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ABSTRACT
Body-size is significantly correlated with the number of vertebrae (pleomerism) in multiple vertebrate 
lineages, indicating that somitogenesis process is an important factor dictating evolutionary change 
associated to phyletic allometry and, consequently, species fitness and diversification. However, the 
role of the evolution of extreme body sizes (dwarfism and gigantism) remains elusive in snakes, mainly 
with respect to postnatal ontogeny in dietary preferences associated with evolution of gigantism in many 
lineages. We described herein a new species in the highly diversified and species-rich genus Atractus on 
the basis of four specimens from the southeastern slopes of the Ecuadorian Andes. The new species is 
morphologically similar and apparently closely related to two other allopatric giant congeners (A. gigas 
and A. touzeti), from which it can be distinguished by their distinct dorsal and ventral coloration, the 
number of supralabial and infralabial scales, the number of maxillary teeth, and relative width of the head. 
In addition, we discuss on the ontogenetic trajectories hypotheses and dietary specializations related to 
evolution of gigantism in the goo-eaters genus Atractus.
Key words: Atractus gigas, Atractus touzeti, dietary shift, goo-eater snakes, macrostomy, postnatal 
ontogeny.

Correspondence to: Paulo Passos 
E-mail: ppassos@mn.ufrj.br / atractus@gmail.com 

* Contribution to the centenary of the Brazilian Academy of 
Sciences.

INTRODUCTION

Body-size is among the most important species 
attributes (depicting common ancestry and 

organismal function), being the key factor in 
generating ecological and genetic divergence 
(Peters 1983, LaBarbera 1986, Hanken and Wake 
1993, Nagel and Schluter 1998, Schluter 2000), 
and is also correlated with increasing of extinction 
risk (Vilela et al. 2014). As such, the allometric 
change in time is a primary axis for diversification 
of many lineages, and can be important for 
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dictating niche parameters, creating reproductive 
isolation, and structuring communities (Losos 
1992, Nagel and Schluter 1998, Schluter 2000, 
Moen and Wiens 2008). Some lineages have 
experienced extreme, and often paradoxical—the 
occurrence of giant diggers when most of fossorial 
tetrapods tend to miniaturization, see Hanken and 
Wake (1993)—evolutionary change in body size 
(gigantism and dwarfism) due to colonizing new 
regions such islands or deep seas, re-colonization 
of mainland after mass extinctions, environmental 
shifts or stochastic evolutionary novelty (Bonnet 
et al. 2009 and references therein). The extrinsic 
factors (selective) responsible for the evolution 
of body size extremes in terrestrial vertebrates 
have been a recent topic of interest (Meik et al. 
2010 and references therein), but the intrinsic 
mechanisms (developmental) underlying body size 
evolution still poorly understood and under dispute 
in the recent literature (Head and Polly 2015 and 
references therein). 

Body size is significantly correlated with 
number of vertebrae (pleomerism) in multiple 
vertebrate lineages (Alexander and Gans 1966, 
Lindsey 1975, Lindell 1994, Müller et al. 2010, 
Head and Polly 2007), indicating that increasing 
body segments in the course of somitogenesis plays 
an important role in body size evolution (Lindell 
1994). Snakes show greater variability in vertebral 
number than other amniotes (Müller et al. 2010, 
Head and Polly 2007). The axial regionalization 
is reduced in snakes by expansion of expressions 
domains for Hox genes that code for the dorsal 
region of the vertebral column, suppressing 
expression of a distinct cervical region (Cohn and 
Tickle 1999) or, by contrast, there is a retention of 
standard vertebrate Hox domains with alteration 
of downstream expression that suppresses 
development of distinct regions (Woltering 2012). 
Among snakes, gigantism is pronounced in the 
constrictor species of the families Boidae and 
Pythonidae, which forage through a sit-and-wait 
strategy and kill their prey by asphyxia due to 

strong body constriction (Henderson and Powell 
2007). Although pleomerism has been established 
as an effective process to the body size evolution 
in snakes (Lindell 1994), only more recently the 
correlation between body size and developmental 
evolution (= somatic growth) of giant snakes was 
addressed using a phylogenetic framework (Meik 
2010, Head and Polly 2007, 2015).

