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Abstract

This chapter compares two sexual systems: hermaphroditism (each individual can produce
gametes of either sex) and gonochorism (each individual produces gametes of only one of the
two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative
modes of reproduction, which are of great interest from applied and theoretical perspectives.
The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual
systems, centering on their evolutionary transitions. The ecological correlates of each reproduc-
tive system are also explored. In particular, the prevalence of “unusual” (non-gonochoristic) re-
productive strategies has been identified under low population densities and in unpredictable/
unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in
colonizing species. Finally, population-level consequences of some sexual systems are consid-
ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview
of the evolution, adaptation, ecological constraints, and implications of the various reproductive
modes in this extraordinarily successful group of organisms.

INTRODUCTION

Historical Overview of the Study of Crustacean Reproduction

Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which
play important roles in many ecosystems and are economically important. Thus, it is not surprising
that numerous studies focus on their reproductive biology. However, these reviews mainly target
specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean
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shrimp (Correa and Thiel 2003) and crayfish (Yazicioglu et al. 2016), or are more general reviews
of mating strategies and behaviors (Subramoniam 2013, Dennenmoser and Thiel 2015), hormonal
regulations (Ventura et al. 2011a), sex determination (Rigaud et al. 1997) and/or sexual systems
(Bauer and Martin 1991, Subramoniam 2016), focusing more on proximate mechanisms than ulti-
mate causes. Comprehensive reviews of crustacean reproduction, especially from an evolutionary
perspective, are largely missing from the literature.

This gap in our knowledge is even more obvious when we consider the paucity of modern
reviews of the evolution of hermaphroditism in the Crustacea (Charniaux-Cotton 1975, Juchault
1999), with the exception of a few taxa (e.g,, branchiopods: Weeks et al. 2014, barnacles: Yamaguchi
et al. 2012, Yusa et al. 2012, 2013) or specific systems (e.g., androdioecy: Weeks et al. 2006a, Weeks
2012). This is not unique to the Crustacea: the evolution of hermaphroditism has not been widely
discussed in animals more generally (but see Ghiselin 1969, Jarne and Charlesworth 1993, Jarne
1995, Jarne and Auld 2006, Eppley and Jesson 2008, Schirer and Janicke 2009, Vega-Frutis et al.
2014, Meconcelli et al. 2015), even though more than 65,000 animal species are hermaphroditic
(Jarne and Auld 2006).

Here, we review reproductive systems in crustaceans (see also Chapter 6 in this volume), with
an empbhasis on the various forms of hermaphroditism, including sequential and simultaneous her-
maphroditism (male and female reproductive organs are present and function sequentially or at
the same time), mixed sexual systems (such as androdioecy), and plastic strategies (population
geographic variation in sexual systems in the same species; presence of non-sex-changing individ-
uals in sequentially hermaphroditic populations, etc.). In particular, we list the known species that
exhibit these hermaphroditic forms and consider the evolution of the numerous reproductive sys-
tems in crustaceans, documenting their taxonomic ranges and discussing their likely evolutionary
transitions. We conclude by briefly discussing the environmental correlates of the various repro-
ductive forms found among crustaceans.

OVERVIEW OF REPRODUCTION IN THE CRUSTACEA

Types of Reproductive Systems in the Crustacea

Few animal groups have as many reproductive systems as crustaceans (see Table 8.1 for
definitions): asexual (parthenogenetic) lineages are common in freshwater ostracods (Butlin et al.
1998, Schon et al. 2000), in the brine shrimp Artemia (A in Fig. 8.1; Asem et al. 2016), in some ter-
restrial isopods (Bell 1982, no males have been found in Armadillidium virgo [Caruso and Bouchon
2011, D in Fig. 8.1]), and have been described in crayfish (Scholtz et al. 2003); cyclic parthenogen-
esis is often found in cladocerans (Hebert 1987, Decaestecker et al. 2009); separate sexes (func-
tional males and functional females) are present in gonochoristic (dioecious) species as well as in
sequential hermaphrodites (sex changers), where the same individual acts as one sex and succes-
sively as the alternate sex at different times of its life cycle; combined sexes (hermaphroditism) are
found in systems where all individuals mature both male and female gonads at the same time (syn-
chronous or simultaneous hermaphroditism), or in mixed sexual systems, where only some indi-
viduals are hermaphrodites but others are pure males (androdioecy; see Table 8.2). Coexistence
of hermaphrodites and males can also occur following the development of female tissue in males
(protandric simultaneous hermaphroditism), a mixed sexual system mainly found in the Infraorder
Caridea (Bauer and Holt 1998, Bauer 2000). This amazing variety of modes of reproduction can
thus be seen as a continuum (Ah-King and Nylin 2010, Kelly and Sanford 2010, Yusa et al. 2013).
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Table 8.1. Definition of Sexual Systems Based on the Presence of Sexual Types

Sexual System Population Composed of

Androdioecy Males + hermaphrodites*

Gynodioecy Females + hermaphrodites*

Gonochorism (Dioecy) Males + females

Asexual (Parthenogenetic) Females only

Cyclic Parthenogenesis Asexual females most of the year followed by a single

bout of sexual (male + female) reproduction at the
end of the growing season

Simultaneous hermaphroditism Hermaphrodites*

Sequential hermaphroditism

i. Protandry Male-first sex changers. Individuals reproduce as males
initially and then switch to females, the second sex,
also called secondary females in digynic populations
(populations with two types of females) where some
individuals are born directly as females (primary
females). In some cases, some males might not
change to females (and remain males through all
their lives)

ii. Protogyny Female-first sex changers. Individuals reproduce
as females initially and then switch to males, the
second sex, also called secondary males in diandric
populations (populations with two types of males)
where some individuals are born directly as males
(primary males). In some cases, some females might
not change to males (and remain females through all
their lives)

Protandric simultaneous Males — Simultaneous hermaphrodites

hermaphrodites

* Simultaneous production of both male and female gametes

Sex-determining mechanisms also vary greatly in crustaceans (see Chapter 14 in this volume).
Some isopod and amphipod females can produce offspring of exclusively one sex, a process known
as monogeny (Bulnheim 1978, Juchault and Legrand 1986). Additionally, crustaceans can use both
internal and external fertilization. When internal fertilization occurs, females can often be fertilized
only during a brief period after molting, before their exoskeleton hardens again (Hartnoll 1969,
Raviv et al. 2008). In this situation, males guard females until they are receptive (mate guarding;
Jormalainen 1998). In some species, characterized by a terminal molt (after which the individual no
longer grows), females can be fertilized even with a hard exoskeleton (Raviv et al. 2008). Given this
variety and complexity of reproductive modes and systems, crustaceans are great model organisms
to test theoretical predictions and perform applied studies on the ecology, reproductive behavior,
sexual selection, and evolution of social and sexual systems of animals (Duffy and Thiel 2007,
Dennenmoser and Thiel 2015, Chak et al. 2015).
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Below, we describe the diversity of hermaphroditic reproductive systems in crustaceans. The
vast bulk of crustaceans are gonochoristic (dioecious), and we do not specifically delineate those
species in this chapter. We also refer readers to Chapter 9 of this volume for a complete discussion
of asexual reproduction. Here instead, we first describe the various reproductive systems, and then
present a brief discussion of their evolutionary transitions.

Sexual Reproduction

Gonochorism

Gonochorism or dieocy (separate sexes) is the most common sexual system in crustaceans
(Juchault 1999, Correa and Thiel 2003, Subramoniam 2013). When genetically determined, separate
sexes are fixed throughout the life cycle of individuals. Sexual development is regulated in malacos-
tracan crustaceans by a hormone produced by the androgenic gland: the default sex is female (Ford
2008), and primary and secondary male characters are induced by the insulin-like androgenic gland
hormone (Sagi et al. 1997, Chang and Sagi 2008, Ventura et al. 2011a, 2011b). In the presence of the
hormone, testicular differentiation is initiated and the animal matures as a male; in its absence (i.e.,
in females), ovaries develop instead (Chang and Sagi 2008).

In many crustacean groups, sexual dimorphism allows the easy recognition of males from
females, each sex characterized by a sex-specific phenotype. Males are usually larger than females
and have larger chelipeds, or other weapons, in species where male-male competition is the rule,
either in the form of direct aggressive interactions, mate guarding or territorial/burrow defense
(see Chapter 10 in this volume). Larger females than males are found in penaeoidean shrimp, in
many caridean shimp (Bauer et al. 2014), and in other groups where high abundances allow for
frequent contact between the sexes. In instances when one sex grows faster than the other, there
has been interest in creating single-sex populations for aquaculture purposes (Ventura and Sagi
2012, see the successful manipulations of the giant freshwater prawn Macrobrachium rosenbergii;
Ventura et al. 2012). Extreme sexual dimorphism is found in some dioecious barnacles (in par-
ticular in the order Pedunculata), where males are much smaller than females. Darwin (1851)
called them “dwarf” males: they are attached directly to the “fertilization site” (on a female) and
do not require the long (“groping”) penises that their hermaphroditic counterparts require for
successful fertilization; multiple dwarf males can be attached to the same female (Yusa et al. 2012,
Lin et al. 2015).

Even though there are two sexes, more than one male morphotype can be present, as found, for
example, in the marine isopod Paracerceis sculpta where a-, p- and y-males coexist in populations
(Shuster and Wade 1991), the rock shrimp Rhynchocinetes typus where “typus,” “intermedius,” and
“robustus” males are found (Correa et al. 2000), and M. rosenbergii where small, medium orange-
clawed and large blue-clawed males (Ventura et al. 2011b) use different strategies to mate with
females. When different male morphotypes are present, one type often phenotypically resembles
a female (B-males, typus, and small, respectively, from the preceding examples), to allow them to
enter unnoticed in the harem of the dominant males.

When secondary sexual characters are not evident, the localization of gonopores (or their
absence in parthenogenetic crayfish; Vogt et al. 2004) can be used to differentiate males from
females (and hermaphrodites, when both set of sexual gonopores are present), as well as
the presence of an appendix masculina in males of many decapods, which regresses during
sex change in protandrous species (Carpenter 1978, Bauer 1986a, Schatte and Saborowski
2006, Zupo et al. 2008). In some species (such as the brown shrimp Crangon crangon; G in
Fig. 8.1) evidence of sex change can be inferred by comparing consecutive molts (Schatte and
Saborowski 2006).
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Fig. 8.1.

Selected examples of non-gonochoristic species, to show the variety of reproductive modes in crustaceans.
(A) The anostracan Artemia parthenogenetica, characterized by mixed sexual and asexual (parthenoge-
netic) populations. (B) The notostracan Triops cancriformis exemplifies “geographical hermaphroditism,”
where populations can be gonochoristic, androdioecious, and hermaphroditic. (C) The free-living isopod
Cyathura carinata, one of the few examples of protogynous (female-first sex changer) crustaceans. (D) The
parthenogenetic cave-dwelling isopod Armadillidium virgo. (E) The protandric simultaneous hermaphrodite
Exhippolysmata oplophoroides. (F) The protandrous (male-first sex changer) Emerita analoga. (G) The faculta-
tive protandrous Crangon crangon. (H) The protandrous Pandalus danae. (1) The simultaneous hermaphrodite
Allaxius cf picteti, belonging to the family Axiidea, the only known example of simultaneously hermaphroditic
decapods. (J) The simultaneous hermaphrodite Amphibalanus improvisus. See color version of this figure in the
centerfold. Photos: (A and B) Jean-Francois Cart; (C) Hans Hillewaert; (D) Domenico Caruso; (E) J. Antonio
Baeza; (F and I) Arthur Anker; (G) Asma Althomali; (H) Ann Dornfeld; (J) Ian Frank Smith.

Sequential Hermaphroditism

There are several forms of sequential hermaphroditism, which is defined as changing from one sex
into another during some portion of the life cycle. Starting life as male and then changing to female
is termed protandry, whereas starting life as female and changing to male is termed protogyny (Table
8.1; Warner 1975, Policansky 1982, Munday et al. 2006). It is hypothesized that sequential hermaph-
roditism is a response to size-specific difference in maximized fitness of each sex (size advantage
model; Ghiselin 1969). In scenarios where the fitness of small males is not too different from the
fitness of large males but small females are less fecund than large females, a male-first strategy (prot-
andry) can allow successful production of sperm early in life with a later switch to females when the
individuals are larger and can better afford higher egg production.

Protandry is very common among malacostracans (Table 83), especially in decapods,
amphipods, and isopods. Outside these taxa, it has been described only in two parasitic species of
barnacles: Waginella (formerly Synagoga) sandersi and Gorgonolaureus muzikae (Brook et al. 1994,
Policansky 1982). Among decapods, the majority of described occurrences of protandrous sex
change is found in the family Pandalidae (31 species; the genus Pandalus seems to be completely
protandrous; Chiba 2007, H in Fig. 8.1), but also in the families Atyidae (six species), Crangonoidea
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(five species), Campylonotidae (four species), Alpheidae, Hippidae (see Emerita analoga, F in
Fig. 8.1), Hippolytidae and Merguiidae (two species each) with individual occurrences in four more
families (Table 8.3). In some cases (e.g., C. crangon; G in Fig. 8.1), protandry is facultative (Schatte
and Saborowski 2006). Among amphipods, seven protandrous species have been recorded in the
family Lysianassidae and one species, Stegocephalus inflatus, among stegocephalids (Johnson et al.
2001). Among parasitic isopods, 17 protandrous species have been described in the Cymothoidae
(this family, comprising 386 species, is possibly all completely protandric; Brusca 1981) and two
in the Bopyridae. Their parasitic lifestyle makes it particularly difficult to study their reproductive
cycle (Smit et al. 2014). Among the ectoparasitic cymothoids, different sites are parasitized in fish
hosts: gill chambers, buccal cavity and body surface (Fig. 8.2). While parasitic isopods are mainly
protandrous, both protandry and protogyny are found among free-living aquatic isopods. Among
terrestrial isopods (superfamily Oniscoidea), one species is recorded as protandrous and one as
protandric simultaneous hermaphroditic (Johnson et al. 2001).

In systems where males compete for females, large males have higher reproductive success, and
small individuals maximize their fitness as females (protogyny). Interestingly, protogyny is very
common in fish but not in crustaceans: out of the 114 known sequentially hermaphroditic crusta-
cean species, 93 are protandrous and only 21 are protogynous (Table 8.3). Protogynous species are
distributed among free-living (non-parasitic) isopod species (Tsai et al. 1999), with four species in
the family Anthuridae (C in Fig. 8.1) and four in the family Sphaeromatidae. Among the Tanaidacea
there are seven protogynous species in the family Leptochelidae, two in the family Nototanaidae, and
one each in the families Paratanaidae, Kalliapseudidae, Tanaididae, and Apseudidae (e.g., Highsmith
1983, Brook et al. 1994). Protogyny is probably more common among the Tanaidacea than what
is reported here (Dojiri and Sieg 1997, Larsen 2001). Protogynic tanaids often have polymorphic
males: males that used to be females (“secondary males”; Table 8.2) are morphologically different
from males developed directly from juveniles (“primary males”). Also, “tertiary males” (who devel-
oped from females who had two broods, and not just one) are different from the other males (Larsen

Fig. 8.2.

Ectoparasitic isopods in the family Cymothoidae (obligate parasites of fishes). (A) The gill chamber parasite
Anphira branchialis on Metynnis lipincottianus. (B) Ceratothoa italica in the mouth of Lithognathus mormyrus
and (C) escaping after realizing its host is dead. (D) Braga patagonica in the gills of Pygocentrus naterreri.
(E) Anilocra physodes on L. mormyrus. See color version of this figure in the centerfold. Photos: (A and D)
Charles Baillie; (B) Maria Sala-Bozano; (C and E) Stefano Mariani.
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2001). Not all females change into males: this strategy seems to respond to a skewed sex ratio, due to
higher mortality and a lack of feeding in males (Larsen 2001). In the tanaid Leptochelia africana, once
females molt into their male phase, they lose their functional mouth parts, do not feed anymore,
and invest only in reproduction (Larsen and Froufe 2013). In Leptochelia dubia males not only do
not feed, but also are aggressive and fight for females (Highsmith 1983). Often protogyny is socially
mediated (the dominant male prevents the other females from changing sex), which has been con-
firmed in tanaids (Highsmith 1983) and some isopods, even though this does not seem to be the case
in Gnorimosphaeroma oregonensis (Brook etal. 1994).

A high level of plasticity is present in both protandric and protogynic sexual systems: not
all individuals in all populations are sex changers. Some individuals can be born directly as the
second sex (“primary males” in diandric protogynous species and “primary females” in digynic
protandrous species; Tables 8.1 and 8.2) and thus do not change sex. Moreover, some species
are facultatively sequentially hermaphroditic; i.e., not all individuals born as the first sex will
change into the second sex, as is also seen in the tanaids, mentioned earlier, where the pro-
togynous strategy depends on the population sex ratio (Larsen 2001). Both protandrous and
protogynous hermaphrodites can be considered functionally dioecious, given that populations
comprise males and females at any given time (Weeks 2012). However, the ability of individuals
to be either sex at different times of their lives clearly differentiates these systems from strict
dioecy. Interestingly, while protogyny is the most common system among fish, the majority of
sex-changing crustaceans are protandric, as noted earlier. This difference is possibly related to
the differing mating strategies employed by fish and crustaceans: while many fish have haremic
systems, where protogyny is advantageous (a female can greatly increase her fitness becoming
the large dominant male; e.g., Munday et al. 2006), harems are not common in crustaceans. In
haremic crustacean species, like P. sculpta mentioned previously, alternative mating strategies are
employed by males (Shuster and Wade 1991, Johnson et al 2001). Instead, in crustacean groups
where protogyny is the norm, a change from female to male seems to be favored because of low
abundance of males (see earlier discussion of tanaids), or large males might be favored during
mate guarding, as hypothesized by Brook et al. (1994) in the isopod G. oregonensis. Bi-directional
sex change (the ability of an individual to change sex multiple times, in either direction) is not
confirmed in crustaceans, but is postulated in alpheid shrimps, Arete kominatoensis and A. dorsalis
(Nakashima 1987, Gherardi and Calloni 1993, Chiba 2007).

An unusual form of sequential hermaphroditism is termed “protandric simultaneous her-
maphroditism” (Bauer 2000, 2006, Bauer and Newman 2004, Baeza et al. 2007). In this system,
individuals develop first as males and then change into simultaneous hermaphrodites (Bauer
2000, Baeza 2009). This reproductive mode is typical of Lysmatidae (31 out of the 40 known spe-
cies; Table 8.3; Lin and Zhang 2001, Bauer and Newman 2004, Bauer 2006, Baeza et al. 2007, E in
Fig. 8.1) and possibly is found in Barbouriidae (four species) and Parastacidae (four species) and,
unique among isopods, is reported in Rhyscotus ortonedae (formerly Oniscoidea). This sequential
sexual change is also a response to differing reproductive values at different sizes: smaller males
actually accrue more mates than larger males (Baeza 2007). When the shrimp attain a certain size,
they then develop a female gonad but retain male functionality (Bauer 2000). Hermaphrodites
do expend more effort in female gamete production, but still perform limited outcrossing as
males (Baeza 2007). These shrimp have evolved from protandric sequential hermaphrodites
(Baeza 2009, Baeza et al. 2009), so the retention of male function is a derived character in these
species.

Interestingly, protandric simultaneous hermaphroditism is similar to androdioecy, in that
at any one time the populations are mixtures of males and hermaphrodites. However, unlike
other androdioecious crustaceans, wherein males are genetically distinct from hermaphrodites
(Weeks et al. 2006a, Weeks 2012), in protandric simultaneous hermaphrodites, each individual
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Definition of Sexual Types

SEXUAL TYPES
FIXED MALES found in gonochoristicand some androdioecious species. Males
produce sperm or spermatophores. Primary and secondary male sexual characters
(such as appendix masculina) are controlled by the androgenicgland
DWARF MALES characteized by extreme smaller size of males compared to
conspecificfemales. Relatively commonin dioecious barnacles, where they are
found attached to the body of females
COMPLEMENTAL MALES found in androdioecious barnacles. The term was
originally coined by Darwin (1851) to distinguish them from the miniature “dwarf”
malesindioecious species
“RARE MALES” in parthenogenetic populations, composed mainly by females. They
could beinvolvedin “contagious parthenogenesis”

MALES (also SECONDARY MALES) in protogynous species (used to be females); sex-
changers from female to male. They are the only malesin monandric protogynous
populations; they coexist with primary malesin diandric populations

SIS =£|<

) PRIMARY MALES in diandric protogynous populations. Individual born maleina
M population where the majority of individuals are born female and change to male
laterinlife
FIXED FEMALES found in gonochosisticspecies. Females produce eggs, which can
be released orbrooded attached to pleopods

“

FEMALES (also SECONDARY FEMALES) in protandrous species (used to be male);
F sex-changers from male to female. They are the only femalesin monogynic
protandrous populations; they coexist with primary females in digynic populations

) PRIMARY FEMALES in digynicprotandrous populations. Individuals born femaleina
F population where the majority of individuals are born male and change to female
laterinlife
SIMULTANEOUS OR SYNCHRONOUS HERMAPHRODITES able to produce male and
female gametes atthe same time

ag

HERMAPHRODITES in protandrous simultaneous hermaphroditism (used to be
males); sex-changers from malesto hermaphrodites

X

will be both male and simultaneous hermaphrodite, depending on its age and size (Bauer
2000). In this way, the two reproductive modes are developmentally and ecologically different
(Weeks 2012).

Simultaneous or Synchronous Hermaphroditism

Pure simultaneous hermaphroditism (all mature individuals in a population able to produce male
and female gametes at the same time) is considered to be rare in crustaceans (Michiels 1998), as it is
almost completely absent in the Malacostraca, where it is present in just two families: Apseudidae
in the Tanaidacea (Johnson et al. 2001, Kakui and Hiruta 2013, Table 8.3) and putatively in the
Axiidae (Johnson et al. 2001, Chiba 2007, Poore and Collins 2009, Komai et al. 2010, I in Fig. 8.1)
within the Decapoda (see later discussion). In other non-malacostracan orders, populations com-
prising entirely hermaphrodites have been reported in the Cephalocarida (Addis et al. 2012), in
the cave-dwelling Remipedia (Neiber et al. 2011, Kubrakiewicz et al. 2012), in some spinicaudatan
branchiopods (Scanabissi and Mondini 2002, Weeks et al. 2005, Weeks et al. 2014, Brantner
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et al. 2013a), in notostracans (Macdonald et al. 2011, Mathers et al. 2013), and in the Cirripedia
(Thoracica; Charnov 1987, Kelly and Sanford 2010, Yusa et al. 2012, ] in Fig. 8.1). However, simul-
taneous hermaphrodites do often co-occur with males in androdioecious (in Branchiopoda and
Cirripedia, see later discussion) and in protandric simultaneous hermaphroditic systems (e.g.,
caridean shrimp).

Simultaneous hermaphroditism has apparently evolved four separate times in the Spinicaudata
(Weeks et al. 2014) and five times in the Notostraca (Mathers et al. 2013). In some branchiopods,
gonochoristic, androdioecious, and hermaphroditic populations occur in the same species (“geo-
graphical hermaphroditism,” as in the case of the tadpole shrimp Triops cancriformis; Zierold et al.
2007; B in Fig. 8.1).

