 
A.D.C.: manuscript conceptualization, drafting and writing. 
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Abstract 

In this work we build a semi-automated pipeline for filtering and annotating de novo 

assembled transcriptomic data, using algal datasets as a test case. We further 

evaluated the relationships between depth of sequencing and transcriptome 

completeness and also assessed the impact of different partial (transcriptomic) data in 

the inference of gene families by state-of-the-art phylogenomic pipelines. Since gene 

family inference was robust and did not suffer from partial transcriptomic data, 

phylotranscriptomics downstream analyses are expected to be reliable. However, de 

novo assembled transcriptomes seemed to overestimate the size of inferred gene 

families, suggesting that precautions should be taken before using transcriptomic data 

in gene family expansion, gain or loss analyses. Our pipeline had been created for 

green algal transcriptomic data (e.g.: green algal genomes were used to populate 

reference databases; green algae alternative nuclear genetic code and chloroplast 

translation tables were taken into account), but it can easily be adapted for analyses 

of other lineages. This pipeline represents a contribution to a wider, more general 

purpose: a flexible and user-friendly workflow to address transcriptomic data, 

annotation and downstream analyses in the absence of reference genomes. Such tool 

is fundamental to make phylotranscriptomic analyses accessible to those researchers 

who lack bioinformatics knowledge or access to large computing infrastructures. 
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Introduction 

To date, the available green algal genome sequences suffer from sparse taxon 

sampling, and many major lineages of core Chlorophyta are not represented at all. A 

remarkable example is the absence of publicly available genome sequences for 

ulvophyceans, except for the recent publication of Ulva mutabilis genome (De Clerck 

et al., 2018). The clades for which genomic sequences are available often center on 

economically relevant species, e.g. production of biofuel and second metabolites by 

Chlorellales and Trebouxiophyceae (Blanc et al., 2012; Nelson et al., 2017; Roth et al., 

2017), or on specific molecular features, e.g. dynamics of genome reduction in 

prasinophytes (Derelle et al., 2006; Palenik et al., 2007; Worden et al., 2009) and 

evolution of multicellularity in volvocine green algae (Chlorophyceae) (Merchant et al., 

2007; Prochnik et al., 2010; Hanschen et al., 2016; Featherston et al., 2018). This 

selectivity is not optimal for broad phylogenomic and comparative analyses. Extensive 

and taxon-rich transcriptome sequencing initiatives, such as the MMESTP and the 1-

KP projects (Keeling et al., 2014; Matasci et al., 2014), populated more neglected 

clades with transcriptomes, however a rigorous estimate of transcriptome 

completeness for many sequenced species is missing. Moreover, green seaweeds 

display a huge range of genome sizes, from 25 Mbp up to more than 2 Gbp (Kapraun, 

2007). 

To explore an organism’s  gene space, genome sequencing is not always the most 

obvious choice, despite being inclusive, due to intrinsic challenges (e.g. availability of 

high-quality high-molecular weight DNA and haploid cells, the amount of repetitive 

elements and sequence duplication) and species-specific variability in genome size 

and complexity (Schatz et al., 2012). Transcriptome sequencing provides a faster and 

cheaper alternative to genome sequencing, but is only able to capture a portion of the 

total gene space of an organism. Additional challenges are inherent to de novo 

assembly and annotation of transcriptomes, when a reference genome is not available. 

The initial RNA purified from cells or tissues is a mixture of RNA species with variable 

stoichiometry: i.e. mature and immature messenger RNAs, ribosomal RNAs, non-

coding RNAs and residual genomic DNA contaminants. The experimental design, the 

selection and enrichment methods for specific RNA species therefore have a 

considerable impact on the relative abundance of RNA species. This variability 
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influences the quality and homogeneity of downstream analysis when the RNA-seq 

libraries are retrieved from different sources. The ideal scenario would require 

consistency across all samples for all these parameters (Griffith et al., 2015). 

Another layer of complexity is given by currently applied sequencing technologies, 

which rely either on short Next-generation Sequencing (NGS) reads or on long, noisy 

Single Molecules Real-Time (SMRT) reads. Despite the rise on SMRT sequencing 

technologies for transcriptome sequencing, their relative low output in sequenced 

basepairs compared to NGS sequencing and the higher error rates restrict the use of 

SMRT to specific studies: e.g. discovery of novel isoforms, alternative splicing and 

polyadenylations, long non-coding RNAs, and gene fusion (Wang et al., 2016; Liu et 

al., 2017; An et al., 2018). On the other hand, NGS technologies suffer from their 

inherently short reads, which makes de novo assembly of transcriptomes in the 

absence of a reference genome a non-trivial task. NGS assemblers face multiple 

challenges: uneven coverage across the transcriptome and even across transcripts 

due to alternative isoforms, differential levels of expression and sample heterogeneity 

(Grabherr et al., 2011; Schulz et al., 2012; Steijger et al., 2013). Additional noise in the 

dataset arises from sequencing errors. 

De novo transcriptome assemblies generally result in a higher number of contigs 

(reconstructed transcripts) than the actual number of genes coded by the genome 

(Zhao et al., 2011). The redundancy is caused by the presence of allelic and splice 

variants, and partial assembly or misassembly of sequences due to sequencing and 

assembly errors. Depending on the quality of the starting RNA, library prep, depth of 

sequencing and read length, a considerable amount of assembled transcripts covers 

only fractions of a gene (Wall et al., 2009). Moreover, a de novo assembled 

transcriptome usually does not cover the whole gene space of an organism, due to 

differential gene expression in different tissues at different time points and life stages. 

It is therefore important to have reliable metrics to evaluate the completeness of a 

transcriptome: i.e. the percentage of gene space represented in the transcriptome and 

the corresponding gene completeness coverage. 

In this work, we build an efficient, semi-automated de novo assembly, annotation and 

gene family inference pipeline for transcriptomes, able to tackle most of the 

shortcomings and challenges inherent to transcriptomic analyses in the absence of a 
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reference genome. In building our pipeline, we considered several features to be 

fundamental for assessing the reliability of comparative and phylogenetic studies 

based on de novo assembled transcriptomes: the ability to discriminate between bona 

fide green algal sequences and contaminants in transcriptomes from uncultured 

organisms and environmental samples; the ability to detect and correct frameshift 

errors in transcriptomes generated by different sequencing technologies; the ability to 

assess the transcriptome completeness. In addition, we evaluated the relationships 

between depth of sequencing, coverage of the assembled transcripts, transcriptome 

completeness and number of gene families identified and the impact of transcriptomic 

data on state-of-the-art genome-based methods for gene family inference. 
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Results 

Based on a dataset of genomes or transcriptomes of 55 species (15 reference 

genomes and 40 de novo assembled transcriptomes for which a reference genome 

was not available), representing the major clades of the green lineage. All orders of 

the Ulvophyceae were included (Bryopsidales, Cladophorales, Dasycladales, 

Ignatiales Oltmannsiellopsidales, Scotinosphaerales Trentepohliales, Ulotrichales and 

Ulvales, Table 2.1). Below we describe and evaluate a series of critical steps of the 

transcriptomic pipeline, namely: 

 Taxonomic binning. The transcriptomes assembly metrics and taxonomic 

distribution of transcripts were described. 

 Frameshift correction. The detection and correction of potential frameshift 

transcripts was described. 

 Gene space completeness evaluation. The performances of BUSCO, coreGF 

and eggNOG-mapper in assessing gene space completeness of transcriptomes 

was evaluated. 

 Depth of sequencing: transcriptome completeness and gene family size 

correlation. The relationship between depth of sequencing, gene space 

completeness and gene family size was evaluated. 

 Effect of partial data on Orthology inference. The effect of using transcriptomic 

data in genomic-pipelines for orthology inference was evaluated. 

 

Transcriptomes assembly metrics and taxonomic binning 

The assembly metrics for the 40 transcriptomes (see Table 2.1) are reported in Table 

2.2. Since the corresponding raw reads were not availble at the time of the study, 

Acrosiphonia sp., Blastophysa rhizopus and Caulerpa taxifolia transcriptome 

assemblies were retrieved from the respective online repositories (Table 2.1). The 

remaining RNA-seq libraries were assembled in house. RNA-seq data generated with 

454 technology (Botryococcus braunii, Chlorokybus atmophyticus and Ulva linza) were  
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Table 2.1: Datasets used in this study. 
In green, ulvophyte transcriptomes; in yellow, other green algal transcriptomes; in orange, publicly available genomes. 

species Class or Order publication Mitochondrial 
genome 

Chloroplast 
genome 

source 

Caulerpa taxifolia Bryopsidales (Ranjan et al., 2015) N/A N/A SRP041084 

Codium fragile# Bryopsidales N/A N/A N/A TBA 

Halimeda discoidea# Bryopsidales N/A N/A N/A TBA 

Ostreobium quekettii# Bryopsidales N/A N/A NC_030629.1 TBA 

Blastophysa rhizopus Chaetosiphonales (Matasci et al., 2014) N/A N/A OneKP 

Tetraselmis astigmatica Chlorodendrophyceae (Keeling et al., 2014) N/A N/A MMTESP0804 

Tetraselmis striata Chlorodendrophyceae (Keeling et al., 2014) N/A N/A MMETSP0817 

Acutodesmus acuminatus SAG 38.81 Chlorophyceae N/A N/A N/A SRR1174737 

Chlamydomonas reinhardtii Chlorophyceae (Merchant et al., 2007) NC_001638.1 NC_005353.1 JGI4.0 

Dunaliella tertiolecta Chlorophyceae (Keeling et al., 2014) N/A N/A MMTESP1127 

Gonium pectorale Chlorophyceae (Hanschen et al., 2016) AP012493.1 NC_020438.1 NCBI 

Haematococcus pluvialis Chlorophyceae (Gao et al., 2015) N/A N/A SRR2148810 

Volvox carteri Chlorophyceae (Prochnik et al., 2010) N/A N/A JGI1.0 

Auxenochlorella protothecoides Chlorellales (Gao et al., 2014) NC_026009.1 KC843975.1 KEGG 

Chlorella sp NC64A Chlorellales (Blanc et al., 2010) NC_025413.1 KJ718922.1 JGI1.0 

Picochlorum oklahomensis Chlorellales (Keeling et al., 2014) N/A N/A MMETSP1330 

Boodlea composita Cladophorales (Del Cortona et al., 2017) MG257829 - 
MG257880 

MG257795 - 
MG257828 

SRR5500908 

Cladophora glomerata Cladophorales (Matasci et al., 2014) N/A N/A OneKP 

Acetabularia acetabulum# Dasycladales N/A N/A N/A TBA 

Ignatius tetrasporus Ignatiales (Matasci et al., 2014) N/A NC_034712.1 OneKP 

Oltmannsiellopsis unicellularis§ Oltmannsiellopsidales N/A N/A N/A TBA 

Oltmannsiellopsis viridis# Oltmannsiellopsidales N/A NC_008256.1 NC_008099.1 TBA 

Marsupiomonas sp. # Pedinophyceae N/A N/A KM462870.1 TBA 

Pedinomonas minor# Pedinophyceae N/A NC_000892.1 NC_016733.1 TBA 

Unknown pedinophyte YPF701# Pedinophyceae N/A N/A N/A TBA 
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Bathycoccus prasinos prasinophytes (Moreau et al., 2012) FO082258 FO082259.2 ORCAE 

Micromonas pusilla prasinophytes (Worden et al., 2009) FJ858268 FJ858269 JGI2.0 

Nephroselmis pyriformis prasinophytes (Keeling et al., 2014) N/A N/A MMETSP0034 

Ostreococcus tauri prasinophytes (Palenik et al., 2007) CR954200 CR954199 ORCAE 

Picocystis salinarum prasinophytes (Keeling et al., 2014) N/A NC_024828.1 MMETSP0807 

Scotinosphaera lemnae# Scotinosphaerales N/A N/A N/A TBA 

Asterochloris sp. Cgr/DA1pho Trebouxiophyceae N/A N/A N/A JGI2.0 

Botryococcus braunii Trebouxiophyceae N/A NC_027722.1 NC_025545.1  SRR069634 

Coccomyxa subellipsoidea Trebouxiophyceae (Blanc et al., 2012) NC_015316.1 NC_015084.1 JGI1.0 

Pseudochlorella pringsheimii Trebouxiophyceae (Zhang et al., 2014) N/A N/A SRR490104 

Trebouxia gelatinosa Trebouxiophyceae (Carniel et al., 2016) N/A N/A SRR988248 

Cephaleuros parasiticus§ Trentepohliales N/A N/A N/A TBA 

Trentepohlia annulata§ Trentepohliales N/A N/A N/A TBA 

Trentepohlia jolithus Trentepohliales (Li et al., 2014) N/A N/A SRR1044982 

Acrosiphonia sp. SAG-127.80 Ulotrichales (Matasci et al., 2014) N/A N/A OneKP 

Phaeophila dendroides§ Ulvales N/A N/A N/A TBA 

Ulva linza Ulvales (Zhang et al., 2012) NC_029701.1 NC_030312.1 SRR504341 

Ulva mutabilis Ulvales (De Clerck et al., 2018) N/A N/A ORCAE 

Chara vulgaris Charophyceae (Matasci et al., 2014) NC_005255.1 NC_008097.1 ERR364366 

Chlorokybus atmophyticus Chlorokybophyceae (Timme et al., 2012) NC_009630.1 NC_008822.1 SRR064329 

Chaetosphaeridium globosum Coleochaetophyceae N/A AF494279.1 NC_004115.1 ERR364369 

Coleochaete orbicularis Coleochaetophyceae (Ju et al., 2015) N/A N/A SRR1594679 

Arabidopsis thaliana Embryophytes (The Arabidopsis Genome 
Initiative, 2000) 

Y08501 AP000423 TAIR10 

Oryza sativa Embryophytes (International Rice Genome 
Sequencing Project, 2005) 

DQ167400 X15901 TIGR6.1 

Physcomitrella patens Embryophytes (Rensing et al., 2008) AB251495 AP005672 JGI1.1 

Selaginella moellendorfii Embryophytes (Banks et al., 2011) JF338143.1-
JF338147.1 

HM173080.1 JGI1.0 

Klebsormidium flaccidum Klebsormidiophyceae (Ju et al., 2015) KP165386.1 NC_024167.1 SRR1594644 
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Mesostigma viride Mesostigmatophyceae (Ju et al., 2015) NC_008240.1 NC_002186.1 SRR1594255 

Mesotaenium endlicherianum Zygnematophyceae N/A N/A NC_024169.1 ERR364377 

Roya obtusa Zygnematophyceae N/A NC_022863.1 NC_030315.1 ERR364380 
#: dataset generated in this study 
§: dataset available at (https://dx.doi.org/10.6084/m9.figshare.1604778) 
JGI: datasets available at the DOE Joint Genome Institute (https://genome.jgi.doe.gov/portal/) 
KEGG: datasets available at the Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg/genome.html) 
MMETSP: datasets available at the Short Read Archive (https://www.ncbi.nlm.nih.gov/sra/) 
NCBI: dataset available at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) 
OneKP: datasets available at (http://www.onekp.com/public_read_data.html) 
ORCAE: datasets available at Ghent University (http://bioinformatics.psb.ugent.be/orcae/) 
SRP, SRR, ERR: datasets available at the Short Read Archive (https://www.ncbi.nlm.nih.gov/sra/) 
TAIR: dataset available at The Arabidopsis Information Resource (https://www.arabidopsis.org/) 
TBA: To be announced, datasets not released yet 
TIGR: dataset available at the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/) 
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assembled with CLC Genomic Workbench. The remaining raw reads were assembled 

with Trinity after filtering and trimming of low quality reads.  

The number of transcripts ranged from 11,627 to 258,663 per library, with an N50 

length value between 491 and 3,212 bp. All the assemblies were then clustered with 

CD-HIT-EST with a similarity cut-off of 97.5%. This resulted in a decrease in transcript 

number between 0.3 and 36.4%. The percentage of transcripts identified as eukaryotic 

after a sequence similarity search against the NCBI non-redundant protein database 

ranged from 18.2 to 75.2%. Such wide variation could be ascribed to a higher amount 

of genuine bacterial contaminants, the presence of non-coding RNA or lineage-specific 

and recently evolved genes with no sequence similarity to known proteins. The number 

of transcripts in the eukaryotic fraction ranged from 6,709 to 67,617, with a N50 length 

value ranging from 711 bp to 4,066 bp (Table 2.2).  

Additional insights on the putative taxonomic distribution of the eukaryotic transcripts 

and on putative species-specific or potentially contaminating sequences in the 

transcriptomes comes from the GhostKOALA output. GhostKOALA performes 

similarity searches (BLASTp) between input translated CDS and an expanded KEGG 

GENES database that includes a non-redundant set of proteins from fully sequenced 

genomes and their corresponding KO terms and taxonomic affiliation. For comparison, 

we analyzed the protein coding fraction of the genomes (CDS) in Table 2.1 in a similar 

way. In addition to “Plants” sequences (i.e.: sequences assigned to Viridiplantae as 

taxonomic group, hereafter referred to as “green transcripts”), all the transcripts also 

had a variable fraction of sequences classified as “Animals”, “Protists”, “Fungi” and 

“Bacteria”, which could represent bona fide contaminants (Figure 2.1). For some 

Ulvophyceae species, for example Boodlea composita and the two Oltmannsiellopsis 

species, less than 50% of the sequences were classified as “Plants”. Interestingly, also 

sequences from well-characterized genomes (e.g.: Oryza sativa) were not classified 

as “Plants”. 
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Table 2.2: Summary of the de novo transcriptome assembly metrics. 

 before CD-HIT after CD-HIT euk fraction 

Species # contigs N50 (bp) # contigs N50 (bp) #contigs N50 (bp) % euk 

Acetabularia acetabulum 258,663 759 172,881 766 33,527 1,534 19.4 

Acrosiphonia sp. 41,150 1,745 41,009 1,729 14,910 2,225 36.4 

Blastophysa cf. rhizopus 83,017 989 82,410 968 15,021 1,767 18.2 

Boodlea composita 91,362 1,198 88,503 1,136 23,350 1,703 26.4 

Botryococcus braunii 34,959 1,037 33,512 1,055 12,604 1,385 37.6 

Caulerpa taxifolia 57,118 813 57,118 813 28,221 1,162 49.4 

Cephaleuros parasiticus 63,443 1,695 55,326 1,567 13,987 2,172 25.3 

Chaetosphaeridium globosum 38,126 628 26,456 586 11,770 811 44.5 

Chara vulgaris 46,674 491 34,824 478 12,067 711 34.7 

Chlorokybus atmophyticus 12,689 1,079 12,519 1,083 8,387 1,176 67.0 

Cladophora glomerata 59,069 802 57,226 802 14,592 1,363 25.5 

Codium fragile 75,407 1,066 60,707 1,090 30,111 1,387 49.6 

Coleochaete orbicularis 207,738 1,708 146,497 1,600 45,236 2,328 30.9 

Dunaliella tertiolectica 32,282 1,703 30,179 1,688 12,922 2,104 42.8 

Haematococcus pluvialis 11,787 1,788 11,370 1,795 6,709 2,026 59.0 

Halimeda discoidea 39,964 1,054 34,097 1,095 15,863 1,411 46.5 

Ignatius tetrasporus 59,183 994 58,122 994 20,516 1,518 35.3 

Klebsormidium flaccidum 113,738 2,098 74,342 2,146 44,330 2,380 59.6 

Marsupiomonas sp. 50,280 1,333 35,846 1,469 17,957 1,773 50.1 

Mesostigma viride 165,488 1,541 111,045 1,559 36,397 2,153 32.8 

Mesotaenium endlicherianum 87,410 1,015 60,117 967 29,363 1,288 48.8 

Nephroselmis pyriformis 73,008 1,310 65,605 1,271 31,044 1,535 47.3 

Oltmannsiellopsis unicellularis 79,253 1,258 73,250 1,205 25,933 1,811 35.4 

Oltmannsiellopsis viridis 129,713 1,415 102,283 1,345 40,053 1,931 39.2 

Ostreobium quekettii 138,329 1,810 111,934 1,861 42,293 2,399 37.8 

Pedinomonas minor 34,242 3,212 21,795 3,437 11,922 4,066 54.7 

Phaeophila dendroides 135,530 1,785 127,650 1,706 45,339 2,371 35.5 

Picochlorum oklahomensis 16,181 1,521 15,258 1,491 10,110 1,733 66.3 

Picocystis salinarum 11,627 3,043 9,795 2,891 7,370 3,002 75.2 

Pseudochlorella pringsheimii 35,760 751 31,608 669 17,468 829 55.3 

Roya obtusa 55,929 950 35,927 935 19,889 1,148 55.4 

Scenedesmus acuminatus 132,816 1,117 85,597 1,070 29,820 1,559 34.8 

Scotinosphaera lemnae 171,583 1,733 127,230 1,603 31,153 2,328 24.5 

Tetraselmis astigmatica 40,880 1,740 38,509 1,729 17,542 2,037 45.6 

Tetraselmis striata 45,641 1,073 42,621 1,066 19,350 1,345 45.4 

Trebouxia gelatinosa 112,450 2,343 73,026 2,396 35,354 2,875 48.4 

Trentepohlia annulata 76,660 1,933 71,010 1,825 13,734 2,653 19.3 

Trentepohlia jolithus 257,442 702 196,877 555 67,617 952 34.3 

Ulva linza 15,866 1,124 15,253 1,140 8,298 1,342 54.4 

Pedinophytes (YPF 701) 47,459 1,927 31,648 2,163 16,418 2,572 51.9 

before CD-HIT: transcriptome metrics before sequence clustering with CD-HIT EST 
after CD-HIT: transcriptome metrics after sequence clustering with CD-HIT EST 
euk fraction: metrics of the eukaryotic fraction 
% euk: percentage of transcripts (after CD-HIT) identified as eukaryotic 
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Figure 2.1: Taxonomic binning as assigned by GhostKOALA.  

Pie charts report the proportion of the taxonomic bin assigned to protein-coding genes in the genomes and eukaryotic transcriptome 
assemblies.  
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Figure 2.2: Percentage of putative frameshift transcripts and success of 
frameshift correction by FrameDP. 

“Before correction” refers to the percentage of putative frameshift transcripts before 
the correction step, while “after correction” refers to the percentage of putative 
frameshift transcripts after the correction step. Black dots indicate outlier values. 

 

Frameshift correction 

We processed the 40 transcriptomes (Table 2.1) with the TRAPID pipeline to identify 

potential frameshift errors (hereafter: frameshift transcripts). Frameshift transcripts 

were corrected with FrameDP and the rate of success of the frameshift correction step 

was estimated with a subsequent TRAPID run. Depending on the sequencing 

technology (Table 2.3), the percentage of putative frameshift transcripts ranged from 

0.3 to 18.8%, with a mean value of 4.8% (Figure 2.2).  The frameshift correction step 

had a considerable rate of success (mean value 42.8%), measured as the percentage 

of the number of frameshift transcripts corrected divided by the number of initial 

frameshift transcripts. Surprisingly, FrameDP run did not result in any frameshift 

correction of the 8.9% putative frameshift transcripts of Trentepohlia annulata.  

Gene space completeness evaluation 

Gene space completeness was evaluated for the eukaryotic fraction of the 

transcriptome assemblies with three complementary strategies: coreGF, BUSCO and 

eggNOG-mapper. 

The coreGF score for most of the transcriptomes analyzed was close to 1 (all the core 

conserved gene families identified), with the exception of the Chara vulgaris and 

Haematococcus pluvialis transcriptomes, which had a lower value (coreGF score0.75). 
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Table 2.3: sequencing technology and read depth of sequencing for each transcriptome analysis in 
this study. 
species Sequencing technology depth of sequencing 

Acetabularia acetabulum Illumina NextSeq 500 103M 2x150 bp PE 

Acrosiphonia sp. SAG-127.80 N/A N/A 

Acutodesmus acuminatus SAG 38.81 Illumina HiSeq 2000 21M 2x101 bp PE 

Blastophysa rhizopus N/A N/A 

Boodlea composita Illumina NextSeq 32M 2x75 bp PE 

Botryococcus braunii 454 GS FLX 1.2M 

Caulerpa taxifolia Illumina HiSeq 2000 178M 2x95 bp PE 

Cephaleuros parasiticus Illumina HiSeq 1000 47M 2x100 bp PE 

Chaetosphaeridium globosum Illumina Genome Analyzer II 8M 2x75 bp PE 

Chara vulgaris Illumina Genome Analyzer II 8M 2x75 bp PE 

Chlorokybus atmophyticus 454 GS FLX Titanium 444k 

Cladophora glomerata Illumina HiSeq 2000 12M 2x90 bp PE 

Codium fragile Illumina NextSeq 11M 2x150 bp PE 

Coleochaete orbicularis Illumina HiSeq 1000 44M 2x100 bp PE 

Dunaliella tertiolecta Illumina HiSeq 2000 32M 2x50 bp PE 

Haematococcus pluvialis Illumina HiSeq 2500 12M 2x100 bp PE 

Halimeda discoidea Illumina NextSeq 7M 2x150 bp PE 

Ignatius tetrasporus Illumina HiSeq 2000 11M 2x90 bp PE 

Klebsormidium flaccidum Illumina HiSeq 1000 50M 2x100 bp PE 

Marsupiomonas sp. Illumina NextSeq 19M 2x150 bp PE 

Mesostigma viride Illumina HiSeq 1000 47M 2x100 bp PE 

Mesotaenium endlicherianum Illumina HiSeq 2000 13M 2x90 bp PE 

Nephroselmis pyriformis Illumina HiSeq 2000 23M 2x100 bp PE 

Oltmannsiellopsis unicellularis Illumina HiSeq 1000 34M 2x100 bp PE 

Oltmannsiellopsis viridis Illumina NextSeq 26M 2x150 bp PE 

Ostreobium quekettii Illumina NextSeq 24M 2x150 bp PE 

Pedinomonas minor Illumina NextSeq 20M 2x150 bp PE 

Phaeophila dendroides Illumina HiSeq 1000 60M 2x100 bp PE 

Picochlorum oklahomensis Illumina HiSeq 2500 22M 2x50 bp PE 

Picocystis salinarum Illumina HiSeq 2000 16M 2x100 bp PE 

Pseudochlorella pringsheimii Illumina Genome Analyzer IIx 35M 40bp SE 

Roya obtusa Illumina HiSeq 2000 13M 2x90 bp PE 

Scotinosphaera lemnae Illumina NextSeq 500 39M 2x150 bp PE 

Tetraselmis astigmatica Illumina HiSeq 2500 29M 2x50 bp PE 

Tetraselmis striata Illumina HiSeq 2000 20M 2x50 bp PE 

Trebouxia gelatinosa Illumina HiSeq 2000 20M 2x100 bp PE 

Trentepohlia annulata Illumina HiSeq 1000 40M 2x100 bp PE 

Trentepohlia jolithus Illumina HiSeq 2000 26M 2x90 bp PE 

Ulva linza 454 GS FLX 251k 

Unknown pedinophyte YPF701 Illumina NextSeq 18M 2x150 bp PE 
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Additional information on the quality of the transcriptome, measured as an estimate of 

completeness and fragmentation, comes from the percentage of reference genes 

covered by 50% or 90% of their length by the assembled transcripts (Figure 2.3). While 

it was possible to identify most of the coreGFs in most of the transcriptomes, those 

with a score of coreGF close to 1 could have a low coverage score (e.g.: Caulerpa 

taxifolia, Trentepohlia jolithus), indicating a partial assembly of the transcripts. For most 

of the transcriptomes analyzed in this study, at least half of the transcripts covered 

50% of the reference gene or more. Furthermore, at least 25% of the transcripts 

covered 90% of the reference gene (representing a fraction of quasi full-length to full-

length transcripts), and represent a promising initial pool of full-length transcripts for 

downstream phylogenetic analyses. These results were comparable to those from a 

similar analysis on green transcripts (Figure 2.3). 

To avoid a bias toward the number BUSCO genes identified as fragmented, the 

eukaryotic transcripts were frameshift-corrected before the BUSCO analysis. In total, 

between 52.8% and 98.3% of eukaryotic BUSCO were identified in the transcriptomes, 

either as complete, duplicated or fragmented (Figure 2.4). Despite the high variability 

among the BUSCO results, for most of the transcripts 80-90% BUSCO were identified, 

indicating a good representation of the conserved core genes in the transcriptomes of 

our dataset. 

The third strategy to assess the gene space completeness of the transcriptomes was 

based on eggNOG-mapper against three distinct non-supervised orthologous groups 

(NOG) clusters subsets: Chlorophyta NOGs (chloroNOG), Viridiplantae NOGs 

(virNOG), and all the NOGs present in the database (bacterial and viral NOGs 

included). The chloroNOG subset is virtually a subset of virNOG KO subset (2675 out 

of 2677 chloroNOG KO terms are included in virNOG KO terms). ChloroNOG KO terms 

were well represented in the majority of genomes and transcriptomes analyzed (Figure 

S2.1), with few notable exceptions (Blastophysa rhizopus, Cladophora glomerata, and 

the Trentepohliales Cephaleuros parasiticus and Trentepohlia annulata – but not 

Trentepohlia jolithus). These observations contrast with the good coreGFs and 

BUSCO score of these transcriptomes. Similar results were obtained for the virNOG 

KO terms (Figure S2.2). When compared to the ‘all KO terms collection’, most of the 

transcriptomes and genomes have comparable patterns of presence/absence of KO 
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Figure 2.3: GFscore and Reference Coverage score. 

Bar plots illustrating the GFscore and the coverage score (50% and 90% of reference genes covered) of the eukaryotic and the green 
transcripts of each transcriptome. 
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terms (Figure S2.3). Noticeably, Trentepohlia jolithus and Phaeophila dendroides 

seems to have additional KO terms not represented by any of the other 

genomes/transcriptomes, neither the ones belonging to the same group. This may 

indicate some degree of non-Viridiplantae contaminants in the RNA-seq library. 

Alternatively, it could indicate events of gain of species-specific functions and lateral 

gene transfer that were absent in the ancestor and in the other members of the same 

clade. 

 

Depth of sequencing: transcriptome completeness and gene family 
size correlation 

Depth of sequencing: Transcriptome completeness evaluation 

Depth of sequencing influences the amount and the length of transcripts that can be 

reconstructed in a de novo transcriptome assembly, with the underlying assumption 

that larger RNA-seq libraries are required for representing larger gene spaces. 

However, for many of the green algal species in this study, little to no info on the 

corresponding gene space and ploidy level is available. To obtain a good proxy for the 

minimum depth of sequencing required for detecting full-length transcripts, RNA-seq 

experiments with increasing sequencing depth were investigated in the model green 

algae Chlamydomonas reinhardtii. 

Starting from the same RNA-seq library, ten subsets of reads were randomly selected, 

ranging from 8M to 80M reads (Table S2.1), to represent RNA-seq experiments with 

increasing sequencing depth. Each subset was independently de novo assembled with 

Trinity and transcripts clustered. For each assembly, eukaryotic and green transcripts 

transcripts were identified (Figure S2.4, Table S2.1). The completeness of the 

eukaryotic fraction of the transcriptome assemblies was assessed with three 

independent strategies: coreGF, BUSCO, eggNOG-mapper (see section 3). The 

coreGF score for all the assemblies was close to 1, indicating that virtually all the core 

conserved gene families identified. Increasing sequencing depth resulted in higher 

fraction of reference genes covered by 50% or 90% of their length (Figure S2.5A).  
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Figure 2.4: Gene space completeness predicted with the BUSCO analysis.  

The bar plot reports the percentage of the BUSCO genes identified as complete, 
duplicated, fragmented or missing in the assemblies and in the reference genome of 
the total 303 BUSCO eukaryotic single-gene orthologs. 
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In total, between 83.9 and 97.3% of eukaryotic BUSCO were identified in the different 

assemblies (Figure S2.5B), while 98.3% of BUSCO genes were identified in the CDS 

of the Chlamydomonas reference genome v. 5.5. Notably and as expected, at 

increasing depth of sequencing, more BUSCO genes were identified as complete or 

duplicated and less as fragmented, indicating that higher depth of sequencing results 

in longer transcripts and reconstruction of multiple transcripts for each locus. 

ChloroNOG KO terms were almost completely covered by the transcripts at all depths 

of sequencing, as well as virNOG (Figure S2.5C), except for Streptophyta-specific KO 

terms. When compared to all the NOG available, only a small fraction was identified. 

A similar analysis performed on the genome indicated discrepancies in the pattern of 

KO terms identified in the transcriptomes irrespective of the NOG sets analyzed. The 

presence of additional sequences not covered in the Chlamydomonas genome was 

confirmed by the taxonomic profile obtained with GhostKOALA (Figure S2.4). 