On the other hand, snakes are gape-limited 
predators that swallow their prey whole without 
mechanical reduction prior to prey ingestion, except 
for few very specialized Homalopsine snakes (see 
Jayne et al. 2002). As a rule, the basal lineages of 
snakes (e.g., Scolecophidians and Henophidians) 
occupying underground macrohabitats feed on 
small size prey, such as insects, earthworms and 
tiny elongate vertebrates; while alethinophidian 
snakes developed extreme anatomical adaptations 
(macrostomy) to ingest prey with large cross-
section area in relation to their head dimensions. 
Remarkably, several clades of small cryptozoic 
macrostomatans reverse postnatal morphological 
transformations correlated with gape increasing to 
a phenotype constraining the diet to prey with low 
cross-section area (Scanferla 2016). However, it not 
clear how some lineages evolved and maintained 
gigantism while having diets specialized in prey 
with small size and low caloric value (Arnold 
1993), as some mollusks and annelids in the case 
of Neotropical goo-eaters snakes (e.g., the genus 
Atractus).

Our aim in this study, beyond describing 
a new giant species from southeastern slopes 
of the Ecuadorian Andes, is to discuss some 
aspects related to postnatal ontogeny and dietary 
specialization found in the highly diversified and 
species-rich genus Atractus.

MATERIALS AND METHODS

Specimens examined are deposited in the following 
collections: División de Herpetología del Museo 
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Ecuatoriano de Ciencias Naturales (DHMECN), 
Instituto Nacional de Biodiversidad, Quito 
Ecuador; Museo de Historia Natural de la Escuela 
Politécnica Nacional (MEPN), Quito, Ecuador; 
Museo de Zoología, Pontificia Universidad 
Católica del Ecuador (QCAZ), Quito, Ecuador; and 
Fundación Herpetológica Gustavo Orcés (FHGO), 
Quito, Ecuador. Comparative material of Atractus 
gigas and Atractus touzeti is listed in Appendix I, 
while additional congeners examined are listed in 
Passos et al. (2005), Passos et al. (2007a, b), Passos 
and Fernandes (2008), Passos and Arredondo 
(2009), Passos et al. (2009a, b, c, d, e), Passos et 
al. (2010a, b, c), Passos and Lynch (2011), Passos 
and Prudente (2012), Passos et al. (2012), Prudente 
and Passos (2008, 2010), Passos et al. (2013a, b, 
c, d), Almeida et al. (2014), Salazar-Valenzuela 
et al. (2014), Passos et al. (2016a, b), de Fraga et 
al. (2017), and Passos et al. (2017). We provide 
the authorship and date only in the first mention of 
each name.

GEOGRAPHICAL DATA 

Coordinates of localities were acquired in the field 
with Global Positioning System devices (referenced 
to map datum WGS84), and by consulting data in 
museum catalogues or databases. We refined, when 
possible, the provenance of records obtained from 
the literature or available in museum databases 
without specific field coordinates using the software 
Google Earth Pro 7.1.2 (Google 2005). 

TECHNIQUES AND CHARACTERS

Terminology for cephalic shields follows Savage 
(1960) as augmented by Peters (1964), whereas 
ventral and subcaudal counts follow Dowling 
(1951). Condition of the loreal scale follows Passos 
et al. (2007b). Measurements were taken with a 
dial caliper (Mitutoyo®) to the nearest 0.1 mm, 
except for snout–vent length (SVL) and caudal 
length (CL), which were measured with a ruler to 

the nearest 1 mm. Measurements and descriptions 
of paired cephalic scales are strictly based on the 
right side of head. We measure the head length 
from tip of rostral scale to the end of the quadrate-
mandibular joint, head width in the broadest 
region and midbody diameter at mid-length of 
SVL. Counts of body marks (blotches, spots, and 
dots), in some taxa, were performed separately on 
each side of the dorsum because these marks are 
not always transversally continuous or equivalent 
along the sides of vertebral region. Herein, the term 
“blotch” refers to broader (two or more scales long 
and wide) dorsal marks located on the vertebral 
and paravertebral regions, the term “spot” refers to 
small (less than two scales long and wide) marks 
throughout the dorsum or venter, whereas “dot” 
refers to any mark smaller than a scale. The color 
tones follow Köhler (2012). Sex was determined on 
the basis of presence/absence of hemipenes verified 
through a ventral incision at the base of the tail. We 
examined maxillae in situ under a stereomicroscopy, 
through a narrow lateromedial incision between the 
supralabials and the maxillary arch. After removing 
tissues covering the maxillary bone, we counted 
teeth and empty sockets. We follow Passos et al. 
(2009e) and Passos et al. (2010c) with respect to 
conditions of the morphological characters used in 
diagnosis and description.

RESULTS

SPECIES DESCRIPTION

Atractus atlas sp. nov.
Atractus sp. ̶ Almendáriz, Simmons, Brito y Vaca-
Guerrero. 2014. Amphibian & Reptile Conservation 
8(1): 60. 
ZooBank Life Science Identifier (LSID): 
urn:lsid:zoobank.org:pub:3E2761FF-D4F1-4C2A-
A4D5-A7A54D7C0CDC
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Holotype

An adult female (MEPN 14203) collected on 
July 26 2011 by Ana Almendáriz, Jorge Brito, 
Juan Hurtado and Jorge Puchaicela at Rio Blanco 
(03º55’2.08’’S 78º30’9.81’’W, ca. 1850 m above 
sea level; asl hereafter), Paquisha, municipality of 
Paquisha, province of Zamora-Chinchipe, Ecuador 
(Figs. 1–2). 

Paratypes

Three adult females from southeastern slopes of 
Ecuadorian Andes: (DHMECN 2972) collected on 
May 2005 by Juan Carlos Ronquillo at Guayzimi 
Alto (04°06’20.7”S 78°46’05.7”W; ca. 2100 m 
asl ), Parroquía Guayzimi, province of Zamora-
Chinchipe; (QCAZ 14946) from Reserva Biológica 
Cerro Plateado (04º36’20’’S 78º52’30’’W; ca. 
1700 m asl), and (DHMECN 12361) collected 
on July 5 2014 by Jorge Brito and Victor León at 
Zúñac (02º11’48’’S 78º18’58’’W; ca. 1900 m asl), 

Figure 1 - General view in life of the holotype of Atractus atlas sp. nov. (MEPN 14203). SVL 820 mm, CL 
106 mm + N (amputated tail).

Figure 2 - Dorsal (a) and ventral (b) views of body of the 
holotype of Atractus atlas sp. nov. (MEPN 14203; SVL 820 
mm, CL 106 mm + N).
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Parque Nacional Sangay, Cantón Morona, both 
in the province of Morona Santiago. Quantitative 
variation of the type-series of Atractus atlas is 
presented in Table I.

Diagnosis

Atractus atlas can be distinguished from all 
congeners by the following combination of 
characters: (1) smooth dorsal scale rows 17/17/17; 
(2) postoculars two; (3) loreal moderately long, 
contacting second to fourth supralabials; (4) 
temporal formula usually 1+2; (5) supralabials 
eight, fourth and fifth contacting eye; (6) 
infralabials eight, first four contacting chinshields; 
(7) maxillary teeth eight; (8) gular scale rows 
usually four; (9) preventrals usually four; (10) 

ventrals 158–169 in females; (11) subcaudals 28–
33 in females; (12) in preservative, dorsum yellow 
ocher with a series of alternating black bands (2–3 
scales long), connected or not to the opposite band 
on the vertebral region; (13) ventral surface of body 
mostly pale buff scattered with conspicuous black 
marks (blotches, spots and dots); (14) maximum 
body size moderate in females 820 mm SVL; (15) 
tail size moderately long in females (12.2–15.0% 
SVL); (16) midbody diameter in females 18.0–21.4 
mm.

Comparisons

Among all congeners, Atractus atlas is similar to 
A. gigas Myers and Schargel 2006, A. serranus 
Amaral 1930, A. torquatus Duméril, Bibron and 
Duméril 1854, A. touzeti Schargel et al. 2013, and 

TABLE I 
Meristic and morphometric variation for the type-series of Atractus atlas sp. nov. and of Atractus touzeti, both comprising 
by females only. The “~” represent the specimens for which the measurement was approximated according to their state 

of preservation or due to tail amputation.

Features
MEPN 14203
holotype of A. 

atlas

DHMEC 
12361

paratype of A. 
atlas

DHMEC 
2972

paratype of A. 
atlas

QCAZ 14946
paratype of A. 

atlas

FHGO 517
holotype of A. 

touzeti

FHGO 2035
paratype of A. 

touzeti

FHGO 2036
paratype of A. 

touzeti

Snout–vent 
length 
(SVL)

820 mm 700 mm 735 mm ~635 mm 1035 mm 900 mm ~830 mm

Caudal 
length (CL) 106 mm* 105 mm 90 mm 65 mm* 118 mm 115 mm 112 mm

SVL/CL ~12.9 15 12.2 ~10.2 11.4 12.8 ~13.5 
Head length 34.4 mm 26.9 mm 27.8 mm 25.1 mm 41.0 mm 35.9 mm 36.5 mm
Head width 17.4 mm 16.6 mm 14.5 mm 12.4 mm 27.2 mm 26.0 mm 25.4 mm
Midbody 
diameter 18.3 mm 18.1 mm 21.4 mm 18.0 mm 28.3 mm 23.0 mm 22.4 mm

Supralabials 8 8 8 8 8 8 8
Infralabials 8 8 8 8 8/7 8 8
Infralabials–
chinshields 4 4 4 4 4/3 4 4

Preventrals 3 4 4 4 4 3 4
Ventrals 169 168 162 158 172 170 168

Subcaudals 31/31* 33 28/28 24/25* 30/31 31/32 30/31
Gular scale 

rows 3 4 4 4 4 4 4

Maxillary 
teeth 8 8 8 8 8 8 8

* Represents the specimens for which its tail was partially amputated.
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A. trihedrurus Amaral 1926 in having: SVL > 600 
mm, midbody diameter > 18.0 mm, dorsal scales 
rows 17/17/17, supralabials and infralabials eight, 
postoculars two, maxillary teeth eight, dorsum with 
banded pattern, and ventral surface of body light 
with several black marks or mostly black. Atractus 
atlas differs from all of them except for A. torquatus 
and A. touzeti in having a banded dorsum in adult 
specimens (vs. adults uniformly greyish brown to 
black in A. gigas, A. serranus and A. trihedrurus); 
from A. torquatus in having two postoculars, 28–33 
subcaudals in females, and ventral surface of body 
mostly darker or heavily marked with irregular black 
blotches (vs. usually one postocular, subcaudals 34–
47, and belly mostly creamish white scattered with 
dark brown dots or irregular rhomboidal spots); from 
A. touzeti in having head width < 55% head length 
and dorsum with a series of alternating dark brown 
to black bands (2–3 scales long), connected or not to 
the opposite band on the vertebral region (vs. head 
width > 66% head length and dorsum with tiny pale 

cross-bands [one scale long] edged by black borders 
[half to one scale long], separating the pale color 
from the brown ground color). Moreover, Atractus 
atlas differs from A. gigas in having eight supra- and 
infralabials, second to fourth supralabials contacting 
loreal, fourth to fifth supralabials contacting eye, 
first four infralabials contacting chinshields (vs. 
supra- and infralabials usually seven, second and 
third infralabials contacting loreal, third to fourth 
supralabials contacting eye, first three infralabials 
contacting chinshield) (Fig. 4). In addition, we refer 
to Table I for other diagnostic features of the A. 
atlas with respect to A. touzeti, and to comparisons 
with other congeners for which we have recorded 
specimens above 500 mm SVL (see Passos et al. 
2010a, Table I).

Description of the holotype

Adult female, SVL 820 mm, CL 106 mm + n 
(partially amputated tail) (12.9% SVL); head 

Figure 3 - Dorsal (left) and ventral (right) views of body of the paratype of Atractus atlas 
(DHMECN 2972 - A, SVL 735 mm, CL 90 mm) and the holotype of Atractus touzeti (FHGO 
517 - B; SVL 1035 mm, CL 118 mm).
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slightly distinct from body; head length 34.4 
mm (4.2% SVL); head width 17.4 mm (50.1% 
head length); head height 12.2 mm; rostral–orbit 
distance 10.1 mm; nasal–orbit distance 8.4 mm; 
interorbital distance 11.9 mm; head flattened in 
lateral view; snout anteriorly slightly depressed and 
truncate in lateral view, rounded in dorsal view; 
canthus rostralis conspicuous to eye level; rostral 
subtriangular in frontal view, 4.9 mm wide, 4.4 mm 
high, slightly visible in dorsal view; internasal 2.7 
mm long, 1.6 mm wide; internasal suture sinistral 
with respect to prefrontal suture; prefrontal 6.1 mm 
long, 6.0 mm wide; supraocular sub-rectangular, 
4.2 mm long, 3.3 mm wide at broadest point; 
frontal subpyramidal, 7.7 mm long, 6.9 mm wide; 
parietal 11.7 mm long, 6.9 mm wide; nasal entirely 
divided, nostril restricted to prenasal; prenasal 2.9 
mm high, 1.6 mm long; postnasal 2.4 mm high, 
2.0 mm long; loreal 5.2 mm long, 2.2 mm high; 
second, third and fourth supralabials contacting 
loreal; eye diameter 3.7 mm; pupil rounded; two 
postoculars similar in length; upper postocular 1.4 
mm long, 2.1 mm high; lower postocular narrowing 

ventrally, 1.0 mm long, 1.4 mm high; temporal 
formula 1+2; first temporal 5.8 mm long, 3.0 mm 
high; three upper posterior temporals not fused, 
larger 6.3 mm long, 3.6 mm wide; supralabials 
eight, fourth and fifth contacting eye; first three 
supralabials with similar height, fourth and sixth 
supralabials taller (6th 4.6 mm high/3.1 mm long) 
and eighth longer (5.8 mm long/2.5 mm high) than 
remaining supralabials; symphysial semicircular, 
3.0 mm wide, 1.0 mm long; first pair of infralabials 
preventing symphysial–chinshields contact; 
infralabials eight, first four contacting chinshields; 
chinshields 8.7 mm long, 4.1 mm wide; gular 
scale rows three; preventrals three; ventrals 169; 
subcaudals 31 left/31 right + n (partially amputated 
tail); dorsal scale rows 17/17/17, lacking apical pits 
and supracloacal tubercles; midbody diameter 18.3 
mm (2.2% SVL); tail lacking caudal spine.

In life, dorsum of head mostly black suffused 
with pale greenish yellow pigmentation (by 
diffuse irregular dots) covering cephalic shields on 
the snout region (rostral, internasals and mainly 
anterior region of preferontals); lateral surface 

Figure 4 - Heads in dorsal (top) and lateral (bottom) views of the holotypes of Atractus atlas (MEPN 14203 – a, SVL 820 mm, CL 
106 mm + N), Atractus gigas (FHGO 194 - b, SVL 890 mm, CL 120 mm), and Atractus touzeti (FHGO 517 – c, SVL 1035 mm, 
CL 118 mm).
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of head black, extending to end of parietals and 
adjacent dorsal scales; lateral scales of head black 
with pale greenish yellow pigments above anterior 
(nasals and anterior portion of loreal) and posterior 
(mainly posterior temporals) regions; supralabials 
mostly black, except for the lower half portions 
(diagonally marked) of first five or six scales 
(only ventral margin) pale greenish yellow; lateral 
sides of head on the occipital region with barely 
defined descending postorbital medium greenish 
yellow stripe, extending from posterior temporal 
scales to mouth rictus; infralabials and gular region 
mostly black with pale greenish yellow spots 
on the posterior portion of chinshields and from 
sixth to eight infralabials; last three infralabials 
and remaining scale on the gular region scarcely 
marked with dispersed black dots or spots; ventral 
surface of body pale greenish yellow with few 
dispersed black dots, spots and large rectangular 
blotches (occupying half to almost entire surface of 
ventral scale); ventral surface of tail predominantly 
pale greenish yellow with black blotches (one or 
two scales long) concentrated laterally; dorsal 
ground color of body medium greenish yellow with 
48 conspicuous black transversal blotches (two or 
three scales long) usually connected on the vertebral 
region but asymmetrical with respect to paraventral 
blotches or posts (one or two scales long); dorsal 
blotches forming irregular cross-bands frequently 
interrupted on the level of fifth scale rows flanks (= 
paraventral region); blotches laterally (extending 
for first fourth to fifth series of scales) isolated 
from dorsal blotches or connected to one or two 
dorsal marks, giving impression of an alternating 
or barely defined zigzag pattern; interspaces 
between black paraventral blotches on the first 
two scales rows lighter (pale greenish yellow); 
dorsal surface of tail with pattern similar of body, 
medium greenish yellow background with 11 black 
cross-bands (one or two scales long), reaching 
paraventral region (Fig. 1). After preservation in 
70% ethanol, dorsal ground color of head jet black 

with pale buff pigments covering labial border and 
gular region; dorsum of body mostly dark spectrum 
yellow with black marks (blotches, spots or dots), 
with cream white spots on the paraventral region; 
ventral surface of belly and tail pale buff with olive 
brown marks (Fig. 2). 

Color pattern variation in preservative: 
Dorsum of head sepia (DHMECN 2972) to jet black 
(DHMECN 12361), with beige (DHMECN 2972) 
to bunting green (DHMECN 12361) pigments 
covering labial and/or gular regions; ventral surface 
of body and tail pale greenish yellow with black 
marks (MEPN 14203) to cinnamon brown with 
few pale buff irregular spots (DHMECN 2972); 
dorsal ground color of body medium greenish 
yellow (MEPN 14203), tawny olive (DHMECN 
2972) or cinnamon (DHMECN 12361) with 46–
48 rich red (DHMECN 2972) to jet black (MEPN 
14203) cross-bands (two to three scales long on 
the vertebral region); blotches on the paraventral 
region regular and connected to dorsal cross-bands 
(DHMECN 2972) or fragmented into irregularly 
distributed and isolated paraventral blotches 
(MEPN 14203) (Figs. 2–3a). 

Etymology: The Latinized specific epithet 
“atlas” (Άτλας) represents a Titan from the Greek 
mythology that was condemned by Zeus to support 
the entire world (or the heaven in some variations 
of the ancient legend) forever on their shoulders 
as punishment for attacking the Mount Olympus. 
The legend is also related to excess of obligations 
and duties or the huge efforts to complete certain 
difficult tasks. We employed herein this name 
alluding to the large body-size of the new species 
(it is among the five species of the genus that reach 
the largest body-size; see Passos et al. 2010a), as 
well as in reference to the tremendous endeavor 
for attaining the real diversity of Atractus, not 
only for discovering undescribed species, but 
also for recognition of a lot of synonymies in the 
old and even recent literature, or frequent species 
misidentifications in collections and public 
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repositories (see Passos et al. 2017). We propose 
the vernacular name of Atractus atlas to be ‘Atlas 
Ground Snake’ in English and ‘Culebra Tierrera del 
Atlas’ in Spanish.

Distribution and natural history

Southeastern portions of Ecuadorian Andes, from 
Zúñac in the province of Morona Santiago, south 
to Paquisha, Guayzimi Alto and Reserva Biológica 
Cerro Plateado in the province of Zamora-
Chinchipe. Atractus atlas occurs in Mountain 
rainforest at 1800–2100 m asl (Fig. 5). 

The holotype (MEPN 14203) was found resting 
under leaf litter locally called “bamba” at 10:46 
am during thermoregulatory activity with direct 

incidence of sunlight. The vegetation covering the 
type-locality is composed by a type of cloud forest 
denominated “Western Mountain Forest”. This 
forest formation usually remains cloudy in the early 
hours of the morning, afternoons, or even all day 
long, depending on the season, and is comprised 
by trees of 15–20 m covered with bryophytes, 
bromeliads and abundant moss. The plant layer sits 
on a plateau of sandstone, and grows on a substrate 
of very acid sand soil poor in nutrients.

The paratype (DHMECN 12361) is a roadkill 
found in the early hours of the morning dead on 
the Macas–Riobamba road. The vegetal formation 
in this locality is characterized as a premontane 
evergreen forest of the southern portion of Cordillera 
Oriental of the Ecuadorian Andes (Ministerio del 
Ambiente 2013), in which the trees have abundant 
orchids and bromeliads and the tree canopy reaches 
30 m where the dominant trees species are romerillo 
(Prumnopitys montana), cedro (Cedrela montana) 
and royal palm (Dictyocaryum lamarckianum).

DISCUSSION

Macrostomatan snakes that exploit surface 
macrohabitats experiment an allometric elongation 
of the gnathic complex with respect to the rest of the 
skull and a backward rotation of the quadrate during 
postnatal ontogeny (Cundall and Greene 2000, 
Scanferla 2016), which permits the consumption 
of a wide array of bulky vertebrate prey with a high 
cross-sectional area. Notably, macrostomatans that 
exploit underground macrohabitats reverse this 
condition and return to a diet based on small prey 
with low cross-sectional area such as annelids, 
insects or elongated vertebrates. The dipsadine 
colubroids of the genus Atractus represent a typical 
group of underground-dweller snakes in which this 
ontogenetic trajectory reverses, displaying a short 
gnathic complex and an almost vertical quadrate 
in adult individuals (Cundall and Irish 2008). 
Available diet analyses of Atractus species show 

Figure 5 - Known distribution of Atractus atlas (squares), 
Atractus gigas (dots), and Atractus touzeti (triangles). Each 
type-locality is represented by open symbols. We did not 
include the new record of A. touzeti provided by Arteaga et 
al. (2017) because the identification of this specimen was not 
checked personally by us.
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a predominantly lumbricophagous diet (Dixon et 
al. 1976, Martins and Oliveira 1999, Balestrin et 
al. 2007, Perrella and Francisco 2016), compatible 
with the anatomy of gnathic complex (sensu 
Cundall and Greene 2000). Despite there is a single 
report of a putative large-bodied Atractus with a 
snake and gymnophtalmid lizard in their stomachs 
(Pérez-Santos and Moreno 1990), the identification 
of these predators must be checked in detail 
because there are many specimens of Xenopholis 

and Rhadinaea misidentified as Atractus in 
several herpetological collections (P. Passos pers. 
obs.). Therefore, until a specialist in this group 
corroborates this report, we still consider the species 
of the genus Atractus as goo-eater specialists (see 
Cundall and Greene 2000 and Zaher et al. 2014 for 
other dietary specializations of goo-eaters snakes).

Interestingly, large species of Atractus (adults 
with SVL > 500 mm) reacquired the elongation 
of the gnathic complex and the rotation of the 
quadrate bone in the same way that is present in 
surface-dweller macrostomatans. One example 
of this is Atractus major, a large species in which 
adult individuals display long palatomaxillary bars 
and lower jaws that surpass the posterior region of 
the skull, and a quadrate bone rotated backwards 
(Fig. 6 and Ramos 2017). The increase in gape 
size as a consequence of this postnatal ontogenetic 
trajectory seems to be not followed by a shift in 
the type of prey, because the scarce information on 
diet of large forms of Atractus indicates the same 
lumbricophagous diet observed in small species 
(Fig. 7). However, it is important to underline 
the scarce knowledge about diet preferences in 
Atractus. Among the impressive species diversity 
of the genus Atractus, there are several distantly 
related forms with large body size (see Table I from 
Passos et al. 2010a), which indicates that large 
body-size was acquired several times independently 
(Passos P., unpublished data). Taking into account 
that only large species of Atractus reacquired 
the skeletal requirements for macrostomy during 
their postnatal growth, then body-size appears to 
have had a central role in the reacquisition of this 
postnatal ontogenetic trajectory. If this is the case, 
the plasticity of this ontogenetic trajectory—on 
both extremes of developmental pathways—could 
represent a relevant key innovation to explain 
the impressive diversity and species richness of 
the neotropical genus Atractus. On other hand, 
the liability of the ontogenetic trajectory perhaps 
would be also relevant for increasing the fitness 

Figure 7 - General view of an uncollected specimen of Atractus 
sp. eating an earthworm in the field at Parque Nacional Sangay 
(02◦ 04’27.5”S, 78◦12’46.6”W; 1785 m asl), province of 
Morona Santiago, Ecuador. This specimen had about 750 mm 
of total length. Black arrow indicates the quadrate-mandibular 
joint displaced backward during swallowing process. Photo by 
Hérnan Orellana.

Figure 6 - A female specimen of Atractus major (MEPN 5146, 
SVL 745 mm, CL 100 mm) preserved with an individual of 
Oligochaeta (family Glossoscolecidae) on their mouth. 
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(sensu Arnold 1993) of miniaturized lineages, such 
the Amazonian Atractus collaris species group 
(Passos et al. 2013c), in which the main food 
resource along its range of distribution may be the 
small-sized species of the family Enchyathreidae 
(Oligochaeta, Annelida) (Bevilacqua 2014).
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APPENDIX I

ADDITIONAL MATERIAL EXAMINED

Countries are given in bold capitals, states in plain 
capitals, municipalities in italics, and localities in 
plain text. 

Atractus gigas (n = 17): ECUADOR: 
CARCHI: Km 15 El Chical–Gualtal road, Tulcán 
Chical: (QCAZ 5771); COTOPAXI: Bosque 
Protector Río Guajalito (formerly Palmeras 
Farm), between San Francisco de Las Pampas 
and Quito: (FHGO 194, holotype; QCAZ 2099, 
topotype), Bosque Integral Otonga: (QCAZ 3266), 
San Francisco de Las Pampas: (QCAZ 175, 179, 
443, 647, 662); PICHINCHA: Cantón San Miguel 

de los Bancos, Tadayapa road, Tandayapa Farm: 
(FHGO 4791), Chiriboga: (QCAZ 01), Reserva 
Las Gralarias: (MZUTI 3286), Las Palmas: Lloa: 
(DHMECN 372), Palmeras: (QCAZ 2099), Peñas 
Coloradas: (QCAZ 4058), Reserva Bella Vista: 
(QCAZ 6526); Provenance in error: Piso Tropical 
Oriental: without specific data: (MEPN 8706). 
PERU: CAJAMARCA: San Ignacio, Santuario 
Nacional Tabaconas Namballe: Alto Lhuama: 
(CORBIDI 877), El Chaupe: (ZFMK 89147). 

Atractus touzeti (n = 3): ECUADOR: 
NAPO: Cordillera de los Guacamayos, Cosanga–
Archidona road: (FHGO 517, holotype), La Virgen: 
(FHGO 2035–36, paratypes).


