A NUMERICAL ANALYSIS OF THE AMERICAN SPECIES OF THE GENUS RICINUS (PHTHIRAPTERA: AMBLYCERA) *

ELŻBIETA LONC

Zakład Parazytologii Ogólnej, Instytut Mikrobiologii UWr, Wrocław

The genus Ricinus De Geer, 1778 (Phthiraptera: Amblycera) comprises a cosmopolitan group of the largest, haematophagous ectoparasites of passerine birds. Species of Ricinus appear on members of 28 of the 70 families of Passeriformes. Systematically, the genus presents a number of interesting and controversial problems (Eichler, 1963; Złotorzycka, 1965; Rheinwald, 1969 and Nelson, 1972). The present taxonomic status of Ricinus species occurring in the New World was established by Nelson (1972). He redescribed the genus and 38 species, considered as valid, divided into nine species-groups. Those species were defined on the basis of the external morphology with emphasis on the chaetotaxy. The descriptions, presented in this revision, served mainly for the current numerical treatment.

This study was undertaken in order to analyse phenetic relationships among 38 species of Ricinus with various methods of numerical taxonomy according to Sneath and Sokal (1973) and compare the results with Nelson's arrangement. Techniques of numerical taxonomy were successfully used in the classifications of various groups of mammal and bird ectoparasites (Moss, 1967; Herrin, 1970; Johnston and Kethley, 1973; Moss et al., 1977). The first numerical treatment of three mallophagan genera, based only on 21 quantitative characters (measurements and ratios), looked promising (Eveleigh and Amano, 1977). Another purpose of the present study was to investigate the effect of using different data sets of adult, morphological characters on the results of the phenetic classification of Ricinus.

[^0]TABLE 1
Species of the genus Ricinus used in this study

Code no.	Names of groups and species	No. of individuals examined by Nelson 오 ずo	
(1)	Brevicapitis species group (B)* R. brevicapitis Carriker, 1964 Arcuatus species group (A)	1	-
(2)	R. arcuatus (Kellogg and Mann, 1912)	46	14
(3)	R. myiarchi, Nelson, 1972	3	1
(4)	R. leptosomus (Carriker, 1903)	12	3
(5)	R. sucinaceus (Kellogg, 1896)	23	2
(6)	R. pessimalis Eichler, 1956 Fringillae species group (F)	17	1
(7)	R. fringillae De Geer, 1778	106	16
(8)	R. japonicus (Uchida, 1915)	7	1
(9)	R. microcephalus (Kellogg, 1896)	5	-
(10)	R. elongatus (Olfers, 1816) Mandibulatus species group (MN)	32	1
(11)	R. mandibulatus Nelson, 1972 Invadens species group (1)	1	-
(12)	R. invadens (Kellogg, 1899) Serratus species group (SE)	5	5
(13)	R. serratus (Durrant, 1906) Marginatus species group (MR)	15	3
(14)	R. Alavicans Carriker, 1964	1	-
(15)	R. marginatus (Children, 1836)	54	12
(16)	R. frenatus (Burmeister, 1838)	1	1
(17)	R. polioptilus Carriker, 1964	1	-
(18)	R. pallens (Kellogg, 1899)	7	3
(19)	R. dalgleishi Nelson, 1972	16	-
(20)	R. picturatus (Carriker, 1902)	32	3
(21)	R. emersoni Nelson 1972	19	5
(22)	R. dendroicae Nelson, 1972	60	12
(23)	R. seiuri Nelson, 1972 Subangulatus species group (SU)	12	3
(24)	R. subhastatus (Durrant, 1906)	15	6
(25)	R. wolfi Nelson, 1972	12	5
(26)	R. subangulatus (Carriker, 1903)	5	-
(27)	R. complicatus Carriker, 1964	2	-
(28)	R. ramphoceli Nelson, 1972	12	5
(29)	R. volatiniae Nelson, 1972	3	-
(30)	R. vireoensis Nelson, 1972 Diffusus species group (D)	89	38
(31)	R. subdiffusus Nelson, 1972	7	3
(32)	R. sittae Nelson, 1972	-	2
(33)	R. diffusus (Kellogg, 1896)	119	26
(34)	R. calcarii Nelson, 1972	11	2
(35)	R. thoracicus (Packard, 1870)	8	7
(36)	R. ivanovi Blagoveshtchensky, 1951	8	3
(37)	R. carolynae Nelson, 1972	6	1
(38)	R. australis (Kellogg, 1896)	16	2

[^1]
Material and methods

The 38 species, identified in Nelson's revision (1972), were used as operational taxonomic units (OTUs according to Sneath and Sokal, 1973). Table 1, above, lists the species, their code number in the arrangement given by Nelson, as well as the number of adult male and female specimens examined. Of the 38 species, ten were represented by one sex only; they were included and analysed with the rest.

A total of 130 morphometric characters were selected from various body regions: head (52), thorax (26) and abdomen (52). Of these, 109 were qualitative, 17 measurements and 4 ratio characters. For the present study the characters were subdivided into four main subsets: the morphology of head, the morphology of non-head, the chaetotaxy of head, the chaetotaxy of non-head. The comparisons were made between various combinations of regions: head vs. non-head characters, morphological vs. chaetotaxy characters. Each descriptive character was coded into a convenient series of states; the maximum was five states. The zero score is given if the character is absent, one for the present state and NC (no comparison) for missing information. Among the 130 characters $\times 38$ OTUs matrix there were forty characters containing a total of 240 NC values. Means were used for all measurement characters.

For phenetic analysis the data underwent standard taxonomic procedures using the NT-SYS system of numerical taxonomic computer programs (Rohlf et al., 1980). Characters were standardized before the computation of matrices of distance and correlation coefficients between OTUs. These matrices were clustered using the UPGMA (unweighted pair group methods with arithmetic averaging). Minimum Spanning Trees (MST) were also computed. The subset algorithm was used to find small clusters. Distortions of the original similarity matrix by the clustering procedures were estimated by computing the cophenetic correlation for each distance and correlation phenogram (subprogram MXCOMP). Q-mode factor analysis was performed by subprogram FACTOR. Relationships between 38 species points in 3-dimensional PCA space served as the initial configuration for the MDSCALE analysis.

Classifications based on various subsets of data were compared by the matrix correlations and the strict consensus index (CI_{c}) (Rohlf, 1970; 1982). All computations were carried out on a UNIVAC computer at the SUNY at Stony Brook using the facilities in the Department of Ecology and Evolution.

Results

Figs. 1a-5a present distance UPGMA phenograms, and figures $1 \mathrm{~b}-5 \mathrm{~b}$ correlation UPGMA phenograms. They were computed from the following
sets of characters: all morphological with chaetotaxy (130), morphological (70), chaetotaxy (60), referring to head (52) and referring to non-head (78).

For the sake of clarity, the arrangement of relationships of Ricinus, given by Nelson (1972), will be used as the standard for comparison. The species groups recognized previously are present in the majority of phe-

Fig. 1a. UPGMA phenogram of a distance Q-matrix on all (130) characters. Species code and species groups assignments are given in tab. 1
nograms. In all cases the arcuatus species group (OUTs 2-6) and the fringillae (OTUs 7-10) remain as distinct clusters and the compositions of taxa within each cluster are the same. Four single species groups: the brevicapitis (OTU 1), the mandibualtus (OTU 11), the invadens (OTU 12) and the serratus (OTU 13) occupy isolated positions, but sometimes join different stems. The species from the marginatus group (OTUs 14-23) usually form a cluster, except for R. marginatus (OTU 15), which is

Fig. 1b. UPGMA phenogram of a correlation Q-matrix on all (130) characters
separated from the rest in all phenograms, as well as R. polioptilus (OTU 17) and R. emersoni (OTU 21) separated in chaetotaxy phenograms. The subangulatus species group (OTUs 24-30) is also a unit, except in the phenogram based on chaetotaxy. OTUs 31-38 correspond entirely to the diffusus group only on the correlation phenogram of head. On the remaining phenograms, however, there is no absolute correspondence to this type.

Fig. 2a. UPGMA phenogram of a distance Q-matrix on 70 morphological characters

Distance as well as correlation phenograms present highly similar relationships within Ricinus. But the cophenetic correlations of matrices based on distance are greater ($0.960-0.769$) than those based on correlation coefficients ($0.902-0.687$) (tab. 3). For this reason, further discussion deals primarily with results based on matrices of distance coefficients (figs. 1a-5a).

Fig. 2b. UPGMA phenogram of a correlation Q-matrix on 70 morphological characters

Comparison phenograms based on head and non-head characters. Figs. $1 \mathrm{a}, 4 \mathrm{a}$ and 5 a show the distance phenograms based on all characters, as well as those of head and non-head. Head and total phenograms are very close to the previous, conventional classification. In particular, there is a perfect agreement in the case of the first three species groups with dimorphic mandibles, presented in the head phenogram (fig. 4a). Beginning at the top, the brevicapitis (1), the arcuatus (2-6) and the fringillae

Fig. 3a. UPGMA phenogram of a distance Q-matrix on 60 chaetotaxy characters
(7-10) form together a distinct cluster, which is subdivided into three smaller ones. The brevicapitis, consisting of a single species R. brevicapitis (1), occupies an isolated position. R. brevicapitis links closely related to R. arcuatus (2), before joining the fringillae ($7-10$), which are known as the most advanced of species with dimorphic mandibles. R. mandibulatus (11), intermediate between species with dimorphic and monomorphic mandibles links R. marginatus (15), the most similar in the shape of head

Fig. 3b. UPGMA phenogram of a correlation Q-matrix on 60 chaetotaxy characters
and prothorax. The second intermediate species R. invadens (12) is quite separated and joins the marginatus group (14-23). As expected, the remaining species, with monomorphic mandibles, are found together as three recognizable single clusters. The latter reflect the division into the subangulatus (14-23) species group, the diffusus (31-38) and the marginatus (14-23). Both the head and total phenograms show general agreement with the placement of all members into nine species groups. Only

Fig. 4a. UPGMA phenogram of a distance Q-matrix on 52 head characters
R. marginatus (15), representative of the marginatus group, and R. sittae (32) from the diffusus group, are removed from the previous groups and link different stems. Matrix correlation between two versions of similarity coefficients is the highest (0.924) for distance (d) phenograms based on head and all characters (tab. 4).

The phenogram based on non-head characters (fig. 5a) does not match well with either the total phenogram (fig. 1a) or the head phenogram

Fig. 4b. UPGMA phenogram of a correlation Q-matrix on 52 head characters
(fig. 4a). Cophenetic correlation of head and non-head distance matrices is only 0.699 and the strict consensus index (IC_{c}) is the lowest 0.111 (tab. 4). Although in figs. 4a and 5a two species groups: the arcuatus and the fringillae, form identical cluster, their placement on those phenograms is different. The first group, the brevicapitis (1), remains intact on the non-head phenogram, but joins the single group of the serratus (13), the most isolated species of Ricinus, instead of the expected link

Fig. 5a. UPGMA phenogram of a distance Q-matrix on 78 non-head characters
with the arcuatus group. The previously separated position of R. serratus (13) is occupied by R. invadens (12), the only member of the invadens species group. Among species with monomorphic mandibles the marginatus is the only evident cluster. Members of the two remaining groups (the subangulatus and diffusus) are intermixed (fig. 5a).

Comparison of phenograms based on morphological and on chaetotaxy characters. - Phenograms based on distance coefficients with all chara-

Fig. 5b. UPGMA phenogram of a correlation Q-matrix on 78 non-head characters

TABLE 2
Characters used in this study

Character	
names	states
Head characters	
Shape of head	conical - subconical - spatulate
Lateral margins of head	straight - slightly concave
Development of tentorium	strongly developed - well - poorly reduced
Shape of frons	broadly elliptical - rounded - truncate
Margin of frons and margin of marginal carina	continuous - not continuous
Transverse carina	present - absent
Shape of transverse carina	straight - convex - arched
Eyes	protruded - slightly raised or reduced
Shape of occipital margin	elliptical - concave - biconcave
Shape of occipital nodus	biconcave - concave
Shape of head's articulation	rodlike - narrowly lobelike - broad lobe
Shape of temples	triangular - subtriangular
Lunar nodi	present - absent
Size of lunar and tentorial nodi	lunar nodi larger than tentorial equal - smaller
Type of mandibles	dimorphic - intermediate - monomorphic
Shape of mandibular tips	needlelike - moderately thin - short, thick
Shape of right mandibular tip	hooked not notched - notched
Size of maxillary palpi	equal - unequal
Shape of maxillar plated	large, rectangular - wide, sausage shaped - narrow
Appearance of maxillary palpi	straight - weekly genticuloid genticuloid
Pigment pattern on maxillary palpi	present - absent
Size of sclerites on maxillary palpi	equal - unequal
Ovoid sclerites of hypopharynx	evident - not evident
Ornamentation of hypopharynx	heavily ornamented - ornamented with pitlike holes - finely pitted - not ornamented
Shape of margin of labium	rounded -- medially concave - concave
Shape of gular plate	without posterior extension - small extension - long extension
Pigmented mental plate	evident - not evident
Head length of male and female	(metric characters)
Head width of male and female	
Head index of male and female	
Labral width of male and female	

Non-head characters
Shape of prothorax
| hexagonal - subchordate - unique
Epimera III fused with ventral
pleurites
Shape of sternal plates
Shape of margins of sternal
plates
Apex of sternal plates
Size of sternal plates

Shape of abdomen
Thickness of pleural nodi
Shape of pleural nodi
Pigmentation of pleurites
Colour of abdomen pleurites
Colour of sternites
Pigmentation of sternites
Pigmentation of tergites
Shape of parameres
Shape of mezosome
Shape of preputial sac
Pigmentation of mezosome
Total length of male and female
Greatest width of male and female
Ratio of body length to body width of male and female
Ratio of body length to head length of male and female
Prothorax length of male and female Prothorax width of male and female Ratio of prothorax width to prothorax length of male and female Distance between prosternals in male and female
Width of male genitalia

Number of setae in cf series
Number of setae in a series
Size of setae m1-m3
Position of mental setae
Basic number of gular setae
Setae of series df
Number of labial setae
Number of setae along antennal lappets
Number of sensilla associated with al
evident - not evident
pear shaped, wide - regular narrow
concave - slightly biconcave -
biconcave
broadly rounded - narrow - truncate
reaching past of margin - more -
long
margins parallel - slightly ovoid
thick, wide - medium - narrow
margins notched - not notched
not pigmented - partly pigmented -
completely
brown - black - golden - brown
golden - oxblood
brown - golden brown - gold
lack - slightly pigmented -
pigmented
present - absent
elongate - short, acute - short,
obtuse apices - rounded
entire - pointed - large plate a bouquet of cut flowers - a flower with petallike lobes - amorphous
present - absent
(metric characters)

Chaetotaxy
$10-12$
6 pairs - absent a4 - absent a3
equal - unequal
laterally - anterio-posteriorly
2 pairs - 3-from 4 to 9
present - absent
less than $14-14-$ more than 14
less than 9 -- from 9 to 15 - more than 15
one sensillum - two

Distance of sensilla from al Setae a6
Type of preantennal setae
Size of setae al according to m 4
Size of seate m4 according to pa series
Number of postocular series
Size of setal pair po2
Position of setae m2
Setae L3
Setae L6
Size of setae $L 5$ in relation
to L4-L6
Size of setae L9 in relation to $\mathrm{L} 7-\mathrm{L} 8$
Setae c4
Size of c 3 in relation to c 4
Size of c 1 in relation to c 2
Kind of setae c2
Setae of w series
Number of setae in w series
Present of setae in q series
Appearance of setae q2
Size of q2 in relation to w series
Size of setae b1 in relation to b2
Number of sternal medial setae
Size of sternal medial setae
Size of sternal posterior setae
Type of setae on ventral abdominal pleurite II
Size of setae on pleurite II
equal - unequal
present - absent
spinose - pilose
a1 shorter than m 4 - equal
shorter than pa series - equal -
longer
two setae - three - four
po2 equal po1 and po3 - slightly
larger - po2 twice of po1
on marginal carinae - on inner margin
of marginal carinae - off
present - absent
present - absent
equal - L5 longer than L4-L6
equal - slightly shorter - shorter
present - absent
equal - c4 longer than c3-c4 twice
as c3
nearly equal - c1 longer
spinose - pilose
similar -- not similar
5, 6 - more than 6
$q 2-(q 2+q 3)-(q 2+q 5)-(q 1+q 5)$
$-(q 2+q 3+q 4)$
strongly spinose - weakly spinose
q2 shorter than w - equal - q2 longer
b1 shorter than b2 - equal
one pair - two - three
moderately long - long
short - medium sized
spinose - mixed - pilose
small - small and large - only large

Type and size of setae on pleurite III-VIII
Number of tergal setae on segment VIII
Number of tergal setae on
segments II-VIII
Size of tergal setae
Size of sternal setae
Size of sternocentrales vs.
sternolaterales
Number of setae along midvulval
margin
Size of anal fringe setae
Setae on parameres
Setae on margines of parameres
Number of setae on parameres
Number of tactile setae on coxa I
Tactile setae on femora
one pair - two pairs
one pair - two pairs
medium sized - long
short - long
equal - sternocentrales longer
0 - (4-15) - (16-25) - (26-32)
equal - unequal
present - absent
present - absent
1 or 2 pairs - 3-4 or more
one - two
present - absent

TABLE 3
Cophenetic correlation coefficients for distance and correlation phenograms (UPGMA) based on various combinations of characters

Data sets	Phenograms	
	distance	correlation
Total	0.928	0.861
Morphological	0.863	0.829
Chaetotaxy	0.960	0.847
Head	0.952	0.902
Non-head	0.909	0.769
Morphology of head	0.939	0.899
Morphology of non-head	0.769	0.687
Chaetotaxy of head	0.955	0.882
Chaetotaxy of non-head	0.951	0.800

cters (fig. 1a), morphological characters (fig. 2a) and the comparable chaetotaxy phenogram (fig. 3a) show greater similarity to one another than the head vs. non-head phenograms (figs. 4 a and 5 a). The comparison of total - chaetotaxy and total - morphological show that matrix correlations are high: 0.923 and 0.904, respectively, while for morphological - chaetotaxy it is lower: 0.726 (tab. 4). The morphological phenogram

TABLE 4
Matrix correlations and strict consensu; index (Cl) resulting from 'comparisons of distance (d) and correlation (r) phenograms (UPGMA) based on different subsets of data

Comparisons of data sets	Matrix correlations		CI $_{\mathbf{c}}$		
	d	r	d	r	
Total and morphological	0.904	0.890	0.333	0.361	
Total and chaeetotaxy	0.924	0.794	0.417	0.361	
Total and head	0.924	0.882	0.305	0.278	
Total and non-head	0.880	0.847	0.417	0.472	
Morphological and chaetotaxy	0.726	0.628	0.194	0.167	
Head and non-head	0.699	0.719	0.111	0.194	

closely reflects the division of Ricinus into the known species groups. Each of the five main clusters includes all members of a given species group. The only isolated species are R. marginatus (15) and R. sittae (32), which are the most remote from their groups.

On the chaetotaxy phenogram, the arcuatus and the fringillae remain intact and cluster together. Members of the remaining groups - clusters of the morphological phenogram, are rearranged into two different groups. The first one includes the majority of the marginatus, except R. subdiffusus (31). The second cluster consists of the subangulatus and the diffusus mixed together.

Results of Q-mode factor analysis in total study (130 characters). Principal component analysis was employed to calculate the projections (coordinates) of each of 38 species of Ricinus into the first five principal components axes. The percentage of variation (ca. 50) for the first three factors in most analyses based on various subsets of data is not satisfactory (tab. 5). The highest degree of fit (lack of distortion) between

TABLE 5
Percent of variations in species matrix accounted for by each factor in five analyses based on different subsets of data

Factor	Total		Morphology		Chaetotaxy		Head		Non-head	
	\% ${ }^{1}$	C\% ${ }^{2}$	\%	C\%	\%	C\%	\%	C\%	\%	C\%
I	24.2	24.2	24.1	24.1	26.4	26.4	36.2	36.2	17.9	17.9
II	14.8	39.0	22.8	46.9	11.0	37.4	14.8	51.0	14.8	32.7
III	10.8	49.8	11.8	58.7	9.4	46.8	13.5	64.5	9.3	42.0
IV	5.4	55.2	6.3	65.0	6.8	53.6	6.3	70.8	7.0	49.0
V	4.9	60.1	4.9	69.9	6.1	59.7	5.4	76.2	5.5	54.5

the original matrix of similarity coefficients and the pattern of similarity performed by PCA appears in the analysis based on head and morphological characters (64.5% and 58.7% of the trace, respectively). Only four of ten variations (38.99%) are explained by the first two components in the total study. Since the third factor accounts for a mere 10.79% of the trace, it has been chosen to depict two dimensional view of 38 OTUs (fig. 6) only. It suggests the existence of two major clusters of OTUs, designated as the species of Ricinus with dimorphic mandibles (to the left) and those with monomorphic, rather dispersed, to the right. R. invadens and R. serratus form phenetic intermediates between those groupings. R. brevicapitis, with monomorphic mandibles, is tied to the arcuatus and fringillae species groups, established earlier by Nelson.

In general, the relationships given of fig. 6 resemble the UPGMA phenograms on fig. 1a and 1 b , even in exclusion of R. marginatus (15) from the marginatus group. It appears to be close to the members of the diffusus. On the other hand, R. subdiffusus (31) and R. sittae (32), seem to be linked to the marginatus (contrary to the expected linking to the diffusus).

Fig. 7 presents the MDSCALE analysis applied to the total study (130 characters). The final stress value (S) - was 0.246 , which is considered to correspond to a fairly good fit. For the same data, the first three principal component axes explained half of variations (49.78\%) among

Fig. 6. Results of PCA based on all (130) characters

Fig. 7. Results of MDSCALE based on all (130) characters
the considered species. The pattern on fig. 7 is very similar to that of PCA (fig. 6) and analogous on UPGMA phenograms (fig. 1a and 1b). There is, however, a lack of phenetic gaps between species with monomorphic mandibles. Members of three groups, defined as a non-numerical way, are now close to each other and form one group. Fig. 7 shows clearly the arcuatus and fringillae as quite separated. The isolated positions of single species groups are also confirmed.

Discussion

The results of Q-mode cluster and factor analysis show a clear difference between two recognized groups of Ricinus: species with dimorphic mandibles, treated as primitive, and more specialized forms with monomorphic mandibles. The species with dimorphic mandibles were divided by Nelson (1972) into three groups: the brevicapitis, arcuatus and fringillae. In his taxonomic revision he considered the first two species groups to be closely related and more primitive than the third one.

In the present study R. brevicapitis is a clearly separated species, but not always connected with the arcuatus. It is difficult to determine accurately its closest relative because it links R. invadens as well as R. serratus. The only phenogram based on head characters shows its closeness to the arcuatus.

The arcuatus group, in turn, clusters consistently throughout all analyses. Within this complex R. myiarchi and R. leptosomus are closely associated but, at the same time, they are separated from R. sucinaceus and R. pessimalis. It seems, that the latter two should be regarded as a separate group. Next, the fringillae appears to be more homogenous. Three members (R. japonicus, R. microcephalus and R. fringillae) are very near neighbours. Rheinwald (1968) considered the first two species as synonyms of R. fringillae, but it seems that they are phenetically different and form distinct species as it was stated by Nelson (1972).

Species groups with monomorphic mandibles form a fairly compact complex. In particular, species within the subangulatus and the diffusus occupy the same general region on fig. 6 and 7, and they are very similar to one another. Only the marginatus group appears to be a more distinct species group, although some of its members are near neighbours of the diffusus species group mixed with the subangulatus. It is interesting to note that in all analyses R. marginatus is indicated as being one of the most separated species, which links rather the diffusus, instead of, as traditionally stipulated, the marginatus group. Three single species groups, represented by R. mandibulatus, R. invadens and R. serratus are, without any doubt, excluded from the remaining species. Only R. mandi-
bulatus seems to be close to the species with monomorphic mandibles. The phenetic position of both R. invadens and R. serratus, in the sense of closeness to one of the groups, can not be exactly determined.

The data presented here provided an opportunity for a test of the non-specificity hypothesis. Namely, characters sampled randomly from different regions of body should give equivalent relationships. However, classifications based on various subsets of data are usually not completely congruent (Rohlf, 1963; Erlich and Erlich, 1966; Michener and Sokal, 1966; Hendrickson and Sokal, 1968; Crovello, 1969). The comparison of two large sets of characters of Ricinus, i.e. morphological without chaetotaxy vs. chaetotaxy and head vs. non-head, shows slightly different but fairly highly correlated patterns of relationships. As noted above, the phenetic connections of Ricinus with dimorphic mandibles were stable in all analyses. It seems, that as phenetic differentiation is more clearly defined than those with monomorphic, which are less closely adapted to particular habitats on their hosts and, consequently display smaller divergence (Johnston and Kethley, 1973). In general, the matrix correlation values of tab. 4 were greater for distances than for correlation phenograms. Similarly, the cophenetic correlation of matrices based on distance were higher than those based on correlation coefficients (tab. 3).

Acknowledgments

This paper has been prepared during an exchange visit to the Department of Ecology and Evolution, the State University of New York, at Stony Brook. I am especially indebted to Professors R. R. Sokal for help and encouragement and J. F. Rohlf for methodological advice. Helpful suggestion was provided by Professor J. Złotorzycka (Wrocław University). Much computational advice was given by Mrs B. Thomson (SUNY) to whom my special thanks are due. This study would not have been possible without the generous allowance of computator time and facilities provided by the Department of Ecology and Evolution SUNY at Stony Brook.

Received on: 29 VI 1988

Author's address:
51-148 Wrocław, ul. Przybyszewskiego 63/77

LITERATURE

1. Crovello, T. J.: Effects of change of characters and of number of characters in numerical taxonomy. - Am. Midland. Natural., 81, 68-86, 1969.
2. Eichler, Wd.: Dr. H. G. Bronns Klassen und Ordnungen des Tierreichs fünfer Band: Arthropoda III. Abteilung: Insecta, 7 Buch, b) Phthiraptera, 1. Mallophaga, Leipzig, 1963.
3. Erlich, P. R., Erlich, A. H.: The phenetic relationships of the butterflies. I. Adult taxonomy and the nonspecificity hypothesis. - Syst. Zool., 16, 301317, 1967.
4. Eveleigh, E. S., Amano, H.: A numerical taxonomic study of the Mallophagan genera Cummingsiella (=Quadraceps), Saemundssonia (Ischnocera: Philopteridae), and Austromenopon (Amblycera: Menoponidae) from alcids (Aves: Charadriiformes of the northwest Atlantic with reference to host-parasite relationships. - Can. J. Zool., 55, 1788-1801, 1977.
5. Hendrickson, J. A., Sokal, R. R.: A numerical taxonomic study of the genus Psorophora (Diptera: Culicidae). - Ann. Entomol. Am. 61, 385-392, 1968.
6. Herrin, C. S.: A systematic revision of the genus Hirstionyssus (Acari: Mesostigmata) of the Nearctic region. - J. Med. Entomol., 7, 391-437, 1970.
7. Johnston, D. E., Kethley, B. J.: A numerical phenetic study of the quill mites of the family Syringophilidae (Acari). - J. Parasitol., 59, 520-530, 1973.
8. Michener, C. D., Sokal, R. R.: Two tests of the hypothesis of nonspecificity in the Hoplitis complex (Hymenoptera: Megachilidae). - Ann. Entomol. Soc. Am. 59, 385-392, 1966.
9. Moss, W. W.: Some new analytic and graphic approaches to numerical taxonomy, with an example from the Dermanyssidae (Acari). - Syst. Zool., 16, 177-201, 1967.
10. Moss, W. W., Peterson, P. C., Atyeo, T. W.: A multivariate assessment of phenetic relationships within the feather mite family Eustathiidae (Acari). Syst. Zool., 26, 386-409, 1977.
11. Nelson, B. C.: A revision of the New World species of Ricinus (Mallophaga) occurring on Passeriformes (Aves). University of California Press, 175 pp., 1972.
12. Rheinwald, G.: Die Mallophagengattung Ricinus De Geer, 1778. Revision der außeramerikanischen Arten. - Mitt. Hamburg. Zool. Mus. Inst., 65, 181326, 1968.
13. Rohlf, J. F.: Congruence of larval and adult classification in Aedes (Diptera: Culicidae). - Syst. Zool., 12, 97-117, 1963.
14. Rohlf, J. F., Adaptive hierarchical clustering schems. - Syst. Zool., 19, 5882, 1970.
15. Rohlf, J. F.: Consensus indices for comparing classifications. - Math. Biosci., 59, 131-144, 1982.
16. Rohlf, J. F., Kishpaugh, J. D., Kirk, D.: NTSYS, numerical taxonomy system of multivariate statistical programs. Tech. Rep. State Univ. New York, Stony Brook, 1980.
17. Sneath P. H. A., Sokal, R. R.: Numerical taxonomy. W: H. Freeman and comp., 547 pp., 1973.
18. Złotorzycka, J.: Mallophaga parasitizing Passeriformes and Pici. IV. Menacanthinae, Ricinidae, Degeeriellinae. - Acta Parasitol. Pol., 13, 41-69, 1965.

NUMERYCZNA ANALIZA AMERYKAŃSKICH GATUNKÓW
 Z RODZAJU RICINUS (PHTHIRAPTERA: AMBLYCERA)

E. LONC

Fenetyczne zależności między 38 gatunkami wszołów z rodzaju Ricinus występujących na ptakach wróblowatych Nowego Swiata analizowano metodami taksonomii numerycznej. 130 cech, podzielonych na zestawy, badano za pomocą analizy skupień oraz analizy czynnikowej (technika Q). Wyniki prezentowane w formie UPGMA fenogramów korelacji i odległości oraz dwuwymiarowych diagramów, w ogólnym zarysie okazały się zgodne z dotychczasowymi poglądami. Klasyfikacje oparte obecnie na różnych kombinacjach cech (morfologiczne z wyłączeniem chetotaksji vs. chetotaksja, cechy głowy vs. cechy reszty ciała) prezentowały wysoce skorelowane wzory podobieństwa i potwierdzily w znacznym stopniu hipoteze ,„niespecyficzności".

[^0]: * It was partly presented as a poster at the 1st European Biometric Conference in Budapest, and as a whole at the XVI Parasitological Colloquy in Berlin (1988).

[^1]: * Abbreviations of species groups used at the figures.

