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6 

1. General introduction 
 

1.1 The mitochondrion 

The mitochondrion is a specialized, independent compartment and of particular 

importance to the eukaryotic cell. A double membrane encloses the organelle and 

allows it to process several vital metabolic pathways separate from the cytoplasm 

(Brand, 1997; Seyffert, 2003). In this regard it also takes a key role in a number of 

crucial cell processes, e.g. aging (Wei, 1998), apoptosis (Kroemer et al., 1998), diseases 

(Graeber and Muller, 1998). The mitochondrion is mainly well-known for being the site 

of oxidative phosphorylation. Electrons are transferred through a series of protein 

complexes (electron transport chain), located in the inner mitochondrial membrane, to 

an electron acceptor, which is in most animals oxygen (O2). The energy released during 

that redox reaction is used to generate a potential of protons across the inner 

mitochondrial membrane, which is on its part used as an energy source for the enzyme 

ATP synthase to phosphorylate adenosine diphosphate (ADP) to adenonsine 

triphosphate (ATP). The molecule ATP serves as a general energy supply for the cell. 

For this reason, at least one or several mitochondria are present in almost every 

respiring animal cell, dependent on the required amount of energy. It is conspicuous that 

mitochondria reproduce by binary fission only and are generally inherited by the female 

germ line (maternal inheritance). Mitochondria also contain their own genome, referred 

to as the mitochondrial DNA (mtDNA), which encodes protein subunits of the electron 

transport chain. The mtDNA also uses a derived genetic code to specify amino acids 

(Osawa et al., 1990; Osawa et al., 1992).  

The commonly accepted endosymbiont theory (Sagan, 1967) supposes that 

mitochondria are derived from prokaryotes (alpha-proteobacteria), which established a 

symbiotic relationship with the primitive eukaryotic cell. Eukaryotes bearing 

mitochondria are assumed to exist at least since the Palaeoprotozoic (2,500 to 1,600 

mya) (Knoll et al., 2006), the age when the oxygen level in the earth’s atmosphere 

significantly rose by photosynthesis. Since then the mitochondrial (mt) genome has 

evolved alongside with the nuclear genome. Consequently, the evolutionary history 

should be reflected in the mtDNA of successive organisms (Saccone et al., 1999). 
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1.2 The mitochondrial genome 

The genomes of alpha-proteobacteria (e.g. of Rickettsia prowazekii) revealed a high 

similarity to the mtDNA of eukaryotes — a strong indication for their common origin. 

Early mitochondria certainly possessed the complete genetic information of their 

bacterial ancestors. In the course of gradual transformation to a cell organelle, however, 

the gene content was significantly reduced. Some genes were simply lost, as they were 

dispensable in an endosymbiontic environment, but most of the genes were successively 

transferred to the nuclear genome (Adams and Palmer, 2003; Martin et al., 2001). This 

general trend is well traced by the declining number of mt genes in several protists, 

rhodophytes, and chlorophytes (Seyffert, 2003).  

In mt genomes of bilaterian animals (Bilateria) the gene content has been reduced to 37 

genes (2 rRNA genes, 13 protein subunit genes, 22 tRNA genes). The encoded 

polypeptides are all subunits of the protein complexes, which are part of the 

mitochondrial oxidative phosphorylation system (Taanman, 1999). The rRNAs are part 

of the mt protein synthesizing machinery. Apart from genes, also one non-coding region 

is found in the mtDNA. Bearing controlling elements for replication and transcription, it 

is called the mitochondrial control region (CR). Even though mitochondria may 

maintain their own system of DNA replication, transcription, mRNA processing and 

protein translation, they strongly rely on proteins and RNAs from the cytoplasm as well.    

 

The mtDNA usually has a size of 15-20 kb and is organized as a ring-shaped double-

helix. The larger mt genomes that are known up to now, only result from duplications of 

parts of the genome and not from variations of the gene content. Gene losses, in most 

cases of tRNA genes, were occasionally reported from certain lineages, e.g. nematodes, 

cnidarians, bivalves (Boore, 1999), and chaetognathes (Helfenbein et al., 2004). The mt 

nucleotide sequence is generally evolving faster than in sequences from the nuclear 

genome. 

The highly economical organization of the mt genome is striking: Unlike in nuclear 

DNA no introns and nearly no non-coding intergenic sequences exist except for a few 

bases. Instead, small gene overlaps are not uncommon. In cases, where all genes are 

distributed on the same DNA strand, genes are transcribed as usual. In most species, 

however, genes are located on both strands with opposite orientations. It has been 

studied for mammalian mt genomes representatively that in these cases the transcription 
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follows the ‘polycistron model’. Starting from two functionally independent 

transcription initiation sites, each strand is transcribed as a large polycistron, which is 

enzymatically processed to specific messages in subsequent steps (Boore, 1999; 

Taanman, 1999).  

The mitochondrial replication process is also based on two initiation sites. But this time 

both sites are spatially separated. The second initiation site is located about two-thirds 

downstream of the mt genome. The result is known as the asymmetrical replication 

process of mtDNA (Clayton, 1982). When the unidirectional replication is started for 

one strand, the replication of the complementary strand is retarded and does not start 

until the replication loop unveiled the second initiation site. For this reason the second 

waiting strand remains single stranded for longer than the first, which leads to varied 

mutational constraints. This is probably the reason for the frequently observed 

asymmetric distribution of complementary nucleotides between both strands (Saccone 

et al., 1999). That asymmetry can be expressed in GC- and AT-skews, whereby the GC-

skew is the more significant identifier. As the strand bias is strongly correlated to the 

orientation of the replication process (leading/lagging strand), a reversed bias indicates 

an inversion of the control region. This finding also has to be considered in 

phylogenetic analyses, as a reversed bias consequently leads to a higher base 

substitution rate in the concerned taxa. Long branch attraction (LBA) (Felsenstein, 

1978), the clustering of unrelated taxa due to many homoplasious substitutions, is 

certainly a resulting problem (Hassanin et al., 2005). 

 

1.3 Characters of ‘genome morphology’ 

Many studies on population genetics, phylogeography, and phylogeny used animal mt 

genomes as a primary source of data, due to a number of particularly suitable features 

like their small size, uniparental inheritance, lack of recombination, conserved gene 

content, exclusive presence of orthologous genes, and relatively constant gene order 

(Boore, 1999; Lavrov, 2007). While analyses mainly focused on nucleotide sequences, 

mostly of single genes (e.g. cox1, rrnL, rrnS), in the beginning, the use of non-sequence 

characters became more apparent just recently. They were named characters of ‘genome 

morphology’, since they are of the same descriptive type as morphological characters, 
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but furthermore also comprise all kinds of additional structural genomic features 

(Dowton et al., 2002). Changes of gene arrangements are certainly best-known. But also 

changes of compositional strand bias (mentioned above), gene content, genetic code, mt 

genome topology, and secondary structure modifications turned out to be valuable 

resources after an increasing number of complete mt genomes were made available for 

comparison. These characters can also be combined together with morphological 

characters in data matrices.  

Characters of ‘genome morphology’ may provide more reliable evidence on deeper 

phylogenetic relationships than comparative molecular data (Dowton et al., 2002). 

Molecular sequences are affected by random mutations accumulated over time, which 

can blur the existent phylogenetic signal. One must bear in mind that there are only four 

alternate character states for each base position (A, C, G, T), making homoplasious 

mutations common. Evolutionary divergences of a few hundred of million years might 

also lie beyond the scope of sequence analyses, as they are based on mathematical and 

biochemical models, which become increasingly inexact in this vast timeframe (Penny 

et al., 2001). 

Mitochondrial gene rearrangements deserve particular mention, as they are the most 

promising of these different types of structural mt characters. They are naturally 

investigated in almost every study covering multi-gene fragments of the entire mt 

genome of a new species. One reason for their reliability certainly is the general 

rareness of gene order changes. Due to the absence of considerable non-coding sections 

in the mtDNA, gene translocation events are very likely to corrupt vital genes — which 

are in most cases fatal for the respective cell/organism. Thus, gene rearrangements are 

only possible within narrow limits, certainly the reason why re-organizations in mt 

genomes are observed less frequently than in the nuclear genome (Dowton et al., 2002).  

An impressive example of constancy of mt gene arrangements is known from 

arthropods: A variety of crustacean and insect species (e.g. Crustacea: Daphnia pulex, 

Insecta: Drosophila yakuba) exhibit exactly the same derived mt gene order 

(pancrustacean ground pattern), which differs from the ancestral arthropod condition 

only by a single translocated trnL gene (Dowton et al., 2002; Kilpert and 

Podsiadlowski, 2006).  This finding not only suggests a sister group relationship of 

crustaceans and insects, but also proves the flawless conservation of the mt gene 

arrangement in taxa which probably diverged more than 500 million years ago (Pisani, 

2009).  
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However, if changes in gene order occur, they are assumed to be neutral to selection. 

The transcription mechanism predicts that all mt genes are transcribed as a polycistron, 

meaning that their actual position in the mtDNA is not important. Indeed, markedly 

different arrangements of mt genome are known from divergent taxa (e.g. invertebrates 

and vertebrates), suggesting that a complete reshuffling of gene order is not threatening 

the mitochondrial efficiency in any way. 

Due to its complexity it is unlikely the same gene order arises convergent from 

independent reshaping. Dowton et al. (2002) calculated the chance of two mt genomes 

sharing the identical derived position of a single gene due to convergent evolution with 

only 1/2664, under the precondition of equal probability for all gene translocation 

events. At least tRNA genes are known for an accelerated mobility with respect to other 

mt genes (Saccone et al., 1999; Saccone et al., 2002); and genes within clusters of 

tRNA genes were found to swap positions more frequently (Dowton and Austin, 1999). 

This underlines the importance to consider gene translocation mechanisms a well, since 

they have the potential to raise the chance of homoplasy. 

 

1.4 Mechanisms of gene translocation  

The initial concept of mt gene translocation was developed for genes which were 

translocated to a new position on the same strand. The duplication random loss model 

(Figure 1.1a) implies that the newly synthesized strand can slip back to an already 

replicated part of the template strand (slipped strand mispairing) during the ongoing 

replication process. When the DNA polymerase now resumes the extension, parts of the 

genome are synthesized again. As a result, duplicates of genes exist on the new strand. 

Due to the high selection pressure to keep the mt genome small, microdeletions 

accumulate by chance in supernumerary genes copies, allowing only one of each 

orthologous gene to stay functional. The deletion of genes over time either reconstructs 

the original gene order or gives rise to a new gene arrangement, where single genes 

appear to have changed their relative positions (Boore, 2000; Dowton et al., 2002). 

Inaccurate termination of replication was also suggested to cause duplication of genes 

(not depicted); in this case the synthesis of the new strand continues after the complete 

replication of the mitogenomic ring (Boore et al., 1998) 
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Figure 1.1: Mechanisms of gene translocation. a) Tandem duplication random loss (Dowton et 
al., 2002). I) Starting at the replication origin (OR) the complementary strand is synthesized. II) 
Due to chance homology the new strand slips back and allows base pairings of different genes. 
III) Complementary strand synthesis continues; genes 3 and 4 exist twice. IV) microdeletions 
accumulate over time. One redundant gene copy gets lost, V) resulting in a new gene order. b) 
Inversion as a result of intramolecular recombination. I) Initial gene order in the mt genome. II) 
A twist of the mtDNA ring causes a strand crossing. The double-strand break/repair integrates 
an inverted sequence. III) Genes 5 to 2 are inversed. 



1. General introduction 

12 

The remolding of tRNA genes can be regarded as an extension of the duplication 

random loss model. Subsequent to a duplication of a tRNA gene mutations occur in the 

anticodon and change the gene identity. A random drop of one supernumerary gene 

follows as described. This kind of event can be indicated by a high similarity in 

nucleotide sequences of original gene and gene copy. In addition, both genes are often 

located next to each other. A remolding from trnL(UUR) to trnL(CUN) seems to be not 

unusual, as it originated in several gastropods and crustaceans as result of convergent 

evolution (Rawlings et al., 2003). 

Long-range translocations of genes are probably not caused by a duplication random 

loss event. The original gene order would have to be restored for all but the translocated 

genes, a process which becomes more unlikely with increasing distance of 

translocations. Gene inversions can also not be explained by the common duplication 

random loss model. These events probably result from intramolecular recombination. 

This mechanism not only rearranges parts of the genome, but also inverts them at the 

same time (Figue 1.1b). There is so far no conclusive proof whether duplication random 

loss or intramolecular recombination is dominating mt gene rearrangements.  

The lack of substantial non-coding sequences in the mt genome makes mt gene order 

changes generally difficult. The only exception is the mt control region, which bears 

some regulatory elements but no genes. For this reason it might be a favorite insertion 

area for translocations.  

As mitochondria are only maternal inherited, apart from some exceptions, only those 

gene rearrangements are passed, which occur during the oogenesis (Dowton et al., 

2002). 

 

1.5 Characterization of Isopoda 

The Isopoda (Malacostraca: Peracarida) are a very species-rich suborder of peracarid 

crustaceans. More than 10,100 isopod species are currently known (Schotte et al., 

2009), reflecting the amazing ecological diversity of the isopod group. Just for 

comparison, for Crustacea as a whole the estimate number of described species was 

stated approximately 52,000 (Martin and Davis, 2001). Like other crustaceans isopods 

were initially marine species. In the course of time isopods found a world-wide 
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distribution. Nowadays they not only occupy all kinds of aquatic habitats, comprising 

the oceans from the littoral to the deep sea, but are also found in various fresh water 

environments including subterranean waters. The largest isopod subgroup is formed by 

terrestrial isopods (Oniscidea, >5,300 species), though. These isopods are largely 

independent form open water and are able to inhabit even arid regions (Schmidt, 2008). 

The direct development of eggs to juveniles takes place in a ventral brood pouch 

(marsupium) of the female, a main autapomorphy of Peracarida. The maternal brood 

care enabled by the marsupium is considered as a prerequisite for the later colonization 

of land by oniscidean isopods (Westheide and Rieger, 2007). Most isopod species are 

free living, but parasitic or symbiotic species are known as well. The type of feeding is 

diverse, since predators as well as carrion eaters, sediment feeders, and filterers are 

known. The typical isopod size is 1 to 5 centimeters, but extremes from 300 

micrometers (Microcerberidae) to nearly 50 centimeters (Bathynomus) do also exist. 

The oval, dorsoventrally flattened habitus, that is usually associated with isopods, is 

certainly an adaptation to the living on the ground. Nevertheless, there are alterations of 

body shape, e.g. Phreatoicidea are laterally thinned and more reminiscent of amphipod 

species. Parasitic isopods have undergone great changes (e.g. Bopyridae), sometimes 

even lack segmentation, and show as adults only little similarity to isopods at all.  

Isopods, belonging to the greater group of malacostracan crustaceans, share the typical 

subdivision of the thorax in segments with walking legs (peraeopods) and segments 

with lamellar legs for swimming and breathing (pleopods). In Isopoda there are seven 

pairs of peraeopods and five pairs of pleopods. The name Isopoda is a reference to the 

high similarity of the peraeopods, meaning “similar” (iso) and “foot” (pod) (Schotte et 

al., 2009). 

 

1.6 Phylogeny of Isopoda 

Apart from serious efforts of phylogeneticists, the Isopoda persist to be a group with 

uncertain phylogenetic relationships (Wilson, 2009). A general phylogeny seems to 

have settled (Brusca and Wilson, 1991; Wägele, 1989), but some issues still remain 

ambiguous, due to high degree of diversification and the large number of isopod 

species. This applies above all to derived groups of isopods, like those which were 
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formerly comprised as “Flabellifera” (Brandt and Poore, 2003), but also to the earliest 

divergences within the Isopoda. The specialized fresh water-inhabiting Phreatoicidea 

are placed as the sister group to all other isopods, followed by the Asellota as the next 

taxon in recent studies. However, there are first indications of Phreatoicidea and 

Asellota being sister groups (Wilson, 1999). Most recent molecular 18S data show no 

resolution for the major isopod divergences or places the Phreatoicidea on a higher level 

in the isopod tree (Wilson, 2009). Other relationships of major isopod taxa have been 

raised, too, e.g. the Asellota being the earliest branching taxon within isopods prior to 

the Oniscidea (Schmalfuss, 1989), or a sister group relationship of Oniscidea and 

Valvifera (Tabacaru and Danielopol, 1999). 

The placement of the Isopoda within the Peracarida is also uncertain. Nine major 

subclades are currently recognized for the various subgroups of Peracarida (Martin and 

Davis, 2001), but their relationships remain subject to continuing controversial 

discussions, as well as the membership of different species to these groups. A brief 

overview, summarizing eight alternative hypotheses of peracarid phylogeny from the 

last decades, can be looked up in Spears et al. (2005). The greatly varying position of 

the Isopoda in these peracarid trees presented by different authors is an obvious 

problem. Some authors suggest a basal branching of the Isopoda, whereas others favor a 

later origin. Hence, different putative sister groups are proposed, most notably 

Amphipoda and Tanaidacea. 18S and combined 18S/morphological analyses indicate, 

however, that the closest relative to isopods might also be Cumacea (Wilson, 2009). 