 

Depth of sequencing: gene family size correlation 

For each depth of sequencing, gene families were independently build following a 

PLAZA-like procedure from the coding sequences of 18 Viridiplantae genomes, 

including reference Chlamydomonas sequences and Chlamydomonas de novo 

assembled transcripts (see Materials and Methods for details). Then, in each gene 

family the number of Chlamydomonas reference and de novo assembled sequences 

were evaluated. The analyses of de novo eukaryotic transcripts and green transcripts 

gave comparable results (Figure 2.5, 2.6). The slope of the regression line was slightly 

below 1 only for the 8M reads subsets. At increasing depth of sequencing, the slope 

steadily increased, indicating that higher sequencing depth leads to an overestimation 

of gene family sizes when building gene families from de novo assembled 

transcriptomes. The intercept on the y-axis (expressed eukaryotic transcripts and 

green transcripts) was always higher than 0, suggesting, in general, a higher number 

of eukaryotic transcripts than actual genomic genes per gene families. As indicated by 

the correlation coefficient this trend is subject to considerable variation between gene 

families (Figure 2.5, 2.6). 
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Figure 2.5: Gene family size correlation – expressed transcripts. 

Each circle represents one or more gene family, the x-axis represents the number of genes from the reference Chlamydomonas 
transcriptome found expressed in that gene family, while the y-axis reports the corresponding genes found in the eukaryotic fraction 
of the de novo assembled transcriptomes. The size of the circle is proportional to the gene families with that relative number of 
genomic and transcriptomic genes. The blue line corresponds to the regression line, the surrounding grey area indicates the 95% 
confidence interval. The corresponding equation is reported, together with the coefficient of correlation r2. 
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Effect of partial data on orthology inference 

Despite the dataset in this study is composed by a majority of potentially fragmented 

data (i.e.: de novo assembled transcriptomes), the orthology inference was performed 

with PLAZA 4.0 (Van Bel et al., 2018), a comparative genomic pipeline, designed to 

deal with a set of comprehensive full-length sequences for gene families delineation. 

The 40 transcriptomes and 15 genomes of Viridiplantae species present in Table 2.1 

were used to build a custom PLAZA 4.0 istance (chloroPLAZA), with more than 70% 

of the data represented by potentially fragmented data. Therefore, we tested the 

impact of partial sequences on the inference of homologous gene families by the 

PLAZA pipeline. In order not to overestimate gene families with perfect correlation, we 

further filtered out HOM families composed by species-specific genes (“orphan” 

genes). Then, we performed pairwise comparisons between the three PLAZA builds - 

picoPLAZA (Vandepoele et al., 2013), PLAZA 2.5, and chloroPLAZA - to assess the 

distribution of corresponding HOM families on different PLAZA builds and test if unitary 

gene families were split in different PLAZA builds (Figure 2.7). picoPLAZA against 

PLAZA 2.5 pairwise comparisons between gave comparable results, with less than 

10% of the gene families split into 2 distinct gene families in the second PLAZA build 

(gene family correlation score of 0.5), while more than 90% of the gene families had a 

perfect a one to one correspondence (gene family correlation score of 1). chloroPLAZA 

comparison against picoPLAZA and PLAZA 2.5 resulted instead on a slightly higher 

amount of gene families split, 12.6% and 10.6% respectively. 

 

Discussion 
 

Taxonomic binning 

Bacterial contamination is common in algal transcriptomic data obtained from field-

collected material, as well as from cultures (Keeling et al., 2014). Moreover, several 

green macroalgae engage in a mutualistic lifestyle with bacteria (Spoerner et al., 2012; 

Wichard, 2015), or harbor intracellular bacteria (Hollants et al., 2011; Hollants et al., 

2013; Aires et al., 2015). Reliable methods to discriminate between contaminant and 

algal sequences are therefore fundamental. 
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.  

Figure 2.6: Gene family size correlation – expressed green transcripts. 

Each circle represents one or more gene family, the x-axis represents the number of genes from the reference Chlamydomonas 
transcriptome found expressed in that gene family, while the y-axis reports the corresponding green genes found in the eukaryotic 
fraction of the de novo assembled transcriptomes. The size of the circle is proportional to the gene families with that relative number 
of genomic and transcriptomic genes. The blue line corresponds to the regression line, the surrounding grey area indicates the 95% 
confidence interval. The corresponding equation is reported, together with the coefficient of correlation r2.
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Figure 2.7: Gene family correlation between PLAZA builds. 

pico02: picoPLAZA build. plaza2.5: PLAZA 2.5 build. chloro: chloroPLAZA 4.0 build. 
The builds were generated with sequences from Table 2.2 species. 

 

We tested the efficiency in taxonomic profiling of an in-house method based on 

sequence similarity searches against the NCBI non-redundant protein database linked 

with taxonomic information, followed by a more detailed identification obtained with 

GhostKOALA. Similarity searches should handle properly the presence of the nuclear 

alternative genetic code, since they can perform gapped alignments. We showed that 

a single GhostKOALA analysis can be misleading, as is shown by the considerable 

amount of sequences not identified as “Plants” in well characterized green algal and 

land plant genomes (Figure 2.1). This is could be ascribed to the reference database 

GENES, which is a non-redundant collection of proteins from non-redundant 

pangenomes (Kanehisa et al., 2014). However, the GENES database non-redundancy 

rule is extended up to the family level, and this should not result in mis-classification at 

the kingdom level. Moreover, GhostKOALA can give a useful estimate on the degree 

of contaminant sequences if datasets from the same species or from closely related 

species are analyzed. For example: difference in taxonomic distribution between 

Chlamydomonas genomic and transcriptomic sequences indicates the presence of 

contaminants in the transcriptomes, supported as well by different KO terms 

distribution in these two datasets. The fact that Oltmannsiellopsis unicellularis and O. 
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viridis have similar taxonomic distributions despite that their transcriptomes have been 

prepped and sequenced independently in different facilities, indicates that sequences 

classified as “Animal” could well be authentic Oltmannsiellopsis sequences. An 

additional explanation could come from the presence of undetected 

Oltmannsiellopsidales endo- or epiphytic organisms still not described nor 

characterized. Conversely, the taxonomic distribution of Trentepohlia annulata and 

Cephaleuros parasiticus sequences differs considerably from that of Trentepohlia 

jolithus, indicating that the latter transcriptome contains a considerably higher 

proportion of contaminant sequences, probably because the RNA was obtained from 

an environmental sample (Li et al., 2014). 

 

Frameshift correction 

Frameshifts and premature stop codons in de novo assembled transcripts can 

represent real biological features in genes, which are corrected by RNA editing, as in 

mitochondrial transcripts of kinetoplastids or in chloroplast transcripts of dinoflagellates 

(Ochsenreiter & Hajduk, 2008; Mungpakdee et al., 2014), or may represent 

pseudogenized genes. More often, however, frameshifts and premature stop codons 

result from sequencing or short read assembly errors. Frameshift errors are 

detrimental to the downstream comparative and phylogenetic analyses, and result in 

shorter and incorrectly translated peptides. In addition, due to specific drawbacks of 

each technology, each sequencing platform has its proper error profile which has to be 

taken into account (Glenn Travis, 2011; Nakamura et al., 2011; Schirmer et al., 2015; 

Schirmer et al., 2016; Abnizova et al., 2017). The 454 pyrosequencing technology is 

more prone to homopolymeric insertions, while Illumina technology is more prone to 

substitution: i.e. T to G transversions (Schirmer et al., 2016), resulting in a theoretical 

higher chance to create frameshifts errors with 454 than with Illumina. Despite this, the 

454 dataset did not show the highest rate of frameshifts, however, frameshift correction 

was most successful for the 454 datasets. Datasets generated with older Illumina 

chemistry did not perform worse than datasets generate with newer Illumina 

technologies and with longer reads. No correlation was found between depth of 

sequencing and percentage of frameshift transcripts, maybe because of the in silico 

read normalization step before assembling the Illumina reads with Trinity. These 

results may suggest that, at least for the datasets we analyzed, the putative frameshift 
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transcripts could be ascrived to random errors during the sequencing and assembly 

steps, rather than dependent on the technology of sequencing. However, for a proper 

benchmark of the origin of frameshift errors, the same RNA library should be 

sequenced on different sequencing machines, which was beyond the scope of this 

investigation. 

Our frameshift correction approach is probably not perfectly suited for clades with 

alternative nuclear genetic codes, because of the unpredictable behavior on this kind 

of datasets. In fact, at the moment, TRAPID cannot handle multiple translation tables 

for coding sequences detection, nor can FrameDP for the frameshift correction step. 

On the other hand, these tools should still be efficient in detecting frameshift 

transcripts. In the presence of a reassigned internal stop codon, TRAPID is more likely 

to flag transcripts as “partial”, “quasi full-length” and “full-length”, depending on 

transcript length and position of the internal stop codon. Only transcripts with best hits 

to the same reference proteins on different reading frames are flagged as “frameshift”. 

FrameDP instead should treat internal stop codon as multiple events of frameshift that 

disrupt the coding sequence. This results into multiple random insertions of “N” 

nucleotides at the level of the internal stop codon, until the stop codon is converted to 

multiple ambiguous codons and the coding frame is restored. In principle, TRAPID and 

FrameDP should manage to correct frameshifts transcript also in the presence of 

alternative nuclear genetic code, although the amount of artificial insertions is 

unpredictable. On the other hand, there is no obvious or logic explanation for the lack 

of correction of Trentepohlia annulata frameshift transcripts. Tools designed to handle 

alternative nuclear genetic codes are required to confidently detect and correct 

frameshifts, and, at best of our knowledge, still missing. 

 

Transcriptomes gene space completeness evaluation 

Three different methods used to evaluate the completeness of transcriptome gene 

space, coreGF, BUSCO and eggNOG-mapper, gave complementary overviews on the 

gene-space completeness of the transcriptomes and of the genomes. While coreGF 

and BUSCO methods gave comparable results, coreGF was found to have higher 

sensitivity. coreGF reference database is six time larger than BUSCO (1,815 coreGF 

proteins against 330 BUSCO proteins) and it is populated almost exclusively with green 
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algae genomes. This represent a reference database well suited to assess the gene 

space completeness of a green algal transcriptome. The BUSCO database we used is 

a collection of 330 quasi-single-copy orthologous genes shared by all eukaryotes. 

There is an Embryophyta-specific BUSCO database, but it is unbalanced towards land 

plants and not representative for green algae. Therefore, coreGF results as a more 

sensitive approach to evaluate gene space completeness in green algae. In our 

analysis, this difference resulted evident for some species (e.g.: Pseudochlorella 

pringsheimii), that despite having a completeness score close to 1 was missing almost 

30% of BUSCO genes. 

One may think that BUSCO genes are related to extremely conserved functions among 

eukaryotes (such as DNA replication and repair), and might not be always expressed 

to levels high enough for granting the detection of the transcripts. Several coreGF 

proteins instead, since they were determined exclusively from green algae, are 

probably involved in the photosynthetic processes and possibly expressed at high 

levels in metabolic active algae, which grant their detection during RNA sequencing. 

Moreover, coreGF method has the strong advantage of reporting the percentage of 

reference transcripts covered by 50% and 90% of their length, while BUSCO only 

provides a qualitative score for the transcript completeness. Recovery of full-length 

transcripts is a desirable outcome of RNA-seq sequencing and it is required for 

successful downstream analyses: the coverage score is therefore a fundamental 

estimate of integrity of conserved transcripts. 

The eggNOG mapper is a comprehensive annotation method that can assign KO 

terms, gene onthology (GO) terms, KEGG pathways and cluster of orthologous groups 

(COG) functional categories to query sequences based on sequence similarity to 

precomputed clusters of orthologous groups (Huerta-Cepas et al., 2017). To evaluate 

the completeness of a transcriptome, we detected the fraction of KO terms associated 

with chloroNOG and virNOG clusters identified in the transcriptomes. The KO terms 

identified in the different transcriptomes revealed useful insights on the completeness 

and on the degree of putative novel/contaminating sequences in the transcriptomes 

that coreGF and BUSCO methods would miss. On the other hand, many coreGF genes 

are not associated with a KO term: most species have coreGF score close to 1, while 

most of the Chlorophyta/Viridiplantae KO terms may be absent (e.g.: Cephaleuros 

parasiticus and Trentepohlia annulata transcriptomes). This observation is consistent 
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with the annotation of “green cut proteins”, a set of 597 nucleus-encoded proteins 

conserved in all photosynthetic organisms, 50% of which are not yet characterized 

(Karpowicz et al., 2011). 

Despite these three approaches rely on distinct reference databases and they are 

therefore not directly comparable, their concurrent use should grant a wide overview 

on transcripts and gene space completeness of a transcriptome. Moreover, the 

complementarity of the reference databases may hint toward which genes/functions 

are present and the possible presence of contaminant sequences 

 

Depth of sequencing: transcriptome completeness and gene family 
size correlation 

The analyses of transcripts and gene space completeness at increasing depth of 

sequencing indicated 40M reads as the depth of sequencing where most of the 

measured metrics reached a plateau. Despite N50 values and number of assembled 

transcripts increased with higher depths of sequencing, adding more reads seems not 

to improve drastically the recovery of conserved genes, and, instead, it results to be 

detrimental for certain metrics. At higher depth of sequencing, in fact, more BUSCO 

genes were identified as duplicated, and gene family sizes correlation between 

reference and de novo assembled sequences indicated a biased toward de novo 

sequence overestimation. The results from the gene space completeness analysis 

pointed towards an almost complete gene space when compared to the reference 

genome at all the depth of sequencing analyzed (8M-80M reads), but higher 

sequencing depth resulted in longer transcripts and a larger percentage of reference 

genes length covered. 

This analysis represents a good starting point to model the relationship between depth 

of sequencing, gene space completeness evaluation and orthology inference. 

However, it is severly hampered by being restricted to Chlamydomonas only. It is 

difficult to predict how this relationship scale from Chlamydomonas 111 Mb genome 

coding for almost 18 thousand genes to the transcriptome of a green alga for which 

estimates on genome and gene space sizes are not available. The predictive power of 

this analysis would definitely benefit by being repeated on all available green algal 

genomes. 
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Effect of partial data on Orthology inference and gene family size 
correlation 

A desirable feature of comparative transcriptomics is the possibility to compare gene 

family sizes between different organisms to elucidate and unveil the genetic 

underpinning and evolution of biological properties. Key biological innovations are 

often associated with gene family expansion, shrinking, gain or loss (Gardner et al., 

2002; Martens et al., 2008; Pombert et al., 2014; Dunn et al., 2018). While gene family 

comparisons are somewhat easily executed in comparative genomic studies, it is not 

trivial to perform them based on transcriptomic data given that de novo assembled 

transcriptomes only partially represent the gene space of the corresponding genomes. 

Our analyses on gene family reconstruction from expressed transcripts and expressed 

green transcripts indicate that transcriptomic data generally overestimate gene family 

sizes. Moreover, the corresponding correlation coefficient values were relatively low 

(r2 = 0.498-0.632). This trend is observed virtually at any sequencing depth, and it 

could be ascribed to the redundancy of the transcriptomics datasets, i.e.: multiple 

transcripts are assembled for each genomic locus. Furthermore, Chlamydomonas is 

suited for this gene family size correlation assessment, since its transcription and 

ploidy level is much simpler if compared to other eukayrotes (e.g.: higher plants or 

higher mammals), and only 10% of its transcripts undergo alternative splicing (1,785 

out of 17,741 protein-coding genes). Allelic variants and alternative spliced transcripts 

cannot account for the overestimation of gene family sizes observed in the de novo 

assembled sequences. Thus, together with the intrinsic incomplete gene space 

represented in the transcriptome, these results support the idea that transcriptomic 

data generally are not well suited for analyses of gene family expansion, and gene gain 

and loss. 

These results contrast with the accuracy of gene family inference of PLAZA 4.0. This 

method in fact is robust and does not suffer from the majority of data being fragmented 

sequences during the gene family reconstruction step. Perhaps, complete sequences 

from the 15 genomes drive the faithful inference of orthologous groups, despite 

representing only 30% of the total sequences. Redundant sequences from de novo 

assembled transcriptomes are likely to be grouped in the same gene family and not to  
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Figure 2.8: Schematic overview of the transcriptomic pipeline for green algal 
transcriptomes.  

Detailed information on the workflow steps are reported on the text. 

 

influence the orthology inference process. Instead, the minimal (2%) increase of split 

gene families observed in chloroPLAZA (Figure 2.7) are probably ascribed to partial 

transcripts assigned to the wrong gene families due to similar domain composition. 

 

A transcriptomic pipeline for green algae 

The information acquired during our analyses was used to build a de novo assembly 

and annotation pipeline. After quality control, RNA-seq reads are first assembled, then, 

the redundancy in the transcriptome is reduced using CD-HIT EST with stringent 

parameters. Nrprot taxonomic binning approach is used to discard bacterial sequences 

and sequences with no similarity with known proteins. TRAPID and FrameDP are used 

to correct frameshift errors and to predict open reading frames of each transcript with 

an orthology-guided approach based on Chlamydomonas proteome. A custom java 

plugin allows TRAPID do uses multiple translation tables during Open reading frame 

prediction, accounting for nuclear alternative, chloroplast and mitochondrial genetic 

code. Open reading frames are combined with the genomic coding sequences to build 

a custom PLAZA 4.0 instance, which is used to circumscribe gene families, which can 

be used in phylotranscriptomic analyses in Chapter 3: “Reconstruction of the early 

diversification of green seaweeds” (Figure 2.8). 
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Materials and Methods 
 

Dataset retrieval and RNA extraction 

55 species of green algae were sampled belonging to the major clades of the 

Chlorophyta and Streptophyta. Data consisted of 15 genomes and 40 transcriptomes; 

9 transcriptomes were generated for this study, while the remaining data were retrieved 

from publicly available repositories (Table 2.1).  

Acetabularia acetabulum, Oltmannsiellopsis viridis and Scotinosphaera lemnae 

cultures were grown at 20 °C and 12-h light/12-h dark cycle in Ace-25 medium (Hunt 

& Mandoli, 1996) and 1.5% agar-solidified Bold Basal medium (Bischoff, 1963), 

respectively. Marsupiomonas sp., Pedinomonas minor and the pedinophyte strain 

YPF-701 (NIES Microbial Culture Collection strain NIES-2566) were cultured in 

Guillard’s F/2 medium at 20 °C and 14-h light/10-h dark cycle. For Ostreobium sp. 

HV05042, Halimeda discoidea and Codium fragile freshly collected material was used 

for RNA extraction. Collection details are given in Verbruggen et al. (2017). Unicellular 

microscopic algae cultures (Marsupiomonas sp., Oltmannsiellopsis viridis, 

Pedinomonas minor, pedinophyte strain YPF-701 and Scotinosphaera lemnae) were 

harvested during their exponential phase. Whole macroscopic seaweed specimens 

were harvested from cultures (Acetabularia acetabulum) or collected in their natural 

environment (Codium fragile, Halimeda discoidea and Ostreobium sp. HV05042) and 

ground in liquid nitrogen for RNA extraction. RNA extractions follow Palmer (1982). 

RNA quality and quantity were assessed with Qubit and Nanodrop spectrophotometer, 

and integrity was assessed with a Bioanalyzer 2100. RNA-seq libraries were 

sequenced as reported in Table 2.3. 

Transcriptome Assembly and Taxonomic filtering 

At the time of the experiment, only pre-assembled transcriptomes of Acrosiphonia sp., 

Blastophysa rhizopus and Caulerpa taxifolia transcriptomes were available: Therefore, 

these datasets were retrieved from the respective sources reported in Table 2.1. All 

the remaining assemblies were performed in house starting from the raw reads on a 

custom semi-automated pipeline. The pipeline consisted of the following steps. Quality 

of the raw reads were assessed with FastQC v.0.10.1 
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(http://www.bioinformatics.babraham.ac.uk, last accessed March 01, 2017). Low-

quality reads (average Phreds quality score below 20) and low quality read ends were 

trimmed with Fastx v.0.0.13 (https://github.com/agordon/fastx_toolkit, last accessed 

March 01, 2017). Trimmed reads shorter than 30 bp were discarded. 

Transcriptome de novo assembly of Botryococcus braunii, Chlorokybus atmophyticus, 

Ulva linza (Roche 454 data) were performed with CLC Genomics Workbench version 

7.5.1 (http://www.clcbio.com, last accessed on June 06, 2017), using a word size of 63 

and standard parameters. Transcriptome de novo assembly for the remaining species 

were performed with Trinity 2.1.1 (Grabherr et al., 2011), in SE or PE mode were 

appropriate depending on the RNA-seq library type, after in silico reads normalization. 

For each transcriptome, transcripts were clustered with CD-HIT-EST v. 4.6.1 (Li & 

Godzik, 2006) with the following parameters: -c 0.975, -d 0, -p 1 and -M 0, and the 

longest one was retained as representative of the cluster. The eukaryotic fraction of 

each transcriptome was identified with sequence similarity searches using Tera-

BLAST DeCypher (Active Motif, USA) against the NCBI non-redundant protein 

database combined with the NCBI Taxonomy information of the top ten BLAST hits 

(hereafter: nrprot), where a hit to Eukaryotic sequences was sufficient to assign the 

transcript tot the “eukaryotic bin”. Transcripts were therefore assigned to “eukaryotic”, 

“bacterial”, “no hit” bins based on the outcome of search. To evaluate the amount of 

residual bacterial contaminants still present in nrprot and to circumscribe a fraction of 

green transcripts, the coding regions of eukaryotic transcripts were predicted with 

TRAPID and translated into the corresponding amino acid sequences with transeq 

algorithm from EMBOSS 6.6.0 (Rice et al., 2000), using the appropriate translation 

table where necessary. The resulting peptides were processed with GhostKOALA 

(Kanehisa et al., 2016). For each peptide having the best scoring hit in Viridiplantae, 

the corresponding transcript was flagged as “green”. Coding sequences from the 

genomes in Table 2.1 were processed as well in a similar manner as control 

sequences. 
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Figure 2.9:Schematic overview of the frameshift correction workflow. 

Detailed information on the workflow steps are reported on the text. 

 

Frameshift correction 

Frameshift correction performance (Figure 2.9) was evaluated on the eukaryotic 

fraction of the transcriptomes of Table 2.2. Each transcriptome was analyzed with 

TRAPID (Van Bel et al., 2013). For each transcriptome, a subset of transcripts with 

potential frameshift was predicted, based on the concordance with orthologous 

sequences as predicted with TRAPID. This subset was corrected with a local step of 

frameshift correction in FrameDP 1.2.2 (Gouzy et al., 2009), using the 

Chlamydomonas 4.0 proteome. The corrected subset, together with transcripts that 

were not classified as potentially having a frameshift, were analyzed again with the 

TRAPID pipeline to evaluate the efficiency of the frameshift detection and correction. 

 

Transcriptome completeness evaluation 

Evaluation of transcriptome completeness was performed by evaluating the gene 

space completeness of the genomes and the eukaryotic fraction of transcriptome with 

three different methods (Figure 2.10): coreGF score (Veeckman et al., 2016); BUSCO 

(Simão et al., 2015) and eggNOG-mapper (Huerta-Cepas et al., 2017). Despite that 

each method relies on a different set of reference sequences, the underlying idea is 

conserved: estimate the portion of the reference database represented in the query 

sequences, thus, derive the bona fide completeness of the query itself. Where 
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possible, the reference dataset should include closely related species, to increase the 

likelihood to represent the most complete (likely) gene space possible of the query 

species. 

For the coreGF evaluation method, transcripts and genomic coding sequences were 

searched using Tera-BLAST™ DeCypher against pico-PLAZA v2.0 proteome, which 

is composed by genome sequences of 10 green algae, 3 land plants, one glaucophyte 

and 5 stramenopiles (Vandepoele et al., 2013). A set of 1,815 homologous core gene 

families were identified with tribe-MCL (Enright et al., 2002). A core gene family is 

defined as a gene family shared among all the Chlorophyta genomes present in pico-

PLAZA 2.0. Each transcript or coding sequence was assigned to a certain gene family 

based on its top 5 hit, following a majority consensus rule. Finally, the GFscore was 

calculated as the sum of each core family identified, counted with a weight equal to 

one divided by the average family size. 

For the BUSCO analysis, the transcripts and genomic coding sequences were 

searched with BUSCO 3.0.1 (Simão et al., 2015) against the eukaryotic ortholog 

groups present on OrthoDB v9 database (Zdobnov et al., 2017), using the 

“transcriptome” mode (flag -m tran). 

For the eggNOG-mapper search (Huerta-Cepas et al., 2017), three distinct sets of non-

supervised orthologous groups (NOG) clusters were tested: Chlorophyta NOGs 

(chloroNOG), Viridiplantae NOGs (virNOG), and all the NOGs present in the emapper 

database v. 4.5.1 (bacterial and viral NOGs included). The coding sequences of 

genomes and transcriptomes were compared to the chloroNOG, virNOG and NOG 

clusters. Searches against chloroNOG and virNOG were run with HMMer profiles 

(Eddy, 2011) available at the emapper database, using optimized memory searches 

(flag --usemem). For the sake of speed, searches against the whole NOG clusters 

were run with DIAMOND 0.9.9, flag -m diamond (Buchfink et al., 2014). To evaluate 

the gene space completeness predicted with eggNOG searches, we identified the 

number of KEGG Orthology (KO) terms (Kanehisa et al., 2014) that were assigned to 

each subset by the searches. To define the total KO terms associated to chloroNOG 

and virNOG clusters, the protein used for populating the clusters were searched  
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Figure 2.10: Schematic overview of the gene space completeness evaluation 
workflow. 

Detailed information on the workflow steps are reported on the text. 

 

against chloroNOG and virNOG clusters respectively, and the resulting KO terms 

identified were set as KO terms associated to the clusters. 

 

Depth of sequencing: transcriptome completeness and gene family 
size correlation 

Data retrieval, transcriptome assembly and frameshift correction 

For the depth of sequencing evaluation, the Chlamydomonas reinhardtii reference 

genome v.5.5 and corresponding full length transcripts were retrieved from 

Phytozome, https://phytozome.jgi.doe.gov/pz/portal.html (Goodstein et al., 2012). The 

SRR353973 RNA-seq library was retrieved from the Short Read Archive, 

https://www.ncbi.nlm.nih.gov/sra/?term=SRR353973 (Leinonen et al., 2011), which 

represents the largest RNA-seq library available to our knowledge for Chlamydomonas 

reinhardtii. 

The workflow to process this dataset was similar as described above. Briefly, quality 

of the 83M 2x101 bp PE raw reads were assessed with FastQC v.0.10.1. Low-quality 

reads (average Phred quality score below 20) were discarded and low-quality 3' ends 

of the reads were trimmed with Fastx v.0.0.13. After trimming, reads shorter than 30 
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bp were discarded. 80,660,120 PE reads were retained after trimming and filtering. 

Ten subsets representing 10-100% of the trimmed reads were randomly selected from 

the total retained reads (Table S2.1) to mimic comparable RNA-seq libraries with 

increasing sequencing depth using a custom python script 

https://github.com/brentp/bio-playground/blob/master/reads-utils/select-random-

pairs.py. Each subset of PE reads was independently assembled with Trinity v. 2.1.1. 

Trinity assemblies were performed with standard parameters after in silico read 

normalization (flag --normalize_reads). 

After assembly, the resulting transcripts were clustered with CD-HIT-EST 4.6.1 using 

the following parameters: -c 0.975, -d 0, -p 1 and -M 0. The longest member for each 

cluster was used as the representative for the cluster for downstream analyses. The 

eukaryotic fraction for each assembly was identified as described above. Transcripts 

classified as "eukaryotic" were further processed in TRAPID for identifying coding 

regions and correct putative frameshift errors. A fraction of green transcripts was 

identified with GhostKOALA. After processing with TRAPID, the transcripts and the 

corresponding coding regions of each assembly were examined to assess 

transcriptome completeness as described in the previous paragraph. 

 

Gene family size correlation 

To evaluate the members of a gene family de novo assembled in a transcriptome with 

the real number of members as identified in the corresponding fully sequenced 

genome, we determined homologous gene families (HOM) in a similar process to the 

PLAZA 4.0 build (Figure 2.11). We build a custom protein dataset by first removing 

Chlamydomonas sequences from picoPLAZA proteome and by adding the remaining 

picoPLAZA proteins to all predicted proteins from the sequenced genomes of Gonium 

pectorale (Hanschen et al., 2016), Auxenochlorella protothecoides v. 1.0 (Gao et al., 

2014), Astereochloris sp. Cgr/DA1pho v2.0, Ulva mutabilis v.3.0 (De Clerck et al., 

2018), Selaginella moellendorffii v. 1.0 (Banks et al., 2011). Then C. reinhardtii 

complete reference transcriptome v.5.5 was retrieved from JGI, and only reference 

Chlamydomonas reinhardtii transcripts that were found expressed at a certain depth 

of sequencing were added to the custom protein database. For each depth of 

sequencing, reference Chlamydomonas expressed genes were identified by aligning 
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the reads the reference transcriptome with Kallisto v. 0.43.0 (Bray et al., 2016). Only 

transcripts with a transcript per million (TMP) value > 5 were considered as expressed. 

This resulted in 10 reference proteome datasets, one for each depth of sequencing 

(8M-80M reads), composed by complete proteomes and amino acid sequences of the 

reference Chlamydomonas transcripts found expressed at that depth of sequencing, 

Then, for each depth of sequencing, Chlamydomonas de novo assembled eukaryotic 

and green transcripts that were found expressed were identified and added to the 

corresponding reference protein databases. The corresponding amino acid sequences 

of the potential coding regions were deduced with the transeq algorithm present in the 

EMBOSS package. For each depth of sequencing tested, the deduced peptides were 

added to corresponding reference proteome database. For each protein database, all-

against-all sequence similarity searches were computed with DIAMOND, with 4,000 

max target sequences and using the flag --more-sensitive. To define the gene families, 

the sequence similarity results were then clustered with Tribe-MCL v. 10-201 with the 

following parameters: -I 2, -scheme 4. For each gene family, the members from the de 

novo assembled transcriptome and the members from reference Chlamydomonas 

transcriptome were counted, and the counts plotted. Only gene families with members 

both in the transcriptome and in the genome were considered in this analysis. 

 

Effect of partial data on orthology inference 

We tested the impact of introducing partial sequences (i.e.: de novo assembled 

transcripts) in the inference of homologous gene families by the PLAZA pipeline (all-

against-all sequence similarity search followed by Tribe-MCL clustering). First of all, 

transcriptomes and genomes for the 55 species reported in Table 2.1 were processed 

through the pipeline described in this chapter (eukaryotic filtering, frameshift 

correction). The longest coding frame was detected with a custom java script plugged 

into TRAPID using four different translation tables (1, 6, 11 and 16), to take into account 

the alternative nuclear genetic codes (Cocquyt et al., 2010a), as well as the chloroplast  



 

67 
 

 

Figure 2.11: Schematic overview of the depth of sequencing evaluation 
workflow. 

Detailed information on the workflow steps are reported on the text. 

 

and mitochondrial translation tables. Briefly, for each transcript coding frames were 

predicted with each of the four translation tables. Then, for each transcript, the longest 

coding sequences detected was retained for the downstream analysis, and the 

corresponding translation table recorded. Concordance with orthologous sequences 

predicted by the TRAPID pipeline by sequence similarity searches was also taken into 

account. Each transcript was translated into the corresponding amino acid sequences 

with the transeq algorithm from the EMBOSS package, using the appropriate 

translation table. The resulting predicted peptides were processed with an in-house 

instance of PLAZA4.0 (Van Bel et al., 2018), named ChloroPLAZA. 
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Figure 2.12: Schematic overview of the effect of partial data on orthology inference 
workflow. 

Detailed information on the workflow steps are reported on the text. 

 

Slim versions of picoPLAZA (build A), PLAZA2.5 (build B) and ChloroPLAZA (build C) 

protein databases were created, where HOM gene families containing orphan genes 

were removed. picoPLAZA and PLAZA2.5 (Build A and Build B, respectively) 

constitutes reference datasets constructed from genomic data, while ChloroPLAZA 

(Build C) represents the dataset composed by majority of transcriptomic data to test. 

