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Abstract

Binary operations on commutative Jordan algebras are used to
carry out the ANOVA of a two layer model. The treatments in the
first layer nests those in the second layer, that being a sub-model for
each treatment in the first layer. We present an application with data
retried from agricultural experiments.
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1. Introduction

Jordan algebras can be used to study estimation problems in normal
orthogonal models, namely to obtain minimum variance unbiased
estimators (UMVUE).

So, a commutative Jordan algebra is a vector space constituted
by symmetric matrices that commute these algebras. Each commutative
Jordan algebras has, see Seely et al. (1971), has an unique basis, the
principal basis, constituted by orthogonal projection matrices that are
mutually orthogonal.
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Our goal is the estimation of variance components in a two layers random
effects model. In the first layer we have two factors that cross. Each level
combination of these factors nests the level combinations of the factors en
the second layer. In the second layer we have three factors: the first crosses
with second which nests the third.

Using the binary operations defined in Fonseca et al. (2006) we obtained
the principal basis for the commutative Jordan algebra associated to the
model, as well as complete sufficient statistics.

After the analysis of the first and second layers, the external and internal
factors, respectively we will present an application about castes and clones
in the wine production.

2. Binary operations

We now present the binary operations defined in Fonseca et al. (2006).

Consider the following matrices: Is, the p × s identity matrix,
J s = 1s1s′, J̄ s = Is −

1
s
J s and T s obtained deleting the first line equal

to 1√
s
1s of an orthogonal s × s matrix.

Let g1, . . . , gw be the ranks of the matrices Q1, . . . ,Qw in the principal
basis of a commutative Jordan algebra. The matrices in the principal basis
of A1 ⊗ A2 will be the Q1,j1

⊗ Q2,j2
, j1 = 1, . . . , w1, j2 = 1, . . . , w2, with{

Ql,1, . . . ,Ql,wl

}
the principal basis of Al, l = 1, 2.

If Qj,1, . . . ,Qj,wj
is the principal basis of Aj, j = 1, 2 and Q2,1 = 1

n2
Jn2

,
the principal basis of the restricted product A1 ∗ A2 will be

(1) {Q1,1 ⊗ Q2,1, . . . ,Q1,w1
⊗ Q2,1} ∪ {I1 ⊗ Q2,2, . . . , I1 ⊗ Q2,w2

}.

These operations use as building blocks the very simple commutative Jordan
algebras A(s) with principal basis

{
1
s
Js, J̄ s

}
.

To a factor with a levels we associate the algebra A(a). When two fac-
tors with a1 and a2 levels crosses, they define a model to which we associate
the algebra A1 ⊗A2. If the first of these two factors nests the second, the
model is associate to the algebra A1 ∗ A2. More generally when the treat-
ments of two models cross we get a model associated to A1 ⊗ A2 where
A1 and A2 associated to both initial models. If each treatment of the first
models nests the treatments in the second model we get a model associated
to A1 ∗ A2.
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In models with two strata we may associate a sub-model to each strata.
Then the treatments of the sub-model corresponding to the first strata nest
the treatment of the other sub-model.

If for every treatment in a model associated with algebra A we take r

observations we get a model associated to A ∗ A(r).
For more details on these operations see Fonseca et al. (2005).

3. The model

As stated above we have a two-stata model. In the first strata two factors,
type of wine and origin, cross. The treatments defined by these two factors
nest the treatments defined by the factors in the second strata: root-stock
that crosses with caste which nests the clone factor. This model may be
represented by:

Type (a1)× Origin (a2) Υ1

⋃

Cast (a′1(1))× Root stock (a′
1(2))

Υ2
⋃

Clone (a′2(1))

⋃

r replications Υ(r)

The factores in the first strata have two levels each. There are two types of
wine: white wine and red wine and two origins were considered: Douro and
Dão.

In the second strata we had four root-stocks and two castes. From each
caste three clones were used. Lastly for each treatment we had four
replications.

Thus the algebra associated to this model was

A = (A(2) ⊗A(2)) ∗ (A(4) ⊗ (A(2) ∗ A(3))) ∗ A(4).(2)
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The principal basis of the commutative Jordan algebra A is

A=A1 ∗ A2 ∗ A(r)

=[A(a1) ⊗A(a2)] ∗
{[
A(a′1(1)) ∗ A(a′2(1))

]
⊗A(a′1(2))

}
∗ A(r)

=

{
1

a1a2a
′
1(1)a

′
2(1)a

′
1(2)r

Ja1a2a′

1
(1)a′

2
(1)a′

1
(2)r ;

1

a1
Ja1

⊗ J̄a2
⊗

1

a′1(1)a
′
2(1)a

′
1(2)r

Ja′

1
(1)a′

2
(1)a′

1
(2)r;

J̄a1
⊗

1

a2a
′
1(1)a

′
2(1)a

′
1(2)r

Ja2a′

1
(1)a′

2
(1)a′

1
(2)r;

J̄a1
⊗ J̄a2

⊗
1

a′1(1)a
′
2(1)a

′
1(2)r

Ja′

1
(1)a′

2
(1)a′

1
(2)r;

(3) Ia1a2
⊗

1

a′1(1)a
′
2(1)

Ja′

1
(1)a′

2
(1) ⊗ J̄a′

1
(2) ⊗

1

r
Jr;

Ia1a2
⊗ J̄a′

1
(1) ⊗

1

a′2(1)a
′
1(2)r

Ja′

2
(1)a′

1
(2)r;

Ia1a2
⊗ J̄a′

1
(1) ⊗

1

a′2(1)
Ja′

2
(1) ⊗ J̄a′

1
(2) ⊗

1

r
Jr;

Ia1a2a′

1
(1) ⊗ J̄a′

2
(1) ⊗

1

a′1(2)r
Ja′

1
(2)r;

Ia1a2a′

1
(1) ⊗ J̄a′

2
(1) ⊗ J̄a′

1
(2) ⊗

1

r
Jr;

Ia1a2a′

1
(1)a′

2
(1)a′

1
(2) ⊗ J̄r

}
.
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4. Complete sufficient statistics

Now the model may be written as

(4)

yn =

1∑

h1=0

1∑

h2=0

X1(h1, h2)β1(h1, h2

+
2∑

h1=0

1∑

h2=0

X2(h1, h2)β2(h1, h2)

︸ ︷︷ ︸
+en,

(h1, h2) 6= (0, 0)
(h1, h2) 6= (0, 2)

where

X1(0, 0) = 1a1 ⊗ 1a2 ⊗ 1a′

1
(1) ⊗ 1a′

2
(1) ⊗ 1a′

1
(2) ⊗ 1r

X1(1, 0) = Ia1
⊗ 1a2 ⊗ 1a′

1
(1) ⊗ 1a′

2
(1) ⊗ 1a′

1
(2) ⊗ 1r

X1(0, 1) = 1a1 ⊗ Ia2
⊗ 1a′

1
(1) ⊗ 1a′

2
(1) ⊗ 1a′

1
(2) ⊗ 1r

X1(1, 1) = Ia1
⊗ Ia2

⊗ 1a′

1
(1) ⊗ 1a′

2
(1) ⊗ 1a′

1
(2) ⊗ 1r

X2(1, 0) = Ia1
⊗ Ia2

⊗ Ia′

1
(1) ⊗ 1a′

2
(1) ⊗ 1a′

1
(2) ⊗ 1r

X2(2, 0) = Ia1
⊗ Ia2

⊗ Ia′

1
(1) ⊗ Ia′

2
(1) ⊗ 1a′

1
(2) ⊗ 1r

X2(0, 1) = Ia1
⊗ Ia2

⊗ 1a′

1
(1) ⊗ 1a′

2
(1) ⊗ Ia′

1
(2) ⊗ 1r

X2(1, 1) = Ia1
⊗ Ia2

⊗ Ia′

1
(1) ⊗ 1a′

2
(1) ⊗ Ia′

1
(2) ⊗ 1r

X2(2, 1) = Ia1
⊗ Ia2

⊗ Ia′

1
(1) ⊗ Ia′

2
(1) ⊗ Ia′

1
(2) ⊗ 1r
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Moreover, writing Z ∼ N(η,V ) to indicate that Z is normal with mean
vector η and variance-covariance matrices V , we assume that





β1(h1, h2) ∼ N
(
0a1a2 , σ2(h1, h2)Ia1a2

)

β2(h1, h2) ∼ N
(
0a′

1
(1)a′

2
(1)a′

1
(2), σ2(h1, h2)Ia′

1
(1)a′

2
(1)a′

1
(2)

)

en ∼ N(0n, σ2In),

(5)

and that these vectors are independent.
In the model equation the first group of terms relate to the factors in

the first strata while the second group of terms will relate to the factors en
the second strata.

Note that β2(0, 0) is the general mean, µ.
Writing V ∼ γχ2

g to indicate that V is the product by γ of a central
chi-square with g degrees of freedom we will, see Fonseca et al. (2006), have
the independent statistics:

S(h1, h2) = ‖Q(h1, h2)y‖
2 ∼ γ(h1, h2)χ

2
g(h1,h2)

(6)

S0(h1, h2) = ‖Q0(h1, h2)y‖
2 ∼ γ0(h1, h2)χ

2
g0(h1,h2)

(7)

S⊥ = ‖Q⊥y‖2 ∼ σ2χ2
g, g = a1a2a

′
1(1)a

′
2(1)a

′
1(2)(r − 1),(8)

Using the factorization theorem we may show, see Fonseca et al. (2006),
that the general mean and the sum of squares presented above are sufficient
statistics. Moreover, since the normal density belongs to the exponential
family, they will be complete.

5. Analysis of the second layer

According to the Blackwell- Lehman-Scheffé theorem, the estimators

(9)





σ̃2 =
S

g

γ̃(h1, h2) =
S(h1, h2)

g(h1, h2)

are UMVUE as well as the estimators obtained through them.
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Now if we assume that the β2(h1, h2) ∼ N
(
0, σ2(h1, h2)I

)
and en ∼

N(0, σ2
eI) are independent we will have, see Rodrigues et al (2005),

(10)





γ(1, 0) = σ2 + r
[
b(1, 0)σ2(1, 0) + b(2, 0)σ2(2, 0)

+b(1, 1)σ2(1, 1) + b(2, 1)σ2(2, 1)
]

γ(2, 0) = σ2 + r
[
b(2, 0)σ2(2, 0) + b(2, 1)σ2(2, 1)

]

γ(0, 1) = σ2 + r
[
b(0, 1)σ2(0, 1) + b(1, 1)σ2(1, 1) + b(2, 1)σ2(2, 1)

]

γ(1, 1) = σ2 + r
[
b(1, 1)σ2(1, 1) + b(2, 1)σ2(2, 1)

]

γ(2, 1) = σ2 + r
[
b(2, 1)σ2(2, 1)

]
.

Solving these equations for the variance components and replacing γ(h1, h2)
e σ2 by their estimators we obtain the UMVUE estimators for the variance
components of the second layer, see Rodrigues & Mexia (2005),

(11)





σ̃2(1, 0) =
γ̃(1, 0) + γ̃(2, 1) − γ̃(1, 1) − γ̃(2, 0)

rb(1, 0)

σ̃2(2, 0) =
γ̃(2, 0) − γ̃(2, 1)

rb(2, 0)

σ̃2(0, 1) =
γ̃(0, 1) − γ̃(1, 1)

rb(0, 1)

σ̃2(1, 1) =
γ̃(1, 1) − γ̃(2, 1)

rb(1, 1)

σ̃2(2, 1) =
γ̃(2, 1) − σ̃2

rb(2, 1)
.
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with the degrees of freedom

(12)





g(1, 0) = a′1(1) − 1 = 1

g(2, 0) = a′1(1) × (a′2(1) − 1) = 4

g(0, 1) = a′1(2) − 1 = 3

g(1, 1) = (a′1(1) − 1) × (a′2(1) − 1) = 3

g(2, 1) = a′1(1) × (a′2(1) − 1) × (a′1(2) − 1) = 12.

6. Analysis of the first layer

Replacing σ2 by

(13)

ζ = σ2 + r
[
b(1, 0)σ2(1, 0) + b(2, 0)σ2(2, 0) + b(0, 1)σ2(0, 1)

+ b(1, 1)σ2(1, 1) + b(2, 1)σ2(2, 1)
]

we obtain, see again Rodrigues & Mexia (2005).

(14)





γ0(1, 0) = ζ + r0
[
b0(1, 0)σ20

(1, 0) + b0(1, 1)σ20

(1, 1)
]

γ0(0, 1) = ζ + r0
[
b0(0, 1)σ20

(0, 1) + b0(1, 1)σ20

(1, 1)
]

γ0(1, 1) = ζ + r0
[
b0(1, 1)σ20

(1, 1)
]

where n0 = ra′1(1)a
′
1(2)a

′
2(1).
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So the UMVUE estimators, in the first layer, for the variance components
will be

(15)





σ̃2
0
(1, 0) =

γ̃0(1, 0) − γ̃0(1, 1)

r0b0(1, 0)

σ̃2
0
(0, 1) =

γ̃0(0, 1) − γ̃0(1, 1)

r0b0(0, 1)

σ̃2
0
(1, 1) =

γ̃0(1, 1) − ζ̃

r0b0(1, 1)
.

with the degrees of freedom

(16)





g0(1, 0) = a1 − 1 = 1

g0(0, 1) = a2 − 1 = 1

g0(1, 1) = (a1 − 1) × (a2 − 1) = 1.

7. An application

We now apply our results to an experiment on grapevines. In Table 2
in the Appendix A we presente the data of this experiment.

The aim of this application is to study the influence of the factors
and interactions in that production.

In the Table 1 we present the ”source of variation”, the
”variance components”, the ”estimates of the variance components” (using
the results that we obtained in this work), the ”F statistics”, the
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”degrees of freedom” of the test F , and finally the p-values of each one of
the variance components and interactions.

Table 1. NOVA

Factors/Interactions Variance Estimates F Statistics Degrees of p-values

Components freedom

Caste σ2(1, 0) 0.0329 5.189 (1,12)/(3,4) 0.0470

Root stock σ2(0, 1) -0.0024 0.5199 3/3 0.6977

Caste × Root stock σ2(1, 1) 0.0011 1.4664 3/12 0.2731

Clone σ2(2, 0) 0.0016 1.9308 4/12 0.1701

Clone × Root stock σ2(2, 1) 0.0059 6.7367 12/72 5.98× 10−8

Region σ2
0

(0, 1) 0.3913 462.06 1/1 0.0297

Type σ2
0

(1, 0) 0.3885 458.8 1/1 0.0296

Type × Region σ2
0

(1, 1) -0.0152 0.1003 1/288 0.7517

As we observe, the p-values for factors caste, region and type are less
than 5%. So we concluded that the difference between castes, regions and
types of wine (white and red) are significant. Thus the hypotheses of differences
between them are not rejected for the usual significance levels.

We also observe that the interaction between clone and the root
stock is strong, heaving to the lowest p-value of all the factor and interactions.

The estimators of the variance components for root stock and the
interaction between the region and the type of wine are negative. These results
may be seen as indicating that the corresponding variance components are
negligible.

For the caste we had an generalized test F and to obtain the p-value presented
in the Table 1 used the program developed by Ferreira (2005).



anova using commutative Jordan algebras, an ... 189

Appendix

A. Data of this study

Table 2. Production for foot of grapevine, in Kilograms, after the codification.

Region 1

Cast 1 Cast 2

Clone 1 Clone 2 Clone 3 Clone 1 Clone 2 Clone 3

Root 1.38 1.40 1.45 1.16 1.06 1.12

T Stock 1.43 1.38 1.46 1.25 1.15 1.21

y 1 1.54 1.32 1.51 1.19 1.20 1.28

p 1.55 1.36 1.53 1.29 1.18 1.19

e Root 1.36 1.30 1.39 1.05 1.12 1.23

Stock 1.34 1.26 1.41 1.16 1.19 1.28

1 2 1.32 1.32 1.37 1.09 1.25 1.19

1.45 1.40 1.40 1.12 1.18 1.25

⇓ Root 1.45 1.34 1.34 1.27 1.32 1.31

Stock 1.53 1.36 1.43 1.34 1.33 1.27

W 3 1.57 1.47 1.41 1.36 1.25 1.19

h 1.50 1.32 1.45 1.18 1.31 1.21

i Root 1.36 1.24 1.35 1.25 1.16 1.28

t Stock 1.40 1.32 1.34 1.23 1.12 1.21

e 4 1.37 1.35 1.41 1.19 1.21 1.18

1.55 1.42 1.38 1.26 1.09 1.16

Root 1.99 2.03 2.17 2.21 2.31 2.41

Stock 1.88 2.04 2.12 2.39 2.34 2.37

T 1 2.10 2.15 2.09 2.30 2.32 2.39

y 2.05 2.18 2.14 2.21 2.36 2.43

p Root 2.12 2.07 2.16 2.39 2.32 2.29

e Stock 2.01 2.17 2.21 2.36 2.27 2.33

2 2.14 1.90 2.24 2.34 2.34 2.38

2 2.14 2.12 2.19 2.26 2.26 2.35

Root 2.28 2.23 2.12 2.36 2.26 2.31

⇓ Stock 2.18 2.25 2.19 1.25 2.32 2.37

3 2.25 2.32 2.21 2.39 2.45 2.29

R 2.19 2.12 2.09 2.27 2.21 2.33

e Root 2.12 1.99 2.21 2.30 2.32 2.27

d Stock 2.23 2.01 2.18 2.34 2.32 2.24

4 2.09 2.12 2.14 2.29 2.29 2.37

2.32 2.08 2.19 2.38 2.31 2.34
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Region 2

Cast 1 Cast 2

Clone 1 Clone 2 Clone 3 Clone 1 Clone 2 Clone 3

Root 0.65 0.70 0.55 0.40 0.35 0.56

T Stock 0.47 0.52 0.45 0.35 0.30 0.76

y 1 0.52 0.44 0.51 0.22 0.27 0.75

p 0.39 0.53 0.49 0.29 0.22 0.63

e Root 0.50 0.18 0.38 0.64 0.37 0.65

Stock 0.55 0.37 0.39 0.78 0.42 0.64

1 2 0.48 0.27 0.41 0.69 0.53 0.57

0.58 0.26 0.35 0.72 0.45 0.71

⇓ Root 0.35 0.42 0.42 0.40 0.55 0.49

Stock 0.42 0.53 0.52 0.39 0.37 0.46

W 3 0.38 0.38 0.50 0.32 0.64 0.53

h 0.39 0.49 0.47 0.36 0.54 0.51

i Root 0.32 0.23 0.39 0.45 0.55 0.66

t Stock 0.34 0.34 0.55 0.41 0.49 0.63

e 4 0.34 0.32 0.47 0.35 0.29 0.68

0.32 0.28 0.42 0.39 0.45 0.59

Root 1.42 1.20 1.12 1.41 1.31 1.13

Stock 1.40 1.13 1.19 1.37 1.42 1.17

T 1 1.36 1.32 1.16 1.35 1.35 1.21

y 1.31 1.26 1.21 1.44 1.29 1.15

p Root 1.66 1.14 1.31 1.34 1.48 1.31

e Stock 1.36 1.16 1.36 1.25 1.45 1.28

2 1.68 1.09 1.28 1.26 1.64 1.30

2 1.28 1.12 1.26 1.19 1.35 1.27

Root 1.23 1.43 1.15 1.25 1.27 1.26

⇓ Stock 1.32 1.47 1.17 1.15 1.23 1.24

3 1.40 1.35 1.12 1.12 1.44 1.29

R 1.38 1.39 1.21 1.19 1.25 1.31

e Root 1.45 1.35 1.31 1.23 1.22 1.41

d Stock 1.54 1.31 1.36 1.19 1.27 1.39

4 1.49 1.28 1.29 1.28 1.19 1.34

1.51 1.33 1.31 1.18 1.23 1.38
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[2] M. Fonseca, J.T. Mexia and R. Zmyślony, An Application to Grapevines
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