Spears et al. (2005) emphasize that a lot of the persisting difficulties in determining the 

peracarid phylogeny can be ascribed to the very limited list of synapomorphic peracarid 

characters. Some of the features do not even occur in all peracarid suborders, and are 

partially found in non-peracarid crustaceans as well.  
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1.7 Thematic complexes 

The following chapters are intended for an in-depth analysis of additional mitogenomic 

characters, also referred to as characters of ‘genome morphology’, of isopods and 

related peracarid species. For this purpose a number of thematic complexes and 

questions will be addressed within this thesis: 

 

(1) What kinds of characters of ‘genome morphology’ actually exist in the examined mt 

genomes? Are these characters valuable for phylogenetic inference? Do they occur 

frequently enough to establish a phylogeny apart from sequence data? (Chapters 2 to 6) 

 

(2) Are there any rearrangement hotspots in the mt genome? Or is an equal distribution 

of translocated genes over the entire genome observed? Areas of increased gene order 

variability may be of less phylogenetic value, as they might be subject to homoplasious 

change. (Chapters 2 to 4) 

 

(3) What is the scenario of ‘genome morphology’ changes within Isopoda? How can the 

observed succession of character changes be most parsimoniously explained? A broad 

comparison of species should not only allow tracing back character evolution, but 

should also enable inferences on the underlying mechanisms. What is the putative gene 

order in the isopod ancestor? 

 (Chapter 4) 

 

(4) How reliable are characters of ‘genome morphology’? Is there any conflict in the 

data, e.g. are there specific examples of homoplasious events? (Chapter 2 and 4) 

 

(5) What is the basal split in isopod phylogeny? Phreatoicidea, Asellota or a common 

clade of both taxa are worth being considered to take the most basal position relative to 

the other isopods. (Chapters 3 and 4) 

 

(6) What is the sister group of the Isopoda? (Chapters 5 and 6) 
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2. The complete mitochondrial genome of the common sea 
slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene 
order and unusual control region features 

 

2.1 Abstract 

Background: Sequence data and other characters from mitochondrial genomes (gene 

translocations, secondary structure of RNA molecules) are useful in phylogenetic 

studies among metazoan animals from population to phylum level. Moreover, the 

comparison of complete mitochondrial sequences gives valuable information about the 

evolution of small genomes, e.g. about different mechanisms of gene translocation, gene 

duplication and gene loss, or concerning nucleotide frequency biases.  

The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of 

crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. 

Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North 

Sea and Atlantic coastlines. 

Results: The study reveals the first complete mitochondrial DNA sequence from a 

peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-

stranded DNA molecule, with a size of 15,289 bp. It shows several changes in 

mitochondrial gene order compared to other crustacean species. An overview about 

mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The 

largest non-coding part (the putative mitochondrial control region) of the mitochondrial 

genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of 

the genome. It bears two repeat regions (4x 10bp and 3x 64bp), and a GC-rich hairpin-

like secondary structure. Some of the transfer RNAs show secondary structures which 

derive from the usual cloverleaf pattern. While some tRNA genes are putative targets 

for RNA editing, trnR could not be localized at all.  

Conclusions: Gene order is not conserved among Peracarida, not even among isopods. 

The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene 

order, compared to the arthropod ground pattern and to the amphipod Parhyale 



2. The mitochondrial genome of Ligia oceanica (Isopoda: Oniscidea) 

17 

hawaiiensis, suggesting that most of the translocation events were already present the 

last common  ancestor of these isopods. Beyond that, the positions of three tRNA genes 

differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both 

isopod species compared to other Malacostraca. This is probably due to a reversal of the 

replication origin, which is further supported by the fact that the hairpin structure 

typically found in the control region shows a reversed orientation in the isopod species, 

compared to other crustaceans.  

 

2.2 Background 

The metazoan mitochondrial genome is a circular double stranded DNA molecule of 

about 12-20 kb length. Due to the important role of mitochondria for cell metabolism its 

gene content is highly conserved and typically contains the same 37 genes: 13 protein-

coding genes, two ribosomal genes and 22 transfer RNA genes (Wolstenholme, 1992). 

In addition one A+T-rich non-coding part is present which contains essential regulatory 

elements for transcription and replication. It is therefore referred to as the mitochondrial 

control region (Wolstenholme, 1992). The organization of the mtDNA is compact with 

very little non-coding sequences between genes, even gene overlaps by a few 

nucleotides are commonly found (especially at the boundaries between nad4/nad4L and 

atp6/atp8). As a result the gene order of mitochondrial genomes is relatively stable 

because rearrangements are likely to disrupt genes. Thus changes in gene order are 

relatively rare, whereas tRNA genes more frequently change their position than larger 

protein-coding and rRNA genes (Boore, 1999). Mollusca (Akasaki et al., 2006; Boore 

et al., 2004; Dreyer and Steiner, 2004; Knudsen et al., 2006), Brachiopoda (Endo et al., 

2005; Helfenbein et al., 2001; Noguchi et al., 2000; Stechmann and Schlegel, 1999) and 

Nematoda (He et al., 2005; Hu et al., 2003; Keddie et al., 1998; Lavrov and Brown, 

2001) represent phyla where a lot of rearrangements of mitochondrial genomes were 

reported, whereas in Chordata only few changes in gene order were found (Boore, 

1999). Among arthropods a lot of species have retained the arthropod ground pattern (or 

a slight modification in Hexapods and Crustacea), while some taxa show frequent 

genome rearrangements, e.g. Myriapoda (Lavrov et al., 2000; Lavrov et al., 2002; 
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Negrisolo et al., 2004), Hymenoptera (Dowton et al., 2003; Dowton and Austin, 1999), 

Acari (Black and Roehrdanz, 1998; Shao et al., 2005), and Araneae (Masta and Boore, 

2004; Qiu et al., 2005). Peracarid crustaceans seem to represent another example, as 

two partially sequenced mitochondrial genomes (Cook et al., 2005; Podsiadlowski and 

Bartolomaeus, 2006) exhibit strong differences between each other and from the 

arthropod ground pattern. 

Mitochondrial genomes offer a broad range of characters to study phylogenetic 

relationships of animal taxa. Besides nucleotide and amino acid sequences, tRNA 

secondary structures (Macey et al., 2000), deviations from the universal genetic code 

(Castresana et al., 1998; Telford et al., 2000), as well as changes in the mitochondrial 

gene order (Boore et al., 1998; Boore et al., 1995) are successfully used as characters in 

phylogenetic inference. Especially the changes in gene order prove as extremely reliable 

phylogenetic characters because the probability that homoplastic translocations occur in 

closely related taxa is very low. Dowton et al. (Dowton et al., 2002) calculated a chance 

of 1/2664 for a single gene translocation event occuring independently in two 

mitochondrial genomes (starting from the same gene order in both). However, this 

probability could be underestimated according to yet unidentified constraints on modes 

of gene rearrangements and should be handled with care. 

With about 21,000 known species peracarids comprise approximately one third of all 

crustacean species so far described. Within Crustacea the isopods form the largest 

subtaxon (10,000 species). Isopods show an amazing ecological diversity and 

morphological flexibility. They are common around the globe, their habitats range from 

deep sea plains over freshwater wells to terrestrial, even arid deserts. Although to date 

30 complete mitochondrial genomes from crustaceans are available - thereof 16 from 

malacostracan species - a complete mitochondrial sequence of a peracarid species is still 

missing. Recent sequencing efforts with the amphipod Parhyale hawaiiensis (Cook et 

al., 2005) and the isopod Idotea baltica (Podsiadlowski and Bartolomaeus, 2006) 

produced almost complete genome records, lacking only the control region and some of 

the tRNA genes. Here we present the first complete sequence of a peracarid 

mitochondrial genome. Ligia oceanica (Isopoda: Oniscidea) is a terrestrial species 

living on rocky seashore habitats. It is found from Norway to Iceland in the north, 

around the british islands and the north sea coasts south to northern Spain and Portugal. 

We discuss changes in gene order compared to other crustacean taxa and give an 
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overview about genome rearrangements in Crustacea. In addition we compare 

nucleotide composition of isopod mitochondrial genes and tRNA secondary structure, 

and describe in detail uncommon features of the mitochondrial control region from 

Ligia oceanica.  

 

2.3 Results and Discussion 

Genome organization 

The complete mitochondrial genome sequence of L. oceanica has an overall length of 

15,289 bp [GenBank:DQ442914]. Successfully accomplished PCRs have proven a 

circular organization of the molecule (Figure 2.1). Although this is the general state of 

metazoan mitochondrial DNA, it is mentioned here, because there is evidence for a 

linear organization in a related species, Armadillidum vulgare (Isopoda: Oniscidea) 

(Raimond et al., 1999). All 13 protein coding subunits which are usually found in 

metazoan mitochondrial genomes are present, as well the two rRNA subunits (Table 

2.1). In contrast only 21 tRNA genes instead of the typical number of 22 were identified 

(see below). In addition one major non-coding sequence was detected, which 

presumably contains the origin of replication and regulatory elements for transcription 

(mitochondrial control region). There are small gene overlaps at 14 gene borders. The 

largest has a length of 15 nucleotides (between nad2 and trnC). Some small non-coding 

sequences exist which occur quite often in arthropod mitochondrial genomes. The 

largest extends up to 52 nucleotides and is located between  trnT and nad5.  

 

Protein-coding genes 

The A+T content of the protein coding genes of the L. oceanica mitochondrial genome 

is with 60.1% (A=28.6; C=16.7%; G=23.2%; T=31.5%) at the lower end observed for 

malacostracan species. The values range from a 60.0% minimum given by Cherax 

destructor (Miller et al., 2004) to a  69.3% maximum by Penaeus monodon (Wilson et 

al., 2000). Whereas the majority of the 13 protein coding genes show usual start codons 
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for mtDNA, two genes begin with exceptional codons (Table 2.1). The gene atp8 

probably starts with codon GTG. Although there is an ATA codon nine bp downstream 

from this start codon, alignments with atp8 amino acid sequences from other arthropods 

suggest the presence of more amino acids in the starting region. GTG is probably also in 

use as start codon in mitochondrial genes from Idotea baltica (nad1 and cox2) 

(Podsiadlowski and Bartolomaeus, 2006). The second gene with an apparently 

exceptional codon is cox1, which starts with ACG. Although this seems to be unusual in 

metazoan mitochondrial genomes, almost all other malacostracan crustaceans studied so 

far have this start codon for cox1. The only known exception concerns the crab 

Portunus trituberculatus (Yamauchi et al., 2003). Two of the protein coding genes  

 

 

Figure 2.1. Map of the mitochondrial genome of Ligia oceanica. Transfer-RNAs are 
represented by their one-letter amino acid code. Inverted (white on black) legends indicate 
genes located on (-)strand. Numbers specify the length of non-coding sequences or the extent 
of gene overlaps (negative values), respectively. 
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Table 2.1. Gene content of the mitochondrial genome of Ligia oceanica. 
Gene Strand GenBank 

position no. 
Size 
(nts) 

Size 
(aa) 

Start codon Stop codon 
Intergenic 

nucleotides 

trnQ - 1-63 63    11 
trnM + 75-140 66    -21 
nad2 + 120-1142 1023 340 ATG TAA -15 
trnC - 1128-1181 54    0 
trnY - 1182-1243 62    4 
cox1 + 1248-2786 1539 512 ACG TAA -5 
trnL2-UUR + 2782-2843 62    0 
cox2 + 2844-3527 684 227 ATA TAG 0 
trnK + 3528-3590 63    -2 
trnD + 3589-3648 60    1 
atp8 + 3650-3805 156 51 GTG TAA -7 
atp6 + 3799-4470 672 223 ATG TAA -1 
cox3 + 4470-5256 787 262 ATG T 0 
trnG + 5257-5317 61    3 
nad3 + 5321-5671 351 116 ATT TAA -2 
trnA + 5670-5729 60    18 
nad1 - 5748-6691 944 314 ATA TA -3 
trnL1-CUN - 6689-6750 62    -4 
trnN + 6747-6810 64    * 
rrnS + 6811-7660 850    * 
trnW - 7661-7726 66    24 
trnV - 7751-7806 56    36 
trnI  + 7843-7899 57    * 
non-coding 
region 

 7900-8636 737    * 

trnE + 8637-8696 60    2 
trnS1-AGY  + 8699-8760 62    17 
cob - 8778-9911 1134 377 ATA TAA 0 
trnT - 9912-9971 60    52 
nad5 + 10024-11688 1665 554 ATT TAG -10 
trnF + 11679-11741 63    -4 
trnH - 11738-11800 63    -1 
nad4 - 11800-13134 1335 444 ATG TAA -7 
nad4L - 13128-13418 291 96 ATA TAA 12 
trnP - 13431-13492 62    13 
nad6 + 13506-13994 489 162 ATT TAG -2 
trnS2-UCN + 13993-14055 63    * 
rrnL - 14056-15289 1234    * 

*  Gene borders defined by borders to adjacent genes 

 

show truncated stop codons. The gene for nad1 terminates with TA whereas cox3 bears 

a single thymine at its end. This is a well known phenomenon in the mitochondrial 

genome and is frequently reported for several species. The stop codons are very likely 

completed by post-transcriptional polyadenylation, so that each transcript finally obtains 

a functional UAA terminal codon (Ojala et al., 1981).  
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In most arthropods there is a strand specific bias in nucleotide frequencies (Hassanin et 

al., 2005; Hassanin, 2006). In detail the (+)strand contains more cytosine and adenine, 

while the (-)strand consequently is more rich in guanine and thymine. Some taxa show a 

reversal in that strand bias, among them the isopod Idotea baltica (Podsiadlowski and 

Bartolomaeus, 2006). Strand bias is best reflected in GC skew (Hassanin et al., 2005; 

Perna and Kocher, 1995) of mitochondrial genes (Table 2.2). In Ligia oceanica, as well 

as in Idotea baltica, GC skew is positive in (+)strand encoded genes, while it is negative 

in (-)strand encoded genes. This is in contrast to most other malacostracan crustaceans 

and is probably due to an inversion of the mitochondrial control region, or at least the 

replication origin (Hassanin et al., 2005). Further evidence comes from sequence 

analysis of the control region (see below).  

The effective number of codons (ENC) is a statistic describing how far codon usage in 

protein-coding genes departs from the equal usage of all synonymous codons (Wright, 

1990). Its range lies between 20 (when only one codon is used for each amino acid) and 

62 (when all synonymous codons are equally in use). The latter departs from the usual 

value of 61 for nuclear genes as in invertebrate mitochondrial genomes 62 codons are in 

use (instead being a stop codon, UGA codes for tryptophane in the invertebrate 

mitochondrial code). The ENC of all published crustacean mitochondrial genomes was 

determined for all genes (Figure 2.2), except nad4L and atp8, because these genes are 

too short (less than 100 codons) to get proper results. A positive correlation with G+C 

content in third codon positions was revealed (r2 = 0.3381; p<0.01). There is no obvious 

difference seen between malacostracan and other crustaceans. Genes from the two 

isopod species (Ligia oceanica and Idotea baltica) are of higher G+C content and 

therefore show a higher than average number of effective codons.  For numbers of 

effective codons for individual species and genes, as well as GenBank accession 

numbers see Supplementary file 2.1. 

 

Transfer RNAs 

We identified 21 out of normally found 22 transfer-RNA genes in the mitochondrial 

genome of Ligia oceanica. Despite extensive efforts to find secondary structures in non-

coding regions the gene trnR was not found in the mitochondrial genomes sequence. By 
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all means  tRNA-Arg is essential for maintaining translation of mitochondrial gene 

products, so it has to be either imported into the mitochondrion, or its gene exists in the 

mitochondrial genome, but is subject to extensive RNA editing and therefore not 

identifiable by now. 

Transfer-RNA genes are spread over the entire genome and are located on both strands 

(Figure 2.1, Table 2.1). 14 of them were identified using tRNAscan-SE 1.21 (Lowe and 

Eddy, 1997). The other seven tRNA genes (trnD, trnC, trnE, trnI, trnF, trnS1, trnW) 

were found by eye inspection of otherwise non-coding regions. Some of the putative 

secondary structures derive from the usual cloverleaf pattern (Figure 2.3): tRNA-Cys 

and tRNA-Ser(AGY) lack the DHU-arm. The loss of this arm in tRNA-Ser(AGY) was 

also observed in many other arthropod species, among malacostracan crustaceans 

Pseudocarcinas gigas and Macrobrachium rosenbergi (Miller et al., 2005), Euphausia 

superba (Machida et al., 2004b), Cherax destructor (Miller et al., 2004), Penaeus 

monodon (Wilson et al., 2000), and Portunus trituberculatus (Yamauchi et al., 2003). 

In contrast to that, the derived structure of tRNA-Cys seems to be unique among 

malacostracan species studied so far. Transfer-RNA-Val and tRNA-Ile miss the TΨC-

arm. Again these features are not seen in other malacostracan crustaceans.  