For the analysis, only HOM families containing one or more genes from Arabidopsis 

thaliana, Chlamydomonas reinhardtii, Micromonas pusilla, Ostreococcus tauri, 

Physcomitrella patens or Volvox carteri were selected, since for these species the 

genome versions to build the databases were identical and gene identifiers were 

conserved between builds. As a positive control, build A was tested against build B, 

and vice versa. To test the effect of partial data on orthology inference, build A and 

build B were independently tested against build C (Figure 2.12). For each of the 

selected HOM families, each gene from Arabidopsis thaliana, Chlamydomonas 

reinhardtii, Micromonas pusilla, Ostreococcus tauri, Physcomitrella patens or Volvox 

carteri of a dataset was searched and identified in the HOM families of the test dataset 

and the number of HOM families retrieved is recorder. The resulting rate of correlation 

for each HOM family was calculated as: 1/(number of Hit HOM identified), where 1 is 

the highest score and indicate a perfect 1 to 1 correlation, while values between 0 and 

1 indicate that genes from a HOM family were found in two or more HOM families in 

the test dataset. 
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Supplementary Information 

 
Figure S2.1: Gene space completeness evaluated with eggNOG mapper. 

KO terms associated with chloroNOG clusters identified for the species Table 2.2. KO terms were grouped based on their function. 
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Figure S2.2: Gene space completeness evaluated with eggNOG mapper. 

KO terms associated with virNOG clusters identified for the species Table 2.2. KO terms were grouped based on their function. 
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Figure S2.3: Gene space completeness evaluated with eggNOG mapper. 

KO terms identified for the species Table 2.2. KO terms were grouped based on their function. 
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Figure S2.4: Taxonomic binning as assigned by GhostKOALA. 

Pie charts report the proportion of the taxonomic bin assigned to transcriptome 
assembly. These results are in contrast with the GhostKOALA output for 
Chlamydomonas genomic CDSs (Figure 2.1). 
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Figure S2.5: Depth of sequencing and gene space completeness evaluation. 

(A) Bar plot illustrating the GFscore and the corresponding Reference coverage scores 
(50% and 90% of reference genes covered) respectively. (B) The percentage of the 
BUSCO genes identified as complete, duplicated, fragmented or missing in the 
assemblies and in the reference genome of the total 303 BUSCO eukaryotic single-
gene orthologs is reported. (C) KO terms associated with chloroNOG, virNOG, NOG 
clusters identified at each depth of sequencing. 
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Table S2.1: Overview of the assembly metrics. 

 

  Assembly metrics 

  before CD-HIT after CD-HIT euk fraction 

subset # PE reads # seq N50 (bp) # seq N50 (bp) # euk %euk N50 euk 
(bp) 

8M 8,066,012 72,378 827 50,350 770 32,091 63.74 939 

16M 16,132,024 92,565 951 62,495 909 40,593 64.95 1,112 

24M 24,198,036 106,092 1,020 70,465 984 45,691 64.84 1,225 

32M 32,264,048 116,322 1,066 76,399 1,041 49,328 64.57 1,287 

40M 40,330,060 124,202 1,093 81,202 1,081 52,103 64.16 1,334 

48M 48,396,072 131,244 1,124 85,118 1,122 54,213 63.69 1,391 

56M 56,462,084 136,644 1,151 88,385 1,155 56,159 63.54 1,433 

64M 64,528,096 142,075 1,180 91,436 1,189 57,764 63.17 1,471 

72M 72,594,108 146,736 1,196 94,338 1,220 59,526 63.10 1,502 

80M 80,660,120 150,504 1,206 96,490 1,233 60,694 62.90 1,525 

before CD-HIT: transcriptome metrics before sequence clustering with CD-HIT EST 
after CD-HIT: transcriptome metrics after sequence clustering with CD-HIT EST 
euk fraction: metrics of the eukaryotic fraction 
% euk: percentage of transcripts (after CD-HIT) identified as eukaryotic 
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Chapter 3 - Reconstruction of the early diversification of 
green seaweeds4 

Andrea Del Cortona, François Bucchini, Chris Jackson, Michiel Van Bel, Endymion Cooper, Pavel Škaloud, 
Sofie D’hondt, Heroen Verbruggen, Charles Delwiche, Frederik Leliaert*, Klaas Vandepoele*, Olivier De 
Clerck5 
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Reconstruction of the early diversification of green seaweeds 
* equal contribution. 
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S.D.H.: data generation; A.D.C., F.L.: data analysis; F.B., M.V.B.: TRAPID plugin and PLAZA4.0 build; A.D.C., C.J.: 
time-calibrated phylogenetic analysis; A.D.C., F.L., K.V., O.D.C.: manuscript conceptualization, drafting and 
writing. 
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Abstract 

The Neoproterozoic was marked by a change from a largely bacterial to a eukaryotic 

phototrophic world, thereby creating the foundation for complex benthic ecosystems 

which sustained the Precambrian radiation of Metazoa. Until recently, we were largely 

oblivious about the timing and speed of this transition. This study focusses on the green 

algal lineage, which have been a dominant group of photosynthetic eukaryotes in 

marine, freshwater and terrestrial habitats for millions of years. By applying a 

phylotranscriptomic approach we resolve important relationships and unveil a rapid 

radiation of the main green algal clades. The green seaweeds, a dominant group of 

mainly macroscopic primary producers in coastal environments, likely originated during 

the Cryogenian. We hypothesize that the ancestors of green seaweeds were benthic 

unicellular algae, which survived the global glaciation during the Cryogenian in isolated 

refugia. Broader marine photic habitats becoming available due to retreating sea ice, 

in combination with an increased supply of nutrients (phosphate weathering), may 

have favored the colonization of benthic environments. Increased cells sizes, 

macroscopic growth and compartmentalization of the ancestors of green seaweeds 

resulted as mitigation strategy to the pressure applied by grazers and to the 

competition with other benthic phototrophs in the novel Ediacaran environment. A rapid 

radiation event and parallel evolution in isolated refugia supports earlier hypotheses 

that the different green seaweed lineages evolved macroscopic growth independently 

using different mechanisms, ranging from canonical multicellularity over coenocytic 

cells to complex siphonous thalli.  
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Introduction 

The diversification of green seaweeds (Ulvophyceae) in coastal environments 

coincided with the evolution of an astonishing diversity of thallus forms, ranging from 

microscopic unicellular organisms to seaweeds, macroscopic multicellular and giant-

celled algae, with highly specialized cellular and physiological characteristics (Chapter 

1). However, when and how many times green seaweeds have emerged has been a 

matter of debate. 

Understanding the origin and ecological diversification of green seaweeds requires a 

well-resolved phylogeny, and a reliable estimate of their age. However, resolving the 

phylogenetic relationships of Ulvophyceae and other clades of the core Chlorophyta 

has been a difficult task. Early phylogenetic studies based on ultrastructural features, 

which have been instrumental to define higher level groupings of green algae, such as 

the fine structure of cytokinesis, flagellar apparatus, and mitosis, have been 

inconclusive. As a result, the monophyly of the Ulvophyceae has been questioned 

because of the absence of shared derived characters (Leliaert et al., 2012). Molecular 

phylogenetic studies were promising initially, but nuclear and chloroplast gene data 

often yielded ambivalent and often contradicting results. Molecular phylogenetic 

analyses based on nuclear ribosomal DNA recovered a monophyletic Ulvophyceae but 

with low phylogenetic support (Watanabe & Nakayama, 2007; Leliaert et al., 2009). 

These analyses recovered two distinct clades of Ulvophyceae: the Ulvales-Ulotrichales 

clade (UU clade) and a clade consisting of Trentepohliales, Bryopsidales, 

Cladophorales, and Dasycladales (TBCD clade), along with some unicellular clades of 

uncertain affinity, such as Oltmannsiellopsidales, Scotinosphaerales and Ignatiales 

(Cocquyt et al., 2009; Škaloud et al., 2013). A phylogenetic study based on 10 genes 

(eight nuclear and two plastid genes) recovered the Ulvophyceae as a well-supported 

monophyletic group for the first time, divided into the UU and TBCD clades (Cocquyt 

et al., 2010a). The inferred topology suggested that within the class, macroscopic 

growth may have originated at least four times independently from marine unicellular 

ancestors. Conversely, chloroplast multigene analyses do generally not support 

monophyly of the Ulvophyceae, but instead indicate two or more separate ulvophyte 

lineages within the core Chlorophyta, indicating that green seaweeds may have 

evolved multiple times independently from freshwater progenitors (Fučíková et al., 
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2014; Leliaert & Lopez-Bautista, 2015; Turmel et al., 2017; Fang et al., 2018). The 

relationships among the main core chlorophyte clades, however, were poorly 

supported, hampering inference of ecological and morphological diversification.  

In this study, we investigated the evolutionary relationships and divergence times 

among green algae using a phylotranscriptomic approach. We constructed a dataset 

of 1,877,542 aligned sites from 539 protein-coding nuclear genes for 55 species. For 

14 species, newly generated transcriptomes were analyzed. Integration with 26 

publicly available transcriptomes and 15 genomes yielded a representative dataset, 

including the major clades of Chlorophyta and Streptophyta. We focused on the core 

Chlorophyta and Ulvophyceae in particular, for which we included 19 species, 

representing all major clades and the five distinct cyto-morphotypes. These data were 

analyzed using different data-filtering approaches, complementary phylogenetic 

methods, and rigorous statistical tests to provide the best supported phylogenetic 

hypotheses of the core Chlorophyta yet produced. Our results indicate an early 

diversification of the core Chlorophyta, and a rapid radiation of ulvophyte -lineages in 

the late Neoproterozoic (750-650 mya). Unexpected but coherent and highly supported 

relationships were recovered, such as the position of the Bryopsidales as a sister clade 

to the other ulvophyceans. Finally, our phylogeny offers a solid framework to 

understand the evolution of genomic features, such as an alternative nuclear genetic 

code, and unconventional chloroplast genomes (Cocquyt et al., 2009; Cocquyt et al., 

2010a; de Vries et al., 2013; Del Cortona et al., 2017).  



 

81 
 

Results 
 

Transcriptome data generation, gene family identification and 
phylogenetic analysis  

We collected and analyzed nuclear encoded protein-coding genes from 55 species 

mined from 15 genomes and 40 transcriptomes. We included representatives from the 

major clades of Streptophyta and Chlorophyta, while keeping a focus on ulvophyceans, 

for which all major clades were sampled, representing the five cyto-morphotypes and 

three different environments (Table S2.2). This resulted in the retrieval of 1,228,821 

protein-coding genes that were clustered into gene families (see Materials and 

Methods). 

A set of 539 high-confidence single-copy gene families was identified (hereafter 

referred to as coreGF), based on single-copy gene families present in picoPLAZA 

green algal genomes (Vandepoele et al., 2013). Furthermore, a subset of 355 gene 

families was selected, where, for each gene family, at least one species for each of the 

9 main ulvophyte clades was present (i.e. Bryopsidales, Cladophorales, Dasycladales, 

Ignatiales, Oltmannsiellopsidales, Scotinosphaerales, Trentepohliales, Ulotrichales 

and Ulvales, hereafter referred to as ulvoGF). Partial sequences from the 

transcriptomes were either scaffolded (scaffolded dataset) or removed (unscaffolded 

dataset), resulting in a more comprehensive and a more conservative version of the 

coreGF and ulvoGF datasets, respectively (Figure S3.1, S3.2). Poorly aligned regions 

were removed to obtain the corresponding trimmed datasets. These operations 

resulted in eight single-copy gene datasets (Table S3.1): coreGF unscaffold, 

composed by 539 single-copy genes, with partial sequences removed; coreGF 

scaffold, composed by 539 single-copy genes, with partial sequences scaffolded; 

coreGF unscaffold TRIM, as coreGF unscaffold, but with less conserved regions 

filtered; coreGF scaffold TRIM: as coreGF scaffold, but with less conserved regions 

filtered; ulvoGF unscaffold, composed by a 355 single-copy genes subset of coreGF 

focussing on Ulvophyceae, with partial sequences removed; ulvoGF scaffold, 

composed by a 355 single-copy genes subset of coreGF focussing on Ulvophyceae, 

with partial sequences scaffolded; ulvoGF unscaffold TRIM, as ulvoGF unscaffold, but 

with less conserved regions filtered; and ulvoGF scaffold TRIM, as ulvoGF scaffold, 
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Figure 3.1: Green algal phylogenetic relationships. 

(A) ML phylogenetic tree inferred from the concatenated alignment and from amino 
acid sequences of 539 coreGF scaffolded untrimmed gene trees. Bootstrap values are 
shown on the nodes. 100 BS support are omitted. The scale indicates substitutions per 
amino acid position. The red numbers indicate incongruences between the topology 
recovered by the partitioned ML analysis and the coalescence-based analysis based 
on the same gene dataset: 1. Nephroselmis pyriformis position; 2. Pedinophyceae 
position; 3. Bryopsidales position. The alternative topology for the Bryopsidales-
Chlorophyceae-ulvophyceans relationships inferred with the coalescence-based 
analysis is summarised on the right hand-side scheme. Blue branches indicate 
presence of the alternative nuclear genetic code in the clade. (B) Alternative topologies 
of the Bryopsidales position as recovered by the partitioned ML analysis (on the left) 
and the coalescence-based analysis (on the right). 
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but with less conserved regions filtered (Table S3.1). We analyzed these eight datasets 

with complementary phylogenetic methods and tested the significance of conflicting 

topologies to assess the robustness of our findings. 

 

Establishing a resolved phylogeny of Chlorophyta 

Maximum likelihood (ML) supermatrix analyses of the eight datasets recovered a solid 

phylogenetic reconstruction of Viridiplantae (Figure 3.1). The inferred relationships 

among the main clades of streptophytes are in agreement with published phylogenies 

(Zhong et al., 2013; Wickett et al., 2014; Puttick et al., 2018), denoting the power of 

our approach to confidently resolve difficult phylogenetic relationships. Several inferred 

relationships among the main clades of Chlorophyta were highly supported and largely 

congruent over different analyses and datasets, while other relationships were less 

stable and dependant on the dataset or analysis. We recovered Chlorodendrophyceae 

and Pedinophyceae as two early diverging clades at the base of the core Chlorophyta 

(Figure 3.1). Trebouxiophyceae and Chlorophyceae were recovered as monophyletic 

groups, with the Trebouxiophyceae consisting of two distinct clades, the Chlorellales 

and core Trebouxiophyceae. 

While the supermatrix and the coalescence-based analyses confirmed monophyly of 

Chlorophyceae, a sister relationship between Chlorophyceae and Bryopsidales in the 

supermatrix analyses rendered the Ulvophyceae paraphyletic. The coalescent-based 

analyses, on the other hand, inferred the Ulvophyceae as sister to the Chlorophyceae, 

but the branch leading to the Ulvophyceae clade was extremely short. A polytomy test 

(Sayyari & Mirarab, 2018) could not reject the null hypothesis of a hard polytomy 

(Figure S3.3). Under increasing gene numbers, p-values, which indicated the ability to 

reject the null hypothesis of a hard polytomy, did not show any tendency to become 

lower. The supermatrix and coalescence-based analyses supported the same 

relationships among the remaining orders of Ulvophyceae. Two major clades were 

recovered, one clade including the Oltmannsiellopsidales, Ignatiales and Ulvales-

Ulotrichales, and a second clade including the Dasycladales, Scotinosphaerales, 

Trentepohliales, Cladophorales and Blastophysa.  
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Figure 3.2: Tests of alternative topologies. 

(A) Summary of support for hypotheses of Chlorophyta relationships, based on the 
amino acid alignments of 8 single-copy gene datasets from 55 Chlorophyta and 
Streptophyta species, across 32 distinct supermatrix or coalescence-based analyses. 
CoreGF unscaffold: 539 single-copy genes, with partial sequences removed. CoreGF 
scaffold: 539 single-copy genes, with partial sequences scaffolded. CoreGF unscaffold 
TRIM: as coreGF unscaffold, but with less conserved regions filtered. CoreGF scaffold 
TRIM: as coreGF scaffold, but with less conserved regions filtered. UlvoGF unscaffold: 
355 single-copy genes subset of coreGF focussing on Ulvophyceae, with partial 
sequences removed. UlvoGF scaffold: 355 single-copy genes subset of coreGF 
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focussing on Ulvophyceae, with partial sequences scaffolded. UlvoGF unscaffold 
TRIM: as ulvoGF unscaffold, but with less conserved regions filtered. ulvoGF scaffold 
TRIM: as ulvoGF scaffold, but with less conserved regions filtered. Partitioned: gene-
wise partition of the supermatrix, with substitution model for each partition inferred by 
the gene-tree best model, allowing invariable sites and free rate of heterogeneity 
across sites. C20: supermatrix analyses with empirical mixture substitution model of 
amino acids, allowing invariable sites and free rate of heterogeneity across sites. 
BestML: coalescence-based analysis. MLBS: as BestML, but using the Multi-Locus 
Bootstrap Support approach. Green: strong support. Yellow: low support. Red: no 
support. Strong support refers to bootstrap values or posterior probabilities > 75% or 
0.75, respectively, for the relationships depicted. (B) Summary of alternative 
constrained topologies tested with AU-test (Table S3.2, S3.3) and pairwise log-
likelihood scores comparisons. (C) Proportion of genes supporting each of the 
alternative hypotheses in pairwise log-likelihood score comparisons. Bryo: 
Bryopsidales; Chld: Chlorodendrophyceae; Chlo: Chlorophyceae; Chlr: Chlorellales; 
Clad: Cladophorales+Blastophysa; Dasy: Dasycladales; Igna: Ignatiales; Oltm: 
Oltmannsiellopsidales; Pedi: Pedinophyceae; Scot: Scotinosphaerales; Tren: 
Trentepohliales; Ulvo: Ulvales-Ulotrichales. 

 

For a number of specific relationships, differences were observed in the trees 

estimated by the different methods and datasets (Figure 3.1, 3.2A). The topologies of 

the supermatrix and the coalescence-based analyses consistently differed in the 

position of the earliest diverging core Chlorophyta (Pedinophyceae first or 

Chlorodendrophyceae first, respectively). Constraining the Chlorodendrophyceae as 

the first diverging core Chlorophyta was rejected by all but the trimmed datasets  (AU-

test, n = 100,000 for each dataset, Δ-likelihood = 13.766 - 66.129, p-value = 0.0971 - 

0.2115). This indicates that the phylogenetic signal for the Pedinophyceae first 

topology mainly resides in the most variable sites of the alignments (Figure 3.2B, Table 

S3.2). We further characterized the proportion of genes for each dataset supporting 

these two alternative hypotheses (Shen et al., 2017). The analysis of the gene-wise 

log-likelihood showed an equal number of genes supporting the two alternative 

topologies for all the datasets (Figure 3.2C). As for the core Chlorophyta early 

diversification and the position of Bryopsidales, AU-test for the trimmed datasets could 

not reject the topology constrained to conform by the coalescence-based analyses 

(Ulvophyceae monophyletic) (n = 100,000 for each dataset, Δ-likelihood = 1.132 - 

49.031, p-value = 0.2526 - 0.5049, Table S3.2). Slightly more than 50% of the genes 

supported the monophyly of ulvophyceans for 7 of the 8 datasets (Figure 3.2C). The 

support for the Ignatius position was tested with a similar approach (Figure 3.2C, Table 

S3.3). The inclusion of Ignatius in fact, caused instability in the analyses. Removing it 
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led to an overall higher support for the position of the Oltmannsiellopsidales-Ulvales-

Ulotrichales and of Dasycladales-Scotinosphaerales clades (Figure S3.4). Alternative 

topologies recovered by including Ignatius in the phylogenetic analyses were 

evaluated with an AU-test, which failed to reject any alternative topology as significantly 

worse (Table S3.3). Despite that most genes (20-30%) supported a sister relationship 

between Ignatius and Dasycladales-Scotinosphaerales clade (Figure 3.2C), this 

topology was never recovered with high support by any of the phylogenetic analyses 

we performed (Figure 3.2A, Figure S3.6). 

Gene-wise contribution to the phylogenetic signal was also evaluated by clustering of 

the gene trees based on their pairwise Jensen-Shannon distances. We performed a 

cluster-wise supermatrix and coalescence-based analyses, and we identified outlier 

clusters that had the most divergent signals and excluded or included them in the 

analyses (Figure S3.4). Different clusters of genes supported the different contrasting 

topologies for the earliest diverging core Chlorophyta clade and for the monophyly of 

Ulvophyceae in both the supermatrix and the coalescence-based analyses (Figure 

S3.5). Removing the outlier clusters increased the overall support of the topology 

inferred from the remaining clusters, but supermatrix and coalescence analyses did 

not converge to the same topology. These results altogether suggest that a robust 

topology of the core Chlorophyta was recovered, except for few equally likely 

uncertainties. 

 

Macroscopic growth is associated with a transition to benthic marine 
environments 750-650 mya 

To estimate a time-frame of diversification of the core Chlorophyta, we inferred a 

chronogram from 10 of the most clock-like genes, calculated using relaxed clock 

analyses with SortDate (Smith et al., 2018). Calibration nodes were derived from fossil 

information and node age estimates from previous studies, and we also tested the 

inclusion or the exclusion of contentious fossils (Table S3.4). Analyses were repeated 

for both the ML supermatrix and the coalescence-based topologies and different 

molecular clock models (Table S3.5). Results indicate that the ancestor of the core 

Chlorophyta emerged during the Neoproterozoic, 900-800 mya (Figure 3.3, Table 

S3.5). The main Ulvophycean seaweeds clades (Bryopsidales, Cladophorales, 
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Dasycladales, Ulvales) radiated during a time-window (750-650 mya) corresponding 

to the long-lasting global-scale Sturtian and Marinoan glaciations. 

Estimated ancestral states of key ecological and cyto-morphological traits are 

illustrated in Figure 3.4. The core Chlorophyta likely originated in freshwater 

environments, with early and independent transitions to marine environments in some 

lineages of Chlorodendrophyceae and Pedinophyceae. The Trebouxiophyceae and 

Chlorophyceae diversified in freshwater environments mainly. The radiation event at 

the base of the diversification of Chlorophyceae, Bryopsidales and Ulvophyceae 

originated a major switch back to marine environments early in the evolution of 

Bryopsidales and Ulvophyceae, populating coastal environments with marine benthic 

green seaweeds.  

 

Discussion 

We present a robust, well supported phylogenetic reconstruction of the core 

Chlorophyta (Figure 3.1) and contextualize the relationships in light of the evolution of 

multicellularity and macroscopic growth, and the transition to marine benthic 

environments. While supermatrix analyses supported a scenario whereby 

Chlorophyceae are sister to the Bryopsidales, coalescence-based suggested a hard 

polytomy of Ulvophyceae (incl. Bryopsidales) and Chlorophyceae. Relationships within 

the core Chlorophyta have been notoriously difficult to resolve because of the antiquity 

of the main lineages, and the rapidity of the early evolutionary radiations (Cocquyt et 

al., 2010b; Leliaert et al., 2012; Marin, 2012; Turmel et al., 2017; Jackson et al., 2018). 

Pedinophyceae and Chlorodendrophyceae are the earliest diverging core 

Chlorophyta, followed by Trebouxiophyceae, Chlorophyceae and Ulvophyceae (UTC 

clade). The Trebouxiophyceae and Chlorophyceae were unambiguously recovered as 

monophyletic groups in all analyses, with the Trebouxiophyceae sister to a clade 

containing the Chlorophyceae and Ulvophyceae. Monophyly of the Ulvophyceae was 

less clear as different analyses yielded different results. 

Incongruences between supermatrix and coalescence-based analyses, at the base of 

core Chlorophyta and at the radiation of Ulvophyceae, could be ascribed to the equal 

likelihood of the alternative topologies, the short time frame of the diversification  
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Figure 3.3: Time calibrated ultrametric tree. 

Chronogram based on the 10 most clock-like genes from the scaffold trim dataset 
(Table S3.5). Node ages were inferred starting from the coalescence-based analysis 
tree using Bayesian inference assuming a relaxed molecular clock and node 
constrains derived from fossil records (see Supplemental Material). Node values 
indicate average node ages. The grey bars represent 95% confidence interval (CI) of 
the calibration nodes. The green bars represent 95% CI for relevant nodes for this 
study: the core Chlorophyta and the Chlorophyceae – Ulvophyceae diversification. The 
two blue bars are in correspondence of the Sturtian (*) and the Marinoan (**) 
glaciations. Blas: Blastophysa; Bryo: Bryopsidales; Chld: Chlorodendrophyceae; Chlo: 
Chlorophyceae; Clad: Cladophorales; Dasy: Dasycladales; Igna: Ignatiales; Oltm: 
Oltmannsiellopsidales; Pedi: Pedinophyceae; Scot: Scotinosphaerales; Tren: 
Trentepohliales; Ulvo: Ulvales-Ulotrichales. 

 

events, and possible incomplete lineage sorting (ILS, Figure 3.2, S3.3, S3.4, S3.5). 

From an ultrastructural point of view, the divergence of the phycoplast-containing 

Chlorodendrophyceae, after the Pedinophyceae, which lack a phycoplast, would be 

most parsimonious. This scenario is congruent with previous analyses based on 

nuclear rRNA operons (Marin, 2012). Chloroplast phylogenomic data recovered 

contrasting positions for Pedinophyceae: either as sister to Chlorellales (Leliaert & 

Lopez-Bautista, 2015; Turmel et al., 2016a; Turmel et al., 2017; Jackson et al., 2018) 

or, similarly to analyses based on nuclear markers, as first diverging among core 

Chlorophyta (Fučíková et al., 2014; Melton et al., 2015; Sun et al., 2016; Turmel et al., 

2016a). The extremely short branches of the Chlorophyceae-Bryopsidales-

ulvophyceans in the coalescence-based analyses support the idea of high discordance 

in the gene trees, rapid radiation and massive ILS among these groups. An intrinsic 

advantage of coalescence-based analyses is the ability to detect and handle conflicting 

signals in gene-trees, moreover they perform better than supermatrix analyses when 

ILS is high, while supermatrix analyses may converge with high confidence on the 

wrong species-tree (Roch & Steel, 2015; Mirarab et al., 2016; Molloy & Warnow, 2018). 

Our tests always failed to reject the polytomy null hypothesis for all datasets (Figure 

S3.3). This could be a consequence of massive sequence convergence, ILS or a real 

hard polytomy, however, the failure to reject the polytomy hypothesis does not result 

in automatic acceptance of the multifucartion (Greenland et al., 2016). As the addition 

of more genes did not help to solve the phylogeny, different types of information would 

be needed (e.g.: intron position, non-overlapping ultra-conserved elements in the 
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upstream and downstream sequences of genes), and hopefully result in an 

unambiguous resolution of these phylogenetic relationships (Jarvis et al., 2014).  

An unexpected relationship that emerged from our analyses was the Bryopsidales 

sister to the rest of the Ulvophyceae, including a clade comprising Ignatiales, 

Oltmannsiellopsidales, Ulvales and Ulotrichales (UU Clade) and a clade composed of 

Trentepohliales, Cladophorales, Dasycladales, and Scotinosphaerales (TCD clade). 

The siphonous architecture of the Bryopsidales and Dasycladales would suggest a 

close relationship between the two clades. However, the phylogenetic position of the 

Bryopsidales has been difficult to resolve, with several, mainly nuclear rDNA-based 

studies placing it sister to the Dasycladales (Watanabe & Nakayama, 2007; Leliaert et 

al., 2009; Cocquyt et al., 2010b), while in plastid genome-based phylogenies 

Bryopsidales position has been very unstable, being sister to the UU clade or related 

to other core chlorophytan lineages (Leliaert & Lopez-Bautista, 2015; Turmel et al., 

2017; Fang et al., 2018). The presence of a non-canonical nuclear genetic code 

restricted to the TCD clade (Cladophorales, Dasycladales, Scotinosphaerales, 

Trentepohliales), where the stop codons TAG and TAA have been reassigned to 

glutamine (Gile et al., 2009; Cocquyt et al., 2010a), supports the idea of independent 

evolution towards siphonous organization in Bryopsidales and Dasycladales. 

The UU clade was recovered virtually by all studies so far, based on both nuclear and 

chloroplast markers. In our study, Ignatius perturbed the stability of the phylogenetic 

signal. The position of Ignatius as sister clade to Ulvales and Ulotrichales recovered in 

our analysis is consistent with phylogenies based on chloroplast genomic and 18S 

rRNA data (Watanabe & Nakayama, 2007; Turmel et al., 2017), but differs from a study 

based on 8 nuclear and 2 chloroplast markers, where Ignatius was recovered as sister 

to the TBCD clade (Cocquyt et al., 2010b). Chloroplast phylogenomic analyses 

provided so far only an incomplete picture for the TCD(B) clade, due to the highly 

deviant chloroplast genes in Cladophorales (Del Cortona et al., 2017) and restricted 

taxon sampling for Dasycladales, Scotinosphaerales and Trentepohliales. 

Despite the large confidence intervals in the time-calibrated analyses, the relationships 

between Chlorophyceae and Ulvophyceae are better understood when we also 

consider the time-frame of their divergence. Our relaxed clock analyses indicated that 

the Ulvophyceae emerged during the Cryogenian, a period characterized by extreme 



 

91 
 

conditions that resulted in at least two global-scale glaciations (Hoffman et al., 1998), 

the Sturtian glaciation that lasted for 50 million years, from 716 to 659 mya (Macdonald 

et al., 2010), and the shorter Marinoan glaciation, from 645 to 635 mya (Kennedy et 

al., 2008; Shields, 2008). The global-scale glaciations resulted in most or all the ocean 

surface to be frozen for millions of years (“snowball” or “slushball” earth), followed by 

melting and transition to a “greenhouse” world (Hoffman et al., 1998; Micheels, 2008; 

Bechstädt et al., 2018). During the global-scale glaciations, photosynthetic eukaryotes, 

including the ancestors of Chlorophyceae and Ulvophyceae, may have survived in 

isolated refugia of brackish or fresh water, similar to modern diatoms that proliferated 

in brine channels in the Arctic and Antarctic ice (van Leeuwe  et al., 2018). Despite the 

wide, 100 million years time window, the environmental conditions may have slowed 

down diversification. At the end of the Sturtian, and after the Marinoan glaciation 

(Marinoan Meltdown) (Shields, 2008), green seaweeds could flourish in the marine 

benthic environments that became available (Rise of the Algae) (Brocks et al., 2017). 

Macroscopic growth and different cyto-morphotypes likely arose independently, 

possibly as a response to increased grazing pressure.  

Evidences for benthic macroalgae persistence during the Marinoan-glaciation was 

found in black shales from the Marinoan-age Nantuo Formation in South China (Ye et 

al., 2015). This hypothesis is supported as well by molecular fossil records, that 

showed a significant increase in steroid diversity and abundance during the narrow 

time window between the Sturtian and Marinoan glaciations, a molecular signature of 

Archaeplastida (Brocks et al., 2017). Similarly, a switch in steroid diversity of the 

sediments was observed after the Permian-Triassic mass extinction that led to the 

dominance of algae bearing secondary plastids in the oceans (Grantham & Wakefield, 

1988; Brocks et al., 2017). Algal proliferation resulted in more efficient energy transfer 

and novel, richer food webs, allowing the evolution of larger and more complex 

organisms. Diversification of new organisms during the early Ediacardan period would 

then result in the Avalon explosion, 575 million years ago (Shen et al., 2008). Despite 

the fossil records that indicate the presence of a putative Ulvophycean ancestor during 

the Neoproterozoic (i.e.: Proterocladus) (Butterfield et al., 1994), a more exhaustive 

picture would suggest a problematic interpretation for Proterocladus and the advent of 

modern seaweeds diversity only after the Cryogenian global-scale glaciations (Knoll et 

al., 2006).  
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Figure 3.4: Ancestral state estimation. 

Ancestral state estimation of environmental (left) and cyto-morphological (right) traits, plotted on the ultrametric tree (Figure 3.3, Table 
S3.5). Note that, except for Oltmannsiellopsidales, each transition to marine benthic environment coincided with evolution in 
macroscopic growth in Ulvophyceae. 
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In this perspective, the alternation of freshwater and marine ulvophyceans fits 

perfectly, indicating multiple independent events of transitions between marine and 

freshwater environments, even in a parsimonious scenario. This complex distribution 

of environments reflects the evolutionary history of Ulvophyceae. Despite the short 

timeframe for their radiation during and at the end of the Cryogenian glaciations, 

Ulvophyceae seized multiple opportunities for transition to new ecological niches, and 

each time, a novel and unique way to macroscopic growth evolved. 

 

Conclusions 

Green seaweeds’ unique cyto-morphological characteristics represent distinct 

solutions to macroscopic growth. To gain a better understanding of green seaweed 

evolution, a comprehensive, large-scale, phylogeny of the core Chlorophyta was 

generated using the largest gene set to date, mined from whole genome and 

transcriptome datasets. Our results are consistent with some previous analyses based 

on chloroplast phylogenomics data (Turmel et al., 2017; Jackson et al., 2018), but shed 

new light on the relationships between core Chlorophyta lineages. The monophyly of 

Trebouxiophyceae, Chlorophyceae and Ulvophyceae was confirmed, and within the 

Ulvophyceae, the relationships between the green seaweeds were largely resolved. 

