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Abstract

Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species
differences are common and often pronounced. These differences could have evolved through multiple speciation
events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the
karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions,
resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although
this mechanism of chromosome number evolution is possible in theory, it has not been well documented.

Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread
Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually
decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that
originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism
exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers,
and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific
because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic
structure.

Conclusions: The discovered system represents the first clearly documented case of explosive chromosome
number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes.
Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based
suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but
difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of
species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare
opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of
microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference.
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Background

Despite the fundamental role of chromosomal change in
eukaryotic evolution, the mechanisms related to this
process are still poorly known. Main karyotypic features
of organisms, such as the number of chromosomes, are
usually stable within species [1,2]. This stability is in
good correspondence with the fact that new chromoso-
mal rearrangements usually originate as heterozygotes
and are often - although not always - associated with
heterozygote disadvantage (=negative heterosis; =under-
dominance). Therefore, their spread to fixation within a
large population has low probability [2]. At the same
time, differences in karyotype characters between spe-
cies, including diploid chromosome number (2n), are
extremely common. Numerous cases of extraordinary
differences in chromosome number, especially in plants,
are due to polyploidy [3]. Even when excluding poly-
ploidy, interspecific variation remains very frequent, and
many closely related species often have substantially dif-
ferent chromosome numbers. In metazoan animals, the
greatest range of within-genus karyotype variation not
related to polyploidy is found in Agrodiaetus blue but-
terflies, where diploid chromosome number ranges
between species from 2n = 20 to 2n = 268 in spite of
morphological similarity and very recent time of species
divergence [4]. Interestingly, Agrodiaetus also tends to
demonstrate the greatest karyotype difference between
very closely related species, e.g. sister species A. biruni
and A. posthumus have 2n = 20 and 2n = 180 respec-
tively with no intermediates between them.

In vertebrates, the range of chromosome number var-
iation between closely related species is smaller, yet still
impressive. For example, the analysis of 11 species of
the catfish genus Corydoras revealed that they have kar-
yotypes ranging from 2n = 44 to 2n = 102 [5]. The
tuco-tucos, South American rodents of the genus Cte-
nomys, show chromosomal variation with diploid num-
bers varying from 2n = 10 to 2n = 70 among the 60
species described [6]. The deer genus Muntiacus
includes species with different karyotypes, ranging from
2n = 6 to 2n = 46 [7]. In plants, the greatest range of
within-genus karyotype variation not related to poly-
ploidy is found in Carex, where diploid chromosome
number ranges from 2n = 12 to 2n = 132 [8].

The discrepancy between intra- and interspecific
variability in chromosome numbers poses a serious evo-
lutionary problem. How can numerous species with
extremely diverse karyotypes evolve in a relatively short
period of time, if major chromosomal rearrangements
changing the number of chromosomes are mostly
underdominant and, consequently, intraspecific varia-
tions are rare and their range is limited?

One possible explanation is that extremely different
chromosome numbers evolve gradually through multiple
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speciation/raciation events, each involving the fixation
of a single (or few) chromosomal rearrangement(s), and
followed by the subsequent extinction of species or
races with intermediate karyotypes. This step-by-step
mechanism of karyotype evolution seems to be common
in nature, and its initial phase can be observed in some
chromosomally polymorphic organisms such as the
mouse Mus musculus domesticus and the shrew Sorex
araneus [9-13]. It has been recently demonstrated that
the reduction in fertility of hybrids between the house
mouse races separated by fixed monobrachial differences
is not so pronounced as previously supposed [14].
Nevertheless, this study generally supported the chro-
mosomally-based monobrachial speciation model as a
process that accelerates the acquisition of reproductive
isolation in the house mouse [14]. In the step-by-step
process, the transitional forms are expected to demon-
strate a chromosomal fusion/fission polymorphism and,
accordingly, numerous examples are known where sin-
gle or few chromosomal fusions exist in the poly-
morphic phase, e.g., Robertsonian fusions in Drosophila
americana [15], melanopline grasshoppers [16] and
rodents of the genus Ctenomys [6,17].

An alternative hypothesis is that dramatic changes in
chromosome number appear as a consequence of a
within-species accumulation of numerous chromosomal
rearrangements, resulting in highly polymorphic systems
with the subsequent extinction of intermediate karyo-
morphs. A necessary precondition for this mechanism is
that major chromosomal rearrangements changing the
number of chromosomes are not strongly underdomi-
nant. This seems to hold true for different groups such
as butterflies, flies, grasshoppers, spiders, fishes and
mammals [6,15-25].

While the within-species mechanism of explosive
chromosome number evolution is possible in theory, it
has been less well documented compared to the evolu-
tion through multiple speciation/raciation events. In
practice, it is difficult to record such an extensive
within-species accumulation for two reasons. First, the
transition from one chromosomal form to another may
be very fast compared to the species lifespan. The only
exception is the chromosomal evolution operated by
balancing selection. However, this mechanism seems to
be rare, except in the case of inversions [[26,27], but see
[28]]. Second, even if polymorphism for multiple chro-
mosomal rearrangements is found, it may be difficult to
distinguish between a polymorphic system primarily
evolved within a species and a polymorphism resulting
from hybridization between different, chromosomally
diverged species. For example, in the hybridization
zones between low and high chromosome number spe-
cies of the rodent genus Ellobius, there is a so-called
“chromosomal fan” including all chromosome numbers
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from 2n = 31 to 2n = 54 [29]. In fact, this case does not
represent evidence for within-species accumulation of
chromosomal changes, but simply represents the out-
come of secondary parapatry by previously isolated
chromosomal races.

Furthermore, the clinal geographical distribution of
chromosomal races observed in some organisms [1,2],
apparently compatible with gradual within-species accu-
mulation of chromosomal changes, may be better
explained by the multiple speciation mechanism. For
example, in butterflies of the Erebia tyndarus complex
there are several geographically isolate chromosomal
races (chromosome numbers ranging from 2n = 16 to
2n = 102) [30], and in fossorial mole rats of the Spalax
ehrenbergi complex four linearly distributed chromoso-
mal races exist (from 2n = 52 to 2n = 60) [31]. In these
cases, intrapopulation chromosomal polymorphism is
absent and differences between neighbouring chromoso-
mal races, although minor, are fixed. Detailed molecular
and morphological studies provide evidence for non-
conspecificity of the E. tyndarus and S. ehrenbergi
forms, and several distinct species were identified and
formally described [32,33].

In this study we describe a chromosomal cline in the
Wood White butterfly, Leptidea sinapis (Insecta, Lepi-
doptera, Pieridae) that provides strong evidence for
rapid and extensive within-species chromosome number
evolution through accumulation of multiple chromoso-
mal changes. This cline is exceptional in the geographic
area that it covers (6000 km) and in its range of within-
species chromosome number variation (2n = 56-106).
Excluding polyploidy, this is the widest known within-
species chromosome number range for any animal or
plant, and it is comparable with the highest known level
of within-genus karyotype variability.

Results and Discussion

We analyzed the karyotype, mitochondrial and nuclear
genetic markers, and the morphology of the Wood
White butterfly L. sinapis. This is a common species
widely distributed from Portugal and Spain in the west
to Siberia in the east [34]. From this territory different
chromosome numbers have been reported in literature
ranging from n = 28 to n = 41 [35]. However, these
results are impossible to interpret in practice because of
the discovery in 1993 of a cryptic sympatric species (L.
reali) in Europe and Asia [36]. As all karyotype data for
L. sinapis were published before this date, it is unclear
whether reported chromosome numbers reflect inter- or
intraspecific variability.

Our study covers populations from different parts of
the L. sinapis distribution (Figures 1, 2), as well as the
closely related species L. reali and L. morsei as compari-
son. We discovered that diploid chromosome number
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ranges in L. sinapis from 2n = 106 in Spain to 2n = 56 in
eastern Kazakhstan in a longitudinal cline (Figure 1a; for
more details, see Additional file 1). These findings are
based on the examination of 209 male specimens, with
metaphase plates observed in 35 individuals, out of which
23 had unambiguous chromosome number counts (Spain
- 4, France - 2, Italy - 2, Romania - 8, Kazakhstan - 7).
We also found that chromosome numbers are not stable
within some populations from Italy, Romania and
Kazakhstan. Specimens with different chromosome num-
bers were found within each of these populations, and
the great majority of the individuals were chromosomal
heterozygotes displaying from one to six multivalents in
metaphase I of meiosis (Additional file 1, Figure S1). In
the heterozygotes, we observed no abnormalities in the
anaphase I stage of meiosis, and the first division of
meiosis resulted in normal haploid metaphase II cells
where, as expected, two types of metaphase plates with
different chromosome numbers were observed. Therefore
we conclude that chromosomal rearrangements are not
fixed in several of the populations studied, and there
seems to be no strong selection against chromosomal
heterozygotes. Interestingly, chromosome number range
overlaps between some studied populations separated by
hundreds of kilometers, e.g. in Kazakhstan between the
population from Landman (2n = 56-61) and the popula-
tion from Saur (2n = 56-64).

In certain species, variation in chromosome number
may be caused by the presence of so-called B-chromo-
somes (=additional chromosomes, =supernumerary chro-
mosomes) [37]. B-chromosomes consist mainly of
repetitive DNA and can be usually found in low numbers
(one to five) in a percentage of the individuals of a given
population. Although they are dispensable, they can
sometimes accumulate through processes of mitotic or
meiotic drive [38]. B-chromosomes can be distinguished
from normal A-chromosomes because they are usually
smaller and can be seen as additional chromosomes pre-
sent in only some of the individuals in a population. The
best diagnostic feature is their identity at meiosis, where
they may be found as univalents, or in various pairing
configurations (bivalents or multivalents), but never pair-
ing with A-chromosomes. Thus, meiotic analysis is criti-
cal to distinguish between B-chromosomes and normal
A-chromosomes [37,38]. Although we cannot totally
exclude that B-chromosomes can be found in L. sinapis,
especially taking into account that they are known in
other genera of the family Pieridae [39], there is good evi-
dence that B-chromosomes are not a valid explanation
for the chromosome number cline found in L. sinapis.
This is due to the fact that in the Spanish population,
where the number of chromosomes is maximal (and cor-
respondingly where the highest number of B-chromo-
somes would be expected), they seem to be completely
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Figure 1 Chromosomal cline in Leptidea sinapis across the Palaearctic region. a. Sampling sites and karyotype results. Metaphase plates
were observed in 35 individuals, out of which 23 had unambiguous chromosome number counts: Spain - 4, France - 2, ltaly - 2, Romania - 8,
Kazakhstan - 7. Top row of microphotographs: examples of diploid chromosome number (2n) counted in metaphase | of meiosis (MI). Bottom
row of microphotographs: examples of haploid chromosome number (n) counted in metaphase Il of meiosis (MIl). Maximum likelihood trees for
b. CAD, c. ITS2 and d. COI. Bootstrap supports (>50%) are shown for each node. e. Most parsimonious CO/l haplotype network. Colours refer to
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Figure 2 Male genitalia morphology of Leptidea sinapis reveals no significant intraspecific differences. One-way ANOVA for a. phallus
length/vinculum width and b. saccus length/vinculum width. The sibling species L. reali is included as positive control. Only L. reali versus all L.
sinapis groups is significantly different (p < 0.0001 for both analyses). The bars represent two standard errors. c¢. Canonical discriminant analysis
based on phallus length, saccus length and vinculum width.

absent: the chromosome number is stable within as well
as between individuals, and no univalents have been
observed during meiosis. Moreover, no univalents have
been observed during meiosis in any of the other popula-
tions studied. Additionally, the following clear pattern
was observed: the higher the chromosome numbers in a
population, the smaller the size of chromosomes, and
vice versa (Figure 1; Additional file 1, Figure S1). This
regularity indicates that chromosomal fusions/fissions
(but not B-chromosomes) were the main mechanism of
karyotype evolution.

Leptidea sinapis can be distinguished from its closest
relative L. reali by the length of the phallus, saccus and
vinculum (in male genitalia) or of the ductus bursae (in
female genitalia) [36,40] as well as by molecular markers
[41,42]. Therefore, to exclude the possibility of cryptic spe-
cies involved in the formation of the extraordinarily high
chromosomal variability and to demonstrate the conspeci-
ficity of the populations studied, we performed morpholo-
gical and molecular analysis of each studied individual.

The measured variables of the male genitalia showed
no significant difference or apparent trend between
chromosomal races according to one-way ANOVA (Fig-
ure 2a, b) and to discriminant analysis (DA) (Figure 2c).
100% of the L. reali were correctly classified to species
with the DA, but within L. sinapis, between 0 (France
and Italy) and 62.5% (Kazakhstan) of specimens were
correctly assigned to region (Additional file 1, Table S1).

The mitochondrial Cytochrome Oxidase I (COI) and
nuclear carbamoyl-phosphate synthetase 2/aspartate
transcarbamylase/dihydroorotase (CAD) and internal
transcribed spacer 2 (ITS2) markers analyzed did not
reveal deep intraspecific levels of divergence (maximum
uncorrected p distance of 0.61% for COI, 0.7% for CAD
and 0.16% for ITS2) suggesting the absence of cryptic
species (Figures 1b-d and Figure 3). The COI haplotype
network (Figure le) shows that the maximum
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Figure 3 Maximum Likelihood tree of Leptidea sinapis based
on the combined analysis of mitochondrial COl and nuclear
CAD and ITS2 according to the HKY model (log likelihood score
=-3159.19036) and 100 bootstrap replicates. The scale bar

represents 0.003 substitutions/position.
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connection steps are only four, and that the most com-
mon haplotype is found in all the studied regions. The
observed genetic variability is rather low for an almost
pan-Palaearctic species (e.g. [42,43]), even more so since
L. sinapis is considered a non-migratory poor flyer. The
fact that the same low variability is shown by several
independent markers rejects a recent mitochondrial
genetic sweep and strongly suggests a very recent geo-
graphic expansion. Coalescence-based dating with each
marker and with all the markers combined estimates
that the time to the most recent common ancestor of all
the populations is only 8,500 to 31,000 years. Thus, we
conclude that there is no evidence for multiple species
involved in the formation of the discovered cline, and
that its origin is very recent.

It is known that in some systems, variation in chro-
mosome number may be a result of ongoing hybridiza-
tion between different, chromosomally diverged species
[29]. Therefore, the chromosome number variability dis-
covered may be a consequence of hybridization between
L. sinapis and its sibling species L. reali. This explana-
tion may seem possible given that the presence of puta-
tive F; hybrids between L. sinapis and L. reali was
suggested [44]. However, these results [44] were based
on some apparent mismatches between DNA-based
identifications (which were congruent for RAPD mar-
kers and COI) and morphometry of the male genitalia.
The classification of the sequenced specimens based on
their genitalia was made by employing a bivariate plot,
which took into account only the lengths of the phallus
and saccus. A recent comprehensive morphometrical
study on L. sinapis and L. reali from Central Italy [40]
highlighted the limitation of the “phallus and saccus”
approach, which can lead to ambiguous classifications.
The same study showed that this limitation can be cor-
rected when using additional genitalic characters (espe-
cially the vinculum width) and performing multivariate
analyses. Therefore, the report of possible hybrids
between L. reali and L. sinapis requires confirmation
since it may actually represent an artifact caused by the
interpretation of insufficient morphological traits. More-
over, in case of interspecific hybridization we can expect
that some individuals would be heterozygous for spe-
cies-specific nuclear molecular markers and specimens
with intermediate morphology of genitalia should be
found. None of the specimens studied in our work has
shown these characteristics (see above). Due to genitalic
morphological constraints between the two species,
introgression is likely to be unidirectional with female L.
sinapis potentially inseminated by male L. reali [36,44].
Finally, several studies dealing with the mating beha-
viour of L. sinapis and L. reali reported that females of
both species exclusively mated with conspecific males,
suggesting the presence of strong precopulatory barriers
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[36,45,46]. Therefore, we can conclude that interspecific
hybridization is an unlikely explanation for the origin of
the discovered chromosomal cline.

The clinal distribution of chromosome numbers in L.
sinapis is statistically significant (p < 0.0001) and it is
very unlikely to have arisen by chance (Figure 4). Inter-
estingly, the cline is longitudinally oriented (Figure 1a),
indicating either the direction of selective pressure
involved in its formation, or the direction of population
dispersal, or both of these processes. According to our
dating, the moment of this dispersal would correspond
to the upper Pleistocene and the Holocene, a period
characterized by a strong glaciation in northern Europe
and the Alps [47]. Thus, our estimates indicate that the
dispersal of L. sinapis could have occurred before or
after the last glacial maximum (24,000 to 17,000 years
ago).

Several other cases of broad intraspecific chromosomal
polymorphism have been described in animals
[6,18-21,23,24,48-56] and plants [8,57]. However, all
these cases differ from the cline found in L. sinapis by
the essentially smaller range of karyotype variability and
by the possible existence of two or more cryptic species
involved in the formation of the polymorphic chromoso-
mal system. In order to demonstrate the intraspecific
nature of karyotype variability, the following three cri-
teria should be met simultaneously: 1) segregating chro-
mosomal polymorphism within a population should be
demonstrated, 2) molecular markers should not suggest
the presence of potential cryptic species, and 3) species-
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Figure 4 Variation of L. sinapis chromosome number across
geographical longitude. Chromosome number is inversely
correlated with longitude according to a linear function (r = 0.826;
p < 0.0001). Results based on 23 specimens with unambiguous
chromosome number counts (Spain - 4, France - 2, ltaly - 2,
Romania - 8, Kazakhstan - 7).
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diagnostic morphological differences should be lacking.
To our knowledge, only studies on the common shrew
and the house mouse have met all these criteria, but
chromosomal races within these mammals have essen-
tially smaller differences in chromosome number and
apparently evolved through a step-by-step accumulation
of single chromosomal rearrangements [9-13] rather
than through wide intraspecific and intrapopulation
chromosome number polymorphism.

Conclusions
Given that (a) chromosomal races of L. sinapis belong to
the same species, (b) intrapopulation chromosome num-
ber polymorphism exists, (c) the chromosome number
range overlaps between some populations separated by
hundreds of kilometers, (d) the species has broad ecolo-
gical preferences and is widely distributed, (e) the spe-
cies has a rather homogenous genetic structure, and (f)
chromosomal heterozygotes are abundant, this repre-
sents a clearly documented case of rapid and massive
within-species accumulation of multiple chromosomal
rearrangements affecting the number of chromosomes.
The chromosomal rearrangements discovered in our
investigation display segregating polymorphism that
seems not to strongly affect reproductive fitness within
the populations studied. However, these rearrangements
are not necessarily irrelevant to the process of formation
of reproductive isolation (i.e. to speciation). It is well
known that Robertsonian rearrangements (i.e. nonreci-
procal translocations involving fission and fusion at or
near a centromere), have the potential to limit gene flow
and drive speciation [58,59]. The Wood White butterfly,
like other Lepidoptera and some other insects, has holo-
kinetic chromosomes in which the centromere is not
localized and centromeric activity is distributed along
the length of the chromosome [35,60-62]. It has been
recently demonstrated that fusions/fissions of holoki-
netic chromosomes restrict gene flow too, and that this
effect is cumulative (i.e. increases proportionally with
the level of chromosomal differences) [57]. In the case
of L. sinapis all evidence suggests that neighbour popu-
lations with relatively low differences in chromosome
number are reproductively compatible. We cannot
exclude that geographically distant and chromosomally
divergent populations would display reduced fertility if
crossed, although they are connected by a chain of com-
patible populations that should allow gene flow. There-
fore, the discovered system opens the possibility to
study clinal speciation, a process that is theoretically
possible but difficult to document [[63], pages 113-123].
Chromosomal rearrangements are known to limit
introgression in parapatry or sympatry with regard to
isolation genes, thus facilitating the maintenance of inci-
pient species boundaries [64,65], and serving as regions
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where isolation genes can accumulate [15,27,66-68]. The
preservation and/or accumulation of isolation genes pro-
tected by chromosomal rearrangements could represent
a prerequisite for speciation by means of suppressed-
recombination mechanisms [15,27,64-68].

In conclusion, the L. sinapis chromosomal cline seems
to represent a narrow time-window of the very first
steps of species formation linked to multiple chromoso-
mal changes that have occurred explosively. This case
offers a rare opportunity to study this process before
drift, dispersal, selection, extinction and speciation erase
the traces of microevolutionary events and just leave the
final picture of a pronounced interspecific chromosomal
difference.

Methods

Note: During the publication process of this paper it has
been shown that the Romanian specimens of L. reali
used here as outgroup actually belong to a new cryptic
species named Leptidea juvernica [69].

Sample collecting

Fresh male Leptidea specimens (Additional file 1, Table
S2) were collected with the insect net and were kept
alive in glassine envelopes. In the laboratory, butterflies
were killed by pressing the thorax and testes were
removed from the abdomen and immediately placed
into a 0.5 ml vial with freshly prepared Carnoy fixative
(ethanol and glacial acetic acid, 3:1). Bodies were placed
into a 2 ml plastic vial with 100% ethanol for DNA ana-
lysis and wings were stored in glassine envelopes. Each
sample has been assigned a unique sample ID. All the
samples are stored in Roger Vila’s DNA and Tissues
Collection in Barcelona, Spain.

Genitalia preparation and morphometric analyses

Male genitalia were prepared according to the following
protocol: maceration for 15 minutes at 95°C in 10%
potassium hydroxide, dissection and cleaning under a
stereomicroscope and storage in tubes with glycerin.
Genitalia were photographed laterally (Figure 2c), with-
out being pressed, in a thin layer of distilled water
under a Carl Zeiss Stemi 2000-C stereomicroscope
equipped with a DeltaPix Invenio 3S digital camera.
Measurements were performed based on the digital
photographs by using AxioVision software. A total of 73
specimens of L. sinapis were included in the morphome-
trical analyses (Additional file 1, Table S3). These
included 35 of the karyotyped samples, and 38 indivi-
duals collected in the same locality and moment for
which the cytogenetic studies did not produce results.
In addition, five specimens of the sibling L. reali were
added as outgroup. Three elements of the male genitalia
were measured: phallus, saccus and vinculum width.
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These are the best diagnostic characters to separate L.
sinapis from L. reali [40]. The vinculum width was used
to normalize the size of the specimen.

StatView 5.0.1 (SAS Institute Inc., 1992-1998) was
used to perform one-way ANOVA in order to test for
differences in the length of the phallus and saccus, each
normalized by the width of the vinculum, between
regions for L. sinapis, and between L. sinapis and L.
reali. All variables were normally distributed (Kolmo-
gorov-Smirnov Test, p > 0.05). The software SPSS 14.0
was used to perform a discriminant analysis by employ-
ing the stepwise method. The Box’s M test was used to
evaluate the homogeneity of covariance assumption (p >
0.05). The variables were selected with the Wilks’
lambda statistic, which measures how each function
separates cases into groups. In order to test the obtained
classification a cross validation was carried out.

Karyotype analyses

Gonads were stored in Carnoy fixative (ethanol and gla-
cial acetic acid, 3:1) for 2-6 months at 4i,°C and then
stained with 2% acetic orcein for 30 days at 201,°C as it
was previously described [70,71].

Chromosomes of butterflies (Lepidoptera) are small,
numerous and uniform in both shape and size [35].
They lack a distinct primary constriction (the centro-
mere) and are regarded as holokinetic with kinetochores
extended over a large portion of the chromosome sur-
face [60]. The uniformity of lepidopteran chromosomes,
the absence of morphological markers such as the cen-
tromeres and the lack of convenient differential banding
techniques [61] make difficult the identification of indi-
vidual chromosomes by standard cytogenetic methods.
Although new approaches to individual identification of
the Lepidoptera chromosomes based on the fluorescent
in situ hybridization (FISH) technique have been
recently elaborated [72-74], they are applicable only for
studying species bred in the laboratory. For this reason,
the chromosome number remains the most commonly
used karyotypic character in Lepidoptera cytogenetics
and karyosystematics. In our study we counted the
diploid chromosome numbers (2n) in mitotic spermato-
gonial cells and the haploid chromosome numbers (n)
in metaphase II of male meiosis. We also counted the
number of chromosomal elements (n) (bivalents + mul-
tivalents) in metaphase I of male meiosis. In the last
case, the number of chromosomal elements was equal
to the haploid number (n) if all the elements were
represented by bivalents, or less if some elements were
represented by multivalents. To distinguish between
bivalents and multivalents, we used a special method
[75]. Briefly, by varying the pressure on the coverslip,
we were able to manipulate chromosomes, e.g. change
their position and orientation in intact (not squashed)
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spermatocyte cells, and consequently to analyze the
structure of the bivalents and multivalents.

In total, preparations from 209 males were analyzed. As
cell divisions are extremely rare in Leptidea during imago
stage [76], metaphase plates were observed in only 35
individuals (Additional file 1, Table S2). These individuals
were also used for morphological and molecular analysis.

Geographical longitude vs. chromosome number

Pearson correlation coefficients were used to assess the
degree of association between haploid karyotype and
geographical longitude. Longitude was measured in deci-
mal degrees and only 23 samples with unambiguous
chromosome number counts were included (see Addi-
tional file 1, Table S4). If the specimen showed different
chromosome numbers in different cells, the average
between the different chromosome numbers was used.

Specimen sequencing

Total genomic DNA was extracted using Chelex 100
resin, 100-200 mesh, sodium form (Biorad), under the
following protocol: one leg was removed and introduced
into 100 pl of Chelex 10% and 5 ul of Proteinase K (20
mg/ml) were added. The samples were incubated over-
night at 55°C, afterwards were incubated at 100°C for 15
minutes and were subsequently centrifuged for 10 sec-
onds at 3000 rpm.

A 676 bp fragment at the 5" end of the mitochondrial
gene cytochrome oxidase subunit I (COI) was amplified
by polymerase chain reaction using the primers LCO
1490 (5-GGTCAACAAATCATAAAGATATTGG-3)
[77] and Nancy (5-CCCGGTAAAATTAAAATA-
TAAACTTC-3’) [78]. When these primers failed, we
used the primers LepF1 (5-ATTCAACCAATCATAAA-
GATATTGG-3’) and LepRl1 (5-TAAACTTCTG-
GATGTCCAAAAAATCA-3) [79], which amplified a
658 bp fragment of COI. Double-stranded DNA was
amplified in 25 pl volume reactions: 13.22 pl ultra pure
(HPLC quality) water, 2.5 pl 10x buffer, 4.5 pyl 25 mM
MgCl2, 0.25 pl 100 mM dNTP, 1.2 pl of each primer
(10 mM), 0.13 pl Tag DNA Gold Polymerase (Qiagen)
and 2 pl of extracted DNA. The typical thermal cycling
profile was: 95°C for 60 seconds, 44°C for 60 seconds
and 72°C for 90 seconds, for 40 cycles. A total of 70 L.
sinapis samples were successfully sequenced for this
marker. These included 34 of the karyotyped samples,
and 36 individuals collected in the same locality as the
karyotyped samples. Five L. reali and two L. morsei spe-
cimens were also sequenced and used as outgroup.

A 571 bp fragment at the 5" end of the nuclear gene
CAD was amplified by polymerase chain reaction using
the primers CADFa (5-GDATGGTYGATGAAAATGT-
TAA-3’) and CADRa (5- CTCATRTCGTAATCYG-
TRCT-3’) (designed by A. Kaliszewska). Double-stranded
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DNA was amplified in 25 ul volume reactions: 16.65 pl
ultra pure (HPLC quality) water, 2.5 pl 10x buffer, 1 pl
100 mM MgCl2, 0.25 pl 100 mM dNTP, 1.2 pl of each pri-
mer (10 mM), 0.2 pl Tag DNA Polymerase (Bioron,
GmbH) and 2 pl of extracted DNA. The typical thermal
cycling profile was: 95°C for 60 seconds, 48°C for 60 sec-
onds and 72°C for 90 seconds, for 40 cycles. A total of 14
samples (all karyotyped) were sequenced for this marker.
Three L. reali and two L. morsei specimens were also
sequenced and used as outgroup.

A 684 bp fragment at the 5’ end of the nuclear inter-
nal transcribed spacer 2 (I752) was amplified by poly-
merase chain reaction using the primers ITS3 (5'-
GCATCGATGAAGAACGCAGC-3’) and ITS4 (5'-
TCCTCCGCTTATTGATATGC-3’) [80]. Double-
stranded DNA was amplified in 25 pl volume reactions:
16.7 pl ultra pure (HPLC quality) water, 2.5 pl 10x buf-
fer, 1 ul 100 mM MgCl2, 0.25 ul 100 mM dNTP, 1.2 pl
of each primer (10 mM), 0.15 ul Tag DNA Polymerase
(Bioron, GmbH) and 2 pl of extracted DNA. The typical
thermal cycling profile was: 95°C for 45 seconds, 47°C
for 60 seconds and 72°C for 60 seconds, for 40 cycles. A
total of 14 samples (all karyotyped) were sequenced for
this marker. Three L. reali and two L. morsei specimens
were also sequenced and used as outgroup. PCR pro-
ducts were purified and sequenced by Macrogen Inc.
(Seoul, Korea). Sequences obtained specifically for this
study were deposited in GenBank (accession numbers
indicated in Additional file 1, Table S2).

Sequence alignment and phylogenetic inference

COI, ITS2 and CAD sequences were edited and aligned
using Geneious Pro 4.7.5 [81]. These resulted in three
final alignments of 658 bp and 77 specimens for COI,
571 bp and 19 specimens for CAD, and 684 bp and 19
specimens for IT7S2. For COI, duplicate haplotypes were
removed using Collapse 1.2 [82]. Maximum Likelihood
(ML) phylogenetic trees were inferred for CAD, ITS2
and COI using Phyml 2.4.4 [83], with the nucleotide
substitution model HKY [84] for nuclear markers and
HKY+I for COI, as suggested by jModeltest 0.1 [85],
and 100 bootstrap replicates.

Haplotype network

In order to examine relationships among haplotypes, a
maximum parsimony haplotype network was con-
structed using TCS 1.21 [86]. The haplotype network
was built with a 99% parsimony connection limit. The
network presented one loop, which was broken accord-
ing to frequency and geographic criteria [87].

Estimation of TMRCA
Time to the most recent common ancestor (TMRCA) of
L. sinapis was inferred with BEAST v.1.5.3 [88]
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independently for COI, ITS2 and CAD haplotypes under
a Coalescent model with constant population size. Dupli-
cate haplotypes were removed from the matrix using Col-
lapse 1.2 [82]. A lognormal distribution (Mean = 0.15,
Stdev = 0.798) was used assuming a maximum possible
limit of 405000 years as the 95% HPD of the distribution,
trying to let the maximum exploratory space to MCMC
runs. To estimate this prior, we used the maximum COI
intraspecific divergence for L. sinapis under a rather slow
invertebrate mitochondrial substitution rate: 1.5% uncor-
rected pairwise distance per million years [89]. Since sub-
stitution rates are known to overestimate ages for recent
lineages still under the coalescence process, we are cer-
tain that 405000 years is a good maximum estimate for
the TMRCA of this species. The dataset was analyzed
using the HKY model and applying a strict molecular
clock along the branches. Base frequencies were esti-
mated and a randomly generated initial tree was used.
Parameters were estimated using two independent runs
of 10 million generations each (with a pre-run burn-in of
100,000 generations) to ensure convergence, checked
with the program Tracer v1.4.

A multi-locus approach with *BEAST [90] was also
employed to check the results with a smaller set of 12
samples, including those with most divergent COI hap-
lotypes. In order to study the effect of the outgroup,
COI and multilocus analyses were conducted by both
including and excluding L. reali haplotypes (Additional
file 1, Table S5).

Additional material

Additional file 1: Additional Text, Figures and Tables. a) Additional
results of chromosomal analyses. b) Figure S1. Karyotypes of Leptidea
sinapis. ¢) Table S1. Discriminant analysis classification results for
chromosomal races of L. sinapis and L. reali. d) Table S2. List of
specimens included in this study. e) Table S3. Results of morphometric
analysis of the male genitalia. f) Table S4. List of the specimens included
in the analysis of geographical longitude vs. chromosome number. g)
Table S5. Estimation of TMRCA of L. sinapis under a coalescent model.

Acknowledgements

We thank L. Dapporto, A-M. Heres, J. Martinez-Vilalta and C. Safiudo for
advice on the statistical analyses and to LY. Bakloushinskaya and V.G.
Kuznetsova for suggestions on the manuscript. A. Kaliszewska designed the
primers for CAD. Support for this research was provided by the Russian
Foundation for Basic Research (grants RFFI 09-04-01234, 11-04-00734 and 11-
04-01119), by grant NSH-3332.20104 (Leading Scientific Schools) and by the
programs of the Presidium of Russian Academy of Science ‘Gene Pools and
Genetic diversity’ and ‘Origin of biosphere and evolution of geo-biological
systems’ to V.A.L,; by the Spanish Ministerio de Ciencia e Innovacién (project
CGL2007-60516/BOS to V.D, G.T. and RV, and predoctoral fellowship BES-
2008-002054 to G.T); and by a predoctoral fellowship from Universitat
Autonoma de Barcelona to V.D.

Author details
'Department of Karyosystematics, Zoological Institute of Russian Academy of
Science, Universitetskaya nab. 1, 199034 St. Petersburg, Russia. 2Departmem


http://www.biomedcentral.com/content/supplementary/1471-2148-11-109-S1.PDF

Lukhtanov et al. BMC Evolutionary Biology 2011, 11:109
http://www.biomedcentral.com/1471-2148/11/109

of Entomology, St. Petersburg State University, Universitetskaya nab. 7/9,
199034 St. Petersburg, Russia. *Institut de Biologia Evolutiva (CSIC-UPF),
Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain.
“Departament de Geneética i Microbiologia, Universitat Autonoma de
Barcelona, 08193 Bellaterra, Spain. *Institucié Catalana de Recerca i Estudis
Avangats (ICREA), Passeig Llufs Companys 23, 08010 Barcelona, Spain.

Authors’ contributions

VAL, VD, GT and RV designed the experiments and analyzed the data, VAL
performed the analysis of karyotypes, VD and GT performed phylogenetic
analyses, VD performed morphological analyses, VAL, VD and RV wrote the
paper, and all co-authors contributed in the form of discussion and
suggestions. All authors read and approved the final manuscript.

Received: 7 December 2010 Accepted: 20 April 2011
Published: 20 April 2011

References

1. White MJD: Animal Cytology and Evolution Cambridge: Cambridge
University Press; 1973.

2. King M: Species Evolution: The Role of Chromosomal Change Cambridge:
Cambridge University Press; 1993.

3. Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L: Chromosome
evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 2005,
21:673-682.

4. Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE:
Reinforcement of pre-zygotic isolation and karyotype evolution in
Agrodiaetus butterflies. Nature 2005, 436:385-389.

5. Shimabukuro-Dias CK, Oliveira C, Foresti F: Karyotype variability in eleven
species of the catfish genus Corydoras (Siluriformes: Callichthyidae).
Ichtyiol Explor Freshwaters 2004, 15:135-146.

6. Giménez MD, Mirol PM, Bidau CJ, Searle JB: Molecular analysis of
populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic
variability. Cytogenet Genome Res 2002, 96:130-136.

7. Huang L, Wang J, Nie W, Su W, Yang F: Tandem chromosome fusions in
karyotypic evolution of Muntiacus: evidence from M. feae and M.
gongshanensis. Chrom Res 2006, 14:637-647.

8. Hipp AL: Nonuniform processes of chromosome evolution in sedges
(Carex: Cyperaceae). Evolution 2007, 61:2175-2194.

9. Britton-Davidian J, Catalan J, Ramalhinho MD, Ganem G, Auffray JC,

Capela R, Biscoito M, Searle JB, Mathias MD: Rapid chromosomal evolution
in island mice. Nature 2000, 403:158.

10. Pialek J, Hauffe HC, Rodriguez-Clark KM, Searle JB: Raciation and speciation
in house mice from the Alps: the role of chromosomes. Mol Ecol 2001,
10:613-625.

11, Castiglia R, Annesi F, Capanna E: Geographical pattern of genetic variation
in the Robertsonian system of Mus musculus domesticus in central Italy.
Biol J Linn Soc 2005, 84:395-405.

12. White TA, Bordewich M, Searle JB: A network approach to study
karyotypic evolution: the chromosomal races of the common shrew
(Sorex araneus) and house mouse (Mus musculus) as model systems. Syst
Biol 2010, 59:262-276.

13. Franchini P, Castiglia R, Capanna E: Reproductive isolation between
chromosomal races of the house mouse Mus musculus domesticus in a
parapatric contact area revealed by an analysis of multiple unlinked loci.
J Evol Biol 2008, 21:502-513.

14. Nunes AC, Catalan J, Lopez J, da Graca Ramalhinho M, da Luz Mathias M,
Britton-Davidian J: Fertility assessment in hybrids between
monobrachially homologous Rb races of the house mouse from the
island of Madeira: implications for modes of chromosomal evolution.
Heredity 2011, 106:348-356.

15. McAllister BF, Sheeley SL, Mena PA, Evans AL, Schiotterer C: Clinal
distribution of a chromosomal rearrangement: a precursor to
chromosomal speciation? Evolution 2008, 62:1852-1865.

16.  Bidau CJ, Mirol PM: Orientation and segregation of Robertsonian
trivalents in Dichroplus pratensis (Acrididae). Genome 1988, 30:947-955.

17. Fornel R, Cordeiro-Estrela P, De Freitas TRO: Skull shape and size variation
in Ctenomys minutus (Rodentia: Ctenomyidae) in geographical,
chromosomal polymorphism, and environmental contexts. Biol J Linn Soc
2010, 101:705-720.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Page 10 of 11

Sharp HE, Rowell DM: Unprecedented chromosomal diversity and
behaviour modify linkage patterns and speciation potential: structural
heterozygosity in an Australian spider. J £vol Biol 2007, 20:2427-2439.
Qumsiyeh MB, Coate JL, Peppers JA, Kennedy PK, Kennedy ML:
Robertsonian chromosomal rearrangements in the short-tailed shrew,
Blarina carolinensis, in western Tennessee. Cytogenet Cell Genet 1997,
76:153-158.

Qumsiyeh MB, Barker S, Dover S, Kennedy PK, Kennedy MP: A potential
model for early stages of chromosomal evolution via concentric
Robertsonian fans: A large area of polymorphism in southern short-
tailed shrews (Blarina carolinensis). Cytogen Cell Genet 1999, 87:27-31.
Volker M, Sonnenberg R, Kullmann RPH: Karyotype differentiation in
Chromaphyosemion Kkillifishes (Cyprinodontiformes, Nothobranchiidae).
Ill: Extensive karyotypic variability associated with low mitochondrial
haplotype differentiation in C. bivittatum. Cytogen Genome Res 2007,
116:116-126.

Nagaraju J, Jolly MS: Interspecific hybrids of Antheraea roylei and A.
pernyi - A cytogenetic reassessment. Theor App Genet 1986, 72:269-273.
Nachman MW, Myers P: Exceptional chromosomal mutations in a rodent
population are not strongly underdominant. Proc Natl Acad Sci USA 1989,
86:6666-6670.

Kerridge DC, Baker RJ: Genetic variation and origin of the most
chromosomally polymorphic natural mammalian population. Cytogen.
Cell Genet 1990, 53:5-7.

Nogueira CDA, Fagundes V: Akodon cursor Winge, 1887 (Rodentia:
Sigmodontinae): one or two species? New evidences based on
molecular data. Zootaxa 2008, 1768:41-51.

Dobzhansky T: Genetics of the evolutionary process New York: Columbia
University Press; 1970.

Kirkpatrick M: How and why chromosome inversions evolve. PLoS Biol
2010, 8:21000501.

Baker RJ, Chesser RK, Koop BF, Hoyt RA: Adaptive nature of chromosomal
rearrangement differential fitness in pocket gophers Geomys bursarius.
Genetica 1983, 61:161-164.

Lyapunova EA, Bakloushinskaya 1Y, Saidov AS, Saidov KK: Dynamics of
chromosome variation in mole voles Ellobius tancrei (Mammalia,
Rodentia) in Pamiro-Alai in the period from 1982 to 2008. Russian J
Genet 2010, 46:566-571.

Lorkovi¢ Z: Some peculiarities of spatially and sexually restricted gene
exchange in the Erebia tyndarus group. Cold Spring Harb Symp Quant Biol
1958, 23:319-325.

Nevo E, Cleve H: Genetic differentiation during speciation. Nature 1978,
275:125-126.

Albre J, Gers C, Legal L: Molecular phylogeny of the Erebia tyndarus
(Lepidoptera, Rhopalocera, Nymphalidae, Satyrinae) species group
combining Coxll and ND5 mitochondrial genes: A case study of a recent
radiation. Mol Phyl Evol 2008, 47:196-210.

Karanth KP, Avivi A, Beharav A, Nevo E: Microsatellite diversity in
populations of blind subterranean mole rats (Spalax ehrenbergi
superspecies) in Israel: speciation and adaptation. Biol J Linn Soc 2004,
83:229-241.

Gorbunov PY: The butterflies of Russia (Lepidoptera: Hesperioidea and
Papilionoidea): classification, genitalia, keys for identification Ekaterinburg:
Thesis; 2001.

Robinson R: Lepidoptera Genetics Pergamon Press; 1971.

Lorkovi¢ Z: Leptidea reali Reissinger, 1989 (= lorkovicii Real, 1988), a new
European species (Lepid., Pieridae). Natura Croatica 1993, 2:1-26.
Camacho JPM, Sharbel TF, Beukeboom LW: B-chromosome evolution. Phil
Trans R Soc Lond B 2000, 355:163-178.

Jones RN, Gonzalez-Sanchez M, Gonzalez-Garcia M, Vega JM, Puertas MJ:
Chromosomes with a life of their own. Cytogenet Genome Res 2008,
120:265-280.

Lukhtanov VA: Evolution of the karyotype and system of higher taxa of
the Pieridae (Lepidoptera) of the world fauna. Entomol Obozr 1991,
70:619-641.

Fumi M: Distinguishing between Leptidea sinapis and L. reali (Lepidoptera:
Pieridae) using a morphometric approach: impact of measurement error
on the discriminative characters. Zootaxa 2008, 1819:40-54.

Martin J, Gilles A, Descimon H: Species concepts and sibling species: the
case of Leptidea sinapis and Leptidea reali. In Butterflies: Ecology and


http://www.ncbi.nlm.nih.gov/pubmed/16242204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16242204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16034417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16034417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12438789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12438789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12438789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17767589?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10646592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10646592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11298973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11298973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20525634?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18205781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18205781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18205781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20531448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20531448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20531448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18522710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18522710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18522710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3234757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3234757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9186509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9186509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2771951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2771951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13635565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13635565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/692677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18504356?dopt=Abstract

Lukhtanov et al. BMC Evolutionary Biology 2011, 11:109
http://www.biomedcentral.com/1471-2148/11/109

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.
64.

65.

66.

Evolution Taking Flight. Edited by: Boggs CL, Watt WB, Ehrlich PR. Chicago:
Chicago University Press; 2003:459-476.

Dinca V, Zakharov EV, Hebert PDN, Vila R: Complete DNA barcode
reference library for a country’s butterfly fauna reveals high
performance for temperate Europe. Proc R Soc B 2011, 278:347-355.
Wahlberg N, Saccheri I: The effects of Pleistocene glaciations on the
phylogeography of Melitaea cinxia (Lepidoptera: Nymphalidae). fur J
Entomol 2007, 104:675-684.

Verovnik R, Glogovéan P: Morphological and molecular evidence of a
possible hybrid zone of Leptidea sinapis and L. reali (Lepidoptera:
Pieridae). Eur J Entomol 2007, 104:667-674.

Freese A, Fiedler K: Experimental evidence for specific distinctness of the
two wood white butterfly taxa, Leptidea sinapis and L. reali (Pieridae).
Nota lepid 2002, 25:39-59.

Friberg M, Vongvanich N, Borg-Karlson AK, Kemp DJ, Merilaita S, Wiklund C:
Female mate choice determines reproductive isolation between
sympatric butterflies. Behav Ecol Sociobiol 2008, 62:873-886.

Simakova A, Puzachenko A: The vegetation during the last glacial
maximum (LGM) (24.0 - 17.0 kyr BP). In Evolution of European ecosystems
during Pleistocene - Holocene transition (24.0 - 8.0 kyr BP). Edited by: Markova
AK; van Kolfschoten T. Moscow: KMK Scientific Press; 2008:315-341.

Freitas TRO, Mattevi MS, Oliveira LFB, Souza MJ, Yonenagayassuda Y,
Salzano FM: Chromosome relationships in 3 representatives of the genus
Holochilus (Rodentia, Cricetidae) from Brazil. Genetica 1983, 61:13-20.
Koop BF, Baker RJ, Genoways HH: Numerous chromosomal
polymorphisms in a natural population of rice rats Oryzomys
(Cricetidae). Cytogenet Cell Genet 1983, 35:131-135.

Yonenaga-Yassuda Y, Doprado RC, Mello DA: Supernumerary chromosomes
in Holochilus brasiliensis and comparative cytogenetic analysis with
nectomys -squamipes (Cricetidae, Rodentia). Rev Bras Genet 1987, 10:209-220.
Angines N, Guilera M: Chromosome polymorphism in Holochilus
venezuelae (Rodentia, Cricetidae) - C-bands and G-bands. Genome 1991,
34:13-18.

Nachman MW: Geographic patterns of chromosomal variation in South
American marsh rats, Holochilus brasiliensis and H. vulpinus. Cytogen Cell
Genet 1992, 61:10-16.

Volobuev VT, Aniskin VM: Comparative chromosome banding analysis of
three South American species of rice rat of the genus Oryzomys
(Rodentia, Sigmodontidae). Chrom Res 2000, 8:295-304.

Andrades-Miranda J, Zanchin NIT, Oliveira LFB, Langguth AR, Mattevi MS:
Cytogenetic studies in nine taxa of the genus Oryzomys (Rodentia,
Sigmodontinae) from Brazil. Mammalia 2001, 65:461-472.

Brant SV, Orti G: Molecular phylogeny of short-tailed shrews, Blarina
(Insectivora: Soricidae). Mol Phyl Evol 2002, 22:163-173.

Silva MJJ, Yonenaga-Yassuda Y: B chromosomes in Brazilian rodents.
Cytogenet Genome Res 2004, 106:257-263.

Hipp AL, Rothrock PE, Whitkus R, Weber JA: Chromosomes tell half of the
story: the correlation between karyotype rearrangements and genetic
diversity in sedges, a group with holocentric chromosomes. Mol Ecol
2010, 19:3124-3138.

Baker RJ, Bickham : Speciation by monobrachial centric fusion. Proc Nat/
Acad Sci USA 1986, 83:8245-8248.

Basset P, Yannic G, Brunner H, Hausser J: Restricted gene flow at specific
parts of the shrew genome in chromosomal hybrid zones. Evolution
2006, 60:1718-1730.

Wolf KW: The structure of condensed chromosomes in mitosis and
meiosis of insects. Int J Insect Morphol Embryol 1996, 25:37-62.

Lukhtanov VA, Kuznetsova VG: Molecular and cytogenetic approaches to
species diagnostics, systematics, and phylogenetics. Zh Obshch Biol 2009,
70:415-437.

Lukhtanov VA, Kuznetsova VG: What genes and chromosomes say about
the origin and evolution of insects and other arthropods. Russian J Genet
2010, 46:1115-1121.

Coyne JA, Orr AH: Speciation Sunderland, MA: Sinauer; 2004.

Noor M, Grams KL, Bertucci LA, Reiland J: Chromosomal inversions and
the reproductive isolation of species. Proc Natl Acad Sci USA 2001,
98:12084-12088.

Rieseberg LH: Chromosomal rearrangements and speciation. Trends Ecol
Evol 2001, 16:351-358.

Faria R, Navarro A: Chromosomal speciation revisited: rearranging theory
with pieces of evidence. Trends Ecol Evol 2010, 25:660-669.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Page 11 of 11

Lowry DB, Willis JH: A widespread chromosomal inversion polymorphism
contributes to a najor life-history transition, local adaptation, and
reproductive isolation. PLoS Biol 2010, 8(9):¢1000500.

Ayala FJ, Coluzzi M: Chromosome speciation: humans, Drosophila, and
mosquitoes. Proc Natl Acad Sci USA 2005, 102(suppl 1):6535-6542.

Dinca V, Lukhtanov VA, Talavera G, Vila R: Unexpected layers of cryptic
diversity inwood white Leptidea butterflies. Nature Comm 2011, 2:324.
Lukhtanov VA, Vila R, Kandul NP: Rearrangement of the Agrodiaetus dolus
species group (Lepidoptera, Lycaenidae) using a new cytological
approach and molecular data. Insect Syst Evol 2006, 37:325-334.
Vershinina AO, Lukhtanov VA: Geographical distribution of the cryptic
species Agrodiaetus alcestis alcestis, A. alcestis karacetinae and A.
demavendi (Lepidoptera, Lycaenidae) revealed by cytogenetic analysis.
Comparative Cytogenetics 2010, 4:1-11.

Marec F, Sahara K, Traut W: Rise and fall of the W chromosome in
Lepidoptera. In Molecular Biology and Genetics of the Lepidoptera. Edited by:
Marec F, Goldsmith MR. London-New York: CRC Press; 2010:49-63.

Traut W, Sahara K, Otto TD, Marec F: Molecular differentiation of sex
chromosomes probed by comparative genomic hybridization.
Chromosoma 1999, 108:173-180.

Yoshido A, Bando H, Yasukochi Y, Sahara K: The Bombyx mori karyotype
and the assignment of linkage groups. Genetics 2005, 170:675-685.
Lukhtanov VA, Dantchenko AV: Principles of highly ordered metaphase |
bivalent arrangement in spermatocytes of Agrodiaetus (Lepidoptera).
Chrom Res 2002, 10:5-20.

Lorkovi¢ Z: The butterfly chromosomes and their application in
systematics and phylogeny. In Butterflies of Europe. Volume 2. Edited by:
Kudrna O. Wiesbaden: Aula-Verlag; 1990:332-396.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for
amplification of mitochondrial Cytochrome C oxidase subunit | from
diverse metazoan invertebrates. Mol Mar Biol Biotech 1994, 3:294-299.
Simons C, Frati R, Beckenbach A, Crespit B, Liu H, Floors P: Evolution,
weighting, and phylogenetic utility of mitochondrial gene sequences
and a compilation of conserved polymerase chain reaction primers. Ann
Ent Soc Am 1994, 87:651-701.

Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W: Ten species in
one: DNA barcoding reveals cryptic species in the neotropical skipper
butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 2004,
101:14812-14817.

White TJ, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of
fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a guide
to methods and applications. Edited by: Innis MA, Gelfand DH, Sninsky JJ,
White TJ. San Diego: Academic Press; 1990:315-322.

Biomatters Ltd. 2009 Geneious v.4.8.3. [http://www.geneious.com/].
Posada D: Collapse: Describing haplotypes from sequence alignments Vigo
(Spain): University of Vigo; 2004 [http://darwin.uvigo.es/software/collapse.
html].

Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate
large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
Hasegawa M, Kishino H, Yano TA: Dating of the human ape splitting by a
molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008,
25:1253-1256.

Clement M, Posada D, Crandall K: TCS: a computer program to estimate
gene genealogies. Mol Ecol 2000, 9:1657-1660.

Excoffier L, Langaney A: Origin and differentiation of human
mitochondrial DNA. Am J Human Gen 1989, 44:73-85.

Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol Biol 2007, 7:214.

Quek SP, Davies SJ, Itino T, Pierce NE: Codiversification in an ant-plant
mutualism: Stem texture and the evolution of host use in
Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga
(Euphorbiaceae). Evolution 2004, 58:554-570.

Heled J, Drummond AJ: Bayesian inference of species trees from
multilocus data. Mol Biol Evol 2010, 27:570-580.

doi:10.1186/1471-2148-11-109

Cite this article as: Lukhtanov et al: Unprecedented within-species
chromosome number cline in the Wood White butterfly Leptidea sinapis
and its significance for karyotype evolution and speciation. BMC
Evolutionary Biology 2011 11:109.



http://www.ncbi.nlm.nih.gov/pubmed/20702462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20702462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20702462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6342982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6342982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6342982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10919720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10919720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10919720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15292600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20618902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20618902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20618902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16593777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17017071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17017071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19891413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19891413?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11593019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11593019?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11403867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20817305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20927411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15851677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15851677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10398846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10398846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15802516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15802516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11863071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11863071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15465915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15465915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15465915?dopt=Abstract
http://www.geneious.com/
http://darwin.uvigo.es/software/collapse.html
http://darwin.uvigo.es/software/collapse.html
http://www.ncbi.nlm.nih.gov/pubmed/14530136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14530136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3934395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3934395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18397919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11050560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11050560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17996036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17996036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15119439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906793?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Conclusions
	Methods
	Sample collecting
	Genitalia preparation and morphometric analyses
	Karyotype analyses
	Geographical longitude vs. chromosome number
	Specimen sequencing
	Sequence alignment and phylogenetic inference
	Haplotype network
	Estimation of TMRCA

	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