A misplaced adenine was recorded in the anticodon loop of tRNA-Val. Its existence has 

been proven by repeated sequencing of different PCR-products. To assure the 

functionality of this gene a correctional RNA editing must be presumed in which a 

single nucleotide is removed. Similar post-transcriptional events with insertion and 

deletion of single nucleotides are known from the mitochondrial mRNAs of 

trypanosomes (Benne, 1994), tRNA editing was demonstrated in the centipede 

Lithobius forficatus (Lavrov et al., 2000). In addition several mismatches are found in 

tRNA stems, most of them in the acceptor stem (Figure 2.3: tRNA-Gln, tRNA-Ile, 

tRNA-Leu1, tRNA-Leu2, tRNA-Pro, tRNA-Val, and in the anticodon stem (Figure 2.3: 

tRNA-Ala, tRNA-Asp, tRNA-Thr, tRNA-Tyr). Such mismatches were also reported 

from other animal mitochondrial tRNAs and are probably further subjects to RNA 

editing (Lavrov et al., 2000; Masta and Boore, 2004; Yokobori and Paabo, 1995).  
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Table 2.2. Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of L. 
oceanica. GC-skew from Idotea baltica genes for comparison. GC-skews from genes coding on 
(-)strand are shown in bold numbers.  
  Gene Nucleotide frequency %AT AT skew GC skew GC skew 
(strand) A C G T   L.oceanica I.baltica 

         
atp6 (+) 0.244 0.205 0.222 0.329 57.3 -0.148 0.038 0,012 
atp8 (+) 0.288 0.157 0.157 0.399 68.6 -0.162 0.000 0,100 
cox1 (+) 0.236 0.190 0.224 0.350 58.6 -0.195 0.083 0,122 
cox2 (+) 0.253 0.183 0.228 0.336 58.9 -0.142 0.111 0,169 
cox3 (+) 0.219 0.212 0.234 0.336 55.4 -0.211 0.048 0,029 
cob (-) 0.250 0.248 0.153 0.348 59.9 -0.164 -0.235 -0,212 
nad1 (-) 0.236 0.205 0.213 0.346 58.3 -0.188 0.020 -0,090 
nad2 (+) 0.269 0.149 0.236 0.347 61.6 -0.127 0.226 0,299 
nad3 (+) 0.219 0.194 0.268 0.319 53.9 -0.185 0.161 0,320 
nad4 (-) 0.273 0.229 0.142 0.357 63.0 -0.134 -0.235 -0,247 
nad4L (-) 0.261 0.196 0.155 0.388 65.0 -0.196 -0.118 -0,204 
nad5 (+) 0.275 0.127 0.255 0.343 61.7 -0.111 0.335 0,246 
nad6 (+) 0.268 0.125 0.233 0.374 64.2 -0.166 0.303 0,240 
rrnL (-) 0.345 0.186 0.163 0.306 65.2 0.060 -0.065 -0,103 
rrnS (+) 0.324 0.187 0.212 0.278 60.1 0.076 0.062 0,098 
CR 0.240 0.231 0.212 0.318 55.8 -0.139 -0.043 n.d. 
total (+) 0.292 0.169 0.222 0.317 60.9 -0.041 0.136 n.d. 

 

 

 

Figure 2.2. Effective number of codons versus G+C content in third codon position in 
crustacean mitochondrial genes. All species with complete mitochondrial genome entries are 
included (for a species list, GenBank accession numbers and single values see Supplementary 
file 2.1). For each species eleven mitochondrial protein-coding genes were evaluated and 
plotted (all except nad4L and atp8, which contain less than 100 codons). Black dots: genes 
from Isopoda; orange dots: genes from all other Malacostraca; white dots: genes from 
Crustacea excl. Malacostraca. Regression line with r2 = 0.3381; p<0.01.  
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Figure 2.3. Plots of the mitochondrial tRNAs found in Ligia oceanica. An additional nucleotide, 
probably deleted by RNA editing, is found in the anticodon loop of trnV (arrow).  
 

Control region and repetitive sequences 

There is one major non-coding region of 737 bp length located between trnI and trnE. It 

is assumed to be the mitochondrial control region. At its boundary to trnI it contains 

two sections with repetitive sequences (Figure 2.4). The first consists of a series of four 

completely matching sequences of 10 bp each and extends into trnI. The second section 

is formed by a consecutive triplicate 64 bp segment. No similarities of these sequences 
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to any other mitochondrial gene could be identified. Only a few other mitochondrial 

genomes were shown to contain any repeat region: rabbit mitochondrial genomes show 

repeated 153 bp motifs in their mitochondrial control region, varying in copy number 

between different individuals or tissues (Casane et al., 1994); the highly aberrant 

mitochondrial genome of the brachiopod Lingula anatina posesses ten different 

unassigned repeated elements ranging in size between 28 bp and 1092 bp and in copy 

number between 2 and 11 (Endo et al., 2005). Also some insects show tandem 

repetitions in mitochondrial DNA (Zhang, X and Hewitt, 1997). 

Contrary to expectations the A+T content in the control region (55.8%) is lower than in 

other parts of the genome (protein coding genes: 60.1%). In contrast most other 

arthropods have an A+T-rich control region. While the repeat region is A+T-rich 

(70.3%), a 65 bp region near the 3`-end of the control region has an A+T content of 

only 14.1% (Figure 2.4). That region is putatively folded into a hairpin-like structure 

with a stem consisting of 19 paired nucleotides (two mismatches) and a loop consisting 

of 11 nucleotides (Figure 2.5). This hairpin-like structure highly resembles stem-loop 

structures known from insect mitochondrial control regions which have stems ranging 

 

 

Figure 2.4.  Sequence of trnI and the major non-coding region (control region) of Ligia 
oceanica. The region contains two sections with tandem repeats (4x 10bp, 3x 64bp) and a GC-
rich region containing the putative hairpin structure (see also Figure 2.5).   

 

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=contrary�
http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=to�
http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=expectations�
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Figure 2.5. Hairpin structures in the mitochondrial control regions of Ligia oceanica (Isopoda), 
Squilla mantis (Stomatopoda), Panulirus japonicus (Decapoda) and Drosophila yakuba 
(Hexapoda). Conserved motifs in 5´- and 3`-flanking sequences are underlined. Drosophila 
yakuba structure according to (Monforte et al., 1993), the other structures were deduced from 
GenBank entries. 
 
 
 

between 15-30 bp and loops of about 9-15 nucleotides (Zhang et al., 1995). Similar 

stem-loop structures were found in other crustacean species, like the mantis shrimp 

Squilla mantis and the spiny lobster Panulirus japonicus (Fig 5). The flanking 

sequences around the stem region show conserved motifs: 5`-flanking sequences show a 

TATA element, while 3`-flanking sequence contains a GACT in Ligia and Squilla, 

while the GAAAT motif typical for insects is found in Panulirus. It is assumed that 

these structures are of functional importance in conjunction with the origin of 

replication (Zhang et al., 1995). In Ligia the flanking motifs are found in opposite 

direction and strand compared to that of Squilla and Panulirus. This fact gives direct 

evidence for an inversion of the control region in isopods (in addition to the reversed 

strand bias of nucleotide frequency mentioned above).  
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An overview about gene translocations in Crustacea 

Crustacean systematics is far from being settled. While Malacostraca seems to be a well 

defined clade, the interrelationships between crustacean subtaxa is under debate and 

even monophyly of Crustacea is doubtful, with respect to the position of Hexapoda, 

which are probably the next relatives to a crustacean subtaxon (Malacostraca, 

Branchiopoda or Copepoda) (Cook et al., 2005; Mallatt and Giribet, 2006; Nardi et al., 

2001; Regier et al., 2005; Wilson et al., 2000). Mitochondrial genome rearrangements 

may serve as phylogenetic markers which support sistergroup relationships among 

Crustacea. From 35 species of Crustcea complete or almost complete mitochondrial 

genome sequences are recorded in GenBank. Gene order is not conserved among these 

taxa: only 13 species show no changes compared to the pancrustacean ground pattern 

(Figure 2.6 and 2.8: Pancrustacea ground pattern). Transfer-RNA genes are more often 

translocated than other genes, probably because of their small size.  

Crustacea and Hexapoda (united as Pancrustacea (Boore et al., 1998; Friedrich and 

Tautz, 1995; Shultz and Regier, 2000) or Tetraconata (Richter, 2002)) share the same 

ground pattern in mitochondrial gene order (Boore et al., 1998). It differs from the 

euarthropod ground pattern (Staton et al., 1997) by the position of one tRNA gene: 

trnL2 is located between cox1 and cox2, whereas in Chelicerata, Myriapoda and 

Onychophora trnL2 is located between nad1 and rrnl, adjacent to trnL1 (Boore et al., 

1998; Boore et al., 1995). Among other data, mitochondrial gene translocations have 

shown that the enigmatic Remipedia and Pentastomida definitely belong to 

Pancrustacea, as they show the above mentioned translocation of trnL2 (Lavrov et al., 

2004). Only three crustacean species do not show this character: the cephalocarid 

Hutchinsoniella macrantha (Lavrov et al., 2004), where trnL2 probably is secondarily 

translocated to another position (Figure 2.6, No. 7 from Hutchinsoniella), and the two 

copepod species Tigriopus japonicus (Machida et al., 2002) and Lepeophtheirus 

salmonis (Tjensvoll et al., 2005), which underwent a complete shuffling of the 

mitochondrial genome.  

Three species (belonging to Cephalocarida, Branchiura and Pentatomida) share a 

translocation of trnK to a position between trnR and trnN (Lavrov et al., 2004). Among 

these, the tongue worm Armillifer armillatus and the fish louse Argulus americanus 

share one further translocation (trnQ), together with mtDNA sequence analysis 
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supporting a close relationship between Pentastomida and Branchiura (Lavrov et al., 

2004; Regier et al., 2005). That was already discussed according to sperm morphology 

(Storch and Jamieson, 1992; Wingstrand, 1972) and 18S molecular sequence data 

(Abele et al., 1989). trnK is also translocated in all other taxa refered to as members of 

“Maxillopoda”, a systematic unit only weakly based on morphological characters. 

However, Ostracoda, Copepoda and Cirripedia each show different positions for trnK 

compared to the above mentioned taxa, so there is no good reason to take this as a 

homology. Because of contrary results from morphological and sequence based 

analyses (Giribet et al., 2005; Regier et al., 2005) it is also questionable to unite the 

Cephalocarida with Branchiura and Pentastomida to one clade, solely based on the 

common translocation of trnK (No. 1 for Hutchinsoniella / Argulus / Armillifer in 

Figure 2.6 and Figure 2.7). 

The three species of Cirripedia (Lavrov et al., 2004), [GenBank:NC_006293; 

GenBank:NC_008974] share several translocations of tRNA genes (trnA, trnE, trnP). 

Another series of events is difficult to reconstruct: trnC and trnY are translocated in all 

three species to a position between trnS2 and nad1, but in different order and on 

different strands (referred to as No. 6 from Cirripedia in Figure 2.6 and 2.7). In addition 

one species shows a triplication of trnC (No. 7 from Pollicipes polymerus in Figure 2.6 

and 2.7). Two further differences are reported in Megabalanus volcano: an inversion of 

a block of five genes (No. 7) and the probable translocation of trnK and trnQ to a 

position between trnY and trnC (No. 8 in Figure 2.6 and 2.7). An alternative explanation 

is that trnK/trnQ were primarily translocated to that position seen in Megabalanus and 

secondarily translocated to the position seen in Pollicipes and Tetraclita. With data 

from these three species alone, it is not possible to reconstruct a ground pattern of 

mitochondrial gene order of Cirripedia with respect to the position of trnK, trnQ, trnY 

and trnC. 

A lot of further translocation events are recorded only in single species, making them 

useless in phylogenetic analysis of the actual data set. Large genome rearrangements 

involving also protein-coding genes are seen in the branchiuran Argulus americanus 

(Lavrov et al., 2004), and in the ostracod Vargula hilgendorfi (Ogoh and Ohmiya, 

2004), both accompanied by a duplication of the control region. But the highest degree 

of genome rearrangement was found in the two copepod species (Machida et al., 2002; 

Tjensvoll et al., 2005), where a complete reshuffling of the mitochondrial genomes has 



2. The mitochondrial genome of Ligia oceanica (Isopoda: Oniscidea) 

30 

led to a gene order with almost no similarities between the two species and to other 

crustaceans. Partial genomes from two other copepod species revealed even more 

rearrangements (Machida et al., 2004a). In contrast three species of Branchiopoda have 

retained the pancrustacean ground pattern. The fourth species, Artemia franciscana 

shows two tRNA gene translocations (trnI, trnQ) (Valverde et al., 1994).  

Among Malacostraca 10 from 19 species have retained the pancrustacean ground 

pattern: six mantis shrimps (Stomatopoda) and four members of Decapoda (Figure 2.8 

and 2.9). Among Decapoda independent translocation events changed gene order in 

Pagurus longicarpus (Hickerson and Cunningham, 2000), Cherax destructor (Miller et 

al., 2004), and Brachyura. The four species of Brachyura share a translocation of trnH, 

the freshwater crabs Geothelphusa dehaani (Segawa and Aotsuka, 2005) and Eriocheir 

japonica (Sun et al., 2005) show further translocations. In the Euphausiacea Euphausia 

superba a swap between trnL1 and trnL2 seems to have happened, probably preceded 

by a gene duplication (Machida et al., 2004b). 

Besides the two isopod species (Ligia oceanica, Idotea baltica), only one other 

peracarid mitochondrial sequence, from the amphipod Parhyale hawaiiensis, was 

published before (Cook et al., 2005). From six gene translocations that must be assumed 

to get the gene order of Parhyale hawaiiensis, none is shared with the mitochondrial 

genomes of isopods (Figure 2.8 and 2.9). Only trnI is translocated in both taxa, but as 

its new position is different in Parhyale hawaiiensis and Ligia oceanica (and not known 

in Idotea baltica), there is no reason to presume that a translocation had already 

happened in their common ancestor. Instead we assume an independent translocation of 

this gene in isopods and amphipods. This implies, that the ground pattern of gene order 

in Peracarida must be identical to that of Pancrustacea.  

 

Gene translocations in isopods 

A comparison of the complete mitochondrial genome of L. oceanica with the ancestral 

state of pancrustacea (Boore et al., 1998) demonstrates several changes in gene order 

(Figure 2.8). All in all 11 genes (cob, nad1, nad5, rrnS, trnI, trnL1, trnF, trnS1, trnT, 

trnW, trnV) and the control region are found in other relative positions than reported in 

other malacostracan crustaceans. By reason of parsimony we assume that these 
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positional changes were due to nine gene translocations (Figure 2.8, 2.9; No. 1-9) and a 

translocation of the major non-coding region (NCR). The genes nad5 and trnF, as well 

as nad1 and trnL1 retained their adjacent positions, so that they probably were 

translocated as a block. The other genes were most likely repositioned by single 

translocation events. Five translocations led also to inversion of genes to the 

complementary strand: cob, trnT and trnW changed from the (+)strand to the (-)strand, 

whereas rrnS and the block of nad5 and trnF were inverted from (-)strand to (+)strand.  

From the 11 genes being translocated in Ligia oceanica, seven are also found in the 

same new positions in the mitochondrial genome of Idotea baltica (Figure 2.8) 

(Podsiadlowski and Bartolomaeus, 2006). In addition the mitochondrial control region, 

trnW, trnI and trnS1 are not found in their original position in Idotea baltica, but will 

probably be found in the region not sequenced yet - between rrnS and cob, similar to 

Ligia oceanica. Of all genes translocated in Ligia oceanica only trnV is found in its 

original position in Idotea baltica. So of nine gene translocation events supposed for 

Ligia oceanica, eight must already have happended in the common ancestor of both 

species (Figure 2.8, 2.9; No. 1-8). The derived gene order is probably the ground pattern 

for an isopod subtaxon comprised of Oniscidea and Valvifera (and probably more taxa). 

Translocation of trnV probably happened after the split of the oniscidean and valviferan 

lineages (Figure 2.9, No. 9). In contrast, translocation of trnN probably happened in the 

lineage leading to Idotea baltica (Figure 2.9, No.11). It is located in original position in 

Ligia oceanica, but missing in that position in Idotea baltica. We do not know about the 

fate of trnR in Ligia oceanica, but in Idotea baltica it was also subject to a translocation 

(Figure 2.9, No. 10). 

It is noticeable that in Ligia oceanica all translocated genes found their new position in 

a segment comprising about one third of the complete genome (between trnA and trnH). 

This area bears a cluster of tRNA genes in the ancestral gene order of arthropods. It 

seems to be a “hot spot” of genome rearrangements in arthropods (Black and 

Roehrdanz, 1998; Dowton et al., 2003).  
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Figure 2.6. Gene order of mitochondrial genomes from Crustacea (excl. Malacostraca). All 
species with complete mitochondrial genomes are listed. White colours indicate changes 
compared to the pancrustacean ground pattern. Numbers refer to different gene translocation 
events (compare Figure 2.7), horizontal lines combine adjacent genes, which were probably 
subject to a joint translocation. NCR = major non-coding region, the putative mitochondrial 
control region. Asterisks indicate genes located on (-)-strand. For GenBank accession numbers 
see Supplementary file 2.1. 
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Figure 2.7. Phylogenetic tree of Crustacea. Only those species with GenBank entries for 
complete mitochondrial genomes are included. Hypotheses of gene translocation events are 
mapped to the corresponding clades (numbers correspond to those in Figure 2.6). Due to the 
uncertain homology, translocations of the major non-coding region were not considered. 
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Figure 2.8. Gene order of mitochondrial genomes from malacostracan crustaceans. All species 
with complete or almost complete  mitochondrial genomes are listed. White colours indicate 
changes compared to the pancrustacean ground pattern. Numbers refer to different gene 
translocation events (compare Figure 2.9), horizontal lines combine adjacent genes, which 
were probably subject to a joint translocation. NCR = major non-coding region, the putative 
mitochondrial control region. Asterisks indicate genes located on (-)-strand. Idotea baltica 
[GenBank:DQ442915]; Parhyale hawaiiensis [GenBank:AY639937]; Euphausia superba 
[GenBank: AB084378]; for all other GenBank accession numbers see Supplementary file 2.1. 
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Figure 2.9. Phylogenetic tree of Malacostraca. Only those species with GenBank entries for 
complete or almost complete mitochondrial genomes are included. Hypotheses of gene 
translocation events are mapped to the corresponding clades (numbers correspond to those in 
Figure 2.8). Due to the uncertain homology, translocations of the major non-coding region 
were not considered. Phylogeny according to (Richter and Scholtz, 2001).  
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2.4 Conclusions 

The first complete mitochondrial genome sequence of a peracarid arthropod, the isopod 

Ligia oceanica, shows the usual compact and circular organization known from other 

Metazoa. Gene order is not conserved among peracarids and even not among isopods. 