The relationships inferred are more conservative than previous hypotheses (Cocquyt 

et al., 2010b) under several molecular features (for example, the recovery of the 

monophyly of the alternative nuclear genetic code). Our reconstruction does not 

require a complex step-wise acquisition and/or loss of shifts in the translational 

apparatus. Moreover, the analyses support previous hypotheses of independent 

evolution of macroscopic growth in the different marine benthic ulvophycean clades 

(Cocquyt et al., 2010b). Each clade solved the quest to macroscopic growth 

independently, by acquiring unique cyto-morphologies. 

Although the concordance between our multiple analyses is not perfect, their 

evolutionary and biological interpretation is not influenced by the small incongruences 

observed in our results. Incongruences in some relationships (e.g.: Chlorophyceae, 

Bryopsidales, ulvophyceans) may be due to massive amount of ILS, extinction and 

rapid radiation, which impact the supermatrix and the coalescence-based analyses in 

different ways (Roch & Steel, 2015; Molloy & Warnow, 2018). The rapid radiation and 
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differentiation of Ulvophyceae is consistent with their large differences in fundamental 

cytological features, such as cellular architecture, nuclear division, ultrastructure of the 

flagellar base, cell wall composition, and reproduction, which ultimately led van den 

Hoek elevate different ulvophyte orders to the class level (Van den Hoek et al., 1995). 

These findings represent a fundamental framework to understand the molecular 

players behind the different ways of evolving macroscopic growth and multicellularity, 

the transition from freshwater to marine environments and the makeover of the 

translational apparatus. 
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Materials and Methods 
 

Dataset retrieval, RNA extraction and sequencing 

For this study, the 15 genomes and 40 transcriptomes datasets reported in Table 2.1 

were used. Dataset retrieval, RNA extraction and sequencing was performed as 

described in Chapter 2, Materials and Methods (Tables 2.3, Materials and Methods).  

 

Transcriptome assembly, frameshift errors correction and ORF 
detection 

Reads trimming, filtering and transcriptome assemblies were performed as indicated 

in Chapter 2, Materials and Methods. Then, for each of the 40 transcriptomes, 

transcripts were clustered with CD-HIT-EST v. 4.6.1 (Li & Godzik, 2006) with a 

similarity cut-off of 97.5%, and only the longest transcript was retained for downstream 

analysis as representative of the cluster. Taxonomic profiling of the transcripts was 

performed using the following protocol: first, the transcripts were compared to the 

NCBI non-redundant protein database by sequence similarity searches, using Tera-

BLAST DeCypher (Active Motif, USA); then, for each transcript, sequence similarity 

searches were combined with the NCBI Taxonomy information of the top ten BLAST 

hits in order to discriminate between eukaryotic and bacterial transcripts or transcripts 

lacking similarity to known protein-coding genes. Only eukaryotic transcripts were 

retained for downstream analysis, bacterial transcripts and transcripts lacking 

sequence similarity to known proteins were discarded. 

Transcripts with putative frameshift errors were identified after initial processing in 

TRAPID (Van Bel et al., 2013), using the Chlamydomonas reinhardtii proteome as 

reference database for the sequence similarity searches. Transcripts carrying a 

putative frameshift error were corrected with a local version of FrameDP 1.2.2 (Gouzy 

et al., 2009), using the Chlamydomonas proteome as reference to guide the frameshift 

correction step. The longest coding frame was detected with a custom java script 

plugged into TRAPID using four different translation tables (1, 6, 11 and 16), to take 

into account the alternative nuclear genetic codes (Cocquyt et al., 2010a), as well as 

the chloroplast and mitochondrial translation tables. Briefly, for each transcript coding 
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frames were predicted with each of the four translation tables. Then, for each 

transcript, the longest coding sequences detected was retained for the downstream 

analysis, and the corresponding translation table recorded. Concordance with 

orthologous sequences predicted by the TRAPID pipeline by sequence similarity 

searches was also taken into account. Each transcript was translated into the 

corresponding amino acid sequences with the transeq algorithm from the EMBOSS 

package, using the appropriate translation table, and added to the proteome data of 

the 15 genomes described in Table 2.1, resulting in 1,228,821 amino acid sequences. 

 

Gene Family inference 

Sequences were used to build a custom PLAZA 4.0 instance (Van Bel et al., 2018). 

Briefly: all-against-all sequence similarity comparison was executed with DIAMOND v. 

0.9.18 (Buchfink et al., 2014), and the similarity matrix was used to infer homologous 

relationships among proteins using the graph-based Markov clustering method 

implemented in Tribe-MCL v. 10-201 (Enright et al., 2002) with parameters: -scheme 

4 -I 2. This resulted in the clustering of 976,181 protein sequences (79.5% of the total 

proteins) into 69,462 gene families, leaving 252,640 singleton proteins. Homologous 

relationships between sequences were further refined by building subfamilies on the 

same protein similarity graph with OrthoFinder v. 1.1.4 (Emms & Kelly, 2015), which 

resulted in the identification of 158,039 subfamilies. A procedure was applied to 

identify and flag outlier proteins from gene families and subfamilies if they showed 

similarity only to a minority of all family members (Proost et al., 2009). Single-copy 

families were selected by identifying the 620 picoPLAZA single–copy gene families 

(Vandepoele et al., 2013). At this point, to remove potential contaminants in the 

transcriptomic data from the single-copy gene families, only sequences that were 

classified as “Viridiplantae” after an additional sequence similarity search with the 

GhostKOALA (Kanehisa et al., 2016) webserver were retained for downstream 

analyses. Then, to further reduce the residual redundancy of the transcriptome 

datasets in the single-copy gene families, for each gene family the nucleotide 

sequences of each species were collapsed with CAP3 (Huang & Madan, 1999), using 

stringent parameters to avoid artefactual creation of chimeras: gap penalty 12 (-g) and 

overlap percent identity cutoff 98% (-p). This set of 620 quasi single-copy genes was 

used for the downstream phylogenetic analyses. 
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Phylogenetic Analysis 

Amino acid sequences of the  620 gene families were aligned with MAFFT v. 7.187 

(Katoh & Standley, 2013), using accuracy-oriented parameters (--localpair --

maxiterate 1,000) and an offset value (--ep) of 0.075. To identify and trim eventual 

residual in-paralogs, we followed phylogeny-guided approaches. As a first step, a 

Maximum Likelihood (ML) tree for the resulting alignments was obtained with IQtree 

v. 1.6.0 (Nguyen et al., 2015), inferring the best model and allowing invariable sites 

and free rate of heterogeneity across sites (Soubrier et al., 2012; Kalyaanamoorthy et 

al., 2017), with parameters: number of ultra-fast bootstrap replicates (-bb) 1,000 

(Hoang et al., 2018) and SH-aLRT branch test (Guindon et al., 2010) with 1,000 

replicates (-alrt). The resulting trees were visualized in MEGA v. 5.1 (Tamura et al., 

2011) and the corresponding alignments were inspected and processed in Geneious 

v. 8.0.5 (Biomatters Ltd., https://www.geneious.com/). 

Phylogenetic trees were carefully cured by hand to retain only full length or fragments 

of co-orthologs single-copy gene families: (1) except for Mesostigma viride and 

Chlorokybus atmophyticus, which were allowed to cluster with either the Streptophyta 

or the Chlorophyta, Streptophyta and Chlorophyta monophyly was enforced for the 

remaining species, e.g. Arabidopsis thaliana sequences clustering within the 

Trentepohliales (or vice versa) would be excluded, as obvious sign of paralogy or 

contamination of environmental samples. (2) For a species with two or more 

overlapping sequence, one in the expected phylogenetic position (according to 

orthologous sequences of other species in the same taxon), the other one in a 

conflicting position, the conflicting sequences were removed. In case of overlapping 

sequences with concordant phylogenetic signal, regardless of their phylogenetic 

position, but always enforcing Streptophyta and Chlorophyta monophyly, the longest 

one was retained, if full-length, otherwise both were retained. In case of conflicting but 

non-overlapping sequences, both sequences were retained and scaffolded (see 

below), since they could represent bona fide single-copy genes with different rates of 

evolution across sites. (3) Gene family alignments with sequences from less than 30 

species (more than 50% of species not represented) were discarded. (4) Alignments 

composed by two or more near-identical paralogs (e.g.: ribosomal subunit proteins) 
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and where confident segregation of the paralogs was difficult were discarded. After 

filtering, 539 out of the 620 initial gene families were retained (hereafter referred to as 

“coreGF”).  

Each gene family with more than one sequence per species (398 gene families), was 

processed independently for orthology-guided scaffolding with a custom script. First, 

an all-against-all sequence similarity search was performed with BLASTp v. 2.5.0+ 

(Boratyn et al., 2013), using an e-value cut-off of 10e-5. The sequence with the highest 

bitscore was selected as reference for that gene family. Then, for each species with 

more than one sequence, the sequences were concatenated according to their relative 

position to the reference sequence, based on the BLASTp alignments. This resulted 

in gene families with only one sequence per species. Moreover, this approach defined 

a conservative “unscaffold” dataset, where within each gene family species with more 

than one sequence were discarded, and a more comprehensive but potentially noisier 

“scaffold” dataset, where multiple sequences of the same species were scaffolded. 

Unscaffold and scaffold dataset gene families were aligned again with MAFFT, using 

accuracy-oriented parameters (--localpair --maxiterate 1,000 –ep 0.075). A trimmed 

version of both datasets was created by trimming the amino acid alignments with 

TrimAl v. 1.2 (Capella-Gutiérrez et al., 2009), with parameters: gapthreshold 0.75 and 

simthreshold 0.001. A subset of 355 gene families, that focused on ulvophyceans 

(hereafter referred to as ulvoGF dataset), was obtained by selecting gene families with 

at least one representative species for each Order of ulvophyceans. Two pruned 

datasets, where either Ignatius tetrasporus or Acetabularia acetabulum and 

Scotinosphaera lemnae were excluded, were generated as well. In this case, the 

corresponding amino acid sequences were discarded before the sequence alignment 

step. 

For each gene family, ML trees were built with IQtree, inferring the best model and 

rate of heterogeneity across sites (Figure S3.7). All ML analyses were run using IQtree 

with 1,000 ultra-fast bootstrap and SH-aLRT branch test replicates. Gene trees were 

used for the partitioned supermatrix analyses and for the coalescent-based analyses. 

ML supermatrix analyses were performed using IQtree with two settings: 1) a gene-

wise partitioned analysis (Chernomor et al., 2016) was performed, assigning the best 

substitution model inferred to each partition; 2) an analysis using mixture models was 
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performed using an LG+F+G plus a C20-profile mixture model of substitution rates (Si 

Quang et al., 2008). 

Coalescence-based analyses were run with ASTRAL v. 5.6.1 (Zhang et al., 2018). 

First, for each ML gene tree, low support branches (ufBS support < 10) were collapsed 

with Newick Utilities v. 1.6 (Junier & Zdobnov, 2010). Branches contracted in the ML 

gene trees were removed as well from the pool of the corresponding 1,000 bootstrap 

trees generated during the ML reconstruction. Then, two independent runs were 

performed either using the ML tree for each gene (BestML), or using the multilocus 

bootstrap support (MLBS) approach. For the MLBS analysis, 100 replicates were run 

(-r) starting from the 1,000 contracted bootstrap trees for each gene, allowing gene 

and site resampling (--gene-resampling flag). 

Statistical tests for rejecting the null hypothesis of polytomies at the branch-level were 

performed in ASTRAL (-t 10 flag), following Sayyari and colleagues (Sayyari & 

Mirarab, 2018). Briefly, for each dataset (coreGF and ulvoGF, scaffold-unscaffold, trim 

and untrim), the coalescence-based MLBS tree was tested (-q flag) by random 

sampling subsets of ML gene trees representing 1-100% of the total gene families in 

the dataset, with a minimum of 20 ML gene trees per subset. For each dataset and for 

each subset, ten independent replicates were generated, and analyzed with ASTRAL 

on BestML mode with the –t 10 flag –q flag to score the MLBS trees. The support of 

some key branches was analyzed in each subset of the datasets and the median of 

the p-values for each subset of trees was calculated. 

Clustering of the ML gene trees was performed with the RPANDA v. 1.3 package 

(Morlon et al., 2015). First, the pairwise Jensen-Shannon distances between the 

spectral density profiles of the ML gene topologies were computed (Lewitus & Morlon, 

2016). Based on the pairwise distances, the topologies were grouped into clusters by 

hierarchical clustering, and the bootstrap support of each cluster was evaluated (100 

BS replicated). The most divergent cluster was considered as an outlier. Then, 

supermatrix and coalescence-based analyses were performed with IQtree and 

ASTRAL, respectively, for the gene families of each cluster as described above, as 

well as for the genes of all the clusters excluding the genes in the outlier cluster. 
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The species trees with the overall highest support inferred from the previous analyses 

were collected. Significance of topological incongruences between the well supported 

topologies (relative position of Chlorodendrophyceae and Pedinophyceae, basal 

relationships of Ulvophyceae, and position of Ignatiales and the Dasycladales-

Scotinosphaerales clade) were tested using Approximately Unbiased (AU) tests 

(Shimodaira, 2002) implemented in IQtree, with 100,000 RELL resamplings (Kishino 

et al., 1990). 

In addition to the AU test, site-wise and gene-wise log-likelihood scores (Chiari et al., 

2012; Shen et al., 2017) were calculated to assess support for alternative topologies. 

Briefly, for each trimmed amino acid dataset, the ML support of the 22 topologies was 

inferred with a IQtree run constrained to that topology (-g), using the LG+F+R5 

substitution rates model. For each pair of constrained trees, the differences in site-

wise log-likelihood scores were calculated in RAxML v. 8.2.9 (Stamatakis, 2014) with 

PROTGAMMALGF model and without the Broyden–Fletcher–Goldfarb–Shanno 

parameter optimization (--no-bfgs). Then, the gene-wise log-likelihood scores and the 

percentage of genes supporting the two compared topologies were calculated as 

outlined by Shen and colleagues (Chiari et al., 2012; Shen et al., 2017). 

 

Calibrated phylogenetic tree 

Due to the high computational cost, the molecular clock analysis was restricted to the 

539 coreGF scaffold trim gene set. Clock-likeliness of each gene was assessed with 

the package SortDate (Smith et al., 2018) against the ML supermatrix and the 

coalescence-based topologies, scoring the trees on minimal conflict, low root-to-tip 

variance, and discernible amounts of molecular evolution. The 10 most clock-like 

genes for each topology were concatenated and subjected to relaxed clock analyses 

(2,806 and 2,857 amino acid residues for the ML supermatrix and the coalescence-

based topology, respectively). Node calibrations were transferred from fossil 

information and from node age estimates from previous studies (Table S3.4). All 

analyses were run with the same set of calibration nodes, except for the UB 

(Proterocladus) and the RT (root age, i.e.: Streptophyta-Chlorophyta split) nodes. 

Proterocladus, a Neoproterozoic fossil, is tentatively assigned to the Order of 

Cladophorales (Porter, 2004), its corresponding calibration node was either included 
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(UB1) or excluded (UB0). Regarding the root age, three different priors were used (RT1-

RT3). An additional analysis was run without assigning a prior value for the root age 

(RT0) (Table S3.4, S3.4). 

Relaxed molecular clock analyses were run with PhyloBayes 4.1b (Lartillot et al., 

2009). Two sets of analyses were run on two fixed topologies (the ML supermatrix and 

the coalescence-based topologies), using the set of clock-like genes for each 

topology. Both lognormal autocorrelated clock (-ln flag) and uncorrelated gamma 

multiplier clock (-ugam flag) models were tested for each dataset, and the models were 

run with either LG+Γ4 or CATGTR+Γ4 models of amino acid substitutions. In total, 64 

different analyses were run (Table S7) to test the influence of different models, and of 

root and key prior ages on the age estimations. For each analysis, two distinct MCMC 

chains were run for at least 10,000 generations.  The convergence of the log 

likelihoods and parameters estimates were tested on PhyloBayes. Chains were 

summarized after discarding the first 750 generations as burn-in. 

The ultrametric trees were used to guide the ancestral state reconstruction of the 

ecological and cyto-morphological traits in Phytools (Revell, 2011). The posterior 

probabilities of the ancestral state of each node were calculated from summaries of 

1,000 replicates of simulated stochastic character map (make.simmap), using 

empirical Bayes method under the ADR model, which permits backward and forward 

rates between states to have different values. 
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Supplementary Information 
 

 

Figure S3.1: Supermatrix occupancy of coreGF. 

Supermatrix occupancy of the 539 coreGF single copy-gene families. From the left to the right, the genes with higher taxon 
occupancy. Dark green: scaffolded sequence (absent from the unscaffold datasets); light green: available sequence; white: missing 
sequence. 
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Figure S3.2: Supermatrix occupancy of ulvoGF. 

Supermatrix occupancy of the 355 ulvoGF single copy-gene families. From the left to the right, the genes with higher taxon occupancy. 
Dark green: scaffolded sequence (absent from the unscaffold datasets); light green: available sequence; white: missing sequence. 
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Figure S3.3: Test for polytomy null-hypothesis. 

Polytomy test results for selected branches for each dataset. Gene trees were built 
with random growing subsets of genes (1%, 2%, ... 100%, but not less than 20 genes), 
10 replicates were run for each dataset and each subset. The median of the p-values 
of selected branches for each subset is plotted on the y-axis, against the number of 
genes in the subset (x-axis). The horizontal black line indicates p-value = 0.05. 
Increasing gene numbers never reduced the p-value of the rejection. 
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Figure S3.4: Ignatiales- and Dasycladales- Scotinosphaerales - pruned 
phylogenies 

Summary of support for hypotheses of Chlorophyta relationships, based on the amino 

acid and codon-wise alignments of 8 single-copy gene datasets across 24 distinct 

supermatrix or coalescence-based analyses where Ignatius (top panel), or 

Dasycladales-Scotinosphaerales (bottom panel) were excluded. coreGF unscaffold: 

539 single-copy genes, with partial sequences removed. coreGF scaffold: 539 single-

copy genes, with partial sequences scaffolded. coreGF unscaffold TRIM: as coreGF 

unscaffold, but with less conserved regions filtered. coreGF scaffold TRIM: as coreGF 

scaffold, but with less conserved regions filtered. ulvoGF unscaffold: 355 single-copy 

genes subset of coreGF focussing on Ulvophyceae, with partial sequences removed. 

ulvoGF scaffold: 355 single-copy genes subset of coreGF focussing on Ulvophyceae, 

with partial sequences scaffolded. ulvoGF unscaffold TRIM: as ulvoGF unscaffold, but 

with less conserved regions filtered. ulvoGF scaffold TRIM: as ulvoGF scaffold, but 

with less conserved regions filtered. Partitioned: gene-wise partition of the 

supermatrix, with substitution model for each partition inferred by the gene-tree best 

model, allowing invariable sites and free rate of heterogeneity across sites. BestML: 

coalescence-based analysis. MLBS: as BestML, but using the Multi-Locus Bootstrap 

Support approach. Green: strong support. Yellow: low support. Red: no support. 

Strong support refers to bootstrap values or posterior probabilities > 75% or 0.75, 

respectively, for the relationships depicted. 
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Figure S3.5: Heatmaps showing the pairwise Jensen-Shannon distances 
between gene trees after hierarchical clustering. 

Red indicates low distance, while yellow color indicates high distances. (A) coreGF 
noscaffold. (B) coreGF scaffold. (C) coreGF TRIM noscaffold. (D) coreGF TRIM 
scaffold. 

 



108 
 

 

 

 

Figure S3.6: Cluster-wise phylogenetic analyses. 

Summary of supermatrix or coalescence-based analyses of the clusters identified in 
Figure S3. Within square brackets are indicated the number of genes in the cluster, # 
indicates the outlier cluster (i.e.: the one showing the highest Jensen-Shannon 
distances). ALL indicates analyses for all the genes in all the cluster, except the genes 
from the outlier cluster. coreGF unscaffold: 539 single-copy genes, with partial 
sequences removed. coreGF scaffold: 539 single-copy genes, with partial sequences 
scaffolded. coreGF unscaffold TRIM: as coreGF unscaffold, but with less conserved 
regions filtered. coreGF scaffold TRIM: as coreGF scaffold, but with less conserved 
regions filtered. ulvoGF unscaffold: 355 single-copy genes subset of coreGF focussing 
on Ulvophyceae, with partial sequences removed. ulvoGF scaffold: 355 single-copy 
genes subset of coreGF focussing on Ulvophyceae, with partial sequences scaffolded. 
ulvoGF unscaffold TRIM: as ulvoGF unscaffold, but with less conserved regions 
filtered. ulvoGF scaffold TRIM: as ulvoGF scaffold, but with less conserved regions 
filtered. Partitioned: gene-wise partition of the supermatrix, with substitution model for 
each partition inferred by the gene-tree best model, allowing invariable sites and free 
rate of heterogeneity across sites. MLBS: coalescence-based analysis using the Multi-
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Locus Bootstrap Support approach. Green: strong support. Yellow: low support. Red: 
no support. Strong support refers to bootstrap values or posterior probabilities > 75% 
or 0.75, respectively, for the relationships depicted. 
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Figure S3.7: Best substitution models inferred for the genes in each dataset. 

Histogram showing the best substitution model and rate of heterogeneity across sites inferred for the genes of each dataset.
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Table S3.1: Alignments metrics 

 Untrimmed alignments Trimmed alignments 

 coreGF 
unscaffold 

coreGF 
scaffold 

ulvoGF 
unscaffold 

ulvoGF 
scaffold 

coreGF 
unscaffold 

coreGF 
scaffold 

ulvoGF 
unscaffold 

ulvoGF 
scaffold 

# genes 539 539 355 355 539 539 355 355 

# sites 
(nt) 

1,751,925 1,877,544 1,143,789 1,244,520 342, 501 342,501 252,612 252,612 

# sites 
(aa) 

583,975 625,848 381,263 414,840 114,167 114,167 84,204 84,204 

% 
missing 
data 

65.6 69.7 43.7 54.8 27.3 19.9 24.0 15.9 
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Table S3.2: core Chlorophyta and ulvophyceans diversification AU-tests. 

AU test: Bryo-Chlo-Ulvo 

dataset Tree logL deltaL bp-RELL p-KH p-SH c-ELW p-AU 

coreGF noscaffold 
1 -15,791,662.12 0 0.9877 + 0.9865 + 1.0000 + 0.9877 + 0.9877 + 
2 -15,791,832.34 170.224 0.0123 - 0.0135 - 0.0135 - 0.0123 - 0.0123 - 

coreGF scaffold 
1 -17,211,164.2 0 0.9869 + 0.9864 + 1.0000 + 0.9869 + 0.9862 + 
2 -17,211,348.3 184.097 0.0131 - 0.0136 - 0.0136 - 0.0131 - 0.0138 - 

coreGF noscaffold  
TRIM 

1 -3,848,877.26 1.132 0.4969 + 0.4952 + 0.4952 + 0.4970 + 0.4951 + 
2 -3,848,876.12 0 0.5031 + 0.5048 + 1.0000 + 0.5030 + 0.5049 + 

coreGF scaffold  
TRIM 

1 -4,182,782.87 0 0.7081 + 0.7080 + 1.0000 + 0.7082 + 0.7136 + 
2 -4,182,827.07 44.192 0.2918 + 0.2920 + 0.2920 + 0.2918 + 0.2864 + 

ulvoGF noscaffold 
1 -10,849,295.9 0 0.9916 + 0.9915 + 1.0000 + 0.9916 + 0.9913 + 
2 -10,849,457.1 161.15 0.0084 - 0.0085 - 0.0085 - 0.0084 - 0.0087 - 

ulvoGF scaffold 
1 -11,946,468 0 0.9893 + 0.9890 + 1.0000 + 0.9893 + 0.9884 + 
2 -11,946,637.9 169.952 0.0107 - 0.0110 - 0.0110 - 0.0107 - 0.0116 - 

ulvoGF noscaffold  
TRIM 

1 -2,851,993.21 0 0.5974 + 0.5987 + 1.0000 + 0.5975 + 0.5982 + 
2 -2,852,009.83 16.622 0.4026 + 0.4013 + 0.4013 + 0.4025 + 0.4018 + 

ulvoGF scaffold  
TRIM 

1 -3,124,270.99 0 0.7499 + 0.7510 + 1.0000 + 0.7499 + 0.7474 + 
2 -3,124,320.02 49.031 0.2501 + 0.2490 + 0.2490 + 0.2501 + 0.2526 + 

AU test: Chld-Pedi 

dataset Tree logL deltaL bp-RELL p-KH p-SH c-ELW p-AU 

coreGF noscaffold 
1 -15,791,662 0 1.0000 + 1.0000 + 1.0000 + 1.0000 + 1.0000 + 
2 -15,791,999 337.044 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 

coreGF scaffold 
1 -17,211,164.2 0 1.0000 + 1.0000 + 1.0000 + 1.0000 + 1.0000 + 
2 -17,211,561.5 397.272 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 

coreGF noscaffold  
TRIM 

1 -3,848,876.18 0 0.9569 + 0.9563 + 1.0000 + 0.9568 + 0.9559 + 
2 -3,848,957.15 80.976 0.0431 - 0.0437 - 0.0437 - 0.0432 - 0.0441 - 

coreGF scaffold  
TRIM 

1 -4,182,782.81 0 0.9016 + 0.9009 + 1.0000 + 0.9013 + 0.9012 + 
2 -4,182,848.9 66.085 0.0984 + 0.0991 + 0.0991 + 0.0987 + 0.0988 + 

ulvoGF noscaffold 
1 -10,849,295.9 0 0.9987 + 0.9987 + 1.0000 + 0.9987 + 0.9988 + 
2 -10,849,499.2 203.306 0.0013 - 0.0014 - 0.0014 - 0.0013 - 0.0012 - 

ulvoGF scaffold 
1 -11,94,6468 0 0.9995 + 0.9994 + 1.0000 + 0.9995 + 0.9996 + 
2 -11,946,705.9 237.929 0.0005 - 0.0006 - 0.0006 - 0.0005 - 0.0004 - 

ulvoGF noscaffold  
TRIM 

1 -2,851,993.2 0 0.7925 + 0.7911 + 1.0000 + 0.7922 + 0.7870 + 
2 -2,852,027.89 34.683 0.2075 + 0.2089 + 0.2089 + 0.2078 + 0.2130 + 

ulvoGF scaffold  
TRIM 

1 -3,124,271.12 0 0.6163 + 0.6159 + 1.0000 + 0.6161 + 0.6113 + 
2 -3,124,284.86 13.739 0.3836 + 0.3841 + 0.3841 + 0.3839 + 0.3887 + 

deltaL: logL difference from the maximal logL in the set. 

bp-RELL: bootstrap proportion using RELL method. 

p-KH: p-value of one sided Kishino-Hasegawa test. 

p-SH: p-value of Shimodaira-Hasegawa test. 

c-ELW: Expected Likelihood Weight. 

p-AU: p-value of approximately unbiased (AU) test. 

Plus signs denote the 95% confidence sets. Minus signs denote significant exclusion. All tests performed 100,000 resamplings using 

the RELL method. 
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Table S3.3: Ignatius position AU-tests. 

AU test: Igna 

dataset Tree logL deltaL bp-RELL p-KH p-SH c-ELW p-AU 

coreGF noscaffold 

1 -15,791,661 0 0.4040 + 0.5037 + 1.0000 + 0.4056 + 0.6439 + 
2 -15,791,765 103.93 0.0323 - 0.0674 + 0.2229 + 0.0319 - 0.1019 + 
3 -15,791,661 0 0.4057 + 0.4963 + 0.8447 + 0.4055 + 0.6531 + 
4 -15,791,780 118.92 0.1574 + 0.1665 + 0.2255 + 0.1564 + 0.1879 + 
5 -15,791,909 247.72 0.0005 - 0.0074 - 0.0113 - 0.0005 - 0.0037 - 

coreGF scaffold 

1 -17,211,164 0 0.4110 + 0.5003 + 0.8368 + 0.4137 + 0.6500 + 
2 -17,211,270 105.62 0.0572 + 0.0917 + 0.2733 + 0.0565 + 0.1357 + 
3 -17,211,164 0 0.4148 + 0.4997 + 1.0000 + 0.4135 + 0.6597 + 
4 -17,211,320 155.99 0.1170 + 0.1279 + 0.1703 + 0.1163 + 0.1463 + 
5 -17,211,550 385.4 0.0000 - 0.0004 - 0.0005 - 0.0000 - 0.0006 - 

coreGF noscaffold  
TRIM 

1 -3,848,877 1.134 0.2000 + 0.4971 + 0.7028 + 0.2021 + 0.5484 + 
2 -3,848,899 22.713 0.1342 + 0.4108 + 0.7231 + 0.1329 + 0.3274 + 
3 -3,848,877 1.134 0.2014 + 0.4971 + 0.7028 + 0.2019 + 0.5488 + 
4 -3,848,876 0 0.4643 + 0.5029 + 1.0000 + 0.4630 + 0.5262 + 
5 -3,849,029 152.94 0.0001 - 0.0639 + 0.0820 + 0.0001 - 0.0005 - 

coreGF scaffold  
TRIM 

1 -4,182,822 39.404 0.1485 + 0.3463 + 0.4750 + 0.1508 + 0.4015 + 
2 -4,182,833 49.973 0.0987 + 0.2442 + 0.4789 + 0.0977 + 0.2475 + 
3 -4,182,822 39.404 0.1504 + 0.3463 + 0.4750 + 0.1508 + 0.4016 + 
4 -4,182,783 0 0.6024 + 0.6537 + 1.0000 + 0.6007 + 0.6821 + 
5 -4,183,033 250.47 0.0000 - 0.0001 - 0.0017 - 0.0000 - 0.0000 - 

ulvoGF noscaffold 

1 -10,849,296 0 0.3510 + 0.5000 + 0.8502 + 0.3548 + 0.6308 + 
2 -10,849,366 70.066 0.0662 + 0.1373 + 0.3830 + 0.0653 + 0.1790 + 
3 -10,849,296 0 0.3565 + 0.5000 + 1.0000 + 0.3551 + 0.6373 + 
4 -10,849,374 78.303 0.2259 + 0.2445 + 0.3406 + 0.2246 + 0.2808 + 
5 -10,849,524 228.58 0.0003 - 0.0071 - 0.0110 - 0.0003 - 0.0019 - 

ulvoGF scaffold 

1 -11,946,468 0 0.3519 + 0.5068 + 1.0000 + 0.3543 + 0.6450 + 
2 -11,946,534 65.504 0.1075 + 0.1851 + 0.4695 + 0.1064 + 0.2546 + 
3 -11,946,468 0 0.3547 + 0.4932 + 0.8458 + 0.3542 + 0.6365 + 
4 -11,946,567 99.317 0.1859 + 0.2162 + 0.2998 + 0.1850 + 0.2378 + 
5 -11,946,819 350.58 0.0000 - 0.0004 - 0.0005 - 0.0000 - 0.0000 - 

ulvoGF noscaffold  
TRIM 

1 -2,852,007 14.265 0.1642 + 0.4305 + 0.5863 + 0.1663 + 0.4358 + 
2 -2,852,006 12.597 0.2017 + 0.4186 + 0.7725 + 0.2000 + 0.4275 + 
3 -2,852,007 14.265 0.1651 + 0.4305 + 0.5863 + 0.1663 + 0.4439 + 
4 -2,851,993 0 0.4689 + 0.5814 + 1.0000 + 0.4674 + 0.5709 + 
5 -2,852,131 137.62 0.0000 - 0.0092 - 0.0334 - 0.0000 - 0.0003 - 

ulvoGF scaffold  
TRIM 

1 -3,124,319 48.194 0.1721 + 0.3003 + 0.4686 + 0.1721 + 0.3697 + 
2 -3,124,318 47.546 0.1085 + 0.2372 + 0.5131 + 0.1086 + 0.2771 + 
3 -3,124,313 42.563 0.1454 + 0.2881 + 0.5007 + 0.1454 + 0.3350 + 
4 -3,124,271 0 0.5740 + 0.7119 + 1.0000 + 0.5738 + 0.7340 + 
5 -3,124,489 218.71 0.0000 - 0.0005 - 0.0112 - 0.0000 - 0.0001 - 

deltaL: logL difference from the maximal logL in the set. 

bp-RELL: bootstrap proportion using RELL method. 

p-KH: p-value of one sided Kishino-Hasegawa test. 

p-SH: p-value of Shimodaira-Hasegawa test. 

c-ELW: Expected Likelihood Weight. 

p-AU: p-value of approximately unbiased (AU) test. 

Plus signs denote the 95% confidence sets. Minus signs denote significant exclusion. All tests performed 100,000 resamplings 

using the RELL method. 
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Table S3.4: Node calibrations used for relaxed molecular clock analysis 

Node Node calibration Fossil or transfer period prior reference 

C Characeae C1 Transfer from 
other study 

Devonian U[416-∞[ (Magallón 
et al., 2013) 

L Land plants 
(embryophytes) 

L1 Cryptospore 
assemblage from 
the Middle 
Ordovician 
(Dapingian) 

Ordovician U[475-∞[ (Magallón 
et al., 2013) 

V Vascular plants V1 Baragwanathia 
longifolia 

Silurian U[421-∞[ (Magallón 
et al., 2013) 

T1 Botryococcus 
stem node 

T1 Botryococcus Carboniferous U[299-∞ [ (Colbath & 
Grenfell, 
1995) 

UA Ostreobium stem 
node 

UA1 Transfer from 
other study 

n/a U[533-
425] 

(Verbrugge
n et al., 
2009) 

UB Ulvophyceae/Chl
orophyceae stem 
node 

UB1 Proterocladus Neoproterozoic U[716-∞ [ (Butterfield 
et al., 1994) 

UB0 Absence of 
calibration 

n/a n/a n/a 

RT Streptophyta-
Chlorophyta split 

RT1 Transfer from 
other study 

n/a U[1279-
1159] 

(Herron et 
al., 2009) 

RT2 Transfer from 
other study 

n/a U[1015-
863] 

(Parfrey et 
al., 2011) 

RT3 RT1/RT2 hybrid n/a U[1279-
863] 

n/a 

RT0 n/a n/a n/a n/a 
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Table S3.5: Relaxed molecular clock analyses results 

Tree clock 
model 

sub 
model 

Root Proterocl
adus 

root_age Core Chlorophyta (Chlo,Bryo),Ulvo Chlo,(Bryo,Ulvo) 

ML ln CAT RT0 UB1 1,021 (1,072-969) 885 (960-810) 801 (879-753) n/a 

ML ln CAT RT1 UB1 1,185 (1,209-1,162) 1,005 (1,079-931) 895 (966-823) n/a 

ML ln CAT RT2 UB1 980 (1,004-956) 858 (904-815) 781 (823-749) n/a 

ML ln CAT RT3 UB1 1,022 (1,073-971) 886 (978-822) 802 (880-753) n/a 

ML ugam CAT RT0 UB1 1,013 (1,088-937) 911 (1,065-814) 834 (974-753) n/a 

ML ugam CAT RT1 UB1 1,198 (1,229-1,168) 1,063 (1,149-978) 967 (1,056-877) n/a 

ML ugam CAT RT2 UB1 961 (995-927) 869 (931-809) 800 (860-749) n/a 

ML ugam CAT RT3 UB1 1,013 (1,086-940) 910 (1,060-815) 835 (971-754) n/a 

ML ln LG RT0 UB1 1,030 (1,081-979) 895 (989-831) 802 (881-755) n/a 

ML ln LG RT1 UB1 1,185 (1,209-1,162) 1,008 (1,081-925) 890 (961-813) n/a 

ML ln LG RT2 UB1 984 (1,007-961) 865 (909-823) 782 (723-751) n/a 

ML ln LG RT3 UB1 1,031 (1,081-980) 896 (989-833) 803 (882-756) n/a 

ML ugam LG RT0 UB1 1,021 (1,096-945) 919 (1,072-820) 837 (976-755) n/a 

ML ugam LG RT1 UB1 1,198 (1,229-1,167) 1,065 (1,152-981) 964 (1,053-876) n/a 

ML ugam LG RT2 UB1 964 (997-931) 872 (931-813) 799 (858-750) n/a 

ML ugam LG RT3 UB1 1,021 (1,094-948) 918 (1,065-821) 836 (969-756) n/a 

CB ln CAT RT0 UB1 1,012 (1,069-955) 833 (931-776) n/a 759 (845-718) 

CB ln CAT RT1 UB1 1,189 (1,215-1,163) 951 (1,023-877) n/a 854 (927-781) 

CB# ln CAT RT2 UB1 973 (1,001-945) 809 (855-772) n/a 740 (785-717) 

CB ln CAT RT3 UB1 1,014 (1,072-957) 833 (934-775) n/a 758 (846-718) 

CB ugam CAT RT0 UB1 993 (1,062-925) 851 (987-775) n/a 776 (890-718) 

CB ugam CAT RT1 UB1 1,196 (1,226-1,166) 1,008 (1,094-922) n/a 912 (1,000-825) 

CB ugam CAT RT2 UB1 955 (990-920) 824 (887-772) n/a 753 (814-717) 

CB ugam CAT RT3 UB1 991 (1,058-924) 851 (984-776) n/a 775 (896-718) 

CB ln LG RT0 UB1 1,022 (1,079-965) 836 (935-777) n/a 760 (847-718) 

CB ln LG RT1 UB1 1,190 (1,217-1,163) 948 (1,021-876) n/a 851 (925-779) 

CB ln LG RT2 UB1 977 (1,003-951) 808 (853-772) n/a 739 (783-717) 

CB ln LG RT3 UB1 1,018 (1,075-962) 834 (932-776) n/a 760 (846-718) 

CB ugam LG RT0 UB1 991 (1,059-923) 849 (986-774) n/a 776 (898-718) 

CB ugam LG RT1 UB1 1196 (1,225-1,166) 1,006 (1,092-918) n/a 910 (999-821) 

CB ugam LG RT2 UB1 955 (991-920) 823 (887-771) n/a 753 (814-718) 

CB ugam LG RT3 UB1 992 (1,059-926) 850 (982-775) n/a 775 (894-718) 

ML ln CAT RT0 UB0 972 (1,038-907) 837 (960-724) 756 (863-657) n/a 

ML ln CAT RT1 UB0 1184 (1,207-1,162) 1,004 (1,077-929) 895 (965-823) n/a 

ML ln CAT RT2 UB0 949 (988-910) 817 (890-736) 739 (809-665) n/a 

ML ln CAT RT3 UB0 978 (1,039-916) 841 (961-739) 860 (864-668) n/a 

ML ugam CAT RT0 UB0 943 (1,039-848) 846 (1,031-697) 774 (942-639) n/a 

ML ugam CAT RT1 UB0 1,199 (1,230-1,168) 1,064 (1,151-978) 968 (1,058-876) n/a 

ML ugam CAT RT2 UB0 937 (979-895) 840 (923-760) 768 (852-691) n/a 

ML ugam CAT RT3 UB0 972 (1,049-895) 870 (1,035-764) 975 (948-693) n/a 

ML ln LG RT0 UB0 983 (1,049-917) 845 (967-734) 757 (862-659) n/a 

ML ln LG RT1 UB0 1,185 (1,208-1,162) 1,005 (1,078-931) 888 (957-815) n/a 

ML ln LG RT2 UB0 953 (991-915) 823(896-740) 738 (808-662) n/a 

ML ln LG RT3 UB0 987 (1,049-925) 852 (970-749) 763 (865-670) n/a 
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ML ugam LG RT0 UB0 953 (1,048-858) 854 (1,041-708) 777 (945-643) n/a 

ML ugam LG RT1 UB0 1,199 (1,229-1,168) 1,066 (1,150-982) 965 (1,053-876) n/a 

ML ugam LG RT2 UB0 937 (979-896) 840 (921-763) 765 (845-688) n/a 

ML ugam LG RT3 UB0 977 (1,055-899) 876 (1,041-768) 796 (947-693) n/a 

CB ln CAT RT0 UB0 968 (1,038-898) 792 (914-696) n/a 721 (829-638) 

CB ln CAT RT1 UB0 1,190 (1,216-1,163) 952 (1,026-879) n/a 854 (928-783) 

CB ln CAT RT2 UB0 944 (984-905) 775 (844-709) n/a 707 (772-646) 

CB ln CAT RT3 UB0 974 (1,038-910) 797 (913-712) n/a 725 (828-650) 

CB ugam CAT RT0 UB0 931 (1,019-842) 795 (960-663) n/a 723 (872-605) 

CB ugam CAT RT1 UB0 1,196 (1,226-1,166) 1,007 (1,094-919) n/a 910 (1,001-821) 

CB ugam CAT RT2 UB0 933 (975-892) 798 (879-720) n/a 725 (807-651) 

CB ugam CAT RT3 UB0 963 (1,034-892) 822 (970-725) n/a 747 (811-655) 

CB ln LG RT0 UB0 975 (1,045-905) 795 (916-697) n/a 724 (833-640) 

CB ln LG RT1 UB0 1,190 (1,216-1,163) 948 (1,023-877) n/a 852 (926-780) 

CB ln LG RT2 UB0 949 (988-911) 776 (843-708) n/a 708 (772-647) 

CB ln LG RT3 UB0 983 (1,050-917) 800(919-711) n/a 727 (832-650) 

CB ugam LG RT0 UB0 933 (1,020-846) 797 (958-668) n/a 736 (873-609) 

CB ugam LG RT1 UB0 1,196 (1,226-1,166) 1,007 (1,094-922) n/a 912 (1,001-825) 

CB ugam LG RT2 UB0 933 (975-892) 797 (878-721) n/a 725 (506-652) 

CB ugam LG RT3 UB0 962 (1,032-892) 821 (966-725) n/a 747 (881-657) 

ML: Topology inferred by supermatrix analyses (Figure 3.1) 
CB: Topology inferred by coalescence-based analyses (Figure 3.1) 
#: this ultrametric tree has been used for illustrating the time-calibrated phylogeny results in Figure 3.3 and the 
ancestral state reconstruction in Figure 3.4. 

 

 

 

 

 

 

 

 

 



 

117 
 



118 
 



 

119 
 

Chapter 4 - The plastid genome in Cladophorales green 
algae is encoded by hairpin chromosomes6 
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“One Ring to rule them all, One Ring to find them, 

One Ring to bring them all, and in the darkness bind them” 

 

John Ronald Reuel Tolkien -The Lord of the Rings
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Abstract 

Virtually all plastid (chloroplast) genomes are circular double-stranded DNA 

molecules, typically between 100-200 kb in size and encoding circa 80-250 genes. 

Exceptions to this universal plastid genome architecture are very few and include the 

dinoflagellates where genes are located on DNA minicircles. Here we report on the 

highly deviant chloroplast genome of Cladophorales green algae, which is entirely 

fragmented into hairpin chromosomes. Short and long read high-throughput 

sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea 

composita are encoded on 1-7 kb DNA contigs with an exceptionally high GC-content, 

each containing a long inverted repeat with one or two protein-coding genes and 

conserved non-coding regions putatively involved in replication and/or expression. We 

propose that these contigs correspond to linear single-stranded DNA molecules that 

fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes 

are highly divergent from their corresponding orthologs, and display an alternative 

genetic code. The origin of this highly deviant chloroplast genome likely occurred 

before the emergence of the Cladophorales, and coincided with an elevated transfer 

of chloroplast genes to the nucleus. A chloroplast genome that is composed only of 

linear DNA molecules is unprecedented among eukaryotes and highlights unexpected 

variation in the plastid genome architecture. 
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Introduction 

Photosynthetic eukaryotes possibly originated 1.9 billion years ago following an 

endosymbiotic event in which a heterotrophic ancestor of the Archaeplastida engulfed 

a cyanobacterium that became stably integrated and evolved into a membrane-bound 

organelle, the plastid (Ponce-Toledo et al., 2017; Sánchez-Baracaldo et al., 2017). 

Following this primary endosymbiosis, an intricate history of plastid acquisition via 

eukaryote-eukaryote endosymbioses resulted in the spread of plastids to distantly 

related eukaryotic lineages (Keeling, 2010). 

Plastids have retained a reduced version of the genome inherited from their 

cyanobacterial ancestor. A core set of genes involved in the light reactions of 

photosynthesis, ATP generation, and functions related to transcription and translation 

is typically retained (Green, 2011). Many genes have been lost or transferred to the 

nuclear genome and, as a result, plastids are dependent on nuclear-encoded, plastid-

targeted proteins for the maintenance of essential biochemical pathways and other 

functions such as genome replication, gene expression, and DNA repair (Kleine et al., 

2009). Nearly all plastid genomes consist of a single circular-mapping chromosome, 

typically between 100-200 kb, encoding circa 80-250 genes (Green, 2011; Lang & 

Nedelcu, 2012). Diversity in size, gene content, density and organization of plastid 

genomes among different eukaryotic lineages  is by and large limited, especially when 

compared to mitochondria (Simpson & Stern, 2002; Smith & Keeling, 2015; Muñoz-

Gómez et al., 2017). 

While fragmented mitochondrial genomes evolved several times independently during 

the evolution of eukaryotes (Barbrook et al., 2010; Smith & Keeling, 2015), fragmented 

plastid genomes are only known in dinoflagellates (Howe et al., 2008) and a single 

green algal species (Watanabe et al., 2016). In peridinin-containing dinoflagellates, 

the chloroplast genome is fragmented into DNA minicircles of 2-3 kb, most of which 

carry one gene only (Zhang et al., 1999; Howe et al., 2008). Larger minicircles of up 

to 12 kb have also been described (Nelson & Green, 2005), as well as minicircles 

containing two genes (Laatsch et al., 2004), and ‘empty’ minicircles without genes 

(Hiller, 2001). The genes located on these minicircles mostly encode key components 

of the major photosynthetic complexes, including subunits of photosystems I and II, 

the cytochrome b6f complex, and ATP synthase, as well as rRNAs and a few tRNAs 

(Howe et al., 2008). The only other alga with a fragmented chloroplast genome is the 



122 
 

green alga Koshicola spirodelophila, but here the level of fragmentation is minor: the 

plastid genome is divided into three large circular chromosomes totalling 385 kb, with 

a gene content comparable to other green algae (Watanabe et al., 2016). In addition, 

plastid minicircles that coexist with a conventional plastid genome have been observed 

in a few algae, including dinoflagellates with haptophyte-derived plastids (Espelund et 

al., 2012) and the green alga Acetabularia (Green, 1976; Ebert et al., 1985). 

Although plastid genomes generally assemble as circular-mapping DNAs, they can 

take multiple complex conformations in vivo, including multigenomic, linear-branched 

structures with discrete termini (Bendich, 2007; Oldenburg & Bendich, 2016). The 

alveolate Chromera velia is the only known alga with a linear-mapping plastid genome 

with telomeric arrangement (Janouškovec et al., 2013), and is also atypical in that 

several core photosynthesis genes are fragmented. Linear plastid genomes, however, 

may be more widespread, as several plastid genomes currently do not map as a circle 

(Gabrielsen et al., 2011). 

Currently, and in stark contrast to other algae (Turmel et al., 2015; Leliaert et al., 2016; 

Lemieux et al., 2016; Muñoz-Gómez et al., 2017), little is known about the gene 

content and structure of the chloroplast genome in the Cladophorales (Ulvophyceae), 

an ecologically important group of marine and freshwater green algae, which includes 

several hundreds of species. These macroscopic multicellular algae have giant, 

multinucleate cells containing numerous chloroplasts (Figure 1A-C). Most attempts to 

amplify common chloroplast genes have failed (Fučíková et al., 2014), with only one 

highly divergent rbcL sequence published thus far, for Chaetomorpha valida (Deng et 

al., 2013). An atypical plastid genome in the Cladophorales is suggested by the 

presence of abundant plasmid-like DNA that has been observed in the chloroplasts of 

several species (La Claire et al., 1997; La Claire & Wang, 2000). These plasmids-like 

DNA molecules represent a Low Molecular Weight (LMW) DNA fraction, visible on 

agarose gels of total DNA extracts (Figure 1D). Pioneering work revealed that these 

structures are single-stranded DNA (ssDNA) molecules of 1.5-3.0 kb that fold in a 

hairpin configuration and lack sequence similarity to the nuclear DNA (La Claire et al., 

1998; La Claire & Wang, 2004). Some of the hairpin-like DNAs contain putatively 

transcribed sequences with similarity to chloroplast genes encoding subunits of 

Photosystems I and II (psaB, psbB, psbC and psbF) (La Claire et al., 1998). Here, we 

describe intriguing features of the plastid genome of Cladophorales, focusing on  
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Figure 4.1: Boodlea composita. 

(A) Specimen in natural environment. (B) Detail of branching cells. (C) Detail of 
chloroplasts, each containing a single pyrenoid, and forming a parietal network (the 
white line is a calcium oxalate crystal). (D) Native agarose gel comparing genomic 
DNA of Bryopsis plumosa (Bryopsidales) and Boodlea composita (Cladophorales). 
Lane 1: 1-kb ladder, sizes in bp; lane 2: B. plumosa; lane 3: B. composita. High 
molecular weight (HMW) and low molecular weight (LMW) DNA bands of B. composita 
are indicated. 

 

Boodlea composita. Through the integration of different DNA sequencing methods, 

combined with RNA sequencing, we found that chloroplast protein-coding genes are 

highly expressed and encoded on 1-7 kb linear single-stranded DNA molecules. Due 

to the wide-spread presence of inverted repeats, these molecules fold into a hairpin 

configuration. A chloroplast genome that is composed only of linear DNA molecules is 

unprecedented among eukaryotes and highlights unexpected variation in plastid 

genome architecture.   
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Results and Discussion 
 

DNA and RNA-seq data 

Our reconstruction of the chloroplast genome of Boodlea composita is based on 

different high-throughput DNA sequencing methods (Figure S4.1, Materials and 

Methods). The choice of short read DNA sequencing of isolated intact chloroplasts 

(chloroplast-enriched fraction) using Roche 454 technology was based on comparable 

sequencing approaches in other plants and algae that successfully resulted in 

assembly of chloroplast genomes (Lemieux et al., 2016). To overcome possible 

assembly artefacts in a hypothetical scenario of an inflated chloroplast genome 

bloated by repetitive elements, long-read sequencing of the High Molecular Weight 

(HMW) DNA fraction using Pacific Biosciences Single-Molecule Real-Time (SMRT) 

method was applied, while long read sequencing of the LMW DNA fraction allowed 

characterization of the previously observed plasmid-like DNA in the chloroplast (La 

Claire et al., 1997; La Claire & Wang, 2000). To allow comparison of the results of 

Boodlea with other species of Cladophorales, we generated additional DNA sequence 

data from nine other species using Illumina HiSeq 2000 technology. Finally, two deep-

coverage RNA-seq libraries, a total-RNA library and a mRNA library enriched for 

nuclear transcripts, were generated to confirm the transcription of genes, and to inform 

whether genes are nuclear versus plastid encoded. 

 

A prodigious chloroplast genome with reduced gene set 

Assembly of the chloroplast-enriched DNA reads generated using Roche 454 

technology did not result in a typical circular chloroplast genome. Instead, 21 

chloroplast protein-coding genes were found on 58 short contigs (1,203-5,426 bp): 

atpA, atpB, atpH, atpI, petA, petB, petD, psaA, psaB, psaC, psbA, psbB, psbC, psbD, 

psbE, psbF, psbJ, psbK, psbL, psbT and rbcL. All but the rbcL gene code for 

components of the major thylakoid transmembrane protein complexes (ATP synthase, 

cytochrome b6f, and photosystems I and II). The contigs contained inverted repeats 

at their termini and, despite high coverage by sequence reads, they could not be 

extended by iterative contig extension. Sequence similarity searches and a 

metagenomic binning approach (distribution analysis of 4-mers) demonstrated that the 

inverted repeats were also found on contigs with no sequence similarity to known 
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proteins, raising the number of contigs of chloroplast origin to 136. These contigs are 

further referred to as “chloroplast 454 contigs”. The length distribution of the 

chloroplast 454 contigs was consistent with the size of the LMW DNA fraction as 

estimated by agarose gel electrophoresis of Boodlea genomic DNA (Figures 4.1D, 

S4.6A, S4.6B). 

The failure to assemble a circular chloroplast genome might be due to repetitive 

elements that impair the performance of short-read assemblers (Miller et al., 2010). 

Inflated chloroplast genomes bloated by repetitive elements have been documented 

in several green algae (Smith & Lee, 2009; Brouard et al., 2010; de Vries et al., 2013). 

To overcome assembly artefacts and close putative gaps in the chloroplast 454 

contigs, we applied Single-Molecule Real-Time (SMRT) sequencing (Pacific 

Biosciences) to the HMW and LMW DNA fractions. Only 22 HMW DNA reads (ca. 

0.044 %) harboured protein-coding genes commonly present in chloroplast genomes 

of Archaeplastida (Figure 4.2A). All but three of these genes (psbA, psbB and psbC, 

which likely correspond to carry-over LMW DNA) contained spliceosomal introns, were 

absent in the chloroplast 454 contigs, and revealed a high ratio between mapped 

mRNA and total-RNA reads, altogether suggesting that they are encoded in the 

nucleus (Figure S4.2A). Conversely, 22 chloroplast genes (that is, the 21 protein-

coding genes identified in chloroplast 454 contigs as well as the 16S rRNA gene) were 

found in the LMW DNA reads (Figure 4.2A). An orthology-guided assembly, where the 

chloroplast 454 contigs harbouring protein-coding genes guided the assembly of LMW 

DNA reads with sequence similarity to chloroplast genes, resulted in 34 contigs 

between 1,179 and 6,925 bp in length, henceforth referred to as “chloroplast genome” 

(Figure 4.2B, Table S4.1).  

Four contigs of the Boodlea chloroplast genome (contigs 10, 19, 32 and 33) display 

long palindromic sequences that include full-length coding sequences (CDSs), and a 

less conserved tail region (Figure 4.2B). The remaining contigs have similar 

palindromic structures but appear to be not completely assembled. Such palindromes 

allow regions of the single-stranded LMW DNA molecules to fold into hairpin-like 

secondary structures. Additional smaller inverted repeats were identified in many of 

the contigs (Figure 4.2B), which may result in more complex secondary structures. 

Chloroplast 454 contigs could not be scaffolded with long HMW DNA reads, nor did 

an hybrid assembly between chloroplast 454 contigs and long HMW DNA reads  
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Figure 4.2: Schematic representation of Boodlea chloroplast genome. 

(A) Distribution of Boodlea genes having orthologs in the chloroplast of other 
Archaeplastida. gDNA (genomic DNA): chloroplast (cp) 454 contigs, HMW and LMW 
corrected reads; RNA: mRNA and total-RNA assemblies. Asterisks (*) indicate "core" 
chloroplast genes, i.e. protein-coding genes conserved between chloroplast genomes 
of Chlorophyta (see Experimental Procedures). The following nine "core" chloroplast 
genes were not found in any of the Boodlea libraries sequenced: atpF, petG, petL, 
psaJ, psbM, psbZ, rpl36, rps2 and ycf1. Grey cells denote putative LMW DNA read 
contaminants as suggested by the ratios of HMW to LMW DNA reads and mRNA to 
total-RNA reads (Figures S2B and S2C). (B) Overview of the 34 contigs representing 
the Boodlea chloroplast genome. Purple arrows indicate rRNA genes, red arrows 
indicate CDSs of protein-coding genes, and blue arrows indicate repetitive elements. 
For each contig, repetitive elements with similar length indicate similar sequences. 
Distance between vertical grey lines in the background represents 500 bp. Oga: contig 
obtained by orthology-guided assembly. 454: chloroplast 454 contig. 

 

generate a circular chloroplast genome (Figure S4.1, Material and Methods). The 

LMW DNA reads are concordant and consistent with the palindromic sequences of the 

assembled chloroplast genome, indicating that the palindromes are not a result of 

assembly artefacts (Figure 4.3, Table S4.1). As a consequence, we conclude that the 

chloroplast genome is not a single large molecule but that it is instead fragmented in 

several molecules in the LMW DNA. 

A chloroplast genome that is entirely fragmented into hairpin chromosomes is in line 

with earlier observations of abundant LMW DNA in chloroplasts of several species of 

Cladophorales (La Claire et al., 1997). The hairpin configuration of the chromosomes 

derived from our sequence data corresponds with earlier data based on electron 

microscopy, endo- and exonuclease digestion experiments, acridine orange staining, 

and denaturing gel electrophoresis (La Claire et al., 1997; La Claire & Wang, 2004). 

Fluorescence in situ hybridization, and Southern blot hybridisation indicated that these 

plasmid-like DNA molecules are present within the chloroplast only (La Claire & Wang, 

2000), supporting the congruence between chloroplast 454 contigs and sequences 

from the LMW fraction (Figure 4.3, Figure S4.7A). 

The chloroplast genome contigs of Boodlea feature an exceptionally high GC-content, 

ranging from 54 to 60 % in the gene-containing contigs (average 57%) (Table S4.1). 

These values are concordant with the high density of the LMW fraction observed in 

CsCl/bisbenzimide gradients (La Claire et al., 1997), and also with sequence data from 

cloned plasmids of Ernodesmis (51-59% GC) (La Claire et al., 1998). Plastid genomes 
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are generally AT-rich, and in green algal species, GC-content typically ranges between 

26 and 43% (Leliaert et al., 2012; Muñoz-Gómez et al., 2017). GC-rich plastid 

genomes are very rare, but higher values have been reported for the 

trebouxiophycean green algae Coccomyxa subellipsoidea, Paradoxia multiseta (both 

51% GC), and Trebouxiophyceae sp. MX-AZ01 (58%) (Turmel et al., 2015). These 

species, however, feature standard plastid genome architectures. 

The size of the Boodlea chloroplast genome could not be estimated by inspection of 

k-mer frequency distributions of the reads in the 454 library, nor from those of the 

uncorrected and corrected LMW DNA reads (Hozza et al., 2015). Histograms of k-mer 

frequency distributions revealed several small peaks, indicating a heterogeneous 

population of molecules present in different stoichiometries, and the signal to noise 

ratio was too small to make a comfortable estimation of the sizes (Figure S4.3). The 

cumulative length of the 34 Boodlea chloroplast genome contigs is 91 kb (Table S4.3). 

However, if we would consider the large and heterogeneous population of LMW DNA 

reads bearing no similarity to protein-coding genes (“empty” hairpin chromosomes, 

see below) as part of the chloroplast genome, its size could be regarded as much 

larger. 

The largest known circular-mapping chloroplast genomes have been documented in 

the red algae Bulboplastis apyrenoidosa (610 kb) and Corynoplastis japonica (1.127 

Mb), where the genomes are bloated by group II introns and include transposable 

elements of possible bacterial origin (Smith & Keeling, 2015). Within green algae, 

expanded chloroplast genomes have been reported in two distinct clades: the 

Chlorophyceae and the Ulvophyceae. Inflation of the 521-kb chloroplast genome of 

Floydiella terrestris (Chlorophyceae) resulted mainly from the proliferation of 

dispersed, heterogeneous repeats (>30 bp) in intergenic regions, representing more 

than half of the genome length (Brouard et al., 2010). Intergenic regions of the Volvox 

carteri (Chlorophyceae) chloroplast genome, instead, are populated with short 

palindromic repeats (average size of 50 bp) that constitute ca. 64% of the predicted 

525-kb genome (Smith & Lee, 2009). The mechanisms by which such palindromic 

selfish DNA spread throughout the Volvox chloroplast genome are not clear, but the 

presence of a reverse transcriptase and endonuclease may point toward 

retrotranscription (Burt & Trivers, 2006; Smith & Lee, 2009). For Acetabularia 

acetabulum (Ulvophyceae), the chloroplast genome was sequenced only partially and 
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Figure 4.3: LMW DNA reads containing chloroplast genes are expressed, 
enriched in the total-RNA fraction and congruent to the respective chloroplast 
454 contigs. 

(A) Representation of petA LMW DNA read (3,398 bp). The red arrows indicate CDSs, 
the blue arrows indicate inverted repeats. (B) Corresponding Genome Browser track, 
from top to bottom: corrected HMW DNA coverage [0], corrected LMW DNA read 
coverage [range 0-541], 454 read coverage [range 0-567], mRNA library read 
coverage [range 0-17], assembled mRNA transcripts mapped [0], total-RNA library 
read coverage [range 0-7,936], and assembled total-RNA transcripts mapped [range 
0-17]. (C) Dotplot showing congruence between petA LMW DNA read (x axis) and the 
corresponding petA-containing chloroplast 454 contig (y axis, 2,012 bp). Green lines 
indicate similar sequences; red lines indicate sequences similar to the respective 
reverse complements. 
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its size was estimated to exceed 1 Mb; it has exceptionally long intergenic regions and 

features long repetitive elements (>10 kb) arranged in tandem (Tymms & Schweiger, 

1985; de Vries et al., 2013). The Boodlea chloroplast genome is rich as well in non-

coding DNA, constituting 92.2% of the 136 chloroplast 454 contigs and 72.8% of the 

assembled chloroplast genome, comparable to that in inflated chloroplast genomes of 

other green algae (Floydiella terrestris, 82.1%; Volvox carteri, ca. 80%; Acetabularia 

acetabulum, ca. 87% of the sequenced chloroplast genome) (Smith & Lee, 2009; de 

Vries et al., 2013). 

The non-coding DNA regions (ncDNA) of the hairpins showed high sequence similarity 

among one another (52.5-100% sequence similarity). Within the ncDNA, we identified 

six conserved motifs, 20 to 35 bp in length and with a GC-content ranging from 36 to 

84%, which lack similarity to known regulatory elements (Figure 4.4). Motifs 1, 2 and 

5 were always present upstream of the start codon of the chloroplast genes, 

occasionally in more than one copy. Although their distances from the start codon were 

variable, their orientations relative to the gene were conserved, indicating a potential 

function as a regulatory element of gene expression and/or replication of the hairpin 

chromosomes.  

These motifs were also present in 1,966 (ca. 1.8 %) LMW DNA reads lacking genes. 

This observation supports earlier findings of abundant non-coding LMW DNA 

molecules in the Cladophorales (La Claire et al., 1997; La Claire et al., 1998). In 

contrast, a very small fraction of the HMW DNA reads (15 corrected reads) displayed 

the same ncDNA motifs and these were present exclusively on long terminal repeat 

retrotransposons (RT-LTRs) (Figures S4.2D, S4.2E). RT-LTRs were also abundant in 

the 454 contigs (Figure S6D). The abundance of RT-LTRs in the 454 contigs and the 

presence of ncDNA motifs in both the Boodlea chloroplast genome and nuclear RT-

LTRs is suggestive of DNA transfer between the nucleus and chloroplast and may 

allude to the origin of the hairpin chromosomes. Hypothetically, an invasion of nuclear 

RT-LTRs in the chloroplast genome may have resulted in an expansion of the 

chloroplast genome and its subsequent fragmentation into hairpin chromosomes 

during replication. Chloroplast genome fragmentation could be caused by 

recombination between repetitive elements and displacement of the palindromic 

sequences from the lagging strand during the chloroplast genome replication (Ellis & 

Day, 1986; Bikard et al., 2010), and it is consistent with the expectation that 
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recombination and cleavage of repetitive DNA will produce a heterogeneous 

population of molecules, as observed in dinoflagellates plastid genomes (Howe et al., 

2008), and in the Boodlea LMW DNA. 

 

A fragmented chloroplast genome is a common feature of 
Cladophorales 

DNA sequence data were obtained from 9 additional Cladophorales species, 

representing the main lineages of the order: Chaetomorpha aerea, Cladophora albida, 

C. socialis, C. vadorum, Dictyosphaeria cavernosa, Pithophora sp., Siphonocladus 

tropicus, Struvea elegans, and Valonia utricularis (Tables S4.2 and S4.4). Although 

comparable sequencing approaches resulted in the assembly of circular chloroplast 

genomes for other algae, including green seaweeds (Leliaert & Lopez-Bautista, 2015; 

Marcelino et al., 2016), only short chloroplast contigs (ca. 200-8,000 bp) were 

assembled from these libraries, similar to Boodlea composita. Interestingly, a similar 

set of chloroplast genes was identified in all sequenced Cladophorales species (Table 

S4.5). In contrast to the genes found in the Boodlea hairpin chromosomes, however, 

most of the chloroplast genes identified in the additional Cladophorales libraries were 

fragmented, possibly due to assembly of the shorter Illumina reads (Table S4.3). 

These findings support the idea that fragmentation of the chloroplast genome occurred 

before or early in the evolution of the Cladophorales. 

 

Highly divergent chloroplast genes  

The 21 chloroplast protein-coding genes of Boodlea and the other species of 

Cladophorales display extremely high sequence divergence compared to orthologous 

genes in other photosynthetic organisms (Figure 4.5). A maximum likelihood 

phylogenetic tree based on a concatenated amino acid alignment of 19 chloroplast 

genes from Archaeplastida and Cyanobacteria species (Figure 4.5) shows that despite 

their high divergence, the Cladophorales sequences form a monophyletic group within 

the core Chlorophyta (Figure S4.4), a position that is supported by phylogenetic 

analyses of nuclear genes (Cocquyt et al., 2010b). The high sequence divergence of 

chloroplast genes in the Cladophorales supports the notion that organellar genomes 

with extremely derived architectures, including those of peridinin-containing  
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Figure 4.4: Conserved non-coding motifs in Boodlea LMW DNA. 

(A) Sequence logos and GC contents of the conserved motifs predicted in the Boodlea 
chloroplast genome. The relative sizes of the nucleotides indicate their frequency in 
the sequences. (B) Schematic representation of the distribution of the motifs in the 
1,441 bp ncDNA region from the atpI group A read used for the identification of 
additional chloroplast reads in the LMW DNA library. Motifs with conserved orientation 
relative to the downstream genes are represented by green arrows, while motifs 
without conserved orientation to the downstream genes are represented by yellow 
arrows. CDSs are represented by red arrows, inverted repeats are represented by 
blue arrows. 

 

dinoflagellates, also tend to fall at the extreme ends of the range observed at the 

mutation rate (or gene sequence divergence) level (Zhang et al., 2000; Simpson & 

Stern, 2002). For some Boodlea chloroplast genes, the identification of start and stop 

codons was uncertain and a non-canonical genetic code was identified (Figure 4.6). 

The canonical stop codon UGA was found 11 times internally in six genes (petA, psaA, 

psaB, psaC, psbC and rbcL), but was also present as a genuine termination codon in 

several genes, petA and psaA included. At seven of these 11 positions, the 

corresponding amino acid residue in orthologous genes was conserved (i.e. present 

in more than 75% of the taxa  

in the alignment), but different amino acids were observed at these positions: V, S, I, 

L and C (Figures 4.6A and 4.6B). The reassignment of the stop codon UGA to C has 

been documented in the nuclear genetic code of several species of ciliates (Heaphy 

et al., 2016). For the remaining positions, the amino acid in the alignment was not 

conserved, and therefore the amino acid coded by the UGA codon could not be 

determined with certainty.  

Deviations from the universal genetic code are widespread among mitochondrial 

genomes, and include loss of start and stop codons in some groups, including  
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Figure 4.5: Boodlea chloroplast genes have large sequence divergence. 

(A) Maximum likelihood phylogenetic tree, with indication of relevant bootstrap values 
(see also Figure S4). The scale represents 0.5 substitution per amino acid position. 
(B) Maximum pairwise amino acid sequence distances of the concatenated amino acid 
alignment within and between clades (* excluding Cladophorales). 

 

dinoflagellates (Slamovits et al., 2007; Howe et al., 2008; Waller & Jackson, 2009). In 

contrast, non-canonical genetic codes are much rarer in plastid genomes, and up to 

now have only been detected in the apicomplexans Neospora caninum (Lang-

Unnasch & Aiello, 1999), Chromera velia (Janouškovec et al., 2013), and the 

dinoflagellate Lepidodinium chlorophorum (Matsumoto et al., 2011). In genomes of 

primary plastids, a non-canonical genetic code is unprecedented. 

Dual meaning of UGA as both stop and sense codons has recently been reported from 

a number of unrelated protists (Heaphy et al., 2016; Swart et al., 2016; Zahonova et 

al., 2016). While in Saccharomyces cerevisiae, the tetranucleotide UGA-C allows 

increased incorporation of the near-cognate Cys-tRNA for the UGA premature 

termination codon (Beznoskova et al., 2016), such preference was not observed in the 

Boodlea chloroplasts. Importantly, a non-canonical genetic code has also been 

described for Cladophorales nuclear genes, where UAG and UAA codons are 

reassigned to glutamine (Cocquyt et al., 2010a), which implies two independent 

departures from the standard genetic code in a single organism. 
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Unexpectedly, we found that the 16S rRNA gene in the Boodlea chloroplast genome 

is split across two distinct hairpin chromosomes and that its size is much smaller 

compared to its algal and bacterial homologs and (Figures 4.2B and 4.7). 

Fragmentation of rRNA genes has been observed in organellar genomes, including 

Apicomplexa, dinoflagellates, and many green algae (Barbrook et al., 2010). In 

general, fragmentation of protein-coding and rRNA genes is more common in 

mitochondrial genomes than in plastid genomes (Smith et al., 2010; Espelund et al., 

2012; Janouškovec et al., 2013). Despite considerable effort, we could not detect the 

23S rRNA gene nor the 5S rRNA gene. 

The transcription of the aberrant chloroplast genes was confirmed using RNA-seq, and 

is concordant with previous results of Northern blots (La Claire et al., 1998). 

Transcripts of 21 chloroplast genes (that is, 20 protein-coding genes as well as the 

16S rRNA gene) were identical to the genes encoded by the chloroplast 454 contigs 

(Figure 4.2A; 4.3 and S4.5), providing evidence for the absence of RNA editing and 

corroborating the use of a non-canonical genetic code (Figure S4.5). Lack of RNA 

editing was also evidenced for the 11 internal occurrences of UGA (Figure S4.5). This 

observation, in combination with conservation of the sequence after the UGA codon, 

serves as evidence that it is not a termination codon but an alternative code. The high 

total-RNA 
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Figure 4.6: Non-canonical genetic code in Boodlea chloroplast genes. 

Boodlea chloroplast protein-coding genes were aligned with the respective orthologs 
of 43 Archaeplastida and 14 Cyanobacteria. (A) Relevant parts of amino acid 
sequence alignment for six chloroplast genes of Boodlea and representatives of 
Archaeplastida and Cyanobacteria. Positions corresponding to UGA codons in 
Boodlea are indicated by an asterisk. Slashes represent regions of the sequence 
alignment that were omitted for simplicity. Dots indicate amino acid identity with the 
top-most sequence. For each gene, position in the alignment is indicated by the 
numbers shown above the sequence alignment. The numbers below the gene names 
indicate the eleven positions where UGA was identified as premature termination 
codon in the six Boodlea genes. (B) Sequence logo of the Position Weight Matrix 
reporting the relative amino acid frequencies in the alignment for each premature 
termination UGA position in Boodlea. 

 

to mRNA ratio observed for reads that mapped to the chloroplast 454 contigs 

confirmed that these genes were not transcribed in the nucleus (Figure S4.6C). All 

coding sequences of the same protein-coding genes found on different contigs of the 

Boodlea chloroplast genome were expressed, despite minor differences in their 

nucleotide sequences (Table S4.1).  
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Additional transcripts of 66 genes that have been located in the chloroplast in other 

Archaeplastida were identified (Figure 4.2A). Although their subcellular origin was not 

determined experimentally, they are probably all nuclear-encoded, based on high 

mRNA to total-RNA reads ratio and their presence on High Molecular Weight (HMW) 

DNA reads. 

 

Conclusions 

We collected several lines of evidence indicating that Boodlea composita lacks a 

typical large circular chloroplast genome. The chloroplast genome is instead 

fragmented into multiple linear hairpin chromosomes, and has a highly reduced gene 

repertoire compared to other chloroplast genomes. Thirty-four hairpin chromosomes 

were identified, harbouring 21 protein-coding genes and the 16S rRNA gene, which 

are highly divergent in sequence compared to orthologs in other algae, and display an 

alternative genetic code. The exact set of Boodlea chloroplast genes remains elusive, 

but at least 19 genes coding for chloroplast products appear to be nuclear-encoded, 

of which nine are always chloroplast-encoded in related green algae (Figure 4.2A). 

This suggests that fragmentation of a conventional chloroplast genome in the 

Cladophorales has been accompanied with an elevated transfer of genes to the 

nucleus, similarly to the situation in peridinin-containing dinoflagellates (Howe et al., 

2008), with plastid genomes encoding about 12 genes or less (Howe et al., 2008; 

Barbrook et al., 2014). Notably, the two distantly related algal groups have converged 

on a very similar gene distribution: chloroplast genes code only for the subunits of 

photosynthetic complexes (and also for Rubisco in Boodlea), whereas the expression 

machinery appears to be fully nucleus-encoded (Figure 4.2A). Other nonstandard 

chloroplast genome architectures have recently been observed, such as a monomeric 

linear chromosome in the alveolate microalga Chromera velia (Janouškovec et al., 

2013) and three circular chromosomes in the green alga Koshicola spirodelophila 

(Watanabe et al., 2016), but these represent relatively small deviations from the 

paradigm, when compared to the chloroplast genome of the Cladophorales. The highly 

fragmented chloroplast genome in the Cladophorales is wholly unprecedented and will 

be of significance to understanding processes driving organellar genome 

fragmentation and gene reduction, endosymbiotic gene transfer, and the minimal 

functional chloroplast gene set.
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Figure 4.7: The Boodlea chloroplast 16S rRNA is fragmented and reduced 
compared to its algal and bacterial homologs. 

(A) Boodlea chloroplast 16S rRNA sequence was compared with the E. coli 16S rRNA 
secondary structure model [RF00177]. Residues shown in green and red on the E. 
coli model represent the 16S rRNA regions coded by the two hairpin chromosomes. 
Residues in black are absent in Boodlea 16S rRNA. Blue numbers indicate secondary 
structure helices in the 16S rRNA model. (B) Comparison between Boodlea and E. 
coli 16S rRNA annotated functional regions. Quality of the alignment was assessed 
based on the predicted posterior probability (in percentage) of each aligned region: 
very low < 25%; low between 25-50%; high between 50-95%; and perfect > 95%. 
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Material and Methods 
 

Experimental model and subject details 

Clonal cultures of Boodlea composita FL1110, Chaetomorpha aerea UTEX799, Cladophora 

albida Calb2, Cladophora socialis Csoc2, Cladophora vadorum Cvad2, Dictyosphaeria 

cavernosa FL1134, Pithophora sp. UTEX787, Siphonocladus tropicus Siph3, Struvea 

elegans Sele1, Valonia utricularis Vutric3 and Valonia ventricosa UTEX 2260 are 

maintained in the algal culture collection of the Phycology Research Group, Ghent 

University. The specimens were grown in enriched sterilized natural seawater at 22°C under 

12:12 (light:dark) cool white fluorescent light at 60 μmol photons m−2 s−1. To prepare the 

enriched natural seawater, 20 mL of enriched solution is added to 980 mL of filtered and 

sterilized natural seawater. The enriched solution consists of: Tris base 5.0 g/L; NaNO3 3.5 

g/L; Na2 -glycerophosphate ∙ H2O; Na2EDTA ∙ 2 H2O 0.529 g/L; Fe(NH4)2(SO4)2 ∙ 6 H2O 

0.176 g/L; FeCl3 ∙ 6 H2O 12.1 mg/L; H3BO3 0.286 g/L; MnSO4 ∙ 4 H2O 40.6 mg/L; ZnSO4 ∙ 7 

H2O 5.5 mg/L; CoSO4 ∙ 7 H2O 1.2 mg/L; Thiamine–HCl 0.5 mg/L; Biotin 5.0 mg/L; 

Cyanocobalamin 10.0 mg/L (Andersen, 2005). 

 

Genomic DNA sequencing 

Total genomic DNA from fresh Boodlea cultures was isolated by using a modified CTAB 

extraction protocol (Doyle & Doyle, 1987). Briefly, 100 mg of fresh algal material was blotted 

dry on paper, placed inside a 1.5 ml test tube and immediately frozen in liquid nitrogen. 

Samples were ground with a pestle that fits the 1.5 mL tubes and resuspended in 500 L of 

CTAB isolation buffer (2% w/v cetyltrimethylammonium bromide, 1.4 M NaCl, 100 mM Tris-

HCl pH 8.0, 20 mM EDTA pH 8.0, 1% w/v polyvinylpyrrolidone) with 5 L of Proteinase K 

(QUIAGEN, Germany). The samples were then incubated at 60°C for 40 min. After 30 min, 

5 L of RNAse A (QUIAGEN) was added to each sample. Cellular debris were spun down 

and the aqueous layer was extracted first with phenol:chloroform:isoamylic alcohol (25:24:1 

v/v) and then with chloroform:isoamylic alcohol (24:1 v/v). Genomic DNA was precipitated 

with the addition of two volumes of ice-cold absolute ethanol and 0.3 M of sodium acetate 

pH 5.5 to each sample and overnight incubation at -20°C. The genomic DNA was washed 

with ice-cold 70% ethanol, air-dried and dissolved in 50 L TE buffer (10 mM Tris-HCl pH 

8.0, 1 mM Na2-EDTA). HMW and LMW DNA bands were size-selected using a BluePippin™ 

system (Sage Science, USA). The HMW DNA band was isolated with a cut-off range of 10 
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kb to 50 kb, while the LMW DNA band was isolated with a cut-off range of 1.5 kb to 2.5 kb. 

The quantity, quality and integrity of the extracted DNA were assessed with Qubit 

(ThermoFisher Scientific, USA), Nanodrop spectrophotometer (ThermoFisher Scientific), 

and Bioanalyzer 2100 (Agilent Technologies, USA). 

Intact chloroplasts were isolated from living Boodlea cells following the protocol of Palmer 

et al. (Palmer, 1982). In short, 200 g of Boodlea filaments were placed in 400 ml of ice-cold 

isolation buffer (0.35 M sorbitol, 50 mM Tris-HCl pH 8.0, 5 mM EDTA, 0.1 % BSA, 1.5 mM 

-mercaptoethanol), homogenized in a blender at 4 ˚C, and filtered through miracloth 

(Calbiochem). The filtrate was centrifuged at 1000 g for 15 min at 4 ˚C, the supernatant was 

poured off, and the pellet resuspended in 8 mL of ice-cold wash buffer (0.35 M sorbitol, 50 

mM Tris-HCl pH 8.0, 25 mM EDTA). The resuspended pellet was loaded on a step gradient 

consisting of 18 mL of 52% w/v sucrose, over-layered with 7 mL of 30% w/v sucrose, and 

centrifuged at 25,000 rpm for 40 min at 4 ˚C. The chloroplast band was removed from the 

30%-52% interface using a Pasteur pipette, diluted with 6 volumes of wash buffer, 

centrifuged at 1,500 g for 15 min at 4 ˚C, and resuspended in wash buffer to a final volume 

of 10 mL. This fraction of isolated chloroplasts is further referred to as “chloroplast-enriched 

fraction”. DNA from the chloroplast-enriched fraction was sequenced with Roche 454 GS 

FLX at GATC Biotech, Germany. The HMW and LMW DNA fractions were sequenced on 

two SMRT cells on a PacBio RS II (VIB Nucleomics Core facilities, Leuven, Belgium) using 

PacBio P5 polymerase and C3 chemistry combination (P5-C3). For the HMW DNA fraction, 

a 20-kb SMRT-bell library was constructed, while for the LMW DNA fraction, a 2-kb SMRT-

bell library was constructed. 

 

Chloroplast DNA assembly and annotation 

Quality of the reads from the 454 library was assessed with FastQC v.0.10.1 

(http://www.bioinformatics.babraham.ac.uk, last accessed March 01, 2017) (Table S4.2). 

Low-quality reads (average Phred quality score below 20) were discarded and low-quality 

3' ends of the reads were trimmed with Fastx v.0.0.13 

(https://github.com/agordon/fastx_toolkit, last accessed March 01, 2017). After trimming, 

reads shorter than 50 bp were discarded. De novo assembly of the trimmed reads was 

performed with MIRA v. 4.0rc5 (Chevreux et al., 2004). The assembly resulted in 3,735 

contigs, which will be further referred to as “454 contigs” (Table S4.3). Length distribution of 

the 454 contigs is reported in Figure S4.6B. 



 

141 
 

After the assembly, putative chloroplast contigs were identified by comparing their translated 

sequences against the NCBI non-redundant protein database using BLAST 2.2.29+ 

(Boratyn et al., 2013), resulting in the identification of 58 contigs harbouring fragments or 

full-length chloroplast genes by sequence similarity search. These contigs had long 

stretches of conserved repetitive sequences at their 5' and 3' extremities. The conserved 

inverted repeats were used in a sequence similarity search with high stringency (high 

mismatch cost, high cost for gap opening and gap extension, long minimal word-size) 

against the 454 contigs to identify 18 additional contigs of putative chloroplast origin. This 

initial set of 76 contigs had a mean coverage of 84×, ranging between 11× and 191×. 17 of 

the 76 contigs had internal inverted repeats, with a sudden drop in read coverage. These 

contigs were regarded as chimeric contigs and were cleaved at the sites of coverage drop, 

raising the number of contigs of chloroplast origin to 89. 

Additional chloroplast contigs without similarity to protein-coding genes were identified by 

metagenomic binning (distribution analysis of 4-mers) with MyCC (Lin & Liao, 2016), 

resulting in 21 clusters of 454 contigs (Figure S4.6D). The initial set of 89 chloroplast 454 

contigs was present in three neighbouring clusters: Cluster 14, Cluster 17 and Cluster 21. 

These clusters contained 122, eight and six contigs, respectively, raising the number of 

identified chloroplast contigs assembled from the chloroplast-enriched fraction from 89 to 

136 (“chloroplast 454 contigs” in Table S4.3). Of these, 71 contigs had no sequence 

similarity to known protein-coding genes, 29 contigs harboured only full-length chloroplast 

genes, 29 contigs harboured only fragments of chloroplast genes, and 7 contigs harboured 

both fragments and full-length CDSs of different chloroplast genes. 

Contigs potentially coding for chloroplast tRNAs and rRNAs were identified using Infernal 

1.1 (Nawrocki & Eddy, 2013). The chloroplast 454 contigs served as seeds for iterative 

contig extension with PRICE 1.0.1 (Ruby et al., 2013). Single-end 454 reads were used as 

false paired-end reads with expected insert size equal to the median length of the 454 reads. 

141 different combinations of parameters were tested in order to optimize the contig 

extension. None of the selected assemblies showed a length improvement for the initial set 

of chloroplast 454 contigs. The length distribution of the chloroplast 454 contigs was 

consistent with the size of the LMW DNA fraction as estimated by agarose gel 

electrophoresis of Boodlea genomic DNA (Figure 4.1D, Figure S4.6B). 

Repetitive regions in the contigs were identified with ‘einverted’, ‘etandem’ and ‘palindrome’ 

from the EMBOSS 6.5.7 (Rice et al., 2000) package. Dotplots for all contigs were generated 



142 
 

with YASS v. 1.14, using standard parameters (Noé & Kucherov, 2005). Coverage of the 

chloroplast 454 contigs was evaluated by mapping the 454 reads, the mRNA and the total-

RNA libraries to these contigs with CLC Genomics Workbench 7.0 (Qiagen) (Figure S4.6C).  

The chloroplast 454 contigs were used together with HMW DNA reads for two independent 

hybrid assemblies. First, we tried to close hypothetical gaps between the chloroplast 454 

contigs with the pbahaScaffolder.py script integrated in the smrtanalysis 2.3.0 pipeline 

(Bashir et al., 2012). Secondly, the pre-assembled chloroplast 454 contigs were used as 

anchors for HMW DNA reads in a round of hybrid assembly with dbg2olc (Ye et al., 2016). 

These analyses failed to close the hypothetical gaps between the short chloroplast 454 

contigs and did not yield longer contigs. These results stand in stark contrast to the 

mitochondrial 454 contigs, where the same approaches yielded markedly longer contigs 

(Figures S4.2F and S4.2G).  

Since the hybrid assemblies with uncorrected reads could not reconstruct a circular 

chloroplast genome, HMW DNA reads were further characterized after error correction. The 

high-noise HMW DNA reads were corrected by applying a hybrid correction with proovread 

2.12 (Hackl et al., 2014) using 454 reads and reads from Illumina RNA-seq libraries (see 

below). Corrected reads encoding chloroplast genes were identified by aligning them 

against a custom protein database, named Chloroprotein_db, including genes from the pico-

PLAZA protein database (Vandepoele et al., 2013) and protein-coding genes from published 

green algal chloroplast genomes (Chlorophyta sensu Bremer 1985, NCBI Taxonomy id: 

3041). 

LMW DNA reads were self-corrected with the PBcR pipeline (Koren et al., 2013). Since the 

LMW DNA size is unknown and PBcR requires an estimate of the genome size for proper 

read correction, six different putative genome sizes were tested (100 kb, 1 Mb, 2.24 Mb, 10 

Mb, 100 Mb). The best performance in terms of number of corrected reads was obtained by 

the combination of "10 Mb" for the estimated genome size and the –sensitive flag turned on; 

these corrected reads were used for the downstream analysis. After error correction, the 

number of reads was reduced from 154,852 to 106,428 (Table S4.2), with a similar length 

distribution as the uncorrected reads library (Figure S4.6A). 

In order to estimate the Boodlea chloroplast genome size, k-mer frequency distributions 

were calculated with jellyfish 2.0 (Marçais & Kingsford, 2011). K-mers ranging from 11 toto 

47 were analyzed for uncorrected and corrected LMW DNA reads, for the filtered 454 reads 

and for the 454 reads that could be mapped on the chloroplast 454 contigs (Figure S4.3). 
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De novo genome assembly of corrected LMW DNA reads was performed with the Celera 

WGS assembler version 8.3rc2 (Berlin et al., 2015). The resulting assembly, hereafter called 

the Celera Assembly, consisted of 558 contigs (Table S4.3). Corrected and uncorrected 

reads as well as assembled contigs potentially encoding chloroplast genes were identified 

by aligning them with BLAST 2.2.29+ against Chloroprotein_db. In order to identify 

additional short protein-coding genes, HMM profiles were generated from alignments of 

chloroplast genes present in Chloroprotein_db and used to search the 6-frame translations 

of 454 contigs and corrected and uncorrected HMW and LMW DNA reads with HMMer3 

(Eddy, 2011). To prevent assembly artefacts caused by repetitive elements and palindromic 

sequences, we also performed an orthology-guided assembly, in which the LMW DNA reads 

harbouring chloroplast CDSs were re-assembled together with the respective chloroplast 

454 contigs. First, LMW DNA corrected reads and chloroplast 454 contigs were grouped 

according to their best BLAST hit. The corrected reads and contigs belonging to the same 

group were assembled using Geneious v. 8.1.7 (Biomatters, http://www.geneious.com/, last 

accessed March 01, 2017) with parameters "High Sensitivity/Medium", and each assembly 

(or lack of assembly) was visually screened to exclude potential chimeric contigs (e.g. 

palindromic corrected subreads should be collapsed in the same locus rather than being 

concatenated). Where possible, LMW DNA reads and chloroplast 454 contigs were 

assembled as larger molecules (Figure S4.7). The orthology-guided assembly yielded 21 

contigs, 2 belonging to group A, 15 to group B and 4 to group E (Table S4.1). Two groups 

of reads could not be assembled into longer molecules, and for them, the corresponding 

chloroplast 454 contigs were retained. Eleven additional chloroplast 454 contigs were 

retained (Group E), since they were not congruent with the LMW DNA reads and could not 

be included in the assembly. This resulted in a total of 32 contigs containing chloroplast 

protein-coding genes, which together with the two later identified Group B contigs encoding 

the 16S rRNA gene, are regarded as the Boodlea chloroplast genome contigs (Figure 4.2B, 

Table S4.3).  

Protein-coding genes in the Boodlea chloroplast genome contigs were identified with a 

sequence similarity search against the NCBI non-redundant protein database with BLAST 

2.2.29+. Their annotation was manually refined in Geneious and Artemis 16.0.0 (Rutherford 

et al., 2000) based on the BLAST search results. rRNAs were identified using Infernal 1.1 

(Nawrocki & Eddy, 2013). Repetitive elements were mapped on the Boodlea chloroplast 

genome by aligning the contigs with themselves using BLAST 2.2.29+. Non-coding RNAs 

were identified with infernal 1.1 (cut-off value 10-5). Conserved motifs were predicted with 
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MEME suite (Bailey et al., 2009), and the discovered motifs were clustered with RSAT 

(Medina-Rivera et al., 2015). The motifs were compared with the JASPAR-2016 (Mathelier 

et al., 2013) database using TOMTOM (Gupta et al., 2007) (p-value cut-off 10-3). 

Boodlea chloroplast genome coverage was evaluated by mapping the 454 reads with gsnap 

v.2016-04-04 (Wu et al., 2016). Corrected and uncorrected LMW DNA subreads and 

chloroplast 454 contigs resulting from the MIRA assembly were mapped against the 

Boodlea chloroplast genome with gmap v. 2014-12-06 (Wu et al., 2016) using the –

nosplicing flag. Due to the high number of repetitive sequences in LMW DNA reads and 454 

contigs, the resulting annotated Boodlea chloroplast genome was carefully inspected in 

order to exclude sequencing and assembly artefacts. 

Completeness of the chloroplast genome was evaluated by comparing the annotated 

chloroplast genes to a set of 60 "core" chloroplast protein-coding genes, defined as protein-

coding genes conserved among the chloroplast genomes of the following representative 

species of Chlorophyta: Bryopsis plumosa, Chlamydomonas reinhardtii, Chlorella vulgaris, 

Coccomyxa subellipsoidea, Gonium pectorale, Leptosira terrestris, Nephroselmis olivacea, 

Oltmannsiellopsis viridis, Parachlorella kessleri, and Tupiella akineta, and the streptophyte 

Mesostigma viride (Figure 4.3A). 

 

RNA sequencing 

 Total RNA was isolated using a modified CTAB extraction protocol (Le Bail et al., 2008). 

RNA quality and quantity were assessed with Qubit and Nanodrop spectrophotomete, and 

RNA integrity was assessed with a Bioanalyzer 2100. Two cDNA libraries for NextSeq 

sequencing were generated using TruSeq™ Stranded RNA sample preparation kit (Illumina, 

USA): one library enriched in poly(A) mRNA due to oligo-(dT) retrotranscription and one 

total RNA library depleted in rRNAs with Ribo-Zero Plant kit (Epicentre, USA). The two 

libraries were sequenced on one lane of Illumina NextSeq 500 Medium platform at 2x76 bp 

by VIB Nucleomics Core facilities (Leuven, Belgium) (Table S4.2). 

 

Transcriptome assembly and annotation 

Quality of the reads from the two RNA-seq libraries was assessed with FastQC. Low-quality 

reads (average Phred quality score below 20) were discarded and low-quality 3' ends of the 
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reads were trimmed with Fastx. After trimming, reads shorter than 30 bp were discarded. 

Read normalization and de novo assembly of the libraries were performed with Trinity 2.0.4 

(Grabherr et al., 2011). The resulting contigs (hereafter, transcripts) were compared using 

sequence similarity searches against the NCBI non-redundant protein database using Tera-

BLAST™ DeCypher (Active Motif, USA). Taxonomic profiling of the transcripts was 

performed using the following protocol: for each transcript, sequence similarity searches 

were combined with the NCBI Taxonomy information of the top ten BLAST hits in order to 

discriminate between eukaryotic and bacterial transcripts, or transcripts lacking similarity to 

known protein-coding genes (Table S4.3). Transcripts classified as "eukaryotic" were further 

examined to assess transcriptome completeness and to identify chloroplast transcripts. 

These transcripts were analysed using Tera-BLAST™ DeCypher against Chloroprotein_db. 

Transcriptome completeness was evaluated with a custom Perl script that compared gene 

families identified in the Boodlea transcriptome to a set of 1,816 "core" gene families shared 

between Chlorophyta genomes present in pico-PLAZA 2.0 (Vandepoele et al., 2013), 

following Veeckman et al. guidelines to estimate the completeness of the annotated gene 

space (Veeckman et al., 2016) (mRNA 1,741; total-RNA 1,724 out of 1,816 core gene 

families identified respectively). 

Boodlea chloroplast genome expression and presence of potential RNA editing were 

evaluated by mapping the reads from the mRNA and total-RNA libraries to the chloroplast 

genome contigs with gsnap, and by aligning the transcripts resulting from the de novo 

assembly of the RNA-seq libraries to the chloroplast genome contigs with gmap.  

 

Cladophorales genomic DNA sequencing 

Sequence data were obtained from 9 additional Cladophorales species, representing the 

main lineages of the order (Tables S4.2 and S4.4). Total genomic DNA was extracted using 

a modified CTAB extraction protocol as described above, and sequenced using Illumina 

HiSeq 2000 technology (2×100 bp paired-end reads) on 1/5th of a lane by Cold Spring 

Harbor Laboratory (Cold Spring Harbor, NY, USA). Quality of the reads from the sequenced 

libraries was assessed with FastQC 0.10.1. Low-quality reads (average Phred quality score 

below 20) were discarded and low-quality 3' ends of the reads were trimmed with Fastx 

0.0.13 toolkit. After trimming, reads shorter than 50 bp were discarded. Trimmed reads were 

assembled with CLC Genomics Workbench, MIRA and SPAdes 3.6.2 (Bankevich et al., 

2012). 
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The taxonomic profiling of the contigs was performed with the following protocol: for each 

contig, sequence similarity searches were combined with the NCBI Taxonomy ID’s of the 

top ten BLAST hits in order to discriminate between eukaryotic and bacterial contigs and 

contigs with no similarity to known proteins ("NoHit"). Contigs classified as eukaryotic were 

further analysed to identify chloroplast contigs with a sequence similarity search using Tera-

BLAST™ (DeCypher, www.timelogic.com) against Chloroprotein_db. After chloroplast 

contig identification, the assembly that allowed the reconstruction of the highest number of 

full-length chloroplast genes was retained. An overview of the assembly metrics is reported 

in Table S4.3. 

 

Phylogenetic analysis. 

Phylogenetic analysis was based on a concatenated alignment of 19 chloroplast protein-

coding genes (atpA, atpB, atpH, atpI, petA, petB, petD, psaA, psaB, psaC, psbA, psbB, 

psbC, psbD, psbE, psbF, psbJ, psbL, and rbcL) from Boodlea, nine other Cladophorales 

species, 41 additional species of Archaeplastida, and 14 Cyanobacteria species (Table 

S4.6). For each gene, DNA sequences were translated to amino acid sequences and 

aligned using ClustalW in Geneious using the BLOSUM weight matrix, with gap open 

penalty 10 and gap extension penalty 0.1. The 19 alignments were concatenated and poorly 

aligned positions were removed using Gblocks server (Talavera & Castresana, 2007), using 

the least stringent settings, resulting in an amino acid alignment of 5,704 positions. A 

maximum likelihood (ML) phylogenetic tree was inferred from the amino acid alignment 

using RAxML with the cpREV + Γ model (Stamatakis, 2014). Branch support was assessed 

by bootstrapping with 500 replicates. Phylogenetic analysis was run on the CIPRES Science 

Gateway v3.3 (Miller et al., 2011). 

 

Data and software availability 

DNA and RNA sequence data have been deposited to the NCBI Sequence Read Archive 

as BioProject PRJNA384503. The annotated chloroplast and mitochondrial contigs of 

Boodlea composita were deposited to GenBank under accession numbers MG257795 – 

MG257880. Chloroplast genes from additional Cladophorales species were made available 

on Mendeley Data (http://dx.doi.org/10.17632/7dyphg7pbk.1). Phylogenetic data (sequence 

alignments, analyses and phylogenetic tree) were deposited in TreeBase under accession 

number 21737 (http://purl.org/phylo/treebase/phylows/study/TB2:S21737). 
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Supplementary Information 
 

 

 

Figure S4.1: Sequence datasets generated in this study and their main analyses. 

The diagram in the inner box “Boodlea” describes the workflow used to characterize the 
chloroplast genome structure and organization. The datasets represented in the outer box 
“Cladophorales” were used for phylogenetic inference and confirmation that the chloroplast 
genome of the entire order Cladophorales is distributed over hairpin plasmids. HMW DNA: 
High Molecular Weight DNA; LMW DNA: Low Molecular Weight DNA, RT-LTR: Long 
Terminal Repeat Retrotransposon. 
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Figure S4.2: HMW DNA reads contain RT-LTR and nuclear-encoded protein-coding genes that are normally present in the chloroplast 
genome. 

(A) Representation of the HMW DNA read encoding ycf4 (10,517 bp), one of the 19 nuclear-encoded genes identified in the HMW DNA fraction. 
The red arrow indicates the spliced CDS, the grey dash indicates the intron. (B) Corresponding Genome Browser track showing from top to 
bottom: HMW DNA read coverage [range 0-13], LMW DNA read coverage [range 0-22], 454 read coverage [range 0-2], mRNA library read 
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coverage [range 0-5,131], assembled mRNA transcripts mapped [range 0-2], total-RNA library read coverage [range 0-896], and assembled 
total-RNA transcripts mapped [range 0-3]. (C) psbA, psbB, psbC HMW DNA reads are not transcribed by the nuclear machinery and they are 
possibly LMW DNA carry-over contaminants, rather than genuine genes transferred to the nucleus. HMW to LMW DNA reads ratio and mRNA 
to total-RNA reads ratio suggest and support the first hypothesis. Genome Browser track of the psbA HMW DNA read (909 bp) showing from 
top to bottom: corrected HMW DNA read coverage [range 0-1], corrected LMW DNA read coverage [range 0-58], 454 read coverage [range 0-
27], mRNA library read coverage [range 0-795], assembled mRNA transcripts mapped [0], total-RNA library read coverage [range 0-408,934], 
and assembled total-RNA transcripts mapped [range 0-2]. (D) Representation of the HMW DNA read encoding RT-LTR (9,098 bp). This read 
(p0/144332), which was assembled together with the empty chloroplast 454 contig c474, presented similarity to ncDNA in the hairpin plasmids 
and potentially encoded a retrotranscriptase gene. The red arrow indicates the RT-LTR CDS, the blue arrows indicate inverted repeats with 
sequence similarity to the inverted repeats and the ncDNA conserved motifs of Boodlea chloroplast genome. (E) Corresponding Genome 
Browser track showing from top to bottom: coverage of the HMW DNA [range 0-50] and LMW DNA [range 0-1,435] corrected reads respectively; 
coverage of 454 reads [0-155], coverage of the mRNA library [range 0-104] and the corresponding assembled transcripts [range 0-6], 
respectively; coverage of the total-RNA library [range 0-3,884] and the corresponding assembled transcripts, respectively [range 0-27]. (F) 
Representation of one of the 52 contigs obtained by hybrid assembly between HMW DNA reads and 454 mitochondrial contigs (17,353 bp). 
The red arrows indicate two distinct cox1 fragments. Metagenomic binning of the 454 contigs revealed a cluster of 102 contigs with sequence 
similarity to mitochondrial protein-coding genes (Cluster 4 in Figure S4.6D; see also Material and Methods). Potential genes coding for 
mitochondrial proteins were identified as well on 346 HMW DNA reads. In stark contrast with the chloroplast 454 contigs, a hybrid assembly 
between mitochondrial 454 contigs and HMW DNA reads resulted into 52 contigs, with an N50 length of 15,105 bp and a cumulative length of 
732 kb and a GC content of 57.6%. A similarity search for mitochondrial genes commonly present in the mitochondrial genomes of Chlorophyta 
revealed the presence of abundant fragments of 8 protein coding genes (atp8, atp9, cob, cox1, nad3, nad4, nad5, nad6), scrambled and/or 
repeated in tandem. The assembled mitochondrial contigs are rich in direct and inverted repeats, however, they bear no sequence similarity to 
conserved ncDNA motifs identified in Boodlea chloroplast genome. (G) Corresponding Genome Browser track showing from top to bottom: 
coverage of the HMW DNA [range 0-396] and LMW DNA [range 0-110] corrected reads respectively; coverage of the 454 reads [0-876], 
coverage of the mRNA library [range 0-1,695] and the corresponding assembled transcripts [range 0-2], respectively; coverage of the total-
RNA library [range 0-29,391] and the corresponding assembled transcripts [range 0-5], respectively.  
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Figure S4.3: k-mer frequency distributions of Boodlea 454 and LMW DNA libraries. 

On the x-axis is reported the k-mer coverage depth, while on the y axis is reported the 
frequency (A) k-mer distribution frequencies of LMW DNA reads. (B) k-mer frequency 
distribution of corrected LMW DNA reads. (C) k-mer frequency distribution of 454 reads. (D) 
k-mer frequency distribution of 454 reads that map on the chloroplast 454 contigs. 
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Figure S4.4: Maximum likelihood phylogenetic tree. 

Maximum likelihood phylogenetic tree inferred from a concatenated amino acid alignment 
of 19 chloroplast genes, including atpA, atpB, atpH, atpI, petA, petB, petD, psaA, psaB, 
psaC, psbA, psbB, psbC, psbD, psbE, psbF, psbJ, psbL and rbcL. The scale represents 0.1 
substitution per amino acid position.  
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Figure S4.5: Non-canonical genetic code in Boodlea chloroplast genes. 

(A) Concordance between DNA contigs and mapped total-RNA reads for the chloroplast 
454 contig containing the petA gene. From top to bottom: coverage of 454 reads [range 0-
208]; coverage of the mRNA library [range 0-3]; coverage of the total-RNA library [range 0-
720]. The bottom track shows the annotated regions (CDS in red, inverted repeats in blue). 
(B) Concordance between DNA contigs and mapped total-RNA reads of the chloroplast 454 
contig containing the psaA gene. From top to bottom: coverage of 454 reads [range 0-252]; 
coverage of the mRNA library [range 0-93]; coverage of the total-RNA library [range 0-
30,713]. The bottom track shows the annotated regions (CDS in red, inverted repeats in 
blue). (C) Concordance between DNA contigs and mapped total-RNA reads of the 
chloroplast 454 contig containing the psaB gene. From top to bottom: coverage of 454 reads 
[range 0-27]; coverage of the mRNA library [range 0-24]; coverage of the total-RNA library 
[range 0-19,077]. The bottom track shows the annotated regions (CDS in red). (D) 
Concordance between DNA contigs and mapped total-RNA reads of the chloroplast 454 
contig containing the psaC gene. From top to bottom: coverage of 454 reads [range 0-97]; 
coverage of the mRNA library [range 0-19]; coverage of the total-RNA library [range 0-
7,255]. The bottom track shows the annotated regions (CDS in red, inverted repeats in blue). 
(E) Concordance between DNA contigs and mapped total-RNA reads of the chloroplast 454 
contig containing the psbC gene. From top to bottom: coverage of 454 reads [range 0-306]; 
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coverage of the mRNA library [range 0-54]; coverage of the total-RNA library [range 0-
21,340]. The bottom track shows the annotated regions (CDS in red, inverted repeats in 
blue). (F) Concordance between DNA contigs and mapped total-RNA reads of the 
chloroplast 454 contig containing the rbcL gene. From top to bottom: coverage of 454 reads 
[range 0-244]; coverage of the mRNA library [range 0-135]; coverage of the total-RNA library 
[range 0-46,618]. The bottom track shows the annotated regions (CDS in red, inverted 
repeats in blue).  
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Figure S4.6: Length distributions of Boodlea genomic libraries and genomic binning 
of the 454 contigs. 

(A) Violin boxplot indicates the length distributions of the reads for each library. Inner boxplot 
indicates the median and the first and third quartiles of the distributions. Black circles indicate 
outliers. 454: chloroplast-enriched fraction library; HMW: uncorrected HMW DNA library; 
HMW corr: corrected HMW DNA library; LMW: uncorrected LMW DNA library; LMW corr: 
corrected LMW DNA library. Details on the genomic libraries are provided in Table S4.2. (B) 
Violin boxplots indicate the length distributions of the contigs for each Boodlea genomic 
assembly. Inner boxplots indicate the median and the first and third quartiles of the 
distributions. Black circles indicate outliers. Genomic assembly metrics are provided in Table 
S4.3. (C) Violin boxplot indicating the mean coverage of the 454 reads, and RNA (mRNA 
and total RNA) reads mapping to the 136 chloroplast 454 contigs. The higher coverage of 
the total-RNA library compared to the mRNA library confirms that the chloroplast 454 contigs 
are not transcribed in the nucleus. The Y axis reports the mean coverage of the chloroplast 
contigs. (D) Metagenomic binning of the 454 contigs. Only contigs longer than 1,000 bp 
were included in the analysis. Each circle represents a contig. Contigs were grouped into 21 
clusters (indicated with different colours) based on their genomic signature and coverage 
profile. Sequence similarity searches against NCBI non-redundant protein database showed 
that clusters 14, 17 and 21 are composed by chloroplast contigs (indicated by a dashed 
green ellipse). Cluster 1, Cluster 11, Cluster 13 and Cluster 18 (15, 9, 7, 8 contigs, 
respectively) had no similarity to known proteins. Cluster 2 contained 7 contigs of possible 
bacterial origin. Cluster 4 contained 102 contigs with sequence similarity to mitochondrial 
proteins. Contigs in the remaining clusters had sequence similarity to Long-Terminal 
Repeats retrotransposon proteins (RT-LTRs) and to hypothetical and predicted proteins with 
domains typical of RT-LTRs.  
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Figure S4.7: Schematic representation of assembled Boodlea chloroplast DNA 
contigs. 

(A) Schematic representation of one of the predicted native conformations of chloroplast 
hairpin chromosomes (with a near-perfect palindromic region and a less conserved tail). Red 
arrows represent CDSs. (B) Schematic representation of LMW DNA reads and the 
assembled Boodlea chloroplast DNA contigs; red arrows represent CDSs, blue arrows 
represent major inverted repeats; scale bar at the bottom indicates length of the 
contigs/reads. Group A: The first half of the read is a perfect palindrome, containing the two 
inverted CDSs; the second half of the read (tail) is less conserved, but similar to the first half 
of the read. Group B: Palindromic sequences with full-length CDSs in opposite orientations, 
resembling the first half of group A read. Group C: palindromic sequences with fragments of 
CDS. Group D: short reads with fragments of CDSs that lack extensive repetitive elements. 
Group E: Full-length CDSs delimited by inverted repeats. Similar to group E contigs and 
reads, the remaining 113 chloroplast 454 contigs lacking full-length CDSs are delimited by 
inverted repeats. (C) Dotplots of the five groups, showing the abundance of repetitive 
elements. Each dotplot was generated by aligning the contig/read with itself. Green lines 
indicate similar sequences; red lines indicate sequences similar to the respective reverse 
complements. 
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Table S4.1: Features of the 34 contigs constituting the Boodlea chloroplast genome and unassembled LMW DNA reads with sequence similarity to chloroplast genes.  

 Chloroplast contigs features LMW DNA reads features before orthology guided assembly 

Miscellaneous features 
Conti

g 

Containin

g gene 

% 

coding 
start stop 

GC% 

[total; CDS; 

nc] 

# LMW 

DNA 

reads 

length (bp) 

[total; min; max; N50] 

LMWf

ull-

CDS 

LMW 

assembl

ed with 

454 

LMW 

congruen

t with 454 

Grou

p A 

Grou

p B 

Grou

p C 

Grou

p D 

Grou

pE 

ctg1 16S rRNA 5’ 29.1 - - 
54.6; 55.3; 

54.5 
64 1,885; 510; 3,439; 939 ● ○ ● 0 13 1 51 0 Group B 

ctg2 16S rRNA 3’ 26.7 - - 
56.3; 55.6; 

56.4 
5 

2,600;1,761; 1,874; 

1,836 ○ ● ○ 0 0 5 0 0 Group B 

ctg3 atpA 67.5 ATG TAG 
59.6; 

60.3;56.8 
36 3,295; 512; 3,488; 2,697 ○ ● ○ 0 0 22 14 0 Group B 

ctg4 atpB 75.0 GTT TAA 
58.4; 58.8; 

57.3 
346 1,843; 516; 10,796; 922 ○ ● ○ 0 0 31 280 35 Group E. shorter CDS 

ctg5 atpH 9.0 GTG TGA 
57.4; 57.2; 

57.4 
96 2,686; 585; 2,686; 1,287 ● ○ ● 0 2 0 43 51 Group B 

ctg6* atpH 12.6 GTG TCC 
56.9; 57.1; 

56.9 
- 1,833 - - - 0 0 0 0 1 lacks 3' ? 

ctg7* atpH 9.4 GTG TCT 
58.2; 57.1; 

58.3 
- 2,149 - - - 0 0 0 0 1 lacks 3' ? 

ctg8* atpH 12.3 GTG TCC 
57.6; 57.1; 

57.7 
- 1,873 - - - 0 0 0 0 1 lacks 3' ? 

ctg9* atpH 10.2 ? TGA 
58.2; 60.1; 

58.0 
- 1,949 - - - 0 0 0 0 1 lacks 5' 

ctg10 atpI 26.7 ATG TAG 
55.6; 57.1; 

55.1 
132 6,139; 535; 6,137; 605 ● ○ ● 1 0 0 131 0 Group A 

ctg11 petA 22.4 CTG TAG 
57.3; 59.5; 

55.2 
16 3,398; 641; 3,396; 1,833 ● ○ ● 0 1 4 11 0 Group B. TGA → V. TGA → K 

ctg12

* 
petA 36.2 ? TAG 

57.7; 59.3; 

56.7 
- 2,012 - - - 0 0 0 0 1 lacks 5' 

ctg13

* 
petA 46.2 ATG TAG 

57.8; 59.5; 

55.7 
- 1,721 - - - 0 0 0 0 1 TGA → V 

ctg14 petB 39.9 CTG TAA 
55.2; 56.3; 

54.4 
8 

2,695; 1,673; 1,914; 

1,841 ● ○ ● 0 0 7 0 1 Group B 

ctg15

* 
petB 40.5 CTG TAA 

56.2; 55.2; 

56.9 
- 1,631 - - - 0 0 0 0 1  

- petD - - - 57.2; -; - 9 754; 811; 809 ○ ○ ○ 0 0 0 9 0 Group D, unassembled 

ctg16

* 
petD 35.1 ATG TAA 

55.8; 54.8; 

56.3 
- 1,395 - - - 0 0 0 0 1  

ctg17 psaA 39.6 ATG TAG 
57.9; 59.0; 

57.4 
250 6,925; 572; 6,596; 1,191 ○ ● ○ 0 0 39 211 0 

Group E, TGA → Q? TGA → 

V? 
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- psaB - - - 57.7; -; - 337 -; 523; 2,493; 776 ○ ○ ○ 0 0 8 329 0 
Unassembled. shorter (5' 30 

aa) 

ctg18

* 
psaB 95.9 ? TAA 

58.2; 58.5; 

51.1 
- 2,116 - - - 0 0 0 0 1 lacks 5'. TGA → C/V 

ctg19 
psaC 

16.6 
ATG 

TTG 

TAG 

TGA 

57.7; 55.2; 

58.2 
92 2,971; 503; 2,346; 726 ● ○ ● 0 6 0 86 0 Group B. TGA → C 

psbJ 

ctg20

* 
psaC 12.5 ? ? 

56.1; 56.3; 

56.1 
- 1,850 - - - 0 0 0 0 1 longer 5'? 

ctg21 psbA 54.5 ATG TAG 
53.7; 52.5; 

55.5 
136 3,599; 551; 2,636; 893 ○ ● ○ 0 0 37 109 0 Group A 

ctg22 psbB 61.1 ATG TAG 
60.4; 60.4; 

60.4 
152 3,090; 552; 4,273; 1,757 ○ ● ○ 0 0 64 88 0 Group B 

ctg23 psbC 67.0 ATG TAA 
59.3; 59.3; 

59.3 
187 2,041; 500; 3,404; 646 - - - 0 0 5 171 11 Group E ; TGA → L 

ctg24 psbD 52.0 ATG TAA 
56.3; 

56.7;56.0 
90 3,643; 558; 2753; 751 ● ○ ● 0 0 3 78 4 Group B, lacks 5' ? 

ctg25

* 
psbD 59.5 ATG TAA 

56.5; 56.4; 

56.7 
- 1,960 - - - 0 0 0 0 1 longer 5' 

ctg26 
psbE 

16.9 
? 

? 

? 

TAG 

55.8; 53.6; 

56.2 
10 1,327; 689; 2,077; 1,405 ● ○ ● 0 0 0 7 2 Group E; no 5', no stop codon 

psbK 

ctg27 psbF 5.2 CTC TAG 
56.8; 54.8; 

57.0 
5 

2,617; 1,715; 1,726; 

1,718 ● ○ ● 0 4 0 0 0 Group B, uncorrected 

ctg28 psbL 8.4 ATG TAG 
55.9; 48.5; 

56.6  
1 1,179 ● ○ ● 0 0 0 0 1 Group B; uncorrected 

ctg29

* 
psbL 6.3 ATG TAG 

57.8; 49.5; 

58.5 
- 1,666 - - - 0 0 0 0 1  

ctg30

* 
psbL 6.2 TTG ? 

56.9; 50.4; 

57.3 
- 1,986 - - - 0 0 0 0 1 arbitrary 

ctg31 psbT 1.6 GTG ? 
57.9; 47.2; 

58.0 
70 4,515 ● ○ ● 0 9 0 42 2 Group B 

ctg32 psbT 4.3 GTG TAG 
57.2; 53.5; 

57.4 
43 3,687 ● ○ ● 0 10 0 33 0 Group B 

ctg33 psbT 6.0 CAT TAA 
56.9; 50.8; 

57.3 
33 3,000 ● ○ ● 0 12 0 21 0 Group B 

ctg34 rbcL 65.1 ATG TAA 
57.3; 57.8; 

56.1 
411 4,116; 503; 3,120; 909 ○ ● ○ 0 0 26 385 0 Group B, TGA → C 

*chloroplast 454 contigs that could not be assembled together with LMW DNA reads 
● yes 

○ no 

- not applicable 
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length: in bold is indicated the length of the contig resulting from the orthology-guided assembly (chloroplast-enriched fraction + LMW DNA); minimum, maximum and N50 lengths in bp of the LMW DNA reads. With regards to the 

chloroplast 454 contigs that could not be assembled together with the LMW DNA reads, their lengths are also reported in bold. 
% coding: percentage of coding sequence of the orthology-guided contig or of the chloroplast 454 contigs. 
GC%: GC contents of orthology-guided/chloroplast 454 contigs, of the respective CDS and of the non-coding region. 
LMW full-CDS: whether a full-length CDS could be detected in the LMW DNA reads. 

LMW assembled with 454: whether a full-length CDS could be reconstructed by orthology-guided assembly of LMW DNA reads and chloroplast 454 contigs. 
LMW congruent with 454: whether LMW DNA reads harboring full-length CDSs have corresponding chloroplast 454 contigs. 
groupA-E: distribution of LMW DNA reads in different Groups (Figure S4.7). All unassembled chloroplast 454 contigs belong to Group E molecules. 
start: the identified start codon of the CDS. A question mark indicates that the start codon could not be univocally identified. 
stop: the identified stop codon of the CDS. A question mark indicates that the stop codon could not be univocally identified. 
features: in this column are reported the Groups to which the orthology-guided contigs (ctg) with full-length CDSs belong, the alternative codons identified if it was possible to assemble a full-length CDS, and the eventual 

differences with the orthologous sequences of other green algae. 
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Table S4.2: Features Genomic and transcriptomic libraries analysed in this study. 

Number of reads, total length, N50 length and GC content are reported. For the long noisy reads 
from HMW and LMW DNA libraries, information before and after read corrections are included.  

 # of reads total length (bp) N50 (bp) GC% 

454 261,577 96,038,799 441 53.38 

HMW 67,706 535,096,685 10,357 50.03 

HMW corrected reads 50,119 432,837,312 11,021 50.21 

LMW 154,852 224,767,151 1,798 50.90 

LMW corrected reads 106,428 139,581,606 1,658 51.07 

mRNA 32,336,598 4,871,957,016 - 48.03 

total-RNA 73,362,835 11,082,500,196 - 53.19 

C. aerea 3,977,613 803,477,826 - 54.70 

C. albida 13,907,529 2,809,320,858 - 44.14 

C. socialis 60,823,223 12,286,291,046 - 50.21 

C. vadorum 61,955,110 12,514,932,220 - 50.53 

D. cavernosa 25,664,333 5,184,195,266 - 42.41 

Pithophora sp. 1,682,879 339,941,558 - 51.82 

S. tropicus 7,742,251 1,563,934,702 - 57.02 

S. elegans 6,291,774 1,270,938,348 - 51.72 

V. utricularis 11,073,789 2,236,905,378 - 59.25 

V. ventricosa 3,303,983 667,404,566 - 55.53 

Table S4.3: Genomic and transcriptomic assembly metrics. 

Number of contigs, total length, N50 length, GC content and approximate length of the longest contig 
are reported. 

 # contigs 
total length 

(bp) 
N50 (bp) GC% 

longest 
contig (bp) 

454 contigs 3,735 3,696,003 1,138 51.08 8,000 

chloroplast 454 contigs 136 268,038 1,964 57.55 7,100 

Celera Assembly 558 1,299,546 2,287 54.51 7,800 

chloroplast genome 34 91,391 2,971 56.52 6,900 

C. aerea 86,127 56,059,813 877 55.55 639,600 

C. albida 58,487 20,927,231 345 44.14 46,500 

C. socialis 1,047,600 575,965,604 630 50.21 106,200 

C. vadorum 638,917 404,812,870 781 50.53 183,700 

D. cavernosa 39,589 14,858,121 333 42.41 104,000 

Pithophora sp. 42,095 14,710,190 344 60.83 17,000 

S. tropicus 13,325 4,660,819 337 57.02 8,200 

S. elegans 7,725 3,159,309 414 51.72 5,400 

V. utricularis 26,338 8,907,076 325 59.25 9,300 

V. ventricosa 30,821 24,976,680 1,359 55.53 784,900 

mRNA 91,362 63,341,422 1,198 50.70 9,600 

mRNA euk 24,790 26,403,806 1,729 51.65 9,600 

mRNA nohit 64,078 34,837,854 741 49.90 9,100 

total-RNA 174,989 107,076,485 797 50.16 13,700 

total-RNA euk 32,021 34,677,513 1,721 51.89 13,700 

total-RNA nohit 136,680 69,059,114 552 49.19 11,600 
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Table S4.4: Collection details of Boodlea composita, and the nine additional Cladophorales species 
sequenced and used in the phylogenetic analysis. 

Species Collection locality, collector, and date Culture / voucher number 

Boodlea composita Dumaguete, Negros Oriental, Philippines 
(Leliaert, 14 Nov 2007) 

FL1110 * 

Chaetomorpha aerea  Woods Hole, Massachusetts, USA (H.C. 
Bold, Summer 1956) 

UTEX799 ** 

Cladophora albida  Swan River, W Australia, (1985) Calb2 (= A85.23) * 

Cladophora socialis  Rottnest Isl., Australia (1988) Csoc2 (= CPS7A) * 

Cladophora vadorum  Punta del Hidalgo, Tenerife (1988)  Cvad2 (= CvadoPH) * 

Dictyosphaeria 
cavernosa  

Dapdap, Siquijor, Philippines (F. Leliaert, 
16 Nov 2007) 

FL1134 * 

Pithophora sp.  Brooklyn, Indiana, USA (C. Kelly) UTEX787 ** 

Siphonocladus tropicus  Arinaga, Gran Canaria Siph3 (= StGC) * 

Struvea elegans  Bahamas (S. Brawley, 1975) Sele1 (=SE 1572 = West 1572 = 
UTEX LB 2372) * 

Valonia utricularis  Punta Carnero, Spain (1996) Vutric3 (=  VUSC) * 

Valonia ventricosa  Coconut Island, Kaneohe Bay, Oahu, 
Hawaii, USA (J.A. West, 1970) 

UTEX2260 ** 

* Algal culture collection of the Phycology Research Group, Ghent University, Belgium 

** UTEX Culture Collection of Algae at the University of Texas at Austin, United States of America 

 

 

 

Table S4.5: Chloroplast protein-coding genes identified in the Cladophorales genomic libraries.  
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B. composita ● ● - ● ● ● ● ● ● ● ● ● ● ● ● ● ● - ● ● ● ● ● 

C. aerea ● ● - ● ● - ● - ● ● - ● - ● ● - - - - - - - ● 

C. albida ○ ○ - ● ● ○ - - ○ ● - ● ○ ● ○ ○ - - - - - - ○ 

C. socialis - ● ● ● ○ - ○ - ○ ○ ● ● ○ ● ● ● ● ● - - - - ○ 

C. vadorum ○ ○ ● ● ○ - ○ - ○ ○ - ○ ○ ○ ○ - ○ - - - - - ○ 

D. cavernosa ○ ○ - ● ● - ● - ● ● ○ ● ● ● ○ - - - - - - - ● 

Pitophora sp. ○ ● - ● - ○ ● - ● ○ - ● ○ ○ ● - - - - - - - ● 

S. tropicus - ● - - ○ - ○ ○ ○ ● ● ● ○ ○ ● ● - - - - - - ● 

S. elegans ○ ○ - ● ○ ○ ○ ○ ○ ○ ● - ○ ○ ○ - - - - - - - ○ 

V. utricularis ○ ● - ○ ○ - ○ - ○ ○ ● - ○ ○ ○ ● ● - - - - - ● 

 ● full-length gene reconstructed 

○ gene detected but partial 

- gene not detected 
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Table S4.6: Species used in the phylogenetic analysis, along with GenBank accession 
numbers.  

Species GenBank 
accession 
number(s) 

Species GenBank 
accession 
number(s) 

Acaryochloris marina 
MBIC11017 

NC_009925.1 Nostoc sp. PCC 7120 NC_003272 

Acetabularia acetabulum HG518455-
HG518469 

Oedogonium cardiacum NC_011031 

Acutodesmus obliquus NC_008101 Oltmannsiellopsis viridis NC_008099 

Arthrospra platensis NIES 39 NC_016640 Oocystis solitaria FJ968739 

Boodlea composita FL1110 this study Ostreococcus tauri NC_008289 

Bryopsis plumosa NC_026795 Parachlorella kessleri NC_012978 

Cephaleuros parasiticus KM464687-
KM504519  

Pedinomonas minor NC_016733 

Chaetomorpha sp this study Picocystis salinarum NC_024828 

Chaetospaeridium globosum NC_004115 Pithophora sp. this study 

Chara vulgaris NC_008097 Porphyra purpurea NC_000925 

Chlamydomonas reinhardtii NC_005353 Prasinoderma coloniale NC_024817 

Chlorella vulgaris NC_001865 Prochlorococcus marinus str 
MIT 9303 

CP000554 

Chlorokybus atmophyticus NC_00882 Tupiella akineta NC_008114 

Cladophora albida this study Pycnococcus provasolii NC_012097 

Cladophora socialis this study Pyramimonas parkeae NC_012099 

Cladophora vadorum this study Scherffelia dubia NC_029807 

Coccomyxa C-169 NC_015084 Struvea elegans this study 

Cyanidioschyzon merolae strain 
10D 

NC_004799 Siphonocladus tropicus this study 

Cyanidium caldarium NC_001840 Stigeoclonium helveticum NC_008372 

Cyanophora paradoxa NC_001675 Synechococcus elongatus PCC 
7942 

NC_007604 

Cyanothece sp ATCC 51142 NC_015047 Synechococcus sp JA 3 3Ab NC_007775 

Cyanothece sp PCC 8802 NC_013161 Synechococcus sp RCC307 NC_009482 

Dictyospaeria cavernosa this study Synechococcus sp WH 7803 NC_009481 

Dunaliella salina NC_016732 Synechococcus sp WH 8102 NC_005070 

Gloeobacter violaceus PCC 
7421 

NC_005125 Tetraselmis olivacea KU167097 

Gracilaria tenuistipitata var liui NC_006137 Trentepohlia annulata KM464689-
KM491845  

Halimeda cylindracea KM820107-
KM820166  

Tydemania expeditionis NC_026796 

Koliella longiseta NC_025531 Ulva fasciata NC_029040 

Leptosira terrestris NC_009681 Ulva linza NC_030312 

Lobospaera incisa NC_025533 Ulva UNA00071828 KP_720616 

Mesostigma viride NC_002186 Valonia utricularis this study 

Microcystis aeruginosa NIES 
843 

NC_010296 Verdigellas peltata NC_030220 

Monomastix sp. OKE 1 NC_012101 Welwitschia mirabilis NC_010654 

Nephroselmis olivacea NC_000927 Zygnema circumcarinatum NC_008117  

Nostoc punctiforme PCC 73102 NC_010628   
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Chapter 5 - General Discussion 
Andrea Del Cortona8 

 

 

 

 

 

 

 

 

 

“I disapprove of what you say, but I will defend to the death your right to say it.” 

Evelyn Beatrice Hall - The Friends of Voltaire 

 

                                                             
8 Authors contribution: A.D.C.: manuscript conceptualization, drafting and writing. 
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Ulvophyceans evolution: chasing shadows 
 

Are green algal phylogenetic relationships resolved? 

Wherever there is sunlight, photosynthetic eukaryotes with green plastids can be 

found. Both in species numbers as well as biomass, the overwhelming majority of 

green plastids is found in Viridiplantae, while euglenids, chlorarachniophytes, and 

green dinoflagellates only contain a tiny fraction of the green plastid diversity. 

TheViridiplantae includes the land plants, which dominate terrestrial habitats, and 

green algae, which are widespread in freshwater environments. One group of green 

algae, the green seaweeds, form macroscopic thalli and are abundant in shallow 

benthic habitats along coastlines, and to a lesser extent the open oceans (Falkowski 

et al., 2004b). Yet, little is known about their evolutionary history. Viridiplantae are a 

natural group (Cavalier-Smith, 1981; Bremer, 1985; Adl et al., 2005) composed of two 

major lineages which followed two separate paths of evolution: the Streptophyta and 

the Chlorophyta (Lewis & McCourt, 2004; Becker & Marin, 2009; Brocks et al., 2017; 

Jackson et al., 2018). The divergence of the Streptophyta and Chlorophyta is ancient, 

and likely took place before the the Paleozoic (570 mya), possibly in the the 

Mesoproterozoic (1600-1000 mya), although convincing fossils are largely absent 

(Becker & Marin, 2009; Wodniok et al., 2011; Sánchez-Baracaldo et al., 2017). 

The relationships between the major clades of Streptophyta are generally well-

resolved, however, some uncertainties remain, such as the relationships of hornworts, 

liverworts and mosses at the base of the Embryophyta despite analyses of 

phylogenomic datasets with hundreds of genes. Conflicting topologies based on 

different markers and evolutionary models have been ascribed to incomplete lineage 

sorting (ILS) and lineage-specific heterogeneity (Puttick et al., 2018; Rensing, 2018). 

Unfortunately, the long and intricate evolutionary history of Streptophyta probably goes 

hand in hand with convergent loss and gain of key features (e.g.: independent evolution 

of stomata), preventing the parsimonious use of synapomorphies to solve the 

uncertainties (Duckett & Pressel, 2018). 

Historically, the evolution of green algae was interpreted based on thallus organization, 

whereby clades with increasing size and complexity were thought to have originated 

from a simple unicellular ancestor (Fott, 1971). Later, analyses of ultrastructural data 
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related to mitosis (e.g.: mitotic spindle), the arrangement of flagellar basal bodies, and 

cytokinesis resulted in a thorough reevaluation of the classification of green algae. 

These features were believed to better reflect phylogenetic relationships because of 

their involvement in fundamental processes of cell replication and cell motility, and thus 

to be less liable to convergent evolution than thallus form. More recently, molecular 

phylogenetic data provided a new framework for reconstructing the evolutionary history 

of the green algae. Within the Chlorophyta, four major groups are recognized: a 

paraphyletic assemblage of prasinophytes, which are the earliest diverging 

Chlorophyta, and the morphologically diverse Chlorophyceae, Trebouxiophyceae and 

Ulvophyceae, which form a clade defined as ‘core Chlorophyta’ (Lewis & McCourt, 

2004; Leliaert et al., 2012; Turmel & Lemieux, 2018). Recently, Chlorodendrophyceae 

and Pedinophyceae have been elevated to the class-level and included in the core 

Chlorophyta based on molecular data (Marin, 2012; Fučíková et al., 2014).  

The relationships between the core Chlorophyta, however, have been the subject of a 

long-standing debate, and the monophyly of both Trebouxiophyceae and Ulvophyceae 

have been questioned (Fučíková et al., 2014; Lemieux et al., 2014a; Leliaert & Lopez-

Bautista, 2015; Melton et al., 2015; Sun et al., 2016; Turmel et al., 2016a; Turmel et 

al., 2017; Fang et al., 2018). Although a progression from single-gene analyses to 

analyses using entire chloroplast or mitochondrial genomes has generally resulted in 

better resolved phylogenies, several topological uncertainties among the main 

lineages in the core Chlorophyta remain. 

Based on a phylotranscriptomic dataset we present for the first time a highly supported 

topology for the core Chlorophyta (Chapter 3). Confirming previous analyses, 

Pedinophyceae and Chlorodendrophyceae represent the earliest diverging lineages of 

the core Chlorophyta, followed by the monophyletic Trebouxiophyceae, which includes 

the core Trebouxiophyceae and the Chlorellales. Our results confirmed several 

relationships that are robust and supported by previous studies: sister relationships 

between Chlorellales and core trebouxiophytes, a monophyletic Chlorophyceae and 

two major clades within the ulvophyceans. The first clade contains 

Oltmannsiellopsidales, Ignatiales, Ulvales and Ulotrichales. The second clade 

comprises Cladophorales, Dasycladales, Scotinosphaerales, Trentepohliales, and 

Blastophysa. The latter clade is characterized by an alternative nuclear genetic code, 

which is unique among green algae. Our results support the idea that multicellularity 
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evolved independently several times during the evolution of Chlorophyta, and likely 

also within the ulvophyceans (Watanabe & Nakayama, 2007; Cocquyt et al., 2010b). 

However, despite the considerable progress in clarifying the backbone of the core 

Chlorophyta, some relationships remain notoriously difficult to resolve, such as the 

affinities between the Chlorophyceae, Bryopsidales and the rest of the Ulvophyceae. 

 

Monophyletic, paraphyletic or polyphyletic Ulvophyceans: tale of an 
early radiation 

Chloroplast phylogenomic analyses yielded several conflicting topologies for the 

ulvophyceans, with the leitmotiv of ulvophyceans being polyphyletic (Fučíková et al., 

2014; Lemieux et al., 2014a; Leliaert & Lopez-Bautista, 2015; Melton et al., 2015; Sun 

et al., 2016; Turmel et al., 2016a; Turmel et al., 2017; Fang et al., 2018). Similar 

analyses using nuclear markers, be it with shorter alignments, instead pointed towards 

a monophyletic Ulvophyceae (Watanabe & Nakayama, 2007; Cocquyt et al., 2010b). 

Our analyses which are based on more than 500 single-copy nuclear genes, 

converged on two very similar topologies with respect to the Ulvophyceae. Supermatrix 

analyses supported a scenario whereby Chlorophyceae are sister to the Bryopsidales, 

leaving the Ulvophyceae paraphyletic. Coalescence-based analyses, on the other 

hand, indicated a hard polytomy of the Chlorophyceae, Bryopsidales, and the rest of 

the Ulvophyceae. 

Shared cytological and ultrastructural features suggest a close affiliation between 

Bryopsidales and Dasycladales: a siphonous morphology, cytoplasmic streaming, 

closed mitosis with a prominent persistent telophase spindle and a 11 o’clock – 5 

o’clock configuration of the flagellar apparatus in the gametes (Sluiman, 1989b). This 

relationship is supported by some studies based on chloroplast and nuclear gene 

sequences (Cocquyt et al., 2010b; Fučíková et al., 2014; Sun et al., 2016), but it is not 

supported by other studies (Melton et al., 2015; Fang et al., 2018), including our study, 

where the Bryopsidales forms a separate clade from the rest of the ulvophyceans. 

Perhaps the strongest clue to help resolving Bryopsidales and Dasycladales 

relationships comes from the distribution of the nuclear alternative genetic code in the 

Ulvophyceae. The Bryopsidales and Dasycladales sister relationship would imply a 

stepwise acquisition model for the alternative nuclear genetic code, where the 
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Bryopsidales represent a sort of intermediate situation where eventually the alternative 

code has not been established (Cocquyt et al., 2010a). Instead, our results support a 

more parsimonious hypothesis in which an alternative genetic code evolved once in 

the clade containing the Cladophorales, Dasycladales, Scotinosphaerales and 

Trentepohliales. 

 Other molecular features, such as the dispersed distribution of the eukaryotic 

elongation factors, are more difficult to explain by the new phylogeny (Figure 1.2). 

Trebouxiophyceae and Chlorophyceae present the EFL relongation factor, while 

Bryopsidales and the members of the TCD clade (Cladophorales, Dasycladales, 

Scotinosphaerales) possess the EF-1elongation factor. In contrast, 

Oltmannsiellopsidales, Ulvales, Ulotrichales have the ELF elongation factor (similarly 

to Chlorophyceae and Trebouxiophyceae), while Ignatius, which has been recovered 

as a member of this clade by our phylogenetic analyses, presents the elongation factor 

EF-1. This punctuate distribution of the elongation factors could be explained by 

horizontal gene-transfer, or both elongation factors may have been present in the 

ancestor of all core Chlorophyta and differentially lost in the different lineages. The 

latter scenario is less likely, however, given that a green alga where both elongation 

factors co-occur still have to be discovered (Kamikawa et al., 2013). In the end, the 

most plausible scenario seems to be a complex evolution history with multiple events 

of elongation factor loss and gains. 

Therfore, more questions still remain to be addressed: which of the two topologies 

inferred by our analysis is the one reflecting the evolutionary history of Chlorophyceae 

and Ulvophyceae? Are Ulvophyceans paraphyletic or monophyletic? Two conserved 

ultrastructural features may support the monophyletic scenario. The phycoplast, a 

microtubule structure mediating cell division that evolved early during the 

diversification of core Chlorophyta, is absent in Bryopsidales and in the remaining 

ulvophyceans. Second, although many Chlorophyceae and Trebouxiophyceae present 

a 1 o’clock 7 o’clock clockwise orientation or a direct-opposite orientation of the basal 

bodies in the zoids, all Ulvophyceae zoids, Bryopsidales included, have an 11 o’clock 

5 o’clock anticlockwise orientation of the basal bodies (Van den Hoek et al., 1995). 

While, the phycoplast loss may have occurred independently in Bryopsidales and 
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remaining ulvophyceans, the alternation between basal bodies orientation under the 

paraphyletic ulvophyceans hypothesis is unlikely.  

 

Soft or hard-boiled: how to cook a multifurcation 

An alternative scenario for Chlorophyceae, Bryopsidales and ulvophyceans 

diversification is a multifurcation, hinted by the very short branches at the base of these 

three clades inferred by the coalescence-based analyses. We might be dealing with a 

hard polytomy which implies that the processes generating the main lineages of 

Chlorophyceae and Ulvophyceae were essentially non-bifurcating. While the 

phylogenetic theory does not imply it, phylogenetic reconstruction is mostly presented 

as a series of bifurcations. Multifurcations, or polytomies, are often used to indicate 

unresolved nodes in a phylogenetic tree due to lack of signal in the available data, with 

the underlying concept that a polytomy is a temporary artifact and not a realistic 

topology (Maddison, 1989). A “soft” polytomy represents an unresolved node due to 

ambiguous or scarce data, while a “hard” polytomy indicates a real multifurcation in the 

phylogeny. Although the probability of a hard polytomy in a gene tree is negligible 

(Hudson, 1990), several authors argued in favor for the concreteness of a hard 

polytomy for species trees representing multiple, simultaneous divergence events 

(Hoelzer & Meinick, 1994; Slowinski, 2001; Suh, 2016). 

Several scenarios have been postulated for simultaneous divergence of populations 

and resulting speciation events. Large-scale environmental changes, such as the fast 

rise or fall of sea levels or freshwater levels, can causes terrestrial and aquatic 

environments to be divided into multiple isolated parts. Moreover, a species range can 

be fragmented into multiple distinct diverging populations when it is declining (Hoelzer 

& Meinick, 1994). Presence of hard polytomies have been confirmed in several modern 

species, e.g.: Chinese macaque monkeys (Fooden, 1980; Melnick et al., 1993), fruit 

flies and cichlid fishes in the great African rift (Sturmbauer & Meyer, 1993; Kliman et 

al., 2000; Takahashi et al., 2001), and Australian sittellas birds (Schodde & Mason, 

1999). Our molecular clock analysis suggests that the split between Chlorophyceae, 

Bryopsidales and remaining ulvophyceans occurred during a timespan encompassing 

the middle and the end of Neoproterozoic, in the Cryogenian era before the transition 

to the Ediacaran period (750-650 mya, Figure 5.1). The Cryogenian was characterized 
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by global-scale glaciations that lasted for millions of years (Hoffman et al., 1998; 

Kennedy et al., 2008; Macdonald et al., 2010). Fossil record indicating persistence of 

marine life during the global scale glaciations was limited (Knoll et al., 2006; Brocks et 

al., 2017). Most photosynthetic eukaryotes allegedly survived in isolated refugia in 

brine channels within the ice blocks, followed by recolonization of marine environments 

after global meltdown (Shields, 2008; Bechstädt et al., 2018). These events are 

compatible with a rapid radiation and hard phylogenetic polytomy. Theoretically it is 

impossible to distinguish between soft and hard polytomies in molecular datasets. 

Increasing the amount of data should manage to identify and solve a soft polytomy 

(Walsh et al., 1999; Sayyari & Mirarab, 2018). Our results, however, indicate that the 

null hypothesis for the Chlorophyceae, Bryopsidales and ulvophyceans forming a 

polytomy cannot be rejected by increasing the amount of positions aligned. These 

considerations indicate that a rapid series of dichotomous branching leading to 

Ulvophyceae monophyly and a hard polytomy scenario represent both acceptable and 

likely hypotheses for the Ulvophyceae radiation. 

Uncertainties concerning the radiation of Ulvophyceans thus remain, despite the 

tremendous increase in the quantity of data and the use of evolutionary models that 

best fit the data, reflecting the long and complex evolutionary history of green algae. 

At last, independent evolution of Bryopsidales and the rest of the ulvophyceans was 

suggested as well as a result of a thorough revision of the evolution of green algal 

morphological, cytological (fine details of mitosis and cell division, zoid architecture, 

cell wall composition) and life history characters. Based on these unique 

characteristics and on the long evolutionary history that separated ulvophyceans 

orders, van den Hoek proposed already more than 20 years ago to elevate the 

ulvophycean orders to the class level, thus dividing the Ulvophyceae sensu Bremer in 

Bryopsidophyceae, Cladophorophyceae, Dasycladophyceae, Trentepohliophyceae 

and Ulvophyceae (Van den Hoek et al., 1995). 
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Figure 5.1: Diversification of green algae. 

(A) Early evolution of chlorophytan (light green) and streptophytan (dark green) algae 
in sea and fresh waters respectively during the Neoproterozoic era. (B) During the 
global-scale glaciations that characterized the Cryogenian period (750-650 mya), the 
ancestors of green algal lineages survived in fresh and brackish water refugia in brine 
channels, or in equatorial ocean waters, where the ice layer was thinner or absent. (C) 
After the subsequent global meltdown, during the Paleozoic era, Chlorophyceae, 
Pedinophyceae, Streptophyta, Trebouxiophyceae and some Ulvophyceae lineages 
proliferated in terrestrial and freshwater environments, while additional ulvophyceans 
and Prasinophytes re-colonized and differentiated in seawater habitats. Adapted from 
Becker & Main (2009). 

 

 

Organellar genome evolution and repetitive elements 
proliferation 
 

Organellar genomes architecture in green algae 

The long and convoluted evolutionary history of green algae is mirrored as well by their 

organellar genomes. Mitochondria and chloroplasts derive from two distinct events 

involving endosymbiosis of a Ricketsia-like bacterium and Cyanobacterium, 

respectively. It is widely accepted that all modern mitochondria and all but one 

chloroplast (Paulinella being the exception) have common origins (Boxma et al., 2005; 

Cox et al., 2008; Zimorski et al., 2014; Ponce-Toledo et al., 2017). The organellar 

genomes resemble the genome of their bacterial ancestors. They have been 

classically depicted as circular mapping DNA molecules retaining only a fraction of the 

original gene content, with most of the genes being lost or transferred to the host 

nucleus. Following closer inspection, however, chloroplast and mitochondrial genomes 

display a wide array of sizes and architectures (Burger et al., 2003; Smith & Keeling, 

2015). 

Chloroplast genomes (cpDNA) have been considered for a long time to be more 

conserved that their mitochondrial counterparts (Smith & Keeling, 2015; Smith, 2017; 

de Vries & Archibald, 2018). While circular mapping mitochondrial genomes (mtDNA) 

are most commonly reported in green algae (Pombert et al., 2006a; Smith et al., 2011; 

Melton et al., 2015), alternative architectures are well known, especially within the 
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Chlorophyceae, e.g.: Chlamydomonas reinhardtii, Scenedesmus obliquus and 

Pandorina morum mitochondrial genomes are reported to possess linear 

chromosomes (Gray & Boer, 1988; Nedelcu et al., 2000; Hamaji et al., 2017). In the 

non-photosynthetic genus Polytomella, not only the mitochondrial genome is linear, 

but in some species it is fragmented into two distinct molecules (Smith et al., 2013). In 

comparison, virtually all green algal chloroplast genomes are circular, gene-rich 

molecules between 100-200 kb, encoding 80-100 genes (Figure 5.2). This paradigm 

held true despite the evidence of linear and branched DNA molecules in chloroplasts 

of land plants (Bendich, 2004; Oldenburg & Bendich, 2016). Two recent studies, 

however, suggested that green algal chloroplast genomes may have a more intricate 

genomic architecture that has been overlooked so far. The chloroplast genome of the 

epiphytic green alga Koshicola spirodelophila is in fact fragmented over three large 

circular DNA molecules, for a total length of ca. 385 kb (Watanabe et al., 2016). The 

most deviant chloroplast genome so far has been described for the order of the 

Cladophorales (Chapter 4). The Cladophorales chloroplast genome is in fact 

fragmented over multiple palindromic single-stranded DNA chromosomes, which fold 

intramolecularly into hairpin chromosomes. The gene content seems highly reduced 

and many genes commonly found in green algal chloroplast genomes have been 

transferred to the nucleus. Abundant non-coding hairpin chromosomes suggest 

frequent events of recombination during the evolution of this deviant chloroplast 

genome, Chapter 4 (Del Cortona et al., 2017).  

Proliferation of repetitive elements: expansion and fragmentation of 
organellar genomes 

In addition to the unexpected variability in green algal organellar genome architecture, 

one can also note a high variability in genome size. The latter is often due to 

proliferation of repetitive elements. Inflated chloroplast genomes emerged several 

times independently within the Chlorophyceae. The Tetrabaena socialis chloroplast 

genome is ca. 405 kb, the Volvox carteri chloroplast genome is larger than 420 kb and 

is composed for more than 80% by non-coding DNA packed with 14-79 bp palindromic 

repeats (Smith & Lee, 2009; Featherston et al., 2016). Instead, the expansion of the 

Dunaliella salina chloroplast genome is to be ascribed mainly to intron proliferation (ca. 

30% of the 269 kb cpDNA), with a mean of 1 intron every two genes (Smith et al., 

2010). The largest Chlorophycean chloroplast genome sequenced so far belongs to  
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Figure 5.2: Green algal chloroplast genomes. 

The majority of green algal chloroplast genomes sequenced so far are circular-
mapping molecules between 100-200 kb in size and coding for 80-100 genes (left). 
Often they display a quadripartite structure where two inverted repeats (IR) divide a 
large single copy region (LSC) from a small single copy region (SSC). Smaller (e.g.: 
Ostreococcus tauri) and larger (Acetabularia acetabulum) chloroplast genomes have 
been described. The chloroplast genome of Cladophorales green algae, instead, is 
fragmented over multiple hairpin chromosomes (right). Adapted from de Vries & 
Archibald (2018). 

 

Floydiella terrestris (521 kb), with almost 50% of its cpDNA composed of repetitive 

elements. The Floydiella chloroplast genome harbors more than 1,000 copies of highly 

conserved (>95% sequence similarity) 30 bp repeats (Brouard et al., 2010). 

Despite that the proliferation of introns and repetitive elements have bloated the 

chloroplast genomes of several clades of Chlorophyceae, the most extreme scenarios 

evolved within the Ulvophyceae. In the Dasycladales, Acetabularia acetabulum cpDNA 

has been estimated to be larger than 2 Mb in length (Burton & Hugh, 1970; 

Padmanabhan & Green, 1978; Tymms & Schweiger, 1985). The Acetabularia 
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chloroplast genome is inflated by long (ca. 10 kb) tandem repeats, which makes the 

assembly of the cpDNA by short reads a challenge (Tymms & Schweiger, 1985; de 

Vries et al., 2013). Only 300 kb of the Acetabularia cpDNA has been sequenced. The 

assembled contigs show extremely long intergenic regions and open reading frames 

with no similarity to known protein-coding genes (de Vries et al., 2013). The Boodlea 

composita (Cladophorales) chloroplast genome size is unknown. Only 34 hairpins 

chromosomes harboring protein-coding genes have been characterized so far, 

resulting in a total length of 91 kb, 77% of it being inverted repeats. However, the 

abundancy of empty hairpin chromosomes and long terminal repeat retrotransposons 

(RT-LTRs) in the chloroplast DNA suggests that the actual cpDNA is much larger (Del 

Cortona et al., 2017). 

An interesting observation is that bloated chloroplast and mitochondrial genomes often 

co-occur within the same species (Smith & Keeling, 2015). In addition to the inflated 

chloroplast genomes, mitochondrial genomes both in Volvox carteri and Dunaliella 

salina mtDNAs are inflated by the proliferation of short palindromic sequences and 

introns, respectively (Smith & Lee, 2009; Smith et al., 2010). Despite considerable 

effort, we did not manage to assemble the mitochondrial genome of Boodlea 

composita. Partial sequences, however, suggest a genome inflated by arrays of 

tandem repeats. The entire genome organization is unclear, but 52 contigs were 

assembled for a total length of more than 730 Kb. Interestingly, inverted repeats and 

RT-LTRs abundant in the chloroplast genome were absent in mitochondrial DNA, 

suggesting that the expansion of these two organellar genomes was caused by the 

proliferation of two distinct repetitive elements, Chapter 4 (Del Cortona et al., 2017).  

The dependency of chloroplasts and mitochondria on nuclear-encoded proteins for 

crucial repair-, replication-, and expression-related functions is probably accountable 

for the intraspecific common traits shared between the organellar genomes. Molecular 

cross talk and DNA transfer between chloroplasts, mitochondria and the nucleus, 

together with dual targeting of DNA maintenance proteins to both organelles, plays a 

huge role in the proliferation of repetitive elements in the cpDNA and mtDNA within the 

same organism (Leister, 2005; Carrie et al., 2009; Kleine et al., 2009). Evidence of 

transfer of DNA from one organellar genome to the other have been found in 

Ulotrichales (Turmel et al., 2016b). In Volvox carteri, cpDNA and mtDNA repetitive 
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Figure 5.3: Amplification of repeats mediated by break-induced replication. 

(A) Break-Induced Replication (BIR) repair causes a ssDNA strand from a broken 
organellar genome (light blue) to align to a homologous region in an integer genome 
(drak blue), which acts as a template. (B) Dissociation of 3’ end from the template and 
annealing at an ectopic homologous region (green) in the ssDNA accumulated behind 
the replication repair bubble. The annealed region can be used by a DNA polymerase 
to initiate DNA synthesis that eventually disrupts. In case of repetitive elements in the 
broken strand, the chances of ectopic homologous pairing increases dramatically. (C) 
A second template switch reanneals the de novo synthetized ssDNA to the original 
template. (D), (E) BIR replication completes the synthesis of the broken strand 
following the integer template. (F) As a consequence of the faulty BIR repair, the repeat 
elements in the repaired genome are amplified. Green and yellow boxes: repetitive 
elements that can consist of 1–10 bp. POL: DNA polymerase. Adapted from Sakofsky 
& Malkova (2017). 

 

elements were both identified in the nuclear genome as well (Smith & Lee, 2009). The 

presence of the same inverted repeats and RT-LTRs in Boodlea nuclear and 

chloroplast genome suggests a RT-LTR driven invasion from nuclear repeats. A 

working hypothesis is that first RT-LTRs inflated the chloroplast genomes of the 

Cladophorales ancestor; the cpDNA subsequently degenerated into hairpin 

chromosomes through recombination and displacement of the repeats from the lagging 

strand during replication. Repeat proliferation probably is a common theme within the 

Cladophorales. Based on cytofluorometry, their predicted nuclear genomes suggest 

that Cladophorales genome sizes are huge when compared to the other green algae, 

ca. 880 Mb-2,000 Mb (Kapraun, 2007). 



178 
 

The mechanisms responsible for the duplication of the non-coding sequences and the 

consequent proliferation of repetitive elements and inflation of organellar genomes are 

possibly DNA slippage events during replication and break-induced replication repair 

(BIR). Polymerase slippage during DNA replication occurs due to DNA misalignment 

or formation of hairpin structures in correspondence to tandem and inverted repeats 

(Massouh et al., 2016). BIR repair system occurs at breaks in the DNA and it involves 

the correction of a broken DNA molecule by the joining of one of the two broken strands 

with a homologous sequence in another DNA molecule (Figure 5.3). If the break is 

located in a repetitive region, chances are high that the homologous pairing is faulty. 

Since BIR is an error-prone repair mechanism, BIR-induced non-homologous joining 

within coding sequences would result in deleterious mutations (Christensen, 2013). 

Organellar genomes therefore require an additional, more accurate mechanism of 

repair to retain functional genes. The low substitution rates observed in the coding 

regions of most green algal organellar genomes is ascribed to gene conversion. This 

mechanism is responsible for accurate homology-guided repair in coding regions, 

where breaks in a copy of the organellar genome are corrected by using another copy 

of the genome as template. In gene conversion, both strands of the broken molecules 

are corrected simultaneously, preventing the misplacing that could happen in BIR-

mediated repairs. Therefore, while fidelity of the coding sequences is maintained by 

gene conversion, the non-coding regions can accumulate repeats by BIR-mediated 

repairs, resulting in expansion of the organellar genomes (Christensen, 2013; Smith & 

Keeling, 2015; Smith, 2016). 

 

Future perspectives 
 

How sharp is phylotranscriptomics for green algae? 

Chloroplast phylogenomic studies contributed considerably toward resolving 

phylogenetic relationships in several groups of photosynthetic eukaryotes, including 

land plants (Zhong et al., 2013; Ruhfel et al., 2014; Zhong et al., 2014; Lemieux et al., 

2016), green algae (Lemieux et al., 2014b; Lemieux et al., 2014a; Lemieux et al., 2015; 

Turmel et al., 2015; Leliaert et al., 2016; Turmel et al., 2016a), and red algae (Costa 

et al., 2016; Díaz-Tapia et al., 2017; Muñoz-Gómez et al., 2017). Despite considerable 
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effort, however, several chloroplast phylogenomic studies did not converge toward a 

consensus topology in the core Chlorophyta, nor were they congruent with nuclear-

based marker studies (Cocquyt et al., 2010b; Sun et al., 2016; Fang et al., 2018). The 

debate on the branching order of the UTC clade within the core Chlorophyta and even 

on the monophyly of trebouxiophytes and ulvophyceans is still ongoing. 

Transcriptome sequencing by high-throughput sequencing technologies opened the 

treasure trove of nuclear markers for phylogenetic studies. Shotgun sequencing of 

cDNAs released the need of primer-specific amplification, and allowed the 

simultaneous sequencing of thousands of transcripts. Moreover, phylotranscriptomics 

allowed the analysis of more and unlinked markers coming from distinct chromosomes 

(important to study lineage sorting) than chloroplast or mitochondrial phylogenomic 

studies. The relatively low cost of transcriptome sequencing allows the profiling of 

lineages neglected by genome sequencing projects and lineages where genome 

sequencing seems an unaccountable challenge, e.g.: the huge dinoflagellates 

genomes composed by liquid crystalline chromosomes (Shoguchi et al., 2013; 

Maeshima et al., 2016). As a consequence, the number of transcriptome data publicly 

available is growing exponentially (van Dijk et al., 2014; Muir et al., 2016). Furthermore, 

state-of-the-art applications, such as single cell sequencing and metatranscriptome 

sequencing from environmental samples, allows sequencing of undescribed species 

and species that cannot be cultured (Pesant et al., 2015; Carradec et al., 2018). 

Phylotranscriptomics approaches already resulted in resolving long standing 

phylogenetic problems, such as disentangling the relationships between charophyte 

algae and land plants (Wickett et al., 2014), reconstructing the ancient divergence of 

several animal groups (Bazinet Adam et al., 2016) and the evolution of thecate 

dinoflagellates (Janouškovec et al., 2017).  

Despite its phylogenetic power and its broad-spectrum adaptability, 

phylotranscriptomics suffer from a number of shortcomings inherent to sequencing 

technology and sample preparation. In absence of a reference genome, 

transcriptomes only offer a partial coverage of the full gene space of an organism, and 

assembled transcripts are often fragmented or incomplete. Despite we focused on 

single-copy gene families, orthology inference can be complicated by redundancy in 

the transcriptome assembly, allelic variants and undetected contaminant sequences 

(Chapter 2). 
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Our phylotranscriptomic analyses based on green algal datasets represent a big leap 

forward to resolve the relationships between the core Chlorophyta lineages and to 

unravel the evolution and diversification of green seaweeds. A vast nuclear dataset 

was provided for 55 Viridiplantae representative species, respectively 50 and 5-10 

times larger than previous nuclear and chloroplast marker based studies. To obtain an 

unbiased and highly supported phylogeny of green algae, multiple filtering methods, 

partition strategies, evolutionary models and complementary phylogenetic analyses 

were used. More importantly, the topology inferred was mostly congruent with the 

distribution of several ultrastructural characters. Phylotranscriptomics revealed to be a 

more powerful and versatile tool than organellar-based phylogenomics, however, there 

is still space for improvement and phylotranscriptomics does not represent the remedy 

for resolving all the phylogenetic debates that are still standing. 

On the other hand, our study suffered as well from inherent disadvantages of de novo 

transcriptomic sequencing. The removal of contaminant sequenced from other green 

algae is a challenging task which might not have been properly addressed in our 

pipeline. For certain ulvophyceans orders, discrimination between a bona fide 

sequence and a green algal contaminant is hampered by the lack of reference 

sequences from closely related species. This problem is exacerbated for samples 

collected in the field, which are often composed by a mixture of micro- and macroscopic 

organisms where the species of interest represents only the most abundant eukaryote. 

In addition to increase the noise in the phylogenetic signal, contaminant sequences 

can lead to wrong phylogenetic inference (Laurin-Lemay et al., 2012). In an ideal 

genomic study, such kind of problem would be solved by filtering the sequences by 

their k-mer frequencies distributions, since in each sequenced library each genome is 

supposed to have a peculiar k-mer frequency distribution (Lin & Liao, 2016). 

Unfortunately, this approach does not extend to transcriptomes. Recently, isoform 

abundance has been proposed to dereplicate redundant sequences in de novo 

assembled transcriptomes. These techniques are proposed to identify also potential 

contaminant, due to the assumption that contaminating sequences should be 

expressed at a lower level than genuine sequences, and may help to resolve the 

Bryopsidales-Chlorophyceae-Ulvophyceae radiation (Simion et al., 2017; 

Schvartzman et al., 2018; Simion et al., 2018). 
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Toward understanding green seaweeds and green algae evolution 

It may sound like a paradox, but in the era of Big Data, what is needed to obtain an 

exhaustive answer is even more data. To fully resolve the relationships between the 

core Chlorophyta lineages we will need a much denser, broader and balanced taxon 

sampling, especially for those clades where only data from one species are currently 

available (e.g.: Dasycladales and Ignatiales). The availability of one or more reference 

genomes for each Order of green algae will be without any doubt beneficial. Reference 

genomes from closely related organisms are fundamental both for orthology inference 

and for the discovery of molecular innovations driving the diversification of Chlorophyta 

and green seaweeds in particular. In addition, genomes carry features in their non-

coding regions, such as position of transposable elements (Takahashi et al., 2001), 

introns and ultraconserved elements flanking coding regions (Jarvis et al., 2014), that 

are potentially phylogenetic informative and could be the key to solve topological 

uncertainties. 

Employing comparative transcriptomics to unravel the molecular innovations behind 

green seaweeds diversity may be a short-term solution, since a complete overview will 

probably be based only on the full understanding of the relationships between green 

seaweeds lineages and on the dynamics of their genomes. Unless directed toward the 

detection of specific gene families, as shown for the evolution of thecate dinoflagellates 

(Janouškovec et al., 2017), incompleteness of a transcriptome does not allow a safe 

statement on the loss of a gene or gene family, or the expansion of gene families. 

Moreover, the intrinsic redundancy of the transcriptomes and the high error margin in 

gene family size estimation affect comparative analyses on gene family expansions. 

Nevertheless, transcriptome sequencing can be used to address several fundamental 

questions. Almost one million protein-coding sequences and 70 thousand gene 

families have been described in this study. Despite the intrinsic limitations of the 

transcriptomic data discussed previously, this dataset should consent the analysis of 

lineage-specific gene families and gene family expansion, at least where multiple 

species are present. RNA libraries generated during different stages in the life cycle of 

green seaweeds may help to unveil the genes behind seaweeds development and to 

discover regulators in the cell growth and division.  Recently, an atlas of Caulerpa 

racemosa (Bryopsidales) transcripts indicated differential patterns of transcripts 
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distribution and accumulation between the different subcellular structures of the giant  

cell (Coneva & Chitwood, 2015; Ranjan et al., 2015). With a similar approach, we 

generated RNA-seq libraries from Acetabularia acetabulum rhizoid, stalks, hairs and 

caps, with the aim to perform a differential expression analysis within these subcellular 

compartments. In addition to that, a comparison of the transcripts expressed or 

targeted to similar subcellular compartments in Caulerpa and in Acetabularia should 

reveal if similar molecular mechanisms have been recruited (perhaps through 

convergent evolution), or if completely different strategies are responsible for 

subcellular specialization of the siphonous cell in Bryopsidales and in Dasycladales.  

A last, additional observation is that only 620 single-copy genes are conserved among 

the genomes that populated picoPLAZA database (of which, only 539 were usable for 

our study, Chapter 3). This is in stark contrasts with the number of single-copy gene 

families identified in similar studies: 2,022 single-copy gene families were used to solve 

the bird phylogeny (Jarvis et al., 2014); 1,719 gene families for Metazoa (Simion et al., 

2017); 1,478 for an insect phylogeny (Misof et al., 2014) and 844 quasi single-copy 

gene families to disentangle the origin of land plants (Wickett et al., 2014). While avian 

diversification is relatively recent (~65 mya) – which may explain the high number of 

shared single-copy genes – the insect diversification is estimated to be more ancient 

(~479 mya) (Jarvis et al., 2014; Misof et al., 2014). The lower number of single-copy 

genes identified in land plants instead may reflect its evolutionary history populated by 

subsequent events of whole genome duplications (Vanneste et al., 2014; Wickett et 

al., 2014; Lohaus & Van de Peer, 2016; Clark & Donoghue, 2018). Why such scarcity 

of single-copy gene families in green algae when compared to other species? One 

may look at microscopic green algae as very simple organisms and postulate that they 

may have a simple genome and with a reduced gene space and conserved single-

copy gene set. However, the microscopic Chlamydomonas reinhardtii, model and 

representative of green algae, has a genome and gene space size on the same order 

of magnitude of Arabidopsis thaliana (genome size of 111 Mb and 135 Mb, coding for 

~17 thousand and ~27 thousand genes, respectively). 

The extremely long evolutionary distances may account for the low number of single-

copy gene families shared among green algae. Green algae experienced the 

extraordinary conditions of the Cryogenian era and survived all the mass extinction 

events (Raup & Sepkoski, 1982; Raup & Sepkoski, 1984; Butterfield, 2007). Several 
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key lineages that could break some long branches artefacts and increase the 

resolution of the phylogenetic signal gone extinct, hiding addition critical data. 

Furthermore, green algal genomes have adapted and diverged during the last billion 

years. Green algae followed independent parallel paths toward macroscopic growth 

coupled to genome expansion (like in Cladophorales) and toward size and genome 

reduction, like in Mamiellales (Derelle et al., 2006; Kapraun, 2007; Palenik et al., 2007). 

These dramatic genome evolution events could make the circumscription of single-

copy genes non-trivial or unbalanced in the lineages sequenced so far. 

This study represents an additional step toward the understanding of green seaweeds 

evolution and differentiation. Yet, fundamental questions are still standing. There is so 

little known and still so much to be understood that a transcriptome is not suitable to 

capture the whole complexity of such intriguing organisms, but undoubtedly it can 

provide precious insights. I am confident that many groundbreaking discoveries on 

green algae and green seaweeds evolution are out there waiting to surface. Especially 

because, in addition to their sometimes overlooked complex evolution, green algae 

have the habit to hide in plain sight (Verbruggen & Tribollet, 2011; Leliaert et al., 2016; 

Watanabe et al., 2016). 
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“Ed ogni via conserva in sé la stessa eco di un tempo 

Quando fiori blu crescevan sul cemento 

Sbarbi nei rioni, guerra dei bottoni, tutti campioni 

Giocavamo ad inventarci i nomi 

Sapendo già che ce ne saremo andati prima o poi 

Portando terra, vento e fuoco via con noi” 

 

Chico MD con Fritz – Dopo di noi la quiete 
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