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How does SGD work?

I Growing body of work arguing that SGD performs implicit
regularization

I Problem: No matching generalization bounds that are nonvacuous
when applied to real data and networks.

I We focus on “flat minima” – weights w such that training error is
“insensitive” to “large” perturbations

I We show the size/flatness/location of minima found by SGD on
MNIST imply generalization using PAC-Bayes bounds

I Focusing on MNIST, we show how to compute generalization bounds
that are nonvacuous for stochastic networks with millions of weights.

I We obtain our (data-dependent, PAC-Bayesian) generalization
bounds via a fair bit of computation with SGD. Our approach is a
modern take on Langford and Caruana (2002).
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Nonvacuous generalization bounds

risk: LD(h) := E(x,y)∼D[`(h(x), y)], D unknown

empirical risk: LS(h) = 1
m

∑m
i=1 `(h(xi ), yi ), S = {(x1, y1), . . . , (xm, ym)}

generalization error: LD(h)− LS(h)

∀D P
S∼Dm

(
LD(ĥ)− LS(ĥ) < ε(H,m, δ,S , ĥ)︸ ︷︷ ︸

generalization err. bound

)
> 1− δ
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SGD is X and X implies generalization

I ( w ; D
) = Hah - H ( w l D)

= HLD ) -

H ( D lw )

SGD Is X X ⇒ generalization

“SGD is Empirical Risk Minimization for large enough networks”
“SGD is (Implicit) Regularized Loss Minimization”
“SGD is Approximate Bayesian Inference”

. . .

No statement of the form “SGD is X” explains generalization in deep
learning until we know that X implies generalization under real-world
conditions.
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SGD is (not simply) empirical risk minimization

Training error of SGD at
convergence.

Test error at convergence
and for early stopping
identical.

SGD ≈ Empirical Risk Minimization argminw∈H LS(w)

MNIST has 60,000 training data
Two-layer fully connected ReLU network has >1m parameters
=⇒ PAC bounds are vacuous
=⇒ PAC bounds can’t explain this curve
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Our focus: Statistical Learning Aspect

I ( w ; D
) = Hah - H ( w l D)

= HLD ) -

H ( D lw )

SGD Is X X ⇒ generalization

︸ ︷︷ ︸
On MNIST, with realistic networks, . . .

I VC bounds don’t imply generalization

I Classic Margin + Norm-bounded Rademacher Complexity Bounds
don’t imply generalization

I Being “Bayesian” does not necessarily imply generalization (sorry!)

Using PAC-Bayes bounds, we show that size/flatness/location of
minima, found by SGD on MNIST, imply generalization for MNIST.

Our bounds require a fair bit of computation/optimization to evaluate.
Strictly speaking, they bound the error of a random perturbation of the
SGD solution.
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Flat minima...
training error in flat minima is “insensitive” to “large” perturbations

(Hochreiter and Schmidhuber, 1997)

... meets the PAC-Bayes theorem (McAllister)

∀D ∀P P
S∼Dm

[
∀Q ∆

(
LS(Q), LD(Q)

)
≤ KL(Q||P)+log I∆(m)

δ

m

]
≥ 1− δ

For any data distribution, D, i.e., no assumptions,
For any “prior” randomized classifier P, even nonsense,
with high probability over m i.i.d. samples S ∼ Dm,
For any “posterior” randomized classifier Q, not nec. Bayes rule,

Generalization error of Q bounded approximately by
1

m
KL(Q||P)
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Controlling generalization error of randomized classifiers

Let H be a hypothesis class of binary classifiers Rk → {−1, 1}.
A randomized classifier is a distribution Q on H. Its risk is

LD(Q) = E
w∼Q

[LD(hw )]

Among the sharpest generalization bounds for randomized classifiers are
PAC-Bayes bounds (McAllester, 1999).

Theorem (PAC-Bayes (Catoni, 2007)). .

Let δ > 0 and m ∈ N and assume LD is bounded. Then

∀P, ∀D, P
S∼Dm

(
∀Q, LD(Q) ≤ 2 LS(Q) + 2

KL(Q||P) + log 1
δ

m

)
≥ 1− δ
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Our approach

given m i.i.d. data S ∼ Dm

empirical error surface
w 7→ LS(hw )

• wSGD ∈ R472000

weights learned by SGD on MNIST

⊕ Q̂ = N (wSGD + w ′,Σ′)
stochastic neural net

generalization/error bound: ∀D P
S∼Dm

(
LD(Q̂) < 0.17

)
> 0.95
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Optimizing PAC-Bayes bounds

Given data S , we can find a provably good classifier Q by optimizing the
PAC-Bayes bound w.r.t. Q.

For Catoni’s PAC-Bayes bound, the optimization problem is of the form

sup
Q
−τLS(Q)−KL(Q||P).

Lemma. Optimal Q satisfies
dQ

dP
(w) =

exp(−τLS(w))∫
exp(−τLS(w))P(dw)︸ ︷︷ ︸

generalized Bayes rule

.

Observation. Under log loss and τ = m, the term −τLS(w) is the
expected log likelihood under Q and the objective is the ELBO.

Lemma. log

∫
exp(−τLS(w))P(dw) = sup

Q
−τLS(Q)−KL(Q||P).

Observation. Under log loss and τ = m, l.h.s. is log marginal likelihood.
Cf. Zhang 2004, 2006, Alquier et al. 2015, Germain et al. 2016.
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PAC-Bayes Bound optimization

inf
Q

LS(Q) +
KL(Q||P) + log 1

δ

m

Let L̃S(Q) ≥ LS(Q) with L̃S differentiable.

inf
Q

m L̃S(Q) + KL(Q||P)

Let Qw ,s = N (w ,diag(s)).

min
w∈Rd

s∈Rd
+

m L̃S(Qw ,s) + KL(Qw ,s ||P)

Take P = N (w0, λ Id) with λ = c exp{−j/b}.

min
w∈Rd

s∈Rd
+

λ∈(0,c)

m L̃S(Qw ,s) + KL(Qw ,s ||N (w0, λI ))︸ ︷︷ ︸+2 log(b log
c

λ
)

1

2
(

1

λ
‖s‖1 +

1

λ
‖w − w0‖2

2 + d log λ− 1d · log s − d).
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Numerical generalization bounds on MNIST

# Hidden Layers 1 2 3 1 (R)

Train error 0.001 0.000 0.000 0.007
Test error 0.018 0.016 0.013 0.508

SNN train error 0.028 0.028 0.027 0.112
SNN test error 0.034 0.033 0.032 0.503

PAC-Bayes bound 0.161 0.186 0.201 1.352

KL divergence 5144 6534 7861 201131
# parameters 472k 832k 1193k 472k
VC dimension 26m 66m 121m 26m

We have shown that type of flat minima found in practice can be
turned into a generalization guarantee.

Bounds are loose, but only nonvacuous bounds in this setting.
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Actually, SGD is pretty dangerous

I SGD achieves zero training error reliably

I Despite no explicit regularization, training and
test error very close

I Explicit regularization has minor effect

I SGD can reliably obtain zero training error on
randomized labels

I Hence, Rademacher complexity of model class is
near maximal w.h.p.
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Entropy-SGD (Chaudhari et al., 2017)

Entropy-SGD replaces stochastic gradient descent on LS by stochastic
gradient ascent applied to the optimization problem:

arg max
w∈Rd

Fγ,τ (w;S),

where Fγ,τ (w;S) = log

∫
Rp

exp
{
−τLS(w′)− τ γ

2
‖w′ −w‖2

2

}
dw′.

The local entropy Fγ,τ (·;S) emphasizes flat minima of LS .
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Entropy-SGD optimizes PAC-Bayes bound w.r.t. prior

Entropy-SGD optimizes the local entropy

Fγ,τ (w;S) = log

∫
Rp

exp
{
−τLS(w′)− τ γ

2
‖w′ −w‖2

2

}
dw′.

Theorem. Maximizing Fγ,τ (w;S) w.r.t. w corresponds to minimizing
PAC-Bayes risk bound w.r.t. prior’s mean w.

Theorem. Let P(S) be an ε-differentially private distribution. Then

∀D, P
S∼Dm

(
(∀Q) KL(LS(Q)||LD(Q)) ≤

KL(Q||P(S)) + ln 2m + 2max{ln 3
δ , mε

2}
m − 1

)
≥ 1− δ.

We optimize Fγ,τ (w;S) using SGLD, obtaining (ε, δ)-differential privacy.

SGLD is known to converge weakly to the ε-differentially private
exponential mechanism. Our analysis makes a coarse approximation:
privacy of SGLD is that of exponential mechanism.
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Conclusion

I We show that the size/flatness/location of minima (that were found
by SGD on MNIST) imply generalization using PAC-Bayes bounds;

I We show Entropy-SGD optimizes the prior in a PAC-Bayes bound,
which is not valid;

I We give a differentially private version of PAC-Bayes theorem and
modify Entropy-SGD so that prior is privately optimized.
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