In Ligia oceanica 11 genes plus the control region have changed their relative positions 

in comparison to the pancrustacean ground pattern, implying to be the result of nine 

gene translocation events. No gene translocation is shared with the amphipod Parhyale 

hawaiiensis, whereas eight gene translocations were probably already present in the 

common ancestor of Ligia oceanica and another isopod, Idotea baltica. Both isopod 

mitochondrial genomes differ by the position of three tRNA genes (trnR, trnV, trnN) 

and share an inverted strand bias of nucleotide frequencies compared to other 

malacostracan crustaceans. Reason for this is probably an inversion of the replication 

origin. This is confirmed by the fact that the typical hairpin-like secondary structure 

commonly found in mitochondrial control regions is found in opposite orientation 

compared to other crustacean species.  

A broad survey of mitochondrial gene rearrangements in Crustacea reveals a great 

variation of gene order. Characters derived from gene order (= gene translocations, 

inversions or duplications) do not solve overall phylogenetic relationships between 

major crustacean subtaxa. However, they will probably be helpful in analyses of 

internal phylogeny of some of these subtaxa (Cirripedia, Brachyura, Peracarida), when 

more data will be provided. 

 

2.5 Methods 

Sample and DNA extraction 

A specimen of Ligia oceanica originally collected at the coast of the North Sea island 

Helgoland (Germany) and preserved in 99% ethanol was utilized for the DNA 

extraction process. 2-3 pleopods were applied to the DNeasy Tissue Kit (Qiagen, 

http://dict.tu-chemnitz.de/dings.cgi?o=3003;style=;iservice=en-de;query=utilized�
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Hilden, Germany) following the manufacturer’s protocol to receive the total genomic 

DNA.  

 

PCR primers 

The first partial mitogenomic sequences were obtained by using two insect based primer 

pairs N4 + 16S2 and CytB + N4(87) (Roehrdanz et al., 2002). Additional intragenetic 

parts of cox1, cox3, nd4, nad5, rrnL and rrnS were determined by using six crustacean 

primer pairs (Podsiadlowski and Bartolomaeus, 2005; Podsiadlowski and Bartolomaeus, 

2006). The remaining gaps were closed by making use of specific primer pairs designed 

according to the sequences of the aforementioned genes (for primer sequences see 

Supplementary file 2.2). Larger PCR products were sequenced by primer walking 

strategy. To abbreviate this longsome process two longer PCR products were sequenced 

with the primer pairs S1-S19 from a set of primers which was successfully applied to 

decapod crustaceans (Yamauchi et al., 2004). All primers were purchased from 

Metabion (München, Germany). 

 

PCR and purification of PCR products 

The PCRs were performed with an Eppendorf Mastercycler or Eppendorf Mastercycler 

Gradient. The cycling was set up with an initial denaturation step at 94°C for 2 minutes, 

followed by 40 cycles comprising denaturation at 94°C for 30 seconds, annealing at 45-

52°C (primer specific) for 1 minute and elongation at 72° for 2-5 minutes depending on 

the expected length of the PCR product. The process was completed with a final 

elongation at 68°C for 2 minutes. The reaction volume amounted 50µl containing 1µl 

dNTP mix (Eppendorf), 0.25µl HotMasterTaq DNA polymerase (5U/µl; Eppendorf), 

5µl HotMasterTaq buffer (Eppendorf), 1µl primer mix (10µM each), 1µl DNA template 

and 41.75µl sterilized distilled water (Eppendorf). The PCR products were separated 

with a 1% TBE agarose gel, stained with ethidium bromide and inspected subsequently 

under UV transillumination.  

For the purification of the PCR Products the QIAquick PCR Purification Kit (Qiagen) 

as well as the Blue Matrix DNA Purification Kit (Eurx) were used. Abiding to the 
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manufacturers protocols both kits produced equivalent yields. All PCR products were 

stored at -20°C until sequencing was performed. 

 

Cloning and transformation 

In one case a single PCR fragment, due to low sequence signal quality, ranging from 

rrnS to cob, which contained the major non-coding region, was sequenced after cloning 

with the pGEM-T Easy Vector System (Promega). We followed the manufacturers 

protocol with the exception that half volumes (5µl) were used for the cloning reaction. 

For the transformation Escherichia coli XL-gold (Stratagene) were used. Colonies that 

contained recombinant plasmids were identified with selection plates 

(LB/ampicillin/IPTG/X-Gal). To verify insertion of the PCR product, few cells were 

applied to a Colony PCR using the vector primers M13F and M13R. The reaction 

volume amounted 20µl with aforementioned PCR ingredients added proportionally. The 

colony-cycling consisted of an initial denaturation step (10 minutes, 95°C) followed by 

25 cycles of denaturation (30 seconds, 94°C), annealing (30 seconds, 46°C) and 

elongation (4 minutes, 68°C). The colony PCR was closed by a final elongation (3 

minutes, 68°C).  The result was inspected with an agarose gel under UV 

transillumination. Positive tested colonies were proliferated in a LB/ampicillin Medium. 

Subsequently the plasmids were extracted with the Quantum Prep Kit (Bio Rad) and 

finally stored at -20°C. 

 

Sequencing and sequence analysis 

Cycle sequencing reactions were performed with the CEQ DTCS Quick Start Kit 

(Beckman Coulter) following the manufacturers protocols. The same primers and 

thermocyclers were used as in PCRs. The temperature profile included 30 cycles 

comprising denaturation at 94°C for 20 seconds, annealing at 45-52°C (primer specific) 

for 20 seconds and elongation at 60°C for 4 minutes. Plasmids were preheated 

additionally before the sequencing reaction (96°C for 1 minute). The separation was 

executed by a CEQ 8000 cappillary sequencer (Beckman Coulter) and analyzed with 

the appendant CEQ software (software version: 5.0.360, instrument version: 6.0.2). 
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Gene annotation and sequence analysis  

The alignment of the fragments to complete the whole mitochondrial DNA sequence 

was done in BioEdit 7.0.5.2 (Hall, 1999). Each partial sequence was ascertained twice 

at least to prevent sequencing faults. Ambiguous base pairs were validated manually 

referring to chromatograms. Gene identification was determined by BLAST search on 

GenBank databases (2006) and by comparison to the mitochondrial Genome of 

Drosophila yakuba (NC001322). Boundaries of the protein coding genes were 

determined with a multiple alignment of other crustacean amino acid sequences. It was 

assumed that they were specified by the first start and stop codons in frame. Transfer 

RNA genes were determined with tRNAscan-SE 1.21 (Lowe and Eddy, 1997) or by eye 

inspection for anti-codon sequences and secondary structures in regions between 

identified genes. Hairpin structures in non-coding regions were also identified by eye 

inspection. The control region and RNA genes were assumed to extend to adjacent 

genes, due to the lack of resources for a better determination of their boundaries. 

Nucleotide frequencies of protein coding and RNA genes were calculated with the 

DAMBE software package (Xia and Xie, 2001), effective number of codons was 

determined according to (Wright, 1990) with INCA 1.20 (Supek and Vlahovicek, 2004). 

The complete genome sequence is submitted to NCBI GenBank [GenBank:DQ442914]. 

 

2.6 Abbreviations 

A, adenine; atp6 and 8, genes encoding ATPase subunit 6 and 8; bp, base pairs; cox1-3, 

genes encoding cytochrome oxidase subnunits I-III; cob, gene encoding cytochrome b; 

C, cytosine; ENC, effective number of codons; G, guanine; mtDNA, mitochondrial 

DNA; nad1-6 and nad4L, genes encoding NADH dehydrogenase subunits 1-6 and 4L; 

nt, nucleotide(s); NCR, non-coding region; PCR, polymerase chain reaction; rRNA, 

ribosomal RNA; rrnl, large rRNA subunit (gene); rrnS, small rRNA subunit (gene); T, 

thymine; tRNA, transfer RNA; trnX (where X is replaced by one letter amino acid 

code), tRNA gene.  
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2.8 Additional material 

Supplementary file 2.1  

Effective numbers of codons used in mitochondrial protein-coding genes of various 

crustacean taxa. These numbers are the data base for figure 2.  

[http://www.biomedcentral.com/content/supplementary/1471-2164-7-241-S1.pdf] 

Supplementary file 2.2  

PCR primers used to amplify mitochondrial gene fragments from Ligia oceanica. 

[http://www.biomedcentral.com/content/supplementary/1471-2164-7-241-S2.pdf] 

The files can also be found in the appendix of this thesis (chapter 11). 
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3. The Australian fresh water isopod (Phreatoicidea: Isopoda) 
allows insights into the early mitogenomic evolution of 
isopods 

 

3.1 Abstract 

The complete mitochondrial (mt) genome sequence of the Australian fresh water isopod 

Eophreatoicus sp. 14 has been determined. The new species is a member of the taxon 

Phreatoicidea, a clade of particular interest, as it is often regarded as the sister group to 

all other Isopoda. Although the overall genome organisation of Eophreatoicus sp. 14 

conforms to the typical state of Metazoa—it is a circular ring of DNA hosting the usual 

37 genes and one major non-coding region—it bears a number of derived characters that 

fall within the scope of “genome morphology”. Earlier studies have indicated that the 

isopod mitochondrial gene order is not as conserved as that of other crustaceans. Indeed, 

the mt genome of Eophreatoicus sp. 14 shows an inversion of seven genes (including 

cox1), which is as far as we know unique. Even more interesting is the derived 

arrangement of nad1, trnL(CUN), rrnS, control region, cob, trnT, nad5 and trnF that is 

shared by nearly all available isopod mt genomes. A striking feature is the close 

proximity of the rearranged genes to the mt control region. Inferable gene translocation 

events are, however, more suitable to trace the evolution of mt genomes. Genes like 

nad1/trnL(CUN) and nad5/trnF, which retained their adjacent position after being 

rearranged, were most likely translocated together. A very good example for the need to 

understand the mechanisms of translocations is the remolding of trnL(UUR) to 

trnL(CUN). Both tRNA genes are adjacent and have a high sequence similarity, 

probably the result of a gene duplication and subsequent anticodon mutation. Modified 

secondary structures were found in three tRNAs of Eophreatoicus sp. 14, which are all 

characterized by the loss of the DHU-arm. This is common to crustaceans for tRNA 

Serine(AGY), while the arm-loss in tRNA Cysteine within Malacostraca is only shared 

by other isopods. Modification of the third tRNA, Isoleucine, is not known from any 

other related species. Nucleotide frequencies of genes have been found to be indirectly 

correlated to the orientation of the mitochondrial replication process. In Eophreatoicus 
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sp. 14 and in other Isopoda the associated nucleotide bias is inversed to the state of 

other Malacostraca. This is a strong indication for an inversion of the control region that 

most likely evolved in the isopod ancestor.  

 

3.2 Introduction 

Mitochondria are regarded as relicts of prokaryotic endosymbionts that were 

incorporated into the early eukaryotic cell. Endosymbiont and host have developed 

since then a remarkably relationship, so close that it also blurred the autonomy of their 

initially distinct genomes. As a result most of the mitochondrial proteins are now 

encoded in the nuclear genome and must be imported into the mitochondria for 

operation. In bilaterian animals only a few genes are retained in the mitochondrial 

genome (Boore 1999; Wolstenholme 1992). They comprise parts of the protein-

synthesis machinery (2 rRNAs, 22 tRNAs), and subunits of the respiratory chain 

enzyme complexes located in the inner membrane of mitochondria (13 genes).  

Maternal inheritance, clear orthology of its genes and the absence of introns made the 

mitochondrial genome a favourite choice for a lot of applications in molecular ecology 

and phylogenetics. In addition, it was often assumed that only stabilizing selection acts 

on mitochondrial genes, so all sequence variation is neutral to selection. Despite several 

flaws and exceptions to these assumptions, mitochondrial genomes are still a powerful 

source of sequence information utilized in a wide range of phylogenetic studies on 

population, species and higher taxonomic levels (Rubinoff and Holland 2005). Besides 

nucleotide or amino acid sequences, other genomic characters were used for 

phylogenetic inference, too. Most prominently are examples utilizing gene order data: 

e.g. Crustacea and Hexapoda both show a derived condition in the position of 

trnL(UUR), which is a good apomorphy for combining these two taxa to Pancrustacea, 

excluding myriapods and chelicerates (Boore et al 1998). Other good examples are the 

sister group relationship of Pentastomida and Branchiura, which is also supported by 

tRNA translocations (Lavrov et al 2004), or the highly similar gene order of 

Myzostomida and Annelida (Bleidorn et al 2007). In a broad comparison of 

mitochondrial gene order among Crustacea we identified some taxa with higher 
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variability of gene order, e.g. Copepoda, Cirripedia, Brachyura, and Isopoda (Kilpert 

and Podsiadlowski 2006). 

Isopoda are a highly diverse and species-rich group of crustaceans, living in marine 

habitats from deep sea to the coast, as well as freshwater and terrestrial habitats. In 

addition, ecto- and endoparasitic species occur (Brusca and Wilson 1991; Wägele 

1989). A broad variety of physiological studies were conducted with isopod examples, 

e.g. adaptations in conjunction with the water-land transition (Wright and Ting 2006).  

The number of isopod mitochondrial genomes being available at the moment is 

relatively small: Only one complete mitochondrial genome is published, that of Ligia 

oceanica (suborder Oniscidea) (Kilpert and Podsiadlowski 2006), and another two 

almost complete sequences are published of Idotea balthica (suborder Valvifera) 

(Podsiadlowski and Bartolomaeus 2006), and  Armadillidium vulgare (suborder 

Oniscidea) (Marcade et al 2007). Here we provide the mitochondrial genome of 

Eophreatoicus sp. 14, the first complete mt genome of a member of the isopod suborder 

Phreatoicidea and the second complete sequence record for Isopoda. Gene order varies 

among the published isopod sequences. Although isopod phylogeny is far from being 

well resolved (Wilson 2009), Phreatoicidea are often regarded as the sister group to all 

other Isopoda (Brusca and Wilson 1991; Wägele 1989). Therefore, a comparison of mt 

genome data of a phreatoicidean species to other isopod species allows important 

insights into the ground pattern and mt genome evolution in Isopoda.  Phreatoicidea are 

freshwater inhabitants with a disjunct southern continent distribution.  

 

3.3 Materials and Methods 

Sample and DNA Extraction  

Specimens of Eophreatoicus sp. 14 were collected (December 2004) in a fresh water 

lake near Cannon Hill/Hawk Dreaming Stockyard Creek, Northern Territory, Australia 

(Wilson et al 2009). They were preserved in 99% Ethanol until DNA extraction (May 

2006). Total genomic DNA was isolated from embryos, which a single brooding female 

carried in her ventral brooding pouch (marsupium). Due to the small size of the 
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embryos three of them were used for an extraction with the DNeasy Tissue Kit (Qiagen, 

Germany). All in all four extractions were needed to amplify the entire mt genome in 

overlapping PCR fragments. 

 

PCR Primers  

A brief summary of the procedure used to obtain the mt genome of Eophreatoicus sp. 

14 is given in Additional File 3.1. It shows all PCR products needed for a complete 

coverage together with the primer combinations used for amplification. A complete list 

of primers, including the ones applied for primer walking, is provided in Additional File 

3.2. The primers were designed with spacious overlappings (usually >100 bp) in mind, 

which facilitated the creation of the contig from obtained DNA fragments at a later 

time. All primers were purchased from Metabion (Germany). 

First parts of the mitochondrial genome were amplified by intragenic crustacean primer 

pairs (Crust-Xf/r) (Podsiadlowski and Bartolomaeus 2005), which were useful in 

previous studies of isopod mt genomes (Kilpert and Podsiadlowski 2006; Podsiadlowski 

and Bartolomaeus 2006). Two additional primers (Isop-16sf, Isop-16sr) were designed 

from an alignment of unpublished isopod sequences. With results becoming available 

from sequencing, further primers were designed on the basis of obtained Eophreatoicus 

sp. 14 sequences and were tested in various combinations. Only four primer 

combinations yielded PCR products, so together with initial fragments the complete mt 

genome was covered by eight PCR products, with overlaps between neighbouring 

fragments of at least 100 bp. Primer walking strategy was used to sequence large PCR 

products (>1 kb). In a few cases it was possible to reduce the overall time for 

sequencing larger PCR products by using primers of a primer set that was originally 

designed for decapod crustaceans for secondary PCR or direct sequencing (Yamauchi et 

al 2004). 

 

DNA Amplification and Purification of PCR products  

Fragmnents of the mitochondrial genome were amplified by standard PCRs that were 

subsequently sequenced. Eppendorf Mastercycler and Eppendorf Mastercycler Gradient 
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machines (Eppendorf, Hamburg, Germany) were used for PCR. Short range and 

medium range PCRs up to 3 kb were performed in 50 µl reaction volumes consisting of 

1 μl dNTP mix (10 mM each, Eppendorf), 0.25 μl Taq DNA polymerase (5 U/μl; 

5Prime, Hamburg, Germany), 5 μl 10x Taq buffer advanced, 1 μl primer mix (10 μM 

each; Metabion, München, Germany), 41.75 μl sterilized distilled water (Bio Mol grade, 

5Prime) and 1 μl DNA template. The thermal cycling protocol reads as follows: Initial 

denaturation (94°C, 2 minutes) followed by 40 cycles of denaturation (94°C, 30 

seconds), annealing (45-55°C, 45 seconds) and extension (68°C, 2-5 minutes). The 

cycling was closed by a final extension step (70°C, 4 minutes). 