In the Cephalocarida self-fertilization is probable: the male and female functional gonads
are separated, but the gonoducts join together and open in a single pair of hermaphroditic geni-
tal pores (Addis et al. 2012); the immotile, aflagellate sperm is also a sign of very low mating
competition (Morrow 2004), which could be found in selfing hermaphrodites. Among the
previously mentioned groups, aflagellate sperm is found in Branchiopoda and Cephalocarida,
but not in Remipedia and Cirripedia (Morrow 2004), and internal fertilization or pseudo-
copulation (sperm is released in the mantle cavity of the other hermaphrodite; Barazandeh
et al. 2013) or fertilization in a brood pouch/chamber (Weeks et al. 2002) is probable or con-
firmed in all of them (Morrow 2004). Hermaphroditic barnacles, on the other hand, seem to
perform cross-fertilization among sessile mates, using groping penises, given their sessile con-
dition (Charnov 1987). Only a few species are considered capable of self-fertilization, at least
facultatively (Furman and Yule 1990), but for many of them this ability is not fully confirmed
(Wrange et al. 2016). The assumption was partially due to the fact that isolated barnacles could
produce fertilized eggs, but a recent paper has reported spermcast mating (the possibility for
barnacles to capture sperm from the water; Barazandeh et al. 2013), and thus this assumption
may not be valid.

Among Malacostraca, simultaneous hermaphroditism has been recorded only in two tanaid
species: Apseudes spectabilis (Kakui and Hiruta 2013) and A. sculptus (former A. hermaphroditicus;
Johnson etal. 2001). The first described instance of self-fertilization in malacostracans is for Apseudes
sp. (Kakui and Hiruta 2013). The infraorder Axiidea is suggested to be hermaphroditic (see family
Axiidae, formerly Calocarididae, in Table 8.3; I in Fig. 8.1), due to the presence of both gonopores
in each individual (Johnson et al. 2001, Chiba 2007, Poore and Collins 2009, Komai et al. 2010),
even though the internal reproductive system (i.e., the presence of an ovotestis; Davison 2006) has
not been described. In other families, individual “intersexes” have been described (Dworschak
2002), but there are just a few specimens and the functionality of both gonopores has not been
investigated.

Simultaneous hermaphroditism maximizes the number of females in a population and the
chances of finding a mate under low densities (Clark 1978). These two benefits do not apply com-
pletely, though, if the eggs can be fertilized only after molting (Raviv et al. 2008). In this case, during
the reproductive season simultaneous hermaphroditic individuals can act as females only for a lim-
ited period after their molt, while they can act as males most of the time (Baeza 2007). This would
reduce the possibility of reciprocity of gamete transfer. Self-fertilizing hermaphrodites do not have
this problem, but inbreeding depression instead may limit the fitness benefits of using this repro-
ductive strategy (Weeks et al. 2006a). Molting as a physiological constraint to receptivity might
explain why pure simultaneous hermaphroditism is so rare among crustaceans, and possibly in-
stead promoted the evolution of protandric simultaneous hermaphroditism and androdioecy in
this taxon.
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Androdioecy

Branchiopod Crustaceans

Androdioecyhasbeen described from two orders of branchiopod crustaceans (Table 8.3), which oc-
cupy ephemeral, aquatic habitats that experience a broad range of abiotic environmental conditions
and population densities (Hamer and Martens 1998, Weeks et al. 2006b, Benvenuto et al. 2009,
Calabrese et al. 2016). The ephemeral nature of populations combined with low population densi-
ties has been argued as the reason that androdioecy evolves from dioecy in animals (Pannell 2002),
and it likely explains why androdioecy is so widespread in these two orders (Weeks 2012). The best
studied of these branchiopods are spinicaudatan clam shrimp in the genus Eulimnadia (see later dis-
cussion) that have hermaphrodites and males (Fig. 8.3); the hermaphrodites can either self-fertilize
or can mate with males, but they cannot outcross with other hermaphrodites. Eulimnadia is the
most speciose androdioecious lineage of any known plant or animal, having upwards of 53 species
(Reed et al. 2015). Although some Eulimnadia appear to be all-hermaphroditic (Weeks et al. 2005),
androdioecy is thought to be the ancestral breeding system in this genus (Weeks et al. 2006c, Weeks
et al. 2009b). Thus, these crustaceans are both the most speciose and the longest-lived (minimally
25 million years) clade of androdioecious animals (Weeks et al. 2006¢, Weeks 2012).

Androdioecy has also been described in the notostracan tadpole shrimp: in four species of
Triops, namely T. newberryi (Sassaman 1989), T. cancriformis (Zierold et al. 2007), T. longicaudatus
(Sassaman et al. 1997), and T. australiensis sp. B (Mathers et al. 2013 supplementary material), and
in two species of Lepidurus (L. arcticus and L. apus; Mathers et al. 2013 supplementary material).
However, the details of the reproductive system and its ecological significance in these species have
not been thoroughly investigated.

Androdioecious branchiopods produce a small amount of sperm in an otherwise female gonad
(Zucker et al. 1997, Scanabissi and Mondini 2002, Weeks et al. 2005) and in most other respects re-
semble the females of closely related gonochoristic species (Weeks et al. 2008). Several clam shrimp
species have been studied histologically (Zucker et al. 1997, Scanabissi and Mondini 2002, Weeks
et al. 2005, Weeks et al. 2006d, Weeks et al. 2009a, Weeks et al. 2014, Brantner et al. 2013a, 2013b),
and in the four separate derivations of hermaphroditism from dioecy, all clam shrimp were found
to produce a small amount of sperm in different locations throughout the ovotestes (Weeks et al.
2014). In the Notostraca, fewer histological studies of hermaphrodites have been undertaken, but
in the one species examined, ovotestes produce small amounts of sperm intermingled with egg
production (Longhurst 1955). In all other respects, the hermaphrodites of both orders are indis-
tinguishable from females (Sassaman 1995), which is consistent among animals that have derived
hermaphroditism from dioecy (Weeks 2012).

Cirriped Crustraceans
Androdioecy has been established in 35 barnacle species, across nine families (Table 8.3). The males
of the androdioecious barnacles (termed “complemental” males by Darwin, 1851, Table 8.2) settle
on or in depressions in the shell plates of the hermaphrodites, or in some cases even crawl inside the
mantle (Foster 1983). The mode of sex determination in these species is uncertain. Two hypotheses
have been proposed: (1) all larvae are potentially hermaphroditic, but those that settle in niches on
large hermaphrodites do not grow to a size where female tissues may develop (i.e., the substratum
determines sex expression); or (2) the sexes are actually genetically fixed and will develop into
each sexual type regardless of environmental conditions. Each of these ideas may be valid in dif-
ferent species, given that complemental males have arisen separately in at least seven instances in
the Cirripedia (Foster 1983, Yusa et al. 2012).

Crisp (1983) and Charnov (1987) hypothesized that cirripedes stemmed from a hermaphroditic
ancestor. However, this assessment was based purely on a historical perspective without a phyloge-
netic analysis, which has been later conducted by Hoeg (1995), tracing mating system transitions on
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Hermaphroditism and Gonochorism

the resulting tree. The analysis revealed that the two outgroup lineages were dioecious. Additionally,
within the Cirripedia, the Acrothoracica and the Rhizocephala exhibit dioecy. The Thoracica is the
most derived lineage and exhibits the first transition to hermaphroditism (Hoeg 1995). The fami-
lies within the Thoracica exhibit dioecy, hermaphroditism, and androdioecy, but the evolution of
these sexual systems remains unclear. The Iblidae is the most basal family, diverging at the node
where hermaphroditism is thought to have evolved. From this, it may be argued that complemental
males in this family could have evolved from a dioecious ancestor. In the remaining families, it is
more parsimonious that the complemental males evolved secondarily from hermaphrodites (Hoeg
1995). Yusa et al. (2012) argue that androdioecy evolves from hermaphroditism and then dioecy is
derived from androdioecy. To address the evolution of mating systems adequately in this group, a
more robust phylogeny is required.

The barnacles described as androdioecious occur in various regions of the world, exhibit
a variety of life histories, and are phylogenetically diverse (Yusa et al. 2012). Darwin (1851) first
noted this mating system in Scalpellum vulgare and Ibla quadrivalvis. In the genus Scalpellum, two
more species are known to have complemental males: S. scalpellum and S. peronii. Additionally,
in the Scalpellidae, five species in the genus Scillaelepas are androdioecious (one now recorded
as Aurivillialepas; Table 8.3). Within the genus Ibla, there is some confusion as to the number of
androdioecious species (Table 8.3). Some of this confusion may stem from authors often using the
terms “hermaphrodite” and “female” interchangeably, as well as “dwarf males” and “complemental
males” Within the order Sessilia, the families Balanidae and the Pachylasmatidae each contain
four species with complemental males (Table 8.3). Two species of Chelonibia are androdioecious,
C. patula and C. testudinaria, and both are commensal barnacles (Crisp 1983). Koleolepas avis and
K. tinkeri (junior synonym of K. willeyi) are the only two species in the family Koleolepadidae
that have been described as androdioecious (Hosie 2014). Other less-studied androdioecious
barnacles include two species of Bathylasma (B. alearum and B. corolliforme) and two species of
Paralepas (P. xenophorae and P. klepalae). Additionally, androdioecy has been described in four
species of Calantica, two species of Smilium and Octolasmis, and one species each of Heteralepas,
Arcoscalpellum, Euscalpellum, Megalasma, and Tetrapachylasma (Table 8.3).

EVOLUTION OF CRUSTACEAN REPRODUCTIVE SYSTEMS

Ancestral Crustacean Reproduction

There is growing consensus on the phylogenetic relationships among crustacean lineages (Jenner
2010; see Chapters 4 and 5 in Volume 8), but the reproductive mode of the first crustacean lin-
eage (sometimes termed the “urcrustacean”; Hessler and Newman 1975) is unclear. Cisne (1982,
p- 67) suggested that the first crustacean was free-living, marine, benthic and “probably” dioecious.
However, others (Hessler and Newman 1975, Juchault 1999) suggested that the hermaphroditic
Cephalocarida are representative of the ancestral crustacean. In this group, according to Cisne
(1982, p. 69), hermaphroditism is likely derived as “an accommodation for reproduction at the low
population densities at which cephalocarids seem to occur” This again suggests a dioecious an-
cestry in Crustacea. Phylogenies based on morphological characters often place the Remipedia (es-
pecially the Nectiopoda) as the basal lineage (Wills 1997). Nectiopodans are hermaphroditic (Ito
and Schram 1988). Molecular phylogenetic analyses have suggested that ostracods may be basal
for crustaceans (Spears and Abele 1997, von Reumont et al. 2012). Ostracods are primarily dioe-
cious, except for the derived cases of parthenogenesis (Cohen and Morin 1990). Thus, further re-
search needs to be done to determine whether the ancestral crustacean reproduced via dioecy or
hermaphroditism.
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Reproductive Biology

Although we do not know the reproductive mode of the “urcrustacean,” we do know that
evolutionary transitions between various reproductive modes have occurred repeatedly within the
Crustacea (e.g., Hoeg 1995, Perez-Losada et al. 2012, Yusa et al. 2012, Mathers et al., 2013, Weeks et al.
2014 ). Below, we will discuss these transitions.

Reproductive Transitions
Transitions from Dioecy to Hermaphroditism

The evolution of hermaphroditism from separate sexes has not been widely debated, but it has been
commonly assumed that an “intermediate” of androdioecy or gynodioecy (Table 8.1) may facilitate
such a transition. Gynodioecy appears to be exceptionally rare in animals (Weeks 2012), but Pannell
(1997, 2002) suggested that androdioecy might be a transitional strategy when evolving hermaph-
roditism from dioecy in a structured metapopulation in which “reproductive assurance” (i.e., the
ability to self-fertilize when mates are rare) is strongly advantageous (e.g., in early colonizing spe-
cies) but in which outcrossing is still advantageous when population size allows locating a suitable
mate. Weeks and colleagues (Weeks et al. 2006a, Weeks et al. 2009b, Weeks 2012) proposed the
“constraint” hypothesis for why androdioecy should be commonly derived from dioecy: if her-
maphroditism is selectively favored in a previously dioecious species (e.g., for reproductive as-
surance), the constraint hypothesis suggests that the most likely hermaphrodite to evolve from a
dioecious progenitor would be a female-biased hermaphrodite that allocates limited resources to
sperm production but lacks the ability to mate with other hermaphrodites because of a lack of male
secondary sexual characters (e.g., copulatory or mating structures; C in Fig. 8.3). Consequently,

(B) Brood pouch area under carapace

(C) Claspers for pairing
(A) Phyllopod for outcrossing
extensions for

eggs

Digging behavior for laying eggs Faster swimming for mate pairing

Fig. 8.3.

Hermaphrodite (left) and male (right) clam shrimp, Eulimnadia texana. In addition to the basic differences be-
tween male and female gametes, clam shrimp also have several secondary sexual differences. Clam shrimp females
and hermaphrodites require extensions of the phyllopods (A) and a modified carapace to produce a brood
chamber (B) to brood their eggs. Additionally, they need to dig holes in the sediment to bury their eggs. Males
require specific mating behaviors (i.e., faster swimming) as well as clasping appendages (C) to pair for outcrossing.
In clam shrimp, hermaphrodites have only the male characteristic of sperm production and none of the other sec-
ondary male characters, and thus cannot outcross with other hermaphrodites. See color version of this figure in
the centerfold. Photos courtesy of Jean-Frangois Cart.
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these female-biased hermaphrodites can only self-fertilize. This hypothesis assumes that in dioe-
cious species with many sex-specific traits, an evolutionary transition to effective expression of both
sexes would be highly improbable (Weeks 2012), requiring the simultaneous acquisition of both
primary (e.g., gamete production) and secondary sexual characters (Fig. 8.3). Therefore in sexually
dimorphic, dioecious ancestors, androdioecy is more likely to evolve than gynodioecy because the
number of evolutionary changes needed to produce a functional hermaphrodite from a male would
be much higher.

Weeks (2012) tested these ideas and found that in 40 crustacean species, androdioecy had evolved
from a dioecious ancestor in four genera: Eulimnadia, Ibla, Lysmata, and Triops (Fig. 8.4). Two of
these are branchiopod crustaceans (Eulimnadia and Triops), one is a barnacle (Ibla), and one is a
decapod (Lysmata). The latter two groups deserve special comment. As noted earlier, barnacles have
complemental males that in some species are environmentally induced, becoming males when set-
tling on larger hermaphrodites, but in other cases are genetically determined. The decapod Lysmata
is a “simultaneous protandric hermaphrodite,” which means that the various Lysmata species are
mixes of younger males that eventually develop into simultaneous hermaphrodites (Baeza 2007,
2009, Baeza et al. 2009). In both cases, the populations are mixes of males and hermaphrodites and
thus could be considered androdioecious (Weeks 2012). As predicted earlier, there are no examples
of crustaceans that have evolved gynodioecy from dioecy (Fig. 8.4).

Megalasma CD/'

Arcoscalpellum

Balanus Octolasmis
Bathylasma Paralepas Eulimnadia
Calantica Scalpellum . Ibla
Chelonibia ~ “Cilaelepas Androdioecy Lysmata
Heteralepas Smiligz] 66 spp. Triops
Koleolepas
13 genera 4 genera
N -
N -
oy N P s
Hermaphroditism S p Dioecy
N e
N '
N 7
N\ '
4 K
Gynodioecy
0 spp.

Fig. 8.4.

Evolutionary transitions in reproductive systems from dioecy to hermaphroditism (or vice versa) through
androdioecy (males and hermaphrodites) and gynodioecy (females and hermaphrodites). The thickness of
the arrows represents the known occurrence of genera (listed in the figure). Dotted arrows represent a lack of
known occurrences. The number of species for each intermediate reproductive type are noted below each type,
and the identification of the various genera are shown above the respective arrows.
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A good example of the constraint hypothesis (Weeks 2012) can be found in branchiopod
crustaceans, especially the well-studied clam shrimp (Weeks et al. 2009b). Males produce amoe-
boid sperm that fertilize the females’ eggs externally in a “brood chamber” (B in Fig. 8.3) on the
dorsal surface of the female (Weeks et al. 2004). A hermaphrodite developed from a female would
only need to produce sperm within the tubular gonad typifying clam shrimp (Scanabissi and
Mondini 2000) to be capable of self-fertilization in the absence of males. On the other hand, a her-
maphroditic clam shrimp developed from a male would need to gain the ability to produce yolk,
shell the eggs, develop a brood chamber, gain the ability to store eggs in the brood chamber (i.e.,
by attaching them to extensions of the phyllopod appendages; A in Fig. 8.3), and develop the dig-
ging behavior needed to bury the eggs in the pond bottom (Zucker et al. 2002). Unless all of these
phenotypes are controlled by the same regulatory pathway, it is highly unlikely that all of these evo-
lutionary changes could occur simultaneously within an otherwise male genetic background. Thus
one should expect the simplest pathway to produce a hermaphrodite would be the evolution of
hermaphrodites from a female progenitor, which is what is observed in these clam shrimp (Zucker
etal. 1997, Weeks et al. 2005, Weeks et al. 2006a, Weeks et al. 2009b). These patterns are mirrored in
the branchiopod Triops as well (Zierold et al. 2007, Mathers et al. 2013).

Indeed, in all the androdioecious crustacean species derived from dioecious ancestors in
which relative allocation patterns between male and female gametes have been reported, the
hermaphrodites closely resemble females, with only minor amounts of reproductive effort devoted
to sperm production (Weeks et al. 2006a, Chasnov 2010). As noted earlier, androdioecious bran-
chiopod hermaphrodites resemble the females of closely related dioecious species (Weeks et al.
2008), and decapod shrimp in the genus Lysmata (Bauer 2006) also show female-biased allocation.
As suggested earlier, these overall patterns can be explained by assuming a constraint on the devel-
opment of a hermaphrodite that can competently perform as a male while simultaneously being
competent as a female when there are numerous traits required to be competent in both male and
female roles (Weeks 2012).

Transitions from Hermaphroditism to Dioecy

If the ancestral crustacean was hermaphroditic, then dioecy is a derived condition in all gonochoristic
species. Juchault (1999) has an intriguing hypothesis for how such a transition occurred, suggesting
that a cytoplasmic parasite (e.g.,, Wolbachia) infected hermaphrodites and inhibited male expression
to increase the parasite’s inheritance. This would create all-female invaders to otherwise hermaphro-
ditic species. If this parasitic infection spread through the population, it would select for increased
allocation to male function in the non-infected hermaphrodites. Over time, as the parasite spread,
uninfected hermaphrodites would be selected to eventually lose female function to become strictly
male. This would complete the transition from ancestral hermaphroditism to dioecy ( Juchault1999).
‘We are unaware of any evidence that this has happened in any crustacean, but it is an intriguing idea.

More definitive results have been developed in the botanical literature where transitions from
hermaphroditism to dioecy have been considered in detail. Such transitions have occurred dozens
of times in flowering plants (Bawa 1980, Ashman 2002, Barrett 2010). Theoretical work suggests
that dioecy does not evolve directly from hermaphroditism, but rather that either gynodioecy
or androdioecy acts as an intermediate stage in the transition (Charlesworth and Charlesworth
1978). It is predicted that the intermediate breeding system of gynodioecy will be more common
than androdioecy in plants (Lloyd 1975, Charlesworth and Charlesworth 1978), which is indeed
observed (Pannell 2002).

In crustaceans, we find no transitions from hermaphroditism to gynodioecy and 13 generic
transitions from hermaphroditism to androdioecy (33 total species; Fig. 8.4). Interestingly, each
one of these transitions is a barnacle species evolving dwarf (or complemental) males from
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hermaphroditic progenitors (Weeks 2012). In these androdioecious species, males are specifically
serving a different purpose than the hermaphrodites, being a ready source of sperm to nearby, larger
hermaphrodites (Yusa et al. 2012). Some have argued that these smaller males are following the
same sequential reproductive maturity as the Lysmata noted earlier (i.e., maturing as males when
small and then growing to simultaneous hermaphrodites; Callan 1941, Crisp 1983). If so, then
this switch may indicate that barnacles are more fit as males when they are small because sperm
are cheaper to produce than eggs, but then do better by switching to hermaphrodites when they
are larger and can afford the higher cost of producing eggs, as argued by Charnov (1982). Others
argue that the smaller males are a distinct morph to the larger hermaphrodites (Gomez 1975). In
either case, the expression of the sexes is based on the different roles of hermaphrodites and males
that correspond to different body sizes and population densities (Ghiselin 1969, Charnov 1982,
Blanckenhorn 2000).

It appears that the evolution of dioecy from hermaphroditism in crustaceans is quite different
from that proposed for flowering plants. The transition from hermaphroditism to dioecy in flow-
ering plants has been discussed in terms of avoidance of inbreeding (Lloyd 1975, Charlesworth
and Charlesworth 1978) and is much more likely via the gynodioecious intermediate stage
(Charlesworth 2006). However in crustaceans, the only known transitions from hermaphro-
ditism are to androdioecy and not gynodioecy (Fig. 8.4), and these transitions are almost certainly
not to avoid inbreeding depression, since barnacles are not inbreeding (Weeks 2012, Yusa et al.
2012). The groping penises of hermaphroditic barnacles are not likely to allow self-fertilization, as
noted earlier. Instead, it appears that differential selective pressures on differently sized individ-
uals drive sexual expression (i.e., differential sex allocation strategies with size; see Ghiselin 1969,
Charnov 1982).

ECOLOGICAL CORRELATES OF REPRODUCTIVE SYSTEMS

Crustaceans have successfully colonized awide variety of environments, including the most extreme,
such as deserts, hydrothermal vents, and Antarctic lakes (Benvenuto et al. 2015), where population
densities can be very low. Their success is due to their extraordinary adaptability, reflected by the
tremendous diversity in morphology, physiology, ecology, behavior, and reproductive strategies
that they display.

We have identified from the literature 334 species belonging to 67 families in 13 orders of five
classes of crustaceans (Table 8.4), which are not gonochoristic (also, the list is not comprehen-
sive for parthenogenetic species). Two classes, the Remipedia and Cephalocarida, seem to be com-
pletely characterized by simultaneous hermaphroditism (but data are scarce). These two classes
have been commonly considered basal in the phylogenetic tree of crustaceans, although recent ana-
lyses group them together with Hexapoda as Allotriocarida (von Reumont et al. 2012; see Chapter 5
in Volume 8). They inhabit anchialine cave systems and marine benthic substrata, respectively, and
their population densities are very low (Neiber et al. 2011). Thus, being able to simultaneously act as
both sexes increases the chances to find a mating partner in these groups.

Another challenging habitat, where densities can fluctuate broadly, are ephemeral freshwater
pools. In these environments, some spinicaudatan branchiopods are simultaneous hermaphrodites
(six species), although the majority of non-gonochoristic species (which are also present) are
androdioecious (15 species). Among the notostracan branchiopods, one species (T. cancriformis)
presents androdioecious, hermaphroditic, and dioecious populations. In ephemeral environments,
the ability to self-fertilize (in absence of males; see discussion of androdioecious populations)
allows these species to colonize new pools with only a single individual (the self-fertile E. texana
can produce offspring of different sexes: males and hermaphrodites; Weeks et al. 20062).
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Table 8.4. Number of Non-Gonochoristic Species,

of Reproductive Mode

by Order and Family, with Description

Order

Notostraca
Spinicaudata
Brachypoda
Ibliformes
Laurida
Lepadiformes
Lepadiformes
Lepadiformes
Lepadiformes
Lepadiformes
Scalpelliformes
Scalpelliformes
Scalpelliformes
Scalpelliformes
Scalpelliformes
Sessilia

Sessilia

Sessilia

Sessilia

Sessilia

Sessilia
Amphipoda
Amphipoda
Amphipoda
Amphipoda
Amphipoda
Decapoda
Decapoda
Decapoda

Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda

Family

Triopsidae
Limnadiidae
Hutchinsoniellidae
Iblidae
Synagogidae
Heteralepadidae
Koleolepadidae
Lepadidae
Oxynaspididae
Poecilasmatidae
Calanticidae
Eolepadidae
Lithotryidae
Pollicipedidae
Scalpellidae
Archaeobalanidae
Balanidae
Bathylasmatidae
Catophragmidae
Chelonibiidae
Pachylasmatidae
Caprellidae
Corophiidae
Crangonyctidae
Lysianassidae
Stegocephalidae
Alpheidae
Atyidae
Axiidae
(Calocarididae)
Barbouriidae
Cambaridae
Campylonotidae
Crangonoidea
Hippidae
Hippolytidae
Lysmatidae
Merguiidae
Pandalidae

Total Number
of Genera
and Species
2,15
5, ~61
513
2,6
8,27
3,39
1,1
3,12
1,20
8, 40
10, 44
4,7
ll 3
2,7
28,268
12,121
16,94
4,20
2,2
1,6
7,26
88, 401
25,149
9,225
78, 491
25,108
47, 659
42, 468
44, 112

338
12, 428

LS

3,27
37,336

1,2

23,188

A SH PA
6
15 6
2
2
2
3 4
2
8
1
S
4
S
1
3
12 2
1
4 3
2
1
4
7
1
2
6
33
4
S
2
2
2
31

PG PSH P M

31




Order

Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Isopoda
Tanaidacea
Tanaidacea
Tanaidacea
Tanaidacea
Tanaidacea
Tanaidacea
Podocopida
Podocopida
Podocopida
Nectiopoda
Nectiopoda
Nectiopoda

Family

Parastacidae
Penaeidae
Processidae

Rhynchocinetidae

Solenoceridae
Thoridae
Anthuridae
Armadillidiidae
Bopyridae
Cryptoniscidae
Cymothoidae
Hemioniscidae
Philosciidae
Platyarthridae
Rhyscotidae
Sphaeromatidae
Trachelipodidae
Trichoniscidae
Apseudidae
Kalliapseudidae
Leptochelidae
Nototanaidae
Paratanaidae
Tanaididae
Cyprididae
Darwinulidae
Limnocytheridae
Godezilliidae
Pleomothridae
Speleonectidae

Total Number
of Genera

and Species

15,165
32,222
4,68
2,25

9,83

25,291
15, 315
158, 614
8,24
43,386
3,10
114, 569

9,122
1,23
96, 706
21, 245
89, 519
22,167
11, 41
11, 61
6,10
7,34

34

4,16
56

A SH PA PGPSH P M

4
1
1
1
1
2
4
1
2
1
18
1
1
1
1 1
4
2
1
2 1
1
7
2

-

3
2
17
99 93 21 40 20 4

A: Androdioecious; SH: Simultaneous hermaphrodite; PA: Protandry; PG: Protogyny; PSH: Protandric simultaneous
hermaphrodite; P: Parthenogenetic; M: mixed. Total number of genera and species per family retrieved from Zhang (2011).

Taxa in bold are possibly completely characterized by the same sexual system. For the order Anostraca, family Artemiidae please
refer to Chapter 9, this volume.
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A combination of simultaneous hermaphroditism and androdioecyisalso found in the Cirripedia
(34 hermaphroditic species belonging to 11 families; 37 androdioecious species belonging to nine
families). Indeed, barnacles show a great variety of sexual systems, which might have evolved in
response to their sessile lifestyle, densities (mating group sizes), and spatial limitations (Yusa et al.
2013, Sawada et al. 2015). Morphological constraints (small internal mantle cavity space to brood
eggs) and energy allocation have also been considered to be linked to the evolution of a hermaph-
roditic lifestyle in this group (Hoch and Levinton 2012), favoring an almost completely female indi-
vidual that can produce small amounts of sperm (with the male function that can be adjusted based
on crowding and sperm competition).

Locating mates is also problematic in deep-sea habitats. Here, hermaphroditism is commonly
reported for fishes (Warner 1984) and analogously we have found information for 33 simultaneous
hermaphroditic species of deep-water axiid burrowing shrimps (class Decapoda; Table 8.4; L in Fig.
8.1). These species, and only two species in the family Apseudidae (class Tanaidacea, otherwise
characterized by protogynous sequential hermaphroditism), are the only ones expressing simulta-
neous hermaphroditism, among the Malacostraca.

Simultaneous hermaphroditism increases the chances of successful fertilization, enhancing
encounter rates with potential mates (any individual of the same species can be a potential mate,
while gonochoristic species need to find a mate of the opposite sex). An even more extreme mech-
anism for reproductive assurance is self-fertilization, which can be advantageous when the density
of conspecifics is extremely low and in early colonizing species (Baker 1955). This advantage might
exceed the cost of inbreeding depression. Self-fertilization has been described in branchiopods
and in one malacostracan species (Apseudes sp.; Kakui and Hiruta 2013); it is not excluded in the
Cephalocarida (Addis et al. 2012), and might occur in some barnacles (still debated; Kelly and
Sanford 2010, Barazandeh et al. 2013, Wrange et al. 2016).

If simultaneous hermaphroditism augments fertilization success, sequential hermaphroditism
(sex change) increases individual lifetime reproductive success (Warner 1975), as is the case in
decapods (Charnov1979, Charnovand Anderson 1989). Sequential hermaphroditism is often found
among obligate parasites (Ghiselin 1069). The isopods belonging to the family Cymothoidae (obli-
gate parasites of fishes; Fig. 8.2), Bopyridae, and Cryptoniscoidea (obligate parasites of crustaceans;
Dreyer and Wigele 2001) are protandric sequential hermaphrodites. In the genus Cymothoa (which
parasitizes the buccal cavity of fishes; B, C in Fig. 8.2), the first free-swimming male manca (post-
larval juvenile) reaching a host will attach to the tongue of the fish, becoming a female, while the
subsequent ones will remain males (Cook and Munguia 2013, Pawluk et al. 2015). Parasites face
challenges similar to colonizing species and sessile organisms living at low densities; thus, sequen-
tial hermaphroditism will ensure the presence of the two sexes in the same host, as well as increasing
individual lifetime reproductive success (larger females are highly fecund; Tsai et al. 1999). Among
barnacles, in the infraorder Ascothoracida (parasites of coelenterates and echinoderms), two spe-
cies, W. sandersi and G. muzikae, are protandrous (Policansky 1982, Brook et al. 1994), while the
Rhizocephala (parasites of decapods) are dioecious (Hoeg et al. 2016). Overall, protandry is fa-
vored to increase offspring production when there is little male competition and thus the second
sex (female) is older, larger, and more fecund than the first sex, as well as being favored in parasitic
species.

When male competition is high, larger males are more successful than smaller ones (but see
Blanckenhorn 2000 for exceptions), thus individuals reproduce initially as females and then switch
to males. As mentioned earlier, protogynous sex change is commonly found in haremic fish (e.g.,
Munday et al. 2006), where it is often socially regulated (a condition-dependent strategy: females
will not change to males in the presence of other males). Protogynous sex change does not appear
to be socially regulated in the intertidal isopod Gnorimosphaeroma oregonensis (Brook et al. 1994),
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but in this case, females can produce only one brood and males mate-guard females, so it is ad-
vantageous to produce a single clutch as a female and then keep reproducing as a male (with the
additional advantage of larger size, to compete with other males). Socially mediated sex change also
occurs in some parasitic protandric isopods (where females might release a pheromone to prevent
other males from changing into female; Ravichandran et al. 2009) and in some protandric simulta-
neous crustaceans (Baeza and Bauer 2004).

Protandric simultaneous hermaphroditism (40 species described in 4 families) is less
common than protandrous hermaphroditism (93 species belonging to 21 families), which may
seem counterintuitive, given the possible advantage of maintaining male abilities (as a non-
selfing hermaphrodite) when switching to the female phase. Initially, this unusual mating system
was linked to a symbiotic lifestyle (expressed by socially monogamous species specialized as fish
cleaners; Bauer 2000) characterized by limited mobility (for site fidelity to the cleaning station)
and low population densities. In this condition, protandrous simultaneous hermaphroditism
would have initially evolved and then been maintained in species occurring in denser aggregations
(historical contingency hypothesis; Bauer 2000). However, recent phylogenetic analyses (Baeza
2013) do not support this hypothesis, leaving some questions about the evolution of this “puzzling”
sexual system (Bauer 2000).

In general, most of the “unusual” reproductive strategies in crustaceans seem indeed beneficial
when encounter rates with conspecifics are low and/or environments are unpredictable/unstable,
which is commonly found in “colonizing,” parasitic, and symbiotic species (Baeza and Thiel 2007).
The flexibility of crustacean reproductive systems allows them to be a very successful group in these
challenging circumstances.

Population Consequences of Reproductive Systems

The type of reproductive mode influences sex ratios, mating success, and colonization events
and thus has important ecological consequences at the population level. Sequentially her-
maphroditic species experience skewed sex-ratios toward the first sex (male in protandry and
female in protogyny), but sex ratios are even more variable due to the possibility that some
individuals develop directly as the second sex (primary females in protandrous species and
primary males in protogynous species; Table 8.2; Allsop and West 2004, Chiba 2007). Many
species of the genus Pandalus are dyginic (with primary and secondary females), as is Processa
edulis. More complex is the situation of Thor manningi, where not all males change sex; so sec-
ondary females coexist with sex-changing males, but also with primary females (shrimp born
directly as the second sex) and males that will never change sex (Bauer 1986b). Primary and
secondary males are also found in the protogynous tanaid Leptochelia africana (Larsen and
Froufe 2013), the two alpheid species Athanas indicus and A. kominatoensis, and in the pandalid
Pandalus hipsinotus (Correa and Thiel 2003). In all these cases, the reproductive value of an
individual and its mating success depend on its sexual type and the frequency of other sexual
types in the population.

Apart from primary and secondary males and different male morphotypes, “miniature males”
are also present: complemental males in some androdieocius species and dwarf males in dioe-
cious ones (Table 8.2), including barnacles (as mentioned earlier), epicaridean parasitic isopods,
in the superfamilies Bopyroidea and Cryptoniscoidea (Dreyer and Wigele 2001, Asakura 2009),
copepods (Vogt 2016), and anomurans (genus Emerita, where neotenous males maintain physical
contact with females in turbulent surf waters; Asakura 2009). These tiny males, attached to females,
can have a similar role as hermaphrodites, and they can be seen as an adaptation to low densities in
challenging environments and during parasitism (Ghiselin 1969).
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FUTURE DIRECTIONS AND CONCLUSIONS

Future Directions

The diversity of crustacean reproductive types offers excellent opportunities for carcinologists to
explore the evolution and ecology of various sexual systems. A most productive start to these fu-
ture studies would be to map reproductive modes onto a robust phylogeny of Crustacea to infer
ancestral reproduction in these interesting animals. From such a mapping, we could determine
which sexual systems evolved from which progenitors, and how frequently transitions occurred
between various reproductive modes. Such a mapping could also reveal which systems are unlikely
to lead to future changes (i.e., “evolutionary dead ends”). Adding comparisons to habitat types
could also inform larger questions of reproductive evolution and evolutionary transitions between
reproductive types.

Herein, we have concentrated primarily on various forms of hermaphroditic and mixed sexual
systems (Table 8.4). Specific questions for these systems include the following: Are androdioecious
species “transitional” stages between hermaphroditism and dioecy, or are they stable endpoints?
More detailed phylogenetic analyses of androdioecy in the Notostraca that better resolve reproduc-
tive transitions as well as likely lineage ages for androdioecious taxa would be particularly revealing
(Mathers et al. 2013). If androdioecy is determined to be long-lived in both the Notostraca and
Spinicaudata, what ecological conditions select for androdioecy in these crustaceans? Correlations
of reproductive system with habitat or other life-history traits in Eulimnadia, Triops, and Lepidurus
could shed light on the conditions that select for androdioecy in these freshwater crustaceans.

A correlate of the preceding is whether there are any gynodioecious crustaceans, and if not,
why not? Although gynodioecy is exceptionally rare in animals, it is likely that this mating system is
simply under-reported (Weeks 2012). Hermaphroditic crustaceans are excellent systems to explore
further for cases of gynodioecy, especially among the reproductively labile barnacles. In particular,
self-compatible hermaphroditic barnacle lineages that experience inbreeding depression would be the
most likely to evolve gynodioecy (Charlesworth and Charlesworth 1978), so that would be a fruitful
area to explore.

Simultaneous and protogynous hermaphroditism are rare in crustaceans. Empirical tests, phy-
logenetic analyses, and theoretical models should be employed to gain a better understanding of
the hypothesized physiological (e.g,, molt) constraints for the former and possibly low presence of
haremic species in the latter. More research is needed in this field. Protandric simultaneous hermaph-
roditism appears to be limited to the family Lysmatidae and a minority of other crustacean species
(Table 8.4).

We have listed 334 non-gonochoristic species, strictly limiting our list only to species where
actual data are known about life-history traits and reproductive strategies. Some taxa seem to be
completely characterized by the same sexual system, but we have preferred to be overly cautious
in our analysis. Indeed, the paucity of detailed data on the mating and sexual system of many
groups is a limiting factor to gather a better overview and a more detailed resolution on evolu-
tionary processes. More studies should confirm what mating and sexual systems are found in crus-
tacean groups to develop a more complete picture of the evolutionary transitions between dioecy,
simultaneous hermaphroditism, and sequential (protandric and protogynous) hermaphroditism
in crustaceans. Focused attention on reproductively labile taxa (e.g., the Branchiopoda, Ostracoda,
and the barnacles) would allow a more complete picture of reproductively diverse crustaceans. The
Isopoda are another large and heterogeneous group that should be explored (phylogenetically and
ecologically), as they show a breadth of ecological niches (marine, freshwater, and terrestrial) and
life-history strategies (free-living, commensal, and parasitic), as well as reproductive modes (Table
8.4), providing interesting comparative possibilities. Pairing such a broad phylogenetic comparison
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among taxa with their corresponding ecological correlates would provide invaluable insights into
the likely environmental pressures that selected for reproductive switches.

Finally, what are the applied implications of mating systems for conservation and management
of commercially important stocks or endangered species?

Conclusions

Clearly, crustaceans exhibit a broad range of reproductive types (Tables 8.3 and 8.4.), which reflects
both the wide array of habitats in which they are found and their various ecological roles. The ma-
jority of crustaceans are gonochoric (dioecious), but as we have outlined in this chapter, there are
numerous variations from the “standard” male + female reproductive mode. We have concentrated
on delineating the variety of hermaphroditic reproductive modes, leaving the delineation of asexual
reproduction to another chapter in this volume (see Chapter 9 in this volume). We have noted a
lack of gynodioecy in Crustacea, which is mirrored throughout the Animalia (Weeks 2012). We
have also noted the likely evolutionary transitions between these various reproductive systems
and remarked on the known ecological correlates of many of these systems. Overall, comparative
studies of crustacean reproductive modes in an ecological and evolutionary context are only in their
infancy, with investigations of individual taxa (e.g., branchiopods, Lysmata decapods, barnacles)
allowing glimpses into larger scale evolutionary patterns. However, much more research needs to
be done to allow us to fit together the interesting information from these various taxa into a larger-
scale view of crustacean reproductive evolution and what drives such evolution.

There are plenty of unanswered questions in reproductive evolution. Crustaceans are wonderful
systems in which to delve into these questions.
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