icm

36 Q. N. Capri and C Segovia

[6] M. Cotlar, Some generalizations of the Hardy-Littlewood moximal theorem, Rev. Mat.
Cuyana 1 (1955), 85-104.

[71 I-L. Journée, Calderén-Zygmund Operators, Pseudo-differential Qperators and the Cauchy
Integral of Caiderdn, Lecture Notes in Math. 994, Springer, 1983,

[8] M. K aneko and S. Yano, Weighted norm inequalities for singular integrals, J. Math. Soc.
Japan 27 (1975), 570-588.

[97 D. 8. Kurtz and R, L, Wheeden, Results on weighted norm inequalities for mulripliers,
Trans. Amer. Math. Sec. 255 (1979), 343-362.

[10] —, —, A note on singular integrals with weights, Proc. Amer. Math. Soc. 81 {1981},
391-397.

[11] B. Muckenhoupt, Weighted norm inegualities for the Hardy maximal furction, Trans.
Amer. Math. Soc. 165 (1972), 207-226.

[12] E. M, Stein and G. Weiss, Interpolation of aperavors with change of measures, ibid. 87
(1958), 159-172.

FACULTAD DE CIENCIAS EXACTAS Y NATURALES
UNIVERSIDAD DE BUENOS AIRES

and

INSTITUTO ARGENTING DE MATHEMATICA (CONICET)

Received February 17, 1987 (2279)
Revised version August 14, 1987

STUDIA MATHEMATICA, T. XCI0. (198%)

Existence of bases and the.
dual splitting relation for Fréchet spaces

by
JORG KRONE (Wuppertal)

Abstract, The present article contains a topological condition for nuclear Fréchet spaces E
and F whick is sufficient for the existence of a basis in the range of every continuous linear
operator from E to F. Surprisingly our condition is in some sense dual to the ones describing
the splitting of short exact sequences of Fréchet spaces.

The problem of Pelczyfiski [207 whether complemented subspaces of
nuclear Fréchet spaces with basis also have a basis is still unsolved. Positive
solutions were obtained by Mityagin and Henkin [16, 17, 18] in the case of
finite type power series spaces, by Vogt and Dubinsky [9, 26] in the case of
tame power series spaces and by Dubinsky [8] and Fachinger [10] in some
more general cases.

The present paper modifies the method of Mityagin and Henkin (see 1.1)
so that it can give a necessary and sufficient topological condition for the
existence -of a basis in complemented subspaces of regular nuclear K&the
spaces (see 1.2). This method leads to a sufficient condition on E and F for
the range of every operator T: E —F to have a basis. Here E and F are
nuclear Fréchet spaces or Kthe Schwartz spaces or their dual spaces. Some
cxamples of nuclear K&the spaces without this property are given in Krone
[13, 14]. It is an interesting fact that the above-mentioned sufficient condi-
tion can be interpreted as the dual splitting relation (see Apiola [2],
Ketonen—-Nyberg [12], Krone-Vogt [15], Nyberg [19], Vogt [24, 25]). Hence
it is called DS and in the case that E and F are Kdthe spaces we have a
simpler version called DS* (see 1.3).

The condition DS is easy to check in the standard cases. If both spaces
are power series spaces we obtain exactly the above-mentioned well-known
results (see 2.1). If one space is a shift-stable power series space the
characteristic properties of the DS partner spaces are the conditions
DN, DN, & and  which are introduced in Vogt [22,23] and Wagner
[27]. Tn 2.3 we evaluate the DS condition for Dragilev spaces.
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The examples considered in the second chapter underline and clarify the
dual character of the splitting and the DS conditions, but it is not clear at all
whether there is a deeper theoretical explanation for this surprising result.

I want to thank D. Vogt for many helpful suggestions.

Notation (see also Dubinsky [87). E and F are always locally convex
spaces. For a subset M of E the gauge functional is defined by py(x) : = inf {¢
20: xecM], inf{}:= +co. M is a Hilbert ball if M is an absolutely
convex, closed set and if p, is a Hilbert norm on Ey :=J,z9¢cM, ie. if the
completion (Ey, py,)  is a Hilbert space.

For fundamental systems of absolutely convex and closed neighbour-
hoods of zero (U,)ueq in E and (W)yep in F, the || [|;:=py, and || ;= Py,
are the corresponding fundamental systems of seminorms. If E is a Fréchet
space ((F)-space) we can choose A =N and U, > U, ..

For a continuous linear mapping T =L(E, F) we define

Tl i =inf{c 2 00 T(M) =eNj, (Tl :=Tlv,,u,-

The range of T'is always endowed with the subspace topology of F.

A =(3)jkeny With 0< @) < a5+ and sup, e, >0 for all j, keN is
a Kithe marrix.

A Kothe space (Kithe sequence space) of type peN or p= +o0 i
defined by

o
AP(A) = {(xhen < K2 JIlIP = (X Iy aul?)® < o0 for all keN),
i=1
A% (Ap = {(x)jen = K: ||x]|° 1= sup|x;a;,| < oo for all keN).
JeN

A Kothe space of type 1, A'(4), is simply called a K&the space A(4).
It is nuclear if and on]y if for all k there is an m so that 2 o 51/ @
<o for J,:={jeN: g, >0}.
tis a Schwartz space if and only if for all k there is an m with
lim a; /a;,, = 0.
Jj=m
Jjedm .
It is called regular if a;p. /0, < gy fa;, for all i, jeJ,, keN, with
JsL
If it has a continuous norm we may assume that px > 0 for all j, keN.
If A has the form a;, = exp(ryay), where u is a sequence with
O<a;<oyq >+ooandr, <reyy =1, reRor r = + oo, then 1(4) is called
a power series space A.(a). If a;, =exp(f(r,2,) with an odd rapidly
increasing function f, we call A(4) a Dragilev space L («, r) {see Dragilev [7]
and Ahonen [1]).
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1.1. First we want to show the existence of a basis in the range of some
operators in a quite general setting.

Lemma 11 Let E and F be complete locally comvex spaces and let
TeL(E, F). If there are Hilbert balls K and U so that Ey is dense in E, K is
compact, U is a neighbourhood of zero in F and |LeL(E, F); L(K) < T(K)
and T™'(U) < L™ (U)} is equicontinuous, then the range of T has a basis.

Proof If we endow E, with the topology of py and if Fy:=(F, py)_,
then T: Ey —F, is a compact mapping between Hilbert spaces. Because of
the spectral theorem for compact operators we can write T in the form

2.0
Tk = Z oy Cx, ex f
i=1

for all x €E, where le;] and {f;} are othonormal systems in E; and Fy and
where o; 2o, ~ 0. We may assume that o; > 0 since otherwise the image
of T is finite-dimensional.

Since T(ej) = u; f;, we have f;erange(T).

From Z - Jf —0 as n - +oo in range(T) it follows that the series is
also convergent in Fy, hence a; =0 for all j and the set |f;} is linearly
independent in the range of T

For x¢E, neN we define T,(x):=3__ (T, f;)u f; and we get

(T HW) = mi & finfy zeUL e U,

= T( Z xje]) lf X = Z xJe ln EK:
j=1

j=
= {3 ox;fi Z Ix* <1} = T(K).
=1 =1

Hence (T,),.n is equicontinuous. Since T,(x) = T(x) for xeEy, which is
dense in FE, we obtain the convergence on the whole of E by a standard
argument, e.g. vsed in the Banach-Steinhaus theorem.

For y;(x):= {Tx, f;>y we have y,eE’ and Z;iiajyj= 0 in E; imphes

o0

Gﬁi al' = Z a} <7.éi!j}>U = 0.

Jj=1
Hence we obtain
CoroLLary 1.1, Under the assumptions of Lemma 1.1 there is an index set

I © N and linearly independent sets |y}, in E, and {f};.; in F so that Tx
=Y ¥ (x) f; for all xcE. We even get ferange(T), (yi}ir equicontinuous
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and y; = f/oT for an equicontinuous biorthogonal (f(f) = &; ;) system {f;}
in F'.
1.2. Now we are able to give a complete topological characterization of

those complemented subspaces of regular nuclear K&the spaces with conti-
nuous norm which have a basis.

Tureorem 1.2. If E is a complemented subspace of a nuclear regular Kothe
space with continuous norm, then E has a basis if and only if there is a compact
Hilbert ball K in E with Ey dense and a Hilbert ball U which is a
neighbourhood of zero so that {LeL(E, E): L(K) cK and L(U) = U} is
equicontinuous.

Proof The condition is sufficient since we may apply Lemma 1.1 with
E=F and T=id,

If E has a basis it is again a nuclear regular Kthe space with
continuous norm (cf. Bessaga [3], Dragilev [6] and Dubinsky [8]). Let E
= 1(A). For every k we find an § so that

@40y < Smax(a/a;, a./a,;)  for all i, jeN,
With

=] ‘w0 )
U:={xeE: } Ixay*<1}, K:= {xeE: ¥ |xau*< 1}
i=1 =1

we get our condition,

1.3. Since it is not casy to decide whether the complemented subspaces
of a given space always satisfy the condition in 1.2, we want to introduce a
sufficient condition which has nice properties concerning subspaces and
quotients. In general this condition is not necessary (cf. Krone [14]) but it is
not clear whether it is necessary under some mild and reasonable assump-
tions on regularity or stability,

We want to introduce that condition by the “dualization” of the
splitting relation. For Kothe spaces A(A4) and A(B), where A(A) is not a
Banach space, every exact sequence of Fréchet spaces 0 —A(B) =G = A(A)
—0 spats if and only if

8% Vuilp k Vm, van 8 Vi, a./b, < Smax{a,/b;,. a; ,/b;.).

New we want to give a dual condition by exchanging 3 and V, b;; and
1/big, 1/6; and g;, and so on. This condition will be called DS* and the
basis free version DS.

DerrviTion 1.3, (E, F)e(DS) iff there is a bounded set B in E so that
a.u Vpa k 3 m, t, 8: “T“k,m < Sm:ax(”T“u,B’ “T“nxp)
for évery Tel(E, F).
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(A(4), )L(B))E(DS*) i 3p Vp, kIm,o ¥n s Vi, j
' b/ < S maxib; ja;,, by /o ).
First we want to state two obvious facts:

Remark. 1. The conditions DS and D8* are independent of the choice
of the fundamental system of seminorms.

2. (E, F) e(DS) implies (Ey, Fg) £(DS) for every quotient space E, of E
and every subspace F, of F.

Now we have to show that the condition DS* is exactly the condition
DS for Kothe spaces. ‘ '

Prorosimon 1.3, For all p, geN {+w} the following are equivalent:

1) (AA), 1(B))s(DS™).
(2 (4"(A4), 14(B)) e(DS).
3 (B, (@ (A))DS).

Proof If AP(4) or 1%(B) is a Banach space the three conditions are
satisfied. Hence we may assume that they are not Banach spaces.

Step 1: (2) is equivalemt t¢
(27 3p, xedt(4) Ing, k Am, v, s:

bj‘k/a,-,,.,, < Smax(xb,,, bj,y/ai,,,o)
Jor all i, j and with A" (d):= {x = (x)i.n €A™ (A): % > 0 for all i}.

Proof. Let (¢);.y and (/). be the canonical bases in A(4) and A(B).
The dual bases are denoted by *. If we evaluate (2) at L:= gf ® f; we obtain
(2') with x; 1= sup,. ¢ lef (). x 1= (%);en 18 in A®(4) since K is bounded, and
x; >0 if A9{B) is not a Banach space.

(2)) implies (2) with K= {yei?(4): } In/x|” < 1} since for p, g eN and
Wi= {y: 3. I»:/’ <1} we obtain the estimates

1T < SUPZ (B Tis Vil O l®

yeW i j

< supS8*max(}.|b;, T, v xl%, ¥ b, T yf/af,noiq)
yeW i i

< SYmax (supz byw Ts v i[9, supy. 16, Thi yi/aj,nojq)
yeW i yeW i

"'<~ Sqmax (”T”E,K: “T”?L,no)
For p= 4+ or g = + 0o there are analogous estimates.

Step 2: (3) is equivalent to
(3) 3, xed*(4) Vyert (B), zeit (4) ol (B), wedt (A):

Zj/UI_ < max (x_,‘/yi, W’J1 bf,,u.) .
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Proof Since the sets (K% c1+.q defined as above are a fundamental
system of neighbourhoods of zero in (17(A4)), (see Bierstedt—Meise~Summers
[4]) the proof follows the same lines as in the first step.

Step 3: (1) is equivalent to (2).

Proof. Obviously (2) implies (1).
If JP(B) is not a Banach space (1) implies analogously to Krone-Vogt

L15]

Ju Yag, k Am, v Yo, R >0 57~ < max (s—ﬂ’-, -—~——i¥&~).
a.,. Re

Ll
Hence there are sequences (S, )uren @nd (myyy With

by Dime by .

—k < max(S,,‘ki"—”ﬁ, £ for all n, k,i,jeN.

« at

iy, i

Let §,, =1 and S, :=max, ¢, S,:. For x;:=1inf,5,/a, and x:=(x) we
have xeA®(4) and

Byl g S MAX (S X by byfay)  for all iy, k.
Step 4: (2) is equivalent to (3').
Proof. (2') implies
Ju, x€Ah™(A) Vyel™(B), zcit (A), ng, k 3S:
bixz: < S max{(x/y;, biulting) for all i and j.
If A7(A) is not a Banach space we get
Ap, x€AT(A) Vyel™(B), zeA* (A), ny, k 3S:
bjvzi < max (x;/y;, 8b; .,/ n)-
This implies with the same §,
Ay, x €At (A) Vyei® (B), zeA* (A) 3(Seen:
b;yz; < max(x/y;, S, Spobiplain)  for all i, j, k, ny.

For v;:= 1nfy Sy/b;, and w; :=inf,S,/a , we get (3').
{3" 1mplies the condition

(®) 3, xeAT(4) Vyei® (B), zel™ (4), n,, k 3 S:
iz € Smax(xy/y;, by u/t; q0).

If (2) is not satisfied there are k, n, and increasing sequences (i), (j,) sO
that for every m

by kG m > mmax (bj,m Xips b il B ng)-
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For every i there is an [, > i with g, > 0 and b;;, > 0. The following z and y
vield a contradiction to () )

%1/ai,m fori: 'ima . %1/bj,m fOI' j =jma
l/a;,, ~ otherwise, i 1/b;,,  otherwise.

Zp o=

Finally we want to prove the main result of this chapter: the condition
DS is sufficient for the basis property.

Tueorem 1.3, Let E and F be complete locally convex spaces so that E
has a fundamental system for the bounded sets consisting of compact Hilbert
balls, and F has a fundamental system for the neighbourhoods of zero consisting
of Hilbert balls. Then (E, F)e(DS) implies that the range of every operator
Tel(E, F) has a basis.

Moreover, we can write T in the form T(x) = Zid vi{x) f; for all x€E and
linearly independent sequerices (fi)e; in the range of T and (v n E, and an
index set I contained in N.

Remark. The assumptions on E and F are satisfied for nuclear Fréchet
spaces, for K&the-Schwartz spaces A%(A) and their dual spaces.

Proof of the theorem. There is a compact Hilbert ball K in E
meeting the condition DS.

If Eg is not dense in E then DS implies that F is a Hilbert space, hence
the proof is elementary.

If || I, is not a norm on F then DS implies that E is a Hilbert space,
hence E is of finite even dimension.

In the case that E, is dense in E and || ||, is a norm on F, we may apply
Lemma 1.1. Then we have to show that the set {Lel(E, F): L(K) <= T(K)
and T~ 1(V,) = L™'(V¥)} is always equicontinuous. But this is a consequence
of the condition DS since '

1Ll < Soax (1Ll ks [[L0],,p) < S max (| Tk (| Tk, )

2.1. In the second chapter we apply Theorem 1.3 in some specific cases,
hence we have to evaluate the condition (DS) or (DS*). First we consider
power series spaces. Here we obtain the wellknown results for the basis
property due to Mityagin [16], [17] and Mityagin-Henkin [18] for finite
type and to Dubinsky—Vogt [7] and Vogt [26] for infinite type. To demons-
trate the dual character of the conditions DS* and S* we also state the
corresponding results for the splitting relation (see Ketonen—Nyberg [12],
Nyberg [19] and Hebbecker [117).

Let M denote the set of all finite limit points of {8/ i, je N} and let
seR or s =+ 0.
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Tueorem 2.1, (A, (x), A(B) €(DS*) resp. (4.(F), ){s(cx))e(S"‘) if and only if

DS* Rl
F= oo M bounded always
re=20 alweys M bounded
Proof First we consider r = + 0. For 5, =k or s, = —1/k the condi-

tion DS* implies: Fx, m Vn 38:
Spa1 Bj—mey < S+max (s, B;—ney, 5, 8;—o;) . for all i, j.
Hence we obtain for all xeM, neN
Syt X—m< max(s,x—mn, §,x—1).

For n sufficiently large this implies Sur1 X—mE s, x—1 or x < (m—1)/(s,.,
—4%). Hence we have an upper bound for M.

Now suppose K is an upper bound of M. There is a sequence (j);_y with
Bj,-1 < 2Ke; < B For any k, neN there is an i, with B;, = Zkna; for all i 2 i,.
Hence we get for j > j

1 1
~Eﬁj< ncc,-om—zmlzﬁj—-nai

resp. kB < no (K + 1) B~ na;.

On the other hand, we obtain for j <},
1
- Eﬁj‘“(QK”f‘k) % K —f;—kay

resp, kﬁJ—"(szJl‘k)Oﬂi -<\ ,BJ"—kfx'
Hence Vu, k 3C Vi,
S Bi—(2Kk + K)oy < max (C+ sy, By~ noty, 5, B~ katy).

This implies (4, («), ls(ﬁ))E(DS*).
Now we have to show that (4, (x), 4,(8)) e(D8*).

. , 1
First, if ; s%—zmi then

-—lﬁ+—-1—oc<1cx' 1 < 1
RHT E S s T ga% S e,

1 1
kBj+ % < fi;+ PRal
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. 1
and if fi; 271‘2 @; then
1 1 1 1 1 1
— =B o, & — =B+ —B. L — — B+
WP g S T bk b s - g e

1 1
fi; oy € 2k A+ —ay.
kﬁJ+2ka’ B ”oc

This completes the proof.

2.2. In the case that one space is a shift stable power series space (there
is a C with a;4; < Ca; for all j), we can characterize the DS relation in terms
of the well-known conditions of DN and £ type. Namely, we use the
following properties of a Fréchet space E introduced by Vogt [22, 23] and
Wagner [27]:

DN: 3p ¥YkIn, C,d>0VxeE: [+ < Clldt|xll,
DN: ' 3k ¥n3aN Yd3IC VxeE: x> < ClxE|Ixllx,

@ Vp,dIk VnIAC YyeE: |yILii< Clivl- I,

a: Yp3d.k Vn3C VyeE: [HiLi‘s Cllyil-.Iyli,.
If E is a Fréchet~Schwartz space, 2 is equivalent to (see Vogt [22])
(¥: There is a bounded set B .in E so that
Vp.d 3k, C VyeE: (WL < Clhll-sll¥I,
and £ is equivalent to (see Dineen—Meise-Vogt [5])
(. There is a bounded set B in E so that
Vp 3d, k,C YyeE: | < Cliyll-s it

Tueorem 2.2. Let a be shift stable (sup;a;..,/a; < +o0) and E a Fréchet
space. Then

(%0 (x), B} &(DS) < Ehas DN,
(E, 4o (@) e(DS) < E has @,
(Aol®), E)e(DS) < E has DN,
(E, 2 @) €(DS) < E has £¥.

The proof uses the same arguments as similar evaluations of conditions
in this form eg. in Vogt [23]-[25].
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2.3. For Dragilev spaces the DS8* condition implies some new results for
the basis problem (see also Dubinsky [8] and Fachinger [1073). The corres-
ponding evaluations of the splitting relation 8* are contained in Hebbecker
[11].

Let again M denote the set of all finite limit points of {f,/o: i,jeN}
and N:={1/(1-x): x <1 and xeM}.

Tueorem 2.3, (Ly(x, 1), Ly(B, ) e(DS*) resp. (Lp(B. 1), Ly, 1)) e(S*) if
and only if

DSs* S
e M bounded alweys
r=1 ahways N bounded
r==0 always M bounded
r=-—1 N bounded always

Proof. The condition DS* is for Dragilev spaces equivalent to
Jpu ¥Yp, kIAm v VIR Yi,j>R:
flrpo) —f(rmay) < (e B)—Sr B)s
FreBd—flro Bi) < ooy —f(r, o3,

First we consider the cases with r > 0. Since f is rapidly increasing that
condition is equivalent to

Yidmov=k Ve>m3IK Vi,j>K:
f(rm ij) > j.(rk ﬁz) or f(rn ij) <f(ru IBE)’

18 ry/re > Bifo; or rfr, < Bi/u;. Here we assume 0 <r <rpiq.

For r =1 we have Vk 3m, v VY rfr, <r,/r., hence the condition is
always satisfied.

For r= +o the condition has the same form as in the proof of
Theorem 2.1 for power series spaces of infinite type, hence we obtain the
same result.

For r <0 we obtain as an equivalent formulation of DS*:

Au Vp, kIAm J i, j>d0 flrpu) <flr.p) or frnB) < flrna)
1e.7,/r, > Bifo; or vfr. < Bifa;. This is equivalent toI u Vp, k I m: Folty = X
or r,/r. <x for all xeM.

For r =0 this is satisfied for every xeR.

For r= —1 this is equivalent to 36 >0 VxeM: x<1—-6 or x> 1,
hence 1/(1—x) <1/ for all xeM with x < 1.
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Finally, we want to point out that our results imply the following facts
for every nuclear power series or Dragilev space E: Either every exact
sequence of Fréchet spaces 0 - E —F —E —0 splits or the range of every
continuous linear mapping T: E —E has a basis. If moreover E is shift
stable then E satisfies exactly one of the two relations (E, E) (DS*) and
(E, E} €(8*). On the other hand, if E is an unstable K&the space with DN or
Q, Terzioglu [21] showed that (E, E) satisfies both DS* and S*.
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C%Scalar operators on cyclic spaces
by

RALPH peLAUBENFELS {Athens, ()

Abstract. We consider (possibly unbounded) linear operators A on a Banach space X for
which there exists xq such that X =span {A"xy|n=0, 1, 2,...]. We show that 4 is €-scalar
with real spectrum if and only if there exists a certain type of Banach lattice ¥ of complex-
valued functions on the real line and a homeomorphism U from X onto ¥ such that
(UAUT! f){) = tf (), with the domain of UAU ! equal to {fin Y|t —~¢f(2) is in Y.

When the guasi-analytic growth condition E:J: o (5P, 1 4* Xoll ") = oo is satistied, and
the domain of A equals span {4"x,|n=0,1,...}, we show that 4 is C-scalar with real
specirum if and only if there exists an equivalent norm with respect to which X is a Banach -
lattice, with

(X*)* = {o in X*|{p(A"x}2, is positive-definite}.

Similar results for C%scalar operators with nonnegative spectrum are giveh.

Introduction. Scalar-type spectral operators generalize, to an arbitrary
Banach space, selfadjoint operators on a Hilbert space. A (possibly unbound-
ed) linear operator 4 is scalar if there exists a projection-valued measure E
such that

n

Ax = lim [ td(E{t)x),
. om—w -y

with the domain of A4 equal to the set of all x for which that limit exists. The

spectral theorem asserts that a selfadjoint operator is scalar,

Another form of the spectral theorem asserts that 4 is selfadjoint if and
only if it is unitarily equivalent to a multiplication operator on an L?-space.
In particular, if the Hilbert space H is cyclic, ie. equals the closure of the
span of {A"x,|n=0,1,2,..}, for some x,, then there exists a Borel
measure m and unitary U from H onto L*(R, m) such that

(VAU i) = o (0).

We prove a similar result for scalar operators on a eyclic Banach space.
More generally, we consider C%-scalar operators (see Definition 1). These are
operators ‘that have a funetional calculus defined for continuous functions
vanishing at infinity. Scalar operators have a functional calculus defined for
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