All other PCRs that were expected to yield large fragments (> 3 kb)—like the one 

defined by Isop-16sr/Eo-7298—were amplified using a long range PCR kit (TaKaRa 

LA Taq; Takara Bio Inc., distributed by MoBiTec, Göttingen, Germany). We used half 

volumes, so that a single reaction volume of 25µl consisted of 2.5µl 10x Takara LA 

PCR buffer, 4µl Takara dNTP mixture (2.5mM each), 0.25µl Takara LA Taq 

polymerase (5 units/µl), 16.75µl sterile distilled water (Bio Mol grade, 5Prime), 0.5µl 

primer mixture (10 μM each; Metabion) and 1µl DNA template. The corresponding 

thermal cycler protocol started with an initial denaturation step (94°C, 1 minute) 

followed by 30 cycles of denaturation (98°C, 15 seconds), annealing (58°C, 45 seconds) 

and extension (68°C, 12 minutes), and finally ended in another extension (72°C, 10 

minutes). 

The PCR products were examined by agarose gel electrophoresis (1% agarose in TBE, 

stained with ethidium bromide) under UV transillumination. PCR clean-up was done by 

silica-membrane spin columns (NucleoSpin Extract II, Macherey-Nagel). PCR products 

were subsequently sequenced or stored at -20°C. 

 

Sequencing and sequence analysis  

For the most part of the sequencing we used a CEQ 8000 capillary sequencer (Beckman 

Coulter, Krefeld, Germany), provided together with a CEQ software package 

(instrument version: 6.0.2, software version: 5.0.360) for operation and analysis. 

Sequencing reaction was performed according to the manufacturer’s instructions (CEQ 

DTCS Quick Start Kit; Beckman Coulter). The profile for the thermal cyclers was set 
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up with 30 cycles, each comprising three steps: denaturation (94°, 20 seconds), 

annealing (45-55°C, 20 seconds) and extension (60°C, 4 minutes). The reactions were 

cleaned up for sequencing by ethanol precipitation (three washing steps with subsequent 

vacuum drying). A part of the mt geome spanning from rrnL to nad2 was processed by 

a commercial sequencing service (AGOWA GmbH, Berlin, Germany) using a 3730xl 

DNA Analyzer (ABI). Every part of the mt genome is covered at least twice to allow 

the detection of sequencing errors. Ambiguous parts were carefully inspected referring 

to the chromatograms and repeatedly sequenced if necessary. 

 

Gene annotation and sequence analysis  

Overlapping fragments obtained from sequencing were aligned and annotated in 

BioEdit 7.0.9.0 (Hall 1999). The complete annotated mt genome sequence of 

Eophreatoicus sp. 14 was submitted to NCBI GenBank (FJ790313). Transfer RNAs 

were automatically identified by two computer programs, tRNAscan-SE 1.21 (Lowe 

and Eddy 1997) and ARWEN 1.2.3.c (Laslett and Canback 2008), and manually 

reviewed by visual inspection of the conforming genomic regions. A reliable 

identification of tRNA genes is generally not trivial. The most common approach 

currently used is to search for base pairings that conform to a typical tRNA cloverleaf 

structure. Both programs show good detection rates on these typical tRNAs, but 

perform different on modified tRNAs. As far as we can say from experience, some 

tRNAs are identified by only one of the two programs (see Additional File 3.3). Very 

few mismatches can break the close limit of a used software algorithms and prevent the 

proper detection of a tRNA. A combination of two advanced programs ensures therefore 

the confidence of having exhaustively searched the mt genome for tRNAs. In addition, 

remaining non-coding parts of the mt genome were checked manually for further 

tRNAs. 

ARWEN performed better on tRNAs that lack an arm of the secondary structure 

(tRNA-Cys, tRNA-Ile). tRNAscan-SE, on the other hand, offers a variety of modifiable 

settings, like the option for the ‘Nematode Mito’ model, which alternatively extends the 

detection threshold. This may decrease the quality of the proposed secondary structures, 

and should therefore be regarded rather an indication for a tRNA that requires manual 
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inspection. In the present case we manually improved the pairings of the secondary 

structure of tRNA-Phe. 

Protein-coding genes and RNA subunit genes were identified by BLAST search of 

GenBank databases and by comparison to the mitochondrial genome of Drosophila 

yakuba (NC001322). Borders of protein-coding genes were specified by aligning them 

to multiple amino acid sequences of other crustaceans. The protein-coding genes are 

assumed to be located within the first start and stop codon in frame. A localization of 

that kind is not possible for RNA genes and the major non-coding region. Therefore 

they are considered to be bounded by neighbouring genes. Nucleotide frequencies of the 

protein coding genes, rRNA genes as well as the total genome were determined with 

DAMBE 4.2.13 (Xia and Xie 2001). 

 

3.4 Results and discussion 

Genome organisation  

The complete mt genome of Eophreatoicus sp. 14 (FJ790313) has a size of 14,994 bp 

(Figure 3.1, Table 3.1). It is most likely organized in a single circular molecule of DNA. 

This topology is the result of an alignment of sequences from eight overlapping PCR 

products (Additional File 3.2). The sequence annotation revealed the standard set of 37 

mt genes (13 protein-coding genes, 22 tRNA genes, 2 rRNA genes typical for animal mt 

genomes (Wolstenholme 1992). Therefore, not a single gene is missing on the ring. This 

is different to the only other complete isopod mt genome of Ligia oceanica (Kilpert and 

Podsiadlowski 2006), where the trnR gene could not be identified. Indications that the 

mt genome may be splitted into smaller mini-circles (Shao et al 2009) or that it may be 

organized in linear fragments or dimers like in Armadillidium vulgare (Raimond et al 

1999) have not been found. The mt genome of Ligia oceanica has been demonstrated to 

be a circular molecule, too. Thus, the non-circular mt genome of Armadillidium vulgare 

(Marcade et al 2007) is assumed to have evolved within an isopod subtaxon containing 

Armadillidium, but not Ligia and Eophreatoicus. 
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Like most other bilaterian mt genomes, the Eophreatoicus mt genome bears one major 

non-coding region, referred to as the mitochondrial control region. The remaining 

genome is very economically organized: Only few unassigned nucleotides (up to 8 bp) 

exist between individual genes (Table 3.1).  The longest non-coding regions (31 and 48 

bp) that have been found are too short to carry additional genes.  

 

 

 

 

Figure 3.1. Map of the mitochondrial genome of Eophreatoicus sp. 14. Transfer-RNAs are 
represented by their one-letter amino acid code. Numbers specify the length of non-coding 
sequences or the extent of gene overlaps (negative values), respectively. Arrows pointing 
clockwise indicate (+)strand genes; counter-clockwise arrows indicate (-)strand genes. The 
latter are shaded dark additionally. 
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Table 3.1. Gene content of the complete mitochondrial genome of Eophreatoicus sp. 14. The 
overall length of the whole, circular DNA molecule is 14,994 bp. 
Gene Strand GenBank position 

no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic nucleotides 

trnQ - 1-62 62    0 
trnL(UUR) - 63-123 61    2 
trnL(CUN) - 126-190 65    48 
cox1 - 239-1775 1537 512 ACG T 4 
trnY + 1780-1841 62    -4 
trnC + 1838-1896 59    -5 
nad2 - 1892-2890 999 333 ATA TAG 0 
trnM - 2891-2953 63    4 
cox2 + 2958-3644 687 228 ATA TAA 6 
trnD + 3651-3713 63    0 
atp8 + 3714-3875 162 53 TTG TAA 1 
atp6 + 3877-4545 669 222 ATG TAA 11 
cox3 + 4557-5342 786 261 ATT TAA -1 
trnG + 5342-5404 63    9 
nad3 + 5414-5758 345 114 ATT TAA 3 
trnA + 5762-5823 62    2 
trnR + 5826-5889 64    -7 
nad1 - 5883-6815 933 310 ATA TAA 31 
trnN + 6847-6909 63    * 
rrnS + 6910-7693 784    * 
trnK + 7694-7757 64    3 
trnE + 7761-7824 64    * 
major-ncod  7825-8225 401    * 
trnI - 8226-8279 54    4 
trnW - 8284-8349 66    -8 
trnS(AGY) + 8342-8405 64    4 
cob - 8410-9534 1125 374 ATT TAA 12 
trnT - 9547-9606 60    1 
nad5 + 9608-11323 1716 571 TTG TAG 0 
trnF + 11324-11384 61    2 
trnH - 11387-11451 65    0 
nad4 - 11452-12790 1339 446 ATG T -7 
nad4L - 12784-13083 300 99 ATC TAA 0 
trnP - 13084-13148 65    2 
nad6 + 13151-13648 498 165 TTG TAG -2 
trnS(UCN) + 13647-13709 63    * 
rrnL - 13710-14933 1224    * 
trnV - 14934-2 63    -2 

* Gene borders determined by borders of adjacent genes 
 

Transfer RNAs  

All 22 tRNA genes that are usually present in mt genomes of Bilateria were identified. 

They are distributed throughout the genome and can be found on both strands (Table 

3.1). The putative secondary structures of all identified tRNAs are plotted in Figure 3.2. 
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The great majority of tRNAs (19 of 22) features a common t-shaped or clover leaf 

secondary structure.  

In tRNA-Cys and tRNA-Ile this pattern is modified: The DHU-arm is totally absent. 

Loss of a tRNA arm has been reported from many malacostracan crustaceans and was 

also found in isopods. In Ligia oceanica, the only other isopod with published tRNA 

secondary structures, the DHU-arm is similarly missing in tRNA-Cys (Kilpert and 

Podsiadlowski 2006). This feature might be a putative autapomorphy of the Isopoda, 

since it is not known from other malacostracan crustaceans. An arm of tRNA-Ile is 

lacking in Ligia oceanica as well, but there it is the TΨC-arm. Apparently, tRNA-Ile is 

less conserved within isopod species than other tRNAs.  

Transfer RNA-Ser(AGY) was recognised by software (ARWEN) to have a DHU-arm 

that shows only one base pair in the stem structure. It is questionable if it is sufficient to 

form an effective stem at all, as DHU-stem is usually formed by at least three parings. It 

seems more probable that tRNA-Ser(AGY) from Eophreatoicus sp. 14 lacks the DHU-

arm as reported from Ligia oceanica and many other malacostracan crustaceans, e.g. 

Pseudocarcinus gigas (Miller et al 2005), Euphausia superba (Machida et al 2004), 

Cherax destructor (Miller et al 2004), Penaeus monodon (Wilson et al 2000), and 

Portunus trituberculatus (Yamauchi et al 2003).  

 

Protein-coding genes 

Nucleotide frequencies of all mitochondrial genes of Eophreatoicus sp. 14 are listed in 

Table 3.2. We determined an overall AT content of 69.6% for the mitochondrial 

genome of Eophreatoicus sp. 14. Up to now, the highest value reported from a 

malacostracan crustacean was 69.3%, found in Penaeus monodon (Wilson et al 2000). 

The lowest AT content of 60.0% is known from Cherax destructor (Miller et al 2004). 

The high AT content of Eophreatoicus sp. 14 contrasts to the relatively low AT content 

the other complete isopod mt genome from Ligia oceanica (60.1%). 

A bias of nucleotide frequencies is generally found in the mt genome of arthropods 

(Hassanin 2006): On the (+)strand cytosine is more frequent than guanine (negative GC 

skew), whereas the (-)strand contains more guanine than cytosine (positive GC skew). 
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Figure 3.2. Transfer RNA secondary structure plots of Eophreatoicus sp. 14. Most tRNAs 
feature a standard clover-leaf structure. Exceptions: DHU-arm is non-existent in tRNA-Cys, 
tRNA-Ile, tRNA-Ser(AGY).  
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Table 3.2. Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of  
Eophreatoicus sp. 14. Sequences form genes located on (-)strand were inverted prior to 
calculation. GC-skews from genes coding on (-)strand are shown in bold numbers. GC-skews 
from Ligia oceanica and Idotea balthica listed for comparison. 
Gene (strand) Nucleotide frequencies  % AT AT skew GC skew GC skew GC skew 
 A C G T    L. oceanica I. baltica 

atp6 (+) 0.262 0.109 0.194 0.435 69.7 -0.249 0.281 0.038 0.012 
atp8 (+) 0.284 0.099 0.161 0.457 74.1 -0.233 0.238 0.000 0.100 
cob (-) 0.335 0.213 0.115 0.337 67.2 -0.003 -0.301 -0.235 -0.212 
cox1 (-)* 0.323 0.187 0.156 0.333 65.7 -0.015 -0.091 0.083 0.122 
cox2 (+) 0.272 0.130 0.188 0.411 68.3 -0.203 0.184 0.111 0.169 
cox3 (+) 0.238 0.116 0.207 0.439 67.7 -0.297 0.283 0.048 0.029 
nad1 (-) 0.337 0.182 0.128 0.354 69.0 -0.025 -0.177 0.020 -0.090 
nad2 (-)* 0.357 0.159 0.111 0.372 73.0 -0.021 -0.178 0.226 0.299 
nad3 (+) 0.232 0.081 0.209 0.478 71.0 -0.347 0.440 0.161 0.320 
nad4 (-) 0.354 0.189 0.114 0.343 69.7 0.016 -0.246 -0.235 -0.247 
nad4L (-) 0.357 0.177 0.117 0.350 70.7 0.009 -0.204 -0.118 -0.204 
nad5 (+) 0.254 0.093 0.210 0.444 69.8 -0.272 0.387 0.335 0.246 
nad6 (+) 0.235 0.058 0.231 0.476 71.1 -0.339 0.597 0.303 0.240 
rrnL(-) 0.427 0.147 0.121 0.305 73.2 0.167 -0.098 -0.065 -0.103 
rrnS(+) 0.329 0.100 0.184 0.388 71.7 -0.082 0.297 0.062 0.098 
major non-
coding region 

0.354 0.107 0.307 0.232 58.6 0.209 0.482 
 

-0.043 
 

- 
 

total mt 
genome (+) 

0.312 0.114 0.190 0.384 69.6 -0.104 0.251 0.136 - 

* cox1 and nad2 are on opposite strand in Eophreatoicus compared to other isopods 

 

The skew is probably caused by the mitochondrial replication process, which brings 

about different mutation rates for guanine and cytosine nucleotides of each strand, 

dependent on the direction of replication. Therefore, the GC skew allows inference on 

the orientation of the origins of replication, which are located in the mitochondrial 

control region (Hassanin et al 2005). 

Eophreatoicus sp. 14 has a positive GC skew for all genes on the (+)strand, and 

consequently a negative GC skew on the (-)strand—the reversed condition to what has 

been reported from other malacostracan crustaceans (Hassanin 2006). This indicates a 

reversal of the origins of replication (Hassanin et al 2005). The other isopods Ligia 

oceanica and Idotea balthica show the same condition as Eophreatoicus, so the reversal 

might have happened at the base of Isopoda, or even earlier. Mt genome data is still 

missing from Cumacea and Tanaidacea, probably the next relatives to Isopoda. Two 

genes of Eophreatoicus sp. 14 (cox1, nad2) differ in their GC skews from that of the 

other isopods. This is certainly due to their location on the opposite strand, caused by an 

additional inversion of the genomic segment containing these genes (discussed below). 
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In many cases gene boundaries of protein coding genes could be easily identified, as 

they conform to the ordinary start codons (ATG, ATA, ATT) and stop codons (TAA, 

TAG) of arthropod mt genomes (Table 3.1). Nevertheless, some genes show variations 

of these codons:  The gene cox1 begins with ACG. Although uncommon in usual 

metazoan genomes, it is the standard start codon for cox1 found in malacostracan 

crustaceans (Additional File 3.4), first noticed in Penaeus monodon (Wilson et al 2000). 

The stop codon of cox1, however, is abbreviated and consists of a single T nucleotide 

only. The same applies to nad4. Incomplete stop codons have been reported for 

mitochondrial genes previously. It has been suggested that they are completed by post-

transcriptional polyadenylation to functional UAA termination codons (Ojala et al 

1981).  

The genes atp8, nad5 and nad6 are assumed to start with the codon TTG, whereas nad5 

most likely starts with ATC. The number of exceptional start and stop codons is closely 

linked to the strategy of identification. Currently there is no other practical way than 

aligning genes under study to other genes of related species—in this study to multiple 

species of Malacostraca. Where a common start codon was not available at the expected 

positions, we chose a chemically similar codon instead. Alternatively, conventional start 

codons would not only mean to assume a resizing of genes, but also large non-coding 

gaps and extended gene overlappings. TTG as a start codon was reported also from 

other invertebrates, although by now not from an arthropod. ATC as a start codon has 

already been found in the honey bee Apis mellifera (Crozier and Crozier 1993). 

 

Gene translocations  

The mitochondrial genome of Eophreatoicus sp. 14 bears significant changes in gene 

arrangement compared to the gene order of other crustaceans and the hypothetical 

pancrustacean ground pattern (Kilpert and Podsiadlowski 2006). We inferred gene 

translocation events (Figure 3.3a) from differences among isopod mitochondrial gene 

orders and the pancrustacean ground pattern (Figure 3.3b). In Eophreatoicus sp. 14 

translocated genes exist in two regions of the mitochondrial genome. The first is located 

between the conserved genes trnQ and cox2; it comprises the following genes: 

trnL(UUR), trnL(CUN), cox1, trnY, trnC, nad2 and trnM. This gene series certainly is 

the result of an inversion of a single multi-gene fragment, ranging from trnL(UUR) to 
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trnM (Figure 3.3b, No. 11). GC-skews of cox1 and nad2 are negative for both protein 

coding genes, thus reflecting the partial inversion of that mitochondrial region (Table 

3.2). A similar arrangement is not known from other Isopoda or other Peracarida. 

Therefore, we must assume the origin of the new gene order in the lineage leading to 

Eophreatoicus somewhere between the split of Phreatoicidea from the remaining 

isopods and the origin of Eophreatoicus sp-14. The inverted part was further modified 

by an additional change in gene order. In Eophreatoicus sp. 14 the tRNA gene 

trnL(CUN) is now located in a position between trnL(UUR) and cox1 (Figure 3.3b, No. 

12). Next to nad1, where it was usually located, only a non-coding sequence is 

 

 

Figure 3.3. Gene arrangement of the mitochondrial genome of Eophreatoicus sp. 14 compared 
to other mt genomes of Peracarida. a) Translocation events for three Isopoda species 
(Eophreatoicus sp. 14, Ligia oceanica, Idotea balthica) mapped on a simplified isopod tree. 
Numbers indicate inferred translocation events. b) Comparison of gene arrangements of 
Eophreatoicus sp. 14 to the pancrustacean ground pattern and to the other available Isopoda. 
Changes to the ground pattern are highlighted in green. Numbers indicate translocation 
events. Combined translocation of adjacent genes was assumed for event 2, 6, and 11. Only 
one translocation (8) of the two genes trnE and trnS1 must be assumed for reasons of 
parsimony. Asterisks mark (-)strand genes. 
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detectable. On closer inspection the probable mechanism of this translocation event 

becomes apparent: A comparison of both neighbouring trnL genes reveals a very high 

similarity in gene sequence (77.3%) and as a consequence also in secondary structure 

(Figure 3.2). It is very likely that, after trnL(UUR) was duplicated, one tRNA gene 

changed its identity to trnL(CUN) by random point mutation of the anticodon triplet. 

After that the original tRNA gene degraded, so that the trnL(CUN) gene is now placed 

next to trnL(UUR). All in all, the translocation of trnL(CUN) is a perfect example for a 

identity change of a tRNA gene. Similar remolding events of trnL(UUR) genes to 

trnL(CUN) were already observed in decapod crustaceans (Rawlings et al 2003).  

The rest of the repositioned genes can be found in a second part of the mitochondrial 

genome located between trnR and trnH. This “hot spot” of gene rearrangement is placed 

around the control region, which was likewise an object of translocation. The altered 

arrangement reads as follows: nad1, NCR, rrnS, trnK, trnE, control region, trnI, trnW, 

trnS(AGY), cob, trnT, nad5, and trnF. Under the most parsimonious explanation and in 

comparison with other isopods (L. oceanica, I. baltica) we assume a translocation of the 

control region (Figure 3.3b, No. 1) and nine gene translocations (Figure 3.3b, No. 2-10).  

All isopod species studied so far show a similar derived gene order in this region. 

Especially the arrangement of nad1, trnL(CUN), rrnS, control region, cob, trnT, nad5 

and trnF seems to be typical for the Isopoda (Figure 3.3, No. 1-6). As the most 

parsimonious explanation of gene order change in this region, we assume six 

translocation events. Tandem-duplication/random loss models offer no better way to 

reach the new gene order, as there is a mixture of inversions and genome shuffling. 

Some of these genes were likely translocated together.  E.g. nad1 and trnL(CUN), as 

well as nad5 and trnF have retained same relative position to each other in the derived 

isopod gene order from the pancrustacean ground-pattern, so only one event is assumed 

in translocation of these neighbouring genes. In Eophreatoicus the relative position of 

trnL(CUN) is further modified by tRNA duplication and identity change, as discussed 

above. As well trnK seems to be translocated in Eophreatoicus independently from 

other isopods.  

It is quite possible that the control region was translocated (or duplicated) first and that 

the other genes followed afterwards. Beyond doubt, the control region plays an 

important role in the replication process, bearing the origins of replication and 
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transcription. But bearing no genes, it is probably more tolerant to insertions than any 

other part of the mitochondrial genome (as well shown by its highly variable sequence 

between species). Therefore, the control region or some of its non-functional parts are 

possibly the preferable destination for a gene translocation without disrupting a 

functional gene.  

At the moment complete mitochondrial sequences from Peracarida apart from isopod 

species do not exist. Only a few partial genomes  have been published, among them the 

near-complete mitochondrial genome of the amphipod Parhyale hawaiiensis 

(Amphipoda) (Cook et al 2005) (Figure 3.3b). Differences in gene order to the 

pancrustacean ground pattern are restricted to translocations of seven tRNA genes. 

None of these events can be considered to have a common origin with any of the 

discussed rearrangements found in isopods. Other partial mt genomes comprise only 

few genes and do not share any gene translocations with Isopoda as well.  

 

 

Figure 3.4. Hairpin structure in the mitochondrial control region of Eophreatoicus sp. 14, and 
comparison to hairpin structures of Ligia oceanica (Isopoda), Squilla mantis (Stomatopoda), 
Panulirus japonicus (Decapoda) and Drosophila yakuba (Hexapoda). The depicted sequence 
corresponds to 8130-8206 bp of the Eophreatoicus mt genome. A conserved TATA 5’-motif is 
flanking the hairpin structure; an elongation by repetitions of this motif is not unusual. On the 
3’-side a GAAT motif is present in Eophreatoicus, GACT in Ligia and Squilla, GAAAT in Panulirus 
and Drosophila. 
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Control region  

The largest non-coding region (401 bp) is regarded as the mitochondrial control region, 

probably containing the origins of replication and regulatory elements for transcription. 

It seems to be relatively short in length, compared to the control region of L. oceanica, 

which has a length of 737 bp. But unlike in L. oceanica there are no repetitive 

sequences (Kilpert and Podsiadlowski 2006) in the control region of Eophreatoicus sp. 

14. Repetitive mitochondrial sequences are very rarely reported so far, e.g. from insect 

species (Zhang, X and Hewitt 1997), and show a high variability in length as well as in 

number of repetitions (Endo et al 2005). Deduced by its repetitive sequences the 

remaining length of the control region of L. oceanica would amount 450 bp, roughly the 

scale of Eophreatoicus sp. 14. It is unlikely that the smaller total size is also 

accompanied by a loss of function.  

In the major non-coding region we determined a hairpin structure comparable to the 

hairpin of other crustaceans and insects (Figure 3.4). The hairpin is thought to be 

involved in the replication process (Zhang et al 1995). In both isopod species it is 

located at a similar position at the end of the control region, suggesting the same 

orientation in both species, a fact corresponding to the similar nucleotide bias among 

isopods.  

 

3.5 Conclusions 

The Phreatoicidea are often regarded as the sister group to the remaining Isopoda 

(Brusca and Wilson 1991; Wägele 1989). In this study the mt genome of Eophreatoicus 

sp. 14, a member of Phreatoicidea, shows a unique inversion including multiple genes 

from (trnL-UUR to trnM), but also corresponds in large sections to the typical derived 

condition that is shared by other isopods (Idotea baltica, Ligia oceanica). The common 

rearrangements involve multiple translocations of genes and of the mitochondrial 

control region (nad1, trnL(CUN), rrnS, control region, cob, trnT, nad5 and trnF, Figure 

3.3b, No. 1-6). This “isopod gene arrangement” might represent the putative ground 

pattern of Isopoda (Figure 3.3a, No. 1-6). However, there is a chance that the 

comparison to other mitochondrial genomes of Peracarida, in particular the closely 
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related Cumacea and Tanaidacea, will reveal some conformity in gene order. These 

commonly rearranged genes would serve as perfect apomorphic characters to constitute 

peracarid subtaxa, and possibly could solve the open question of the sister taxon to 

Isopoda. Recent molecular (Spears et al 2005) and combined studies (Wilson 2009) 

failed to answer this question without unequivocally.  

It is also possible, by comparison to the crustacean ground pattern and to other isopod 

mitochondrial genomes, to make assumptions on the relative sequence of gene 

translocations. At least for some genes we can reconstruct the sequence of events (e.g. 

trnK, relocation region from trnL-UUR to trnM). Furthermore, there is evidence by 

nucleotide frequencies that the origins of replication and therefore the control region 

was inverted in comparison with other malacostracans, including Amphipoda.  
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4. Rearrangements of the mitochondrial genome of Isopoda 
and implications on the phylogeny of Peracarida 

 

4.1 Abstract 

In this study, we analyse the evolutionary dynamics and phylogenetic implications of 

gene order rearrangements in five newly sequenced mitochondrial (mt) genomes and 

four published mt genomes of isopod crustaceans. The sequence coverage is nearly 

complete, only the control region could not be recovered in some species. 

Mitochondrial gene order in isopods seems to be more plastic than in other crustacean 

lineages making all known nine mt gene orders different, especially the asellote Janira 

is characterized by many autapomorphies. The following inferred ancestral isopod mt 

gene order exists slightly modified in modern isopods: nad1, tnrL1, rrnS, control 

region, trnS1, cob, trnT, nad5, trnF. 

We consider the inferred gene translocation events leading to gene rearrangements as 

valuable characters in phylogenetic analyses. In this first study covering major isopod 

lineages potential apomorphies were identified, e.g. a shared relative position of trnR in 

Valvifera. We also report one of the first findings of homoplasy in mitochondrial gene 

order, namely a shared relative position of trnV in unrelated isopod lineages. In addition 

to increased taxon sampling secondary structure, modification in tRNAs and GC-skew 

inversion may be potentially fruitful subjects for future mt genome studies in a 

phylogenetic context. 
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4.2 Introduction 

The number and identity of the genes encoded in the mitochondrial (mt) genome is 

highly conserved in bilaterian animals, while the order and orientation in which they 

appear on the circular doublestrand DNA molecule is not. Historically, our knowledge 

of evolutionary change of the mt genome has been dominated by analyses of nucleotide 

sequences of single genes. As more and more complete mt genomes became known, 

however, it became apparent that in addition to the accumulation of point mutations 

another kind of mutation is shaping the mt genome: the translocation of one or several 

entire genes to a new relative position. The molecular mechanisms causing these gene 

translocations are still only incompletely understood, but the increasing availability of 

entire mt genomes suggests that (1) translocations do not occur randomly across the mt 

genome but typically respect borders between genes, thus leaving the genes functional, 

and (2) translocations of mt genes may not be rare exceptions but rather an important 

factor in the evolution of the mt genome. Although there is no doubt that mt gene 

arrangements are happening less frequently than single nucleotide substitutions in the 

primary sequence of the mt genome, there are increasing reports from different taxa 

where changes of gene order appear more often than previously assumed. Examples of a 

higher degree of gene order divergences are found in Mollusca, Brachiopoda and 

Nematoda, and within Arthropoda from Myriapoda, Hymenoptera, Acari, and Araneae 

(see references in Kilpert and Podsiadlowski (2006)). Recent studies also reported 

extensive mt rearrangements from Gastropoda (Grande, Templado, and Zardoya 2008), 

Neogastropoda (Cunha, Grande, and Zardoya 2009), Bivalvia (Wu et al. 2009), 

Symphyla (Gai et al. 2008), Hymenoptera (Oliveira et al. 2008), and also from the 

crustacean suborders Copepoda (Ki, Park, and Lee 2009) and Decapoda (Liu and Cui 

2009). From Peracarida modified gene orders are known from Amphipoda (Bauza-

Ribot et al. 2009; Cook, Yue, and Akam 2005) and, of course, Isopoda (Kilpert and 

Podsiadlowski 2006; Kilpert and Podsiadlowski 2009; Marcade et al. 2007; 

Podsiadlowski and Bartolomaeus 2006). 

The frequent translocations of genes within the mt genome can at least in part be 

attributed to the fact that the mt genome is characterised by a low degree of structural 

complexity. This reduces the probability of a gene becoming dysfunctional in a new 

location as it would be the case if the function depended on extensive molecular 
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interactions with regulatory elements elsewhere in the genome. The regulation of the mt 

genes is very simple, involving only start and stop codons, compared to the 

sophisticated regulation and mutual dependencies that are typical for many genes 

located in the cell nucleus. In most cases the mt genome is a single doublestrand DNA 

molecule of intermediate size (12-20 kb) with a circular topology. It typically contains 

37 genes (22 tRNA genes, 13 protein coding genes, 2 rRNA genes) and one control 

region (CR). Other important characters of the mtDNA are the strict orthology of genes, 

maternal inheritance and the absent (or very low) recombination (Gissi, Iannelli, and 

Pesole 2008). The mt genome possesses no introns and almost no non-coding sequence. 

In contrast, some genes even overlap by a few nucleotides.   

In addition to being subject of investigations themselves, translocation events of mt 

genes are increasingly recognised as valuable characters in phylogenetic studies of 

higher taxa. Mutations in the primary nucleotide sequence information have been used 

for some time already, but the homology of individual characters is difficult to ascertain 

due to multiple substitutions of single sites over long evolutionary times and the small 

size of the molecular alphabet (four bases: A, C, G, T). In contrast, the lower rate of 

translocation events, seems to be less affected by saturation. The higher complexity of 

gene translocation characters comprising stretches of several hundreds of nucleotides 

makes the evaluation of character states (relative position of mt genes) less error-prone 

in comparison to using nucleotide substitutions as phylogenetic markers, due to a 

reduced importance of multiple substitutions (saturation) and insecurity regarding 

positional homology (e.g. requiring multi-sequence alignments). 

The relatively small number of known mt genomes sets a limit to the gene 

rearrangements available as potential synapomorphies. An impressive example for the 

informative value of this kind of characters is given by the tRNA gene trnL(UUR), 

which was translocated from a position from between trnL(CUN) and nad1 to a derived 

position between cox1 and cox2 in crustaceans and hexapods, thus providing support for 

the distinctness of the taxon Pancrustacea from myriapods and chelicerates (Boore, 

Lavrov, and Brown 1998). 

Mitochondrial gene rearrangements are the most prominent characters of ‘genome 

morphology’ in a phylogenetic context, but additional features may be valuable as well: 

e.g.  absence/presence of specific repetitive sequences, reversal of nucleotide biases, 
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modified RNA secondary structures, deviations from the circular organisation of mt 

genomes, changes of the mitochondrial genetic code. These characters can be coded in 

an absence/presence matrix and therefore can be easily analysed in combination with 

morphological characters. 

Many open questions remain about the phylogeny of arthropods, due to convergent 

evolution of morphological characters and saturation of nucleotide or protein sequences 

(Dowton, Castro, and Austin 2002). This is particularly problematic for recovering the 

early evolutionary history of this highly diverse group, which is probably older than 400 

million years. Especially for these deep divergences the analysis of higher order 

mutation events such as gene rearrangements holds a lot of promise, at least for some 

splits.  

Despite recent progress in understanding the overall phylogenetic relationships of 

Isopoda (Brusca and Wilson 1991; Wägele 1989), many open questions remain in 

isopod phylogeny (Wilson 2009). Especially the divergence of higher isopods 

(“Flabellifera sensu lato”) is unclear, as well as the earliest isopod divergences. Here, 

the fossil record and the morphological data tend to favour the Phreatoicidea as the 

sister group of all other Isopoda, followed by the Asellota. Recently, 18S rRNA 

analyses failed to support a basal position of Phreatoicidea and split up Asellota in 

several unrelated suborders (Wilson 2009). A sistergroup relationship of Phreatoicidea 

and Asellota is also conceivable (Wilson 1999). Because of ambiguities of 

morphological and 18S data and an inconclusive fossil record in isopod phylogeny, this 

study evaluates mt genome data as another set of phylogenetic informative characters. 

This study compares nine nearly complete isopod mt genomes including five new 

sequences. The ancestral isopod mt gene order was determined and compared to the 

inferred pancrustacean ground pattern. We projected the inferred gene rearrangements 

onto molecular trees estimated from a concatenation of all mt protein-coding and rRNA 

genes of the isopods in study. In addition to estimating the evolutionary plasticity of the 

isopod mitochondrial genome with regard to gene translocations, we investigated other 

complex properties of the isopod mt genome (strand-specific nucleotide bias; start and 

stop codon usage; inferred secondary structure of transfer RNAs) and inferred their 

value in a phylogenetic context.   
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4.3 Material and Methods 

General Approach 

Total genomic DNA was extracted from preserved specimens (see paragraph: DNA 

Extraction). Starting with non species-specific primers (see: Primers) initial parts of 

each mt genome were amplified (see: PCR Amplification) and sequenced (see: DNA 

Sequencing) by primer walking strategy: new primers were designed based on these 

sequences, which then served for another cycle of amplification and sequencing. These 

steps were repeated several times until no new fragments could be obtained. All 

overlapping fragments from each species were integrated to a single contig sequence 

and annotated afterwards (see: Data Assembly). Finally, the annotated partial mt 

genomes were utilised for phylogenetic analyses (see: Phylogenetic Analyses). 

 

DNA Extraction 

All specimens that were used for DNA extraction were stored in Ethanol (96 to 99 %). 

Depending on the size of the animals one or several legs were used for DNA extraction 

with the DNeasy Tissue Kit (Qiagen, Germany) to isolate the total genomic DNA 

according to the recommendations of the manufacturer. The examined specimens of 

Eurydice pulchra (Cymothoidea) and Janira maculosa (Asellota) were sampled from 

the rocky coastline of Roscoff (France). Sphaeroma serratum (Sphaeromatidae) was 

collected at the coast of the island Helgoland (Germany) in the North Sea. Glyptonotus 

cf. antarcticus (Valvifera) was dredged from the Antarctic shelf. Asellus aquaticus 

(Asellota) was collected near Bremen (Germany), and the terrestrial isopod 

Armadillidium vulgare (Oniscidea) was picked up in the backyard of the FU Berlin 

zoological institute (Germany).  

 

Primers 

With no species-specific primers available first PCR amplifications were attempted with 

the combinations of the primers N4, 16S2, CytB and N4(87), which already have been 

proven useful on insects (Roehrdanz, Degrugillier, and Black 2002). In addition, 
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crustacean-specific primers were used, which amplify intragenic parts of cox1, cox3, 

nad4, nad5, rrnL, and rrnS (Podsiadlowski and Bartolomaeus 2005). For Glyptonotus 

we were successful with invertebrate primers (Folmer et al. 1994). All these primers 

were tried in different combinations, even those which require gene rearrangements. 

Another set of crustacean specific primers were used for nested PCRs and sequencing 

with the intention to accelerate the sequencing process of long PCR fragments 

(Yamauchi et al. 2004). Detailed lists of primes that worked best for PCR and 

sequencing are provided in the supplementary material (Supplementary files 4.1a: 

Eurydice pulchra, 4.1b: Sphaeroma serratum, 4.1c: Glyptonotus cf. antarcticus, 4.1d: 

Armadillidium vulgare, 4.1e: Asellus aquaticus, 4.1f: Janira maculosa). Further primers 

were designed on the basis of obtained sequences and are therefore species specific. All 

primers were purchased from Metabion (Munich, Germany). The whole process of 

primer selection and design for PCR and sequencing was exemplarily detailed for 

another isopod species, Eophreatoicus sp. 14 (Kilpert and Podsiadlowski 2009). 

 

PCR Amplification 

The PCR amplifications were carried out in 50 µl reaction volumes, comprising 1 µl 

dNTP mix (10 mM; Eppendorf, Hamburg, Germany), 0.25 μl Taq DNA polymerase (5 

U/μl; 5Prime, Hamburg, Germany), 5 μl 10x Taq buffer advanced (5Prime), 1 µl primer 

mix (10 µM each, Metabion), 1 µl DNA template and 41.7 µl sterile distilled water 

(Eppendorf). All reactions were executed on thermal cyclers (Eppendorf Mastercycler, 

Eppendorf Mastercycler Gradient, Peqlab Primus 25 advanced): Initial denaturation 

(94°C, 2 min), followed by 40 cycles, each comprising denaturation (94°C, 30 sec), 

annealing (primer specific at 45-55°C, 1 min) and elongation (68°C, 2-5 min), followed 

by a final elongation step (68°C, 2 min). The quality of PCR products was validated by 

electrophoresis in 1% TBE ethidium bromide stained agarose gel. 

Individual long-range PCRs conditions: A 5181 bp (cox1 to rrnS) fragment of the 

Eurydice mt genome was amplified by the Ep-7504/Ep-12685 primer combination; in 

Sphaeroma the primers Ss-175/Ss-5244 yielded a 5069 bp (cob to rrnL) fragment; in 

Asellus  Aa-7773/Aa-13378 amplified 5605 bp (cox1 to rrnS). These larger PCR 

products were received by using the more robust TAKARA Taq polymerase (Takara 

Bio Inc., distributed by MoBiTec, Göttingen, Germany), in total volumes of 25 µl (2.5 
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µl 10x LA PCR buffer II (Mg2+ plus), 4 µl dNTP mix (2.5 mM), 0.5µl primer mix 

(10µM each), 0.25 µl Takara La Taq, 1 µl DNA template, 16.75 µl sterile distilled water 

(Bio Mol grade, 5Prime)). The related PCR machine profile was set up with an initial 

denaturation step (94°C, 1 min) followed by 35 cycles, each with a denaturation step 

(98°C, 10 sec), annealing (60°C, 1 min) and extension (68°C, 10 min). The 

amplification was completed with a final extension (68°C, 4 min). 

PCR products were purified with the NucleoSpin Extract II (Machery-Nagel, Dueren, 

Germany) kit, as well as the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) 

with comparable results, and finally stored at -20°C. 

 

DNA Sequencing and Contig Assembly 

The great majority of PCR products were sequenced in our laboratory on a CEQ 8000 

capillary sequencer (Beckman Coulter, software version: 5.0.360, instrument version: 

6.0.2). The setup of the machine as well as the initial cycle sequencing step were 

executed according to the manufacturer. The CEQ DCTS Quick Start Kit (Beckman 

Coulter, Krefeld, Germany) was used to set up a single 10 µl reaction volume; it 

included 5 µl of purified PCR product, 4 µl DCTS master mix (Beckman Coulter), and 

1 µl primer (10 mM). The temperature cycling profile conducted 30 cycles, each 

comprising denaturation (94° C, 20 sec), annealing (primer specific at 45-55° C, 20 

sec), and extension (60° C, 2 min). The reaction cleanup was done by ethanol 

precipitation (three washing steps with subsequent vacuum drying). Primers and 

thermocyclers were the same as those used for PCR amplifications.  Some sequencing 

was outsourced to AGOWA (Berlin, Germany), which is using a 3730xl DNA Analyzer 

(ABI).  

Overlapping sequence reads were collapsed to a contig  for each species using BioEdit 

7.0.9.0 (Hall 1999). If necessary, sequencing reactions were repeated until every part of 

the sequence was represented by at least two sequences to track down sequencing 

errors.  Protein coding and rRNA genes were identified by GenBank BLAST search and 

by comparison (bl2seq) to the Drosophila yakuba mt genome (NC001322). The latter 

was also used for the relative location of genes. A multiple alignment of crustacean 

amino acid sequences served as a reference to specify the start and stop codon of protein 
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coding genes. Where no canonical start codon could be located, we suggest a nearby 

codon with similar biochemical characteristics. For ribosomal RNA genes and for the 

major non-coding region there is currently no practicable way to determine the exact 

borders. Therefore, they are assumed to extend up to adjacent genes.  

In recent years the detection of tRNA genes, which is based on computational 

predictions of secondary structures, has noticeably improved. We used two software 

tools, tRNAscan 1.21 (Lowe and Eddy 1997) and ARWEN 1.2.3.c (Laslett and Canback 

2008). Using both, a more reliable and reproducible identification is possible. The 

algorithms of the programs perform quite differently on unusual tRNAs, which deviate 

from the canonical clover-leaf secondary structure (e.g. lack an arm). These tRNAs are 

generally the hardest to identify, so that the combination of both programs should 

increase the detection rate and enable an evaluation of the found tRNA genes. In 

addition to the automated detection a manual search for tRNAs was performed in 

remaining non-coding areas of the sequence. The method of tRNA identification is 

documented for each tRNA in each species (Supplementary files 4.2a-f).We also made 

a revision of the already published isopod mt genomes using this approach, which led to 

an improved tRNA annotation (Supplementary file 4.3).  

DAMBE 4.2.13 (Xia and Xie 2001) was used to calculate nucleotide frequencies of 

protein coding and RNA genes. For calculations of tRNA similarity BioEdit was used 

on aligned DNA sequences (ClustalW). The determination of the AT content was done 

in BioEdit as well. The AT- and GC skew was calculated according to the formula 

proposed by Perna and Kocher (1995): AT skew = (A-T)/(A+T); GC skew = (G-

C)/(G+C), where A, T, C, G are the four bases.  

 

Phylogenetic Analyses of Mt Gene Sequences 

In addition to the nine available isopod species, we chose nine further crustacean 

sequences as outgroup: Cherax destructor (NC_011243), Euphausia superba 

(AB084378), Hutchinsoniella macracantha (NC_005937), Metacrangonyx longipes 

(NC_013032), Parhyale hawaiensis (AY639937), Pollicipes polymerus (NC_005936), 

Portunus trituberculatus (NC_005037), Squilla mantis (NC_006081), Vargula 

hilgendorfii (NC_005306). Because computational time requirements of Bayesian and 
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maximum likelihood analyses depend strongly on the number of taxa, the total number 

of species was restricted to 18. All analyses were performed with alignments from all 13 

protein coding genes. An amino acid alignment was built for each gene including data 

from all 18 species using Muscle 3.6 (Edgar 2004). They were then concatenated to a 

single alignment (3873 aa). The Bayesian analysis was performed with MrBayes 3.1.2 

(Huelsenbeck et al. 2001; Ronquist and Huelsenbeck 2003) assuming a fixed amino 

acid model (mtRev: prset aamodelpr=fixed(mtrev)), with proportional evolutionary rate 

(prset ratepr=variable), gamma-shaped rate variation (lset rates=gamma), five rate 

categories (lset ngammacat=5), and unlinked model parameters (unlink shape=(all)) for 

13 single-gene partitions. One million generations (ngen=1000000) were run with a 

sample frequency of 1000 (samplefreq=1000), and 2 x 4 search chains (nchains=4). 

After inspection of the graphical output the first 100 trees were omitted as burnin (sumt 

burnin=100). 

Treefinder (version of October 2008) (Jobb, von Haeseler, and Strimmer 2004) was 

used for maximum likelihood analysis. Again, the prepared amino acid alignment was 

used with optimization of model parameters for the single genes (=13 partitions). 

Preceding to the actual analysis the substitution model was tested with Treefinder’s 

‘Analysis -> Propose Model’ function. The choice was between three user defined 

models: mtArt, mtMam, mtRev. The mtArt model was found most appropriate with 

optimization of amino acid frequency parameters, gamma distribution, optimization of 

heterogeneity, and 5 rate categories: (mtArt[,Optimum]:G[Optimum]:5). The actual 

bootstrap analysis was run with 100 pseudoreplicates according to the suggested 

parameters. 

 

 

4.4 Results 

Partial Genomes 

The partial genome nucleotide sequences that were determined in the course of this 

study are available in GenBank (Eurydice pulchra: GU130253, Sphaeroma serratum: 

GU130256, Glyptonotus cf. antarcticus: GU130254, Armadillidium vulgare: 
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GU130251, Asellus aquaticus: GU130252, Janira maculosa: GU130255). It was not 

possible to obtain the area of the mt control region for any of these species. However, 

the mt genomes can be considered as ‘nearly complete’, as the comparison to already 

known isopod mt genomes of Ligia oceanica (Kilpert and Podsiadlowski 2006) and 

Eophreatoicus sp. 14 (Kilpert and Podsiadlowski 2009) suggests. These species feature 

a circular mt genome topology and a similar gene order, which make it very likely that 

the missing part of the isopod genomes in the present study is limited to the control 

region and few adjacent tRNA genes only. An exception is the mt genome of Janira 

maculosa, which could not be sequenced to a similar extent, so that also some of the 

protein coding genes are missing in the provided mt sequence (see next paragraph) 

(Figure 4.1).  

 

Individual mt Genome Characterizations 

We determined 13,055 bp of the Eurydice pulchra mt genome. In this part the 

annotation revealed 31 genes (Supplementary file 4.4a), including all 13 protein coding 

genes, both rRNA subunit genes, and 16 tRNA genes (Supplementary file 4.5a). As 

already mentioned the correct annotation of tRNA genes is crucial for analysis. 

Therefore, the method of tRNA identification is also referred (Supplementary file 4.2a). 

If one assumes that mt genome usually holds 22 tRNA genes, then 6 of them (trnE, 

trnF, trnI, trnL(CUN), trnR, trnS(AGY)) are probably located in the part near to the 

control region, which unfortunately could not be sequenced. A compact overall mt 

genome organization was found in all examined isopod species. Like in other mt 

genomes, the mitochondrial genes are densly packed, with few non-coding sections and 

frequent gene overlaps. In Eurydice pulchra two non-coding sections of 60 bp between 

trnW and cox2 and 91 bp between nad3 and trnA are the exceptions (Supplementary file 

4.4a). The largest gene overlap (26 bp) was determined at the border of trnH and nad4.  

The start codon GTG was specified for the cox2 and atp8, due to the absence of a 

traditional start codon. The gene nad4L is probably initiated by ATC. Abbreviated stop 

codons, only consisting of a single T, terminate cox2 and nad3. Peculiar start codons 

and abbreviated stop codons of all isopod species will be addressed in detail in the 

discussion part of this study. 
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The sequence of the Sphaeroma serratum mt genome is 13,467 bp in length and 

features 30 genes (Supplementary file 4.4b). All 13 protein coding genes are available, 

also the two rRNA genes, and 15 genes coding for tRNAs (Supplementary file 4.5b). In 

addition, the method of tRNA identification is listed (Supplementary file 4.2b). One 

non-coding section of 40 bp exists between nad2 and trnL2; the largest gene overlap is 

located between nad5 and trnF. Three unusual initiation codons were found: ACT 

(cox1), ATC (nad6), GTG (nad3). Incomplete stop codons, only consisting of a single 

T, were found in cox1, cox3, nad3, and nad4. 

In the partial mt genome (13,809 bp) of Glyptonotus cf. antarcticus 33 gene were 

identified (Supplementary file 4.4c). All of the usual 13 protein coding genes and two 

rRNA genes are present, just as 18 tRNA genes (Supplementary file 4.5c, 

Supplementary file 4.2c). The mt genome does not feature any important non-coding 

sections. The genes trnR and trnG share 13 bp, which is the largest gene overlap in this 

mt genome. Unusual start codons were found in three genes: ACG (cox1), GTG (cox2), 

TTG (atp8). A single T terminal nucleotide for termination is present in nad4, TA is 

supposed to end nad5. 

The partial genome of Armadillidium vulgare has a size of 12,890 bp (Supplementary 

file 4.4d). All protein coding genes and rRNA genes are present, likewise 13 tRNA 

genes (Supplementary file 4.5d, Supplementary file 4.2d). The longest non-coding part 

amounts 55 bp (located between cox1 and cox2). Relatively large gene overlaps (up to 

26 bp) are more frequent than in other examined isopod species. The only protein 

coding gene which shows an unusual start codon is GTT (atp8). In cox1 the only 

indication for a termination signal is a single T nucleotide. 

We decided to provide this sequence, although a similar partial mt genome of a 

specimen from another A. vulgare population was already published by other authors 

(Marcade et al. 2007). The comparison of both Armadillidium vulgare mt genomes 

showed a very high sequence similarity of 97.2%. The differences are limited to single 

nucleotide polymorphisms (SNP). This clearly indicates their membership to the same 

species, even though to different populations. For the analyses of this study we rely on 

the data of the specimen collected in Berlin (Germany). The identified gene order of 

Armadillidium vulgare differs compared to (Marcade et al. 2007), due to an annotation 

update (Supplementary file 4.3). 
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Figure 4.1. Comparison of mitochondrial gene arrangements of nine species of Isopoda. In 
addition the pancrustacean ground pattern, the putative ancestral state, is provided. The mt 
genomes of Ligia oceanica and Eophreatoicus sp. 14 are completely available; the other mt 
genomes are incomplete and are missing the area of the control region (CR). Coloured genes 
mark translocated genes in comparison to the ground pattern. Green colour indicates genes, 
which share a derived position in isopods. Uniquely derived gene positions of individual 
species are depicted in blue. 
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Asellus aquaticus is another species from which we were able to obtain a partial mt 

genome sequence (13,639 bp, Supplementary file 4.4e). Like most isopod mt genomes 

it also features 13 protein coding genes and 2 rRNA genes. 18 tRNA were identified as 

well (Supplementary file 4.5e, Supplementary file 4.2e). The largest part not being 

utilized for gene coding is only 16 bp in length (between nad1 and trnN); the largest 

gene overlap amounts 15 bp (of nad2 and trnC). There are a number of uncommon start 

codons: ACA (nad4), ACC (cox1), and CTG (atp8). The nad4 gene shows only a single 

T instead of a fully formed stop codon in the DNA sequence. 

The partial mt sequence of Janira maculosa is considerably shorter than the other 

mitogenomes presented here (9,871 bp). Although the fragment shares the same genes 

at its ends with the other obtains partial genomes (cob to rrnS) (Supplementary file 

4.4f), several protein coding genes are missing (apt6, atp8, nad1, nad5). This is in clear 

contrast to the other isopod mt genomes, where both rRNA genes and all 13 protein 

coding genes were found in this segment. In addition only 14 tRNA genes could be 

identified in Janira maculosa (Supplementary file 4.5f, Supplementary file 4.2f). A 

relatively large non-coding section (215 bp) exists in this mt genome between the two 

trnL genes. A maximum of 27 bp is shared by trnV and trnQ. One exceptional start 

codon was detected, ACG in cox1. The gene also shows an incomplete termination 

codon (T). 

Four other complete or almost complete mt genomes of isopod species have been 

published up to now: Idotea balthica (incomplete, Podsiadlowski and Bartolomaeus 

2006), Ligia oceanica (complete, Kilpert and Podsiadlowski 2006), Armadillidium 

vulgare (incomplete, Marcade et al. 2007), and Eophreatoicus sp. 14 (complete, Kilpert 

and Podsiadlowski 2009). The sequences of these mt genomes were validated by the 

same software tools used to annotate the newly sequenced species of this study. This 

update to older annotations ensures the comparability to the species of the current 

analysis. The improved mt genome annotations of Armadillidium vulgare and Ligia 

oceanica are provided in Supplementary file 4.3). 
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Nucleotide Composition 

Nucleotide frequencies, AT content, AT and GC skew vary considerably among the 

species in this study (Supplementary files 4.6a-f). To facilitate a comparison of the 

available isopod mt genomes, we completed this list with the respective data for Idotea 

balthica (Supplementary  file 4.6g), which was not included in a previous publication 

(Podsiadlowski and Bartolomaeus 2006).  

Large differences were observed for the AT content of different isopod species (all 

protein coding genes, all rRNA genes, total): E. pulchra: 55.7%, 54.9%, 55.9%; S. 

serratum: 52.2%, 53.0%, 54.4%, G. cf. antarcticus: 65.5%, 67.4%, 65.4%, A. vulgare: 

71.7%, 72.1%, 71.4%; A. aquaticus: 61.0%, 67.7%, 62.0%; J. maculosa: 70.9%, 69.4%, 

71.2%; I. balthica: 60.5%, 61.6%, 61.0%; L. oceanica: 60.5%, 62.6%, 60.9%; 

Eophreatoicus sp. 14: 69.8%, 72.5%, 69.6%. 

When AT and GC skews are compared, it becomes evident that a decisive nucleotide 

bias is only existing in GC skews (Supplementary file 4.6a-g). Most species isopod 

species show a clearly positive GC skew for +strand genes and a negative one for –

strand genes. For example in E. pulchra the GC skew for the +strand gene nad3 is 0.4, 

whereas the –strand gene nad4 has a GC skew of -0.15. The corresponding AT skews 

are both negative: -0.2 and -0.22, respectively. A similar condition can be found in other 

genes as well. Therefore, the GC skew has to be preferred to detect a bias in nucleotide 

frequencies. No clear bias exists in G. cf. antarcticus and J. maculosa, where the GC  

skews are nearly 0. However, a noticeable bias was detected for A. aquaticus, where GC 

skews are negative for +strand genes and positive for –strand genes. This is in clear 

contrast to the majority of examined species of Isopoda!  

Table 4.1 gives an overview over the relative molecular weight of the +strand 

(compared to the -strand), AT content, and GC skew in Crustacea. It illustrates the 

tendency of isopod species for a positive GC skew on the +strand (except Asellota), 

while the other crustaceans generally show a negative GC skew (except Hutchinsoniella 

macracantha). The situation is similar with the molecular weight of the DNA strands, 

which also differs between isopod species (except Asellota) and the other crustaceans in 

this comparison (except Hutchinsoniella macracantha). 
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Phylogenetic Analyses of Amino Acid Sequences 

The resulting trees from Bayesian inference (MrBayes) and maximum likelihood 

analyses (Treefinder), both based on concatenated alignments of 13 protein coding 

genes (3873 aa), show a very similar topology (see Figure 4.2 for the best tree of ML 

analysis). The Isopoda were always recovered as monophyletic. The relationships of 

isopod suborders are also identical. Eophreatoicus sp. 14 is sister to all other isopods, 

which are split into monophyletic Asellota, comprising Asellus aquaticus and Janira 

maculosa, and monophyletic Scutocoxifera (among others Oniscidea, Valviferea, 

Cymothoidea, Spaeromatidea) (Dreyer and Waegele 2002). Not recovered was the 

monophyly of the terrestrial Oniscidea, as Armadillidium vulgare and Ligia oceanica 

are paraphyletic in both trees. Well supported are the Valvifera, here represented by 

Glyptonotus cf. antarcticus and Idotea balthica. They form the sister group to the 

cymothoidean species Eurydice pulchra and the sphaeromatidean species Sphaeroma 

serratum. A monophylum of isopod and amphipod species, which would represent the 

Peracarida in this analysis, was not recovered. Instead, the cirripede Pollicipes 

polymerus is placed with the amphipod species. For this reason there is also no support 

for Malacostraca. 

 

Mitochondrial Gene Translocations 

Figure 4.1 shows a comparison of all nine currently available isopod mt genomes, 

including four previously published mt genomes. In addition the putative ancestral state, 

the pancrustacean ground pattern, is provided (Boore, Lavrov, and Brown 1998; Kilpert 

and Podsiadlowski 2006; Lavrov, Brown, and Boore 2004).  

The comparison revealed three noticeable facts: First, all of the nine isopod mt genomes 

differ in their gene order but most differences are limited to the position of one or a few 

tRNA genes. Second, the gene order of isopod mt genomes can be clearly distinguished 

from the pancrustacean ground pattern. Inferred changes involve tRNA genes, protein 

coding genes, rRNA genes, and the mitochondrial control region (CR). Third, the 

isopods share a derived order of genes, although there are modifications in individual 

species. Using the similarities common to most isopods it was possible to infer a most 
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Table 4.1: Comparison of crustacean +strand AT contents and GC skews. 
Species Taxon Acc. 

number 
Strand AT content 

(%) 
GC skew 

Ligia oceanica Isopoda, Oniscidea NC_008412 H 60.85 0.134 

Armadillidium vulgare Isopoda, Oniscidea GU130251 H 71.36* 
0.175* 

Glyptonotus cf. antarcticus Isopoda, Valvifera GU130254 H 65.38* 0.038* 

Idotea balthica Isopoda, Valvifera DQ442915 H 60.97* 0.163* 

Sphaeroma serratum Isopoda, Sphaeromatidea GU130256 H 54.40* 0.219* 

Asellus aquaticus Isopoda, Asellota GU130252 L 61.97* -0.122* 

Janira maculosa Isopoda, Asellota GU130255 L 71.23* -0.026* 

Eophreatoicus sp. 14 Isopoda, Phreatoicidea FJ790313 H 69.57 0.250 

Eurydice pulchra Isopoda, Cymothoidea GU130253 H 55.86* 0.198* 

Parhyale hawaiensis Amphipoda, Gammaridea AY639937 L 73.66* -0.121* 

Metacrangonyx longipes Amphipoda, Gammaridea NC_013032 L 76.03 -0.035 

Squilla mantis Stomatopoda NC_006081 L 70.17 -0.130 

Portunus trituberculatus Decapoda NC_005037 L 70.22 -0.241 

Cherax destructor Decapoda NC_011243 L 62.43 -0.280 

Euphausia superba Euphausiacea AB084378 L 67.77* -0.143* 

Hutchinsoniella macracantha Cephalocarida NC_005937 H 70.99 0.313 

Vargula hilgendorfii Ostracoda, Myodocopa NC_005306 L 61.61 -0.355 

Pollicipes polymerus Maxillopoda, Cirripedia NC_005936 L 67.04 -0.134 
* incomplete mt genome 
H: heavy strand 
L: light strand 
 

 

parsimonious hypothesis for the isopod ground pattern of mt gene order (Figure 

4.3),comprising the unique arrangement of nad1, trnL1, rrnS, CR, trnS1, cob, trnT, 

nad5, and trnF. Direct evidence for the position of CR is only available for Ligia 

oceanica and Eophreatoicus sp. 14, because in all other isopods the segments 

containing the control region could not be sequenced. But as there is no large non-

coding segment between rrnL and nad2, it is obvious that the CR was translocated in 

these mt genomes as well and not retained in its ancestral position.  

A derived relative position of trnV is shared in three isopod species. It is located 

upstream of nad1 in Eurydice pulchra, Armadillidium vulgare and Asellus aquaticus. 

The other six isopods, however, have trnV next to rrnL, which corresponds to the 

pancrustacean ground pattern. Also for another gene, trnR, a commonly derived 

position was detected: In Idotea balthica and Glyptonotus cf. antarcticus it is located in-

between cox3 and trnG, this position is a potential apomorphy for the isopod subtaxon 

Valvifera. In contrast, the ancestral position of trnR next to trnA was retained in 
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Eophreatoicus sp. 14 and Asellus aquaticus. For the other isopods trnR could not be 

identified in the sequenced parts of the mt genomes.  

Furthermore, there are several tRNA genes, which were translocated in addition to the 

already mentioned isopod rearrangements (e.g. trnW in Eurydice pulchra). Whether 

these tRNA gene translocations are unique to individual species only or characterize 

taxa on a lower taxonomic level remains to be seen when more mt genomes of isopods 

become avaiable. For other genes (e.g. trnC in Sphaeroma serratum) it is only certain 

by comparison that they are no longer located in an expected position. The definite new 

position of the gene remains unclear for now. 

 

 

Figure 4.2. Phylogenetic analyses of isopod mt genomes and out group species. Majority-rule 
consensus tree from Treefinder analysis (mtART+G). Numbers above branches indicate (from 
top to bottom): Bayesian posterior probabilities (red) and bootstrap percentages (black) of the 
ML analysis. Scale bar below the tree indicates evolutionary distances (substitutions per site). 
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It is conspicuous that the overall distribution of rearrangements is unequally distributed 

throughout the isopod mt genome. All major translocations, which are shared among 

isopods, found a destination in a well defined area between trnA (or trnR for Asellus 

aquaticus and Eophreatoicus sp. 14) and trnH. For Eophreatoicus sp. 14 and Ligia 

oceanica it is likely that the CR is located in the centre of this isopod ”rearrangement 

hotspot”. The surrounding tRNA genes are characterized by an increased variability. 

Both species differ in gene content, gene arrangement, as well as in the orientation of 

genes. The area of the control region (between rrnS and cob) is in Eophreatoicus sp. 14: 

trnK(+), trnE(+), CR, trnI(-), trnW(-), trnS1(+); and in Ligia oceanica: trnW(-), trnI(+), 

CR, trnE(+), trnS2(-). This part of the mt genome is currently not available for other 

isopods. 

The specified inversion (trnL2, trnL1, cox1, trnY, trnC, nad2, trnM) of a part of the 

Eophreatoicus sp. 14 mt genome (Kilpert and Podsiadlowski 2009) was not found in 

any other isopod mt genome in this study. However, a similarly derived gene position of 

trnL1 (inbetween cox1 and trnL2) was detected in the asellotan species Asellus 

aquaticus. The sequence similarity of both trnL genes of Asellus aquaticus is 59.7%. In 

the other asellotan species, Janira maculosa, trnL2 is also located in proximity to trnL1, 

but on the other side and separated by a non-coding region of 215 bp (gene order: cox1, 

trnL2, non-coding, trnL1). Here, the sequence similarity of trnL genes is 49.2%. 

The mt gene arrangement of Janira maculosa surely is an exception in this comparison 

of isopod mt genomes. A segment comparable to that sequenced for the other species 

lacks tRNA genes and even four protein coding genes (atp6, atp8, nad1, nad5). This 

resulted in a significant shorter mtDNA fragment (ranging from rrnS to cob) than in 

other isopods (see Supplementary file 4.4). In addition, four noticeable non-coding 

sections were detected, in contrast to the compact organization of usual mt genomes. 

Janira maculosa also shows a conspicuous location of trnL1 (nearby trnL2). Despite all 

these unique features, indicating more extensive rearrangements than in other isopods, 

large sections are in conformity to the typical isopod mt genome. In fact, the area 

ranging from nad4L to trnQ is characterized in isopods by the absence of several genes 

(trnT, cob, nad1, trnL1, rrnS, CR, trnI) compared to the ground pattern. For this 

important part, being the source of many translocation events typical for isopods, the 

gene order of Janira maculosa is very similar to that of other isopods.  
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Figure 4.3. Isopod mitochondrial genome ground pattern. The mt gene arrangement given by 
the isopod ground pattern putatively evolved from the pancrustacean ground pattern by 
several translocation events (arrow lines). All translocated genes are coloured in green. For 
parsimony reasons the concatenated genes nad1/trnL1 were probably translocated in one 
step. This applies to nad5/trnF as well, but in combination with a strand switch. Single gene 
translocations involved cob, rrnS, and trnT; here again strands were changed. The control 
region (CR) is also found in a new area of the isopod mt genome. The isopod mitochondrial 
ground pattern must remain preliminary, because too little is known about the tRNA genes 
next to the CR. This area probably contains the genes trnI, trnE, trnS1, and trnW. 

 

 

4.5 Discussion 

Mitochondrial Gene Translocations in Isopod Species 

The comparison of the nine available isopod mt genomes (Figure 4.1) leads to 

identification of a number of genes sharing a derived relative position in isopods 

compared to other arthropods. In addition, the mt control region seems to be 

translocated in isopods. Together, they prominently characterize the isopod mt genome 

by a typical arrangement of nad1, trnL1, rrnS, CR, trnS1, cob, trnT, nad5, and trnF. But 

also a less apparent area ranging from nad4 to trnQ has a unique gene order in isopods, 

as this region lost a number of the above mentioned genes. So the gene order of isopods 

differs significantly from the pancrustacean ground pattern (Boore, Lavrov, and Brown 
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1998; Kilpert and Podsiadlowski 2006), the hypothetical mt gene arrangement, which 

evolved in a common ancestor of Crustacea and Hexapoda and is actually present in a 

wide range of different species (e.g. Drosophila yakuba (Hexapoda, Diptera), Daphnia 

pulex (Branchiopoda, Cladocera), Penaeus monodon (Malacostraca, Decapoda). From 

the malacostracan clade Peracarida, which also includes the Isopoda, only two other mt 

genome sequences are currently available, from the amphipods Parhyale hawaiensis 

(Cook, Yue, and Akam 2005) and Metacrangonyx longipes (Bauza-Ribot et al. 2009). 

Their gene orders both exhibit differences to the pancrustacean ground pattern, but 

different ones than isopods, so there is no evidence for common gene translocation 

events for Isopoda and Amphipoda. Therefore, the pancrustacean ground pattern 

represents the most reasonable mt gene order of the common ancestor of amphipods and 

isopods. 

Figure 4.3 shows a minimum number of postulated translocation events, which are 

needed to explain the change from the pancrustacean ground pattern into the putative mt 

gene arrangement of the common isopod ancestor, inferred from the observed shared 

features of nine isopod mt genomes (Figure 4.1). Six major translocations most likely 

happened before the Isopoda split up into different lineages (Figure 4.3): nad1 and 

trnL1 were probably translocated together, due to their retained adjacent position in the 

new location. This is also true for nad5 and trnF, but accompanied by an inversion. 

Single genes which were also translocated and inverted are rrnS, cob, and trnT. 

Likewise, the CR was translocated and probably inverted, suggested by nucleotide 

frequency bias (see below). A decision about translocation of the tRNA genes (trnI, 

trnE, trnS1, trnW) surrounding the CR is not possible at the moment; data from more 

isopod species are needed here. trnK is obviously no candidate for a location near the 

CR (as seen in Eophreatoicus sp. 14) in the isopod ground pattern, because in most 

other isopods it is found between cox2 and trnD, which is a plesiomorphic character 

state found also in the pancrustacean ground pattern. Features of the isopod ground 

pattern are found in nearly all isopods included in this study, although the exact gene 

order is modified in single species. The strongest deviation from the supposedly 

ancestral mt gene order is found in Janira maculosa (Figure 4.1). Here non-coding 

sequences are unusually frequent; protein coding genes are missing in expected 

positions. In this respect it is the most unusual isopod mt genome examined so far. 

Nevertheless, it can be clearly assigned to the isopod clade, due to the typical gene order 
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of the area ranging from nad4L to trnQ. Another unusual major mt arrangement is an 

inversion covering the region from trnM to cox1 found in Eophreatoicus sp. 14. This 

unique feature might become relevant for further phylogenetic analyses of this clade 

when data from more species become available. 

A potential apomorphy of the Valvifera is the derived position of trnR (between cox3 

and trnG) found in Idotea balthica and Glyptonotus cf. antarcticus. The trnR gene never 

appears in this position in other isopods but rather in a plesiomorphic position (next to 

trnA) in the mt genomes of Asellus aquaticus and Eophreatoicus sp. 14, which supports 

basal placement of Phreatoicidea and Asellota within the Isopoda (Wilson 2009). The 

absence of trnR in the other asellote, Janira maculosa, is most likely due to the heavily 

modified nature of this mt genome as mentioned above. 

Another noticeable gene order change is the occurrence of trnL1 next to trnL2, which is 

shared between phreatoicidean and asellotan species but not by other isopods. Thus, 

with the exception of the above mentioned inversion of Eophreatoicus, the gene order is 

the same in Asellus aquaticus and Eophreatoicus sp. 14. Again the other asellotan 

species, Janira maculosa shows further modifications and non-coding sequences in the 

particular area. The three species show a strong similarity of both trnL genes in gene 

sequence as well as in secondary structures (Supplementary file 4.5): 77.3% in 

Eophreatoicus sp. 14, 59.7% in Asellus aquaticus, and 49.2% in Janira maculosa. 

These high similarities indicate a translocation mechanism which involved a duplication 

of the already existing trnL2 gene, followed by an identity change to trnL1, while the 

original trnL1 gene degraded. Such a series of events was already suggested for a few 

cases of mt gene order change (Rawlings, Collins, and Bieler 2003). It is probably a rare 

event, in this case weakly supporting the hypothesis of a common clade including 

asellotan and phreatoicidean species. 

 

Control Region Inversion 

Most animal species show a clear strand asymmetry in their mt nucleotide composition 

(Hassanin, Leger, and Deutsch 2005) such as their ratio of guanine to cytosine 

nucleotides within a single strand of DNA (the so-called GC skew value). Similarly, an 

AT skew is sometimes also present, but it is often less distinctive, like in the species of 
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this study. It is assumed that these biases are caused by mutational constraints, which 

affect each strand to a varying degree, due to an asymmetric replication process, 

described by the strand-displacement model (Bogenhagen and Clayton 2003; Clayton 

1982): When replication begins, both strands become temporarily single-stranded. Then 

a unidirectional complementation to a double-stand is immediately started on one 

strand, while the complementation in the other direction is postponed, probably due to a 

wide separation of the replication origins for each strand. This extra time of one strand 

staying single-stranded and being particularly prone to mutational nucleotide 

deamination of cytosine (and adenine), then leads to the shift in the GC skew (and AT 

skew). A reversal in the direction of the replication therefore induces a reversal of the 

mutational exposure as well, which will be reflected in a reversed GC skew after some 

time. 

In crustaceans the GC skew usually is negative for genes located on the +strand (light 

strand) and positive for genes on the –strand (heavy strand) (Hassanin 2006). The only 

isopod in which this ancestral state was detected is the asellotan species Asellus 

aquaticus (Table 4.1; Supplementary file 4.6e). On the contrary most other isopods 

show a clearly reversed GC skew (Table 4.1; Supplementary file 4.6a-d, 4.6f+g). We 

therefore assume that the origin of replication, which is a prominent part of the mt 

control region, is oriented in the opposite direction in Eophreatoicus sp. