Crustacean Ecology Kaylyn Flanigan

Hans Hillewaert, 2013

Ecology

- The study of relations and interactions between organisms and their environment

Crustacean Distribution

Creative Commons, USGA

Isopod Distribution

Distribution Similarities

1. Malacostraca, ostracoda, and copepoda contain species that inhabit marine, fresh, and terrestrial ecosystems⁸.

Distribution Similarities

- Malacostraca, ostracoda, and copepoda contain species that inhabit marine, fresh, and terrestrial ecosystems⁸.
- 2. Almost every class has species in either marine or freshwater ecosystems
 - a. Pentastomida are internal vertebrate parasites⁸.

Distribution Similarities

- Malacostraca, ostracoda, and copepoda contain species that inhabit marine, fresh, and terrestrial ecosystems⁸.
- 2. Almost every class has species in either marine or freshwater ecosystems
 - a. Pentastomida are internal vertebrate parasites⁸.
- 3. The vast majority of crustaceans are mobile and free-living
 - a. Barnacles and parasitic species defy this

NOAA

Distribution Differences

- 1. Pentastomida, a completely parasitic class, is dissimilar to the distribution of malacostracans as pentastomida distribution is based solely on their hosts⁸.
- 2. Species determined distribution differences

Distribution Differences

- 1. Pentastomida, a completely parasitic class, is dissimilar to the distribution of malacostracans as pentastomida distribution is based solely on their hosts⁹.
- 2. Species determined distribution differences
 - a. Discussed in subsequent slides

John Sullivan, 2013

John Sullivan, 2013

Gammarus limnaeus

Eurythenes gryllus

Anna Syme, 2007

Interns Find Tiny Crustaceans in Arkansas National Park

Interns at a national park in Arkansas have discovered species of a crustacean that hadn't before been documented in the park's waters.

Aug. 14, 2017, at 2:33 p.m.

Anna Syme, 2007

In short...

...everywhere

Poore, G., 2014.

In short...

Poore, G., 2014.

"Crustaceans are as ubiquitous as mosquitoes"

Waldo L. Schmitt

Crustaceans

- Crabs (decapoda) influence prey behavior

Crustaceans

- Crabs (decapoda) influence prey behavior
- Consume dead organic matter

Kevin Litman-Narvarro

Crustaceans

- Crabs (decapoda) influence prey body structure
- Consume dead organic matter
- Provide important link in web primary producers to consumers

Food Web Similarities

- Crustaceans are important food sources for many marine animals
 - Either directly (krill being consumed by whales; squid consuming a crab) or indirectly (seal that consumes a squid that consumed a crab)

Food Web Similarities

- Crustaceans are important food sources for many marine animals
 - Either directly (krill being consumed by whales; squid consuming a crab) or indirectly (seal that consumes a squid that consumed a crab)
- Detritivores (which include some isopods) consume dead organic matter whose nutrients will eventually be passed up the food web

Food Web Differences

- Terrestrial isopods contribute to decomposition

- Nutrients gained through consuming leaf litter will eventually make its way through the food web

Food Web Differences

- Terrestrial isopods contribute to decomposition
 - Nutrients gained through consuming leaf litter will eventually make its way through the food web
- Mysidacea, krill, barnacles, and some isopods are filter feeders
 - These species can filter out particulate organic matter. Energy obtained from this consumption is dispersed throughout the food web when they are consumed by predators

Species Interactions - Crustaceans

- Parasitism
 - Typton carneus (decapod) lives in fire sponges and leaves bored tunnels⁸
 - Pea crabs (decapoda) lives in oysters, sea cucumbers, and clams

Species Interactions - Crustaceans

- Commensalism
 - Pederson cleaning shrimp
 - Barnacles on whales

Bermuda Institute of Ocean Sciences

Species Interactions - Crustaceans

- Mutualism
 - <u>Carrier crab and</u> <u>spiny urchin</u>

Bernard Dupont

Species Interactions - Isopod

- Parasitism
 - Cymothoa exigua
 - Tongue-eating isopod

Species Interactions - Isopod

- Parasitism
 - Cymothoa exigua
 - <u>Tongue-eating isopoc</u>
- Commensalism
 - Whale louse

Species Interactions Similarities

- Crustaceans exhibit mutualistic, commensalistic, and parasitic relationships with other organisms.
 - Aside from the class pentastomida, classes are not all parasitic/mutualistic/commensalistic

Species Interactions Similarities

- Crustaceans exhibit mutualistic, commensalistic, and parasitic relationships with other organisms.
 - Aside from the class pentastomida, classes are not all parasitic/mutualistic/commensalistic
- Due to the variety of crustaceans, there is great diversity in species interactions

Species Interactions Differences

- Host choice

Creative Commons

Species Interactions Differences

- Host choice
- Reason for exhibiting a mutualistic, commensalistic, or parasitic relationship

Works Cited

1 Schmitt, W.L. <u>Crustaceans</u>. *University of Michigan Press*, 1965.

2 U.S. News. "Interns find tiny crustaceans in Arkansas National Park." The Associative Press, 2017.

3 National Park Service. "Hot Springs." U.S. Department of the Interior.

4 Ocean Exploration. "What is an Isopod?" NOAA, 2014.

5 "Aquatic Pillbugs and Sowbugs (Aquatic Isopods)." *Missouri Department of Conservation*.

6 King, Rachel. "Transitions to the deep: Isopods from coasts to the abyss." NOAA, 2014.

7 Abd El-Wakeil, K. "Effects of Terrestrial Isopods on Leaf Litter decomposition process." *Journal of Basic and Applied Zoology*, 69: 10-16, 2015.

8 Pechenik, J.A. Biology of the Invertebrates. 7th ed., McGraw Hill, 2015.

9 Shachak, M., et al. "Feeding, energy flow, and soil turnover in the desert isopod, *Hemilepistus reaumuri*," *Oecologia*, 24 (1): 57-69. 1976.

10 "Watch: Carrier Crab uses Spiny Urchin as Shield." National Geographic. 2017.

11 Danelesko, Tessa. "What's on that whale?" Coastal Ocean Research Institute, 2013.

12 Strain, Daniel. "Shrimp hurt the sponges that shelter them." Science, 2011.

13 "Understanding the Unique Relationship Between Crustaceans and Sea Anemones." *Bermuda Institute of Ocean Sciences*, 2014.

14 Zimmer, Carl. "Tongue-Eating Fish Parasites Never Cease to Amaze." *National Geographic*, 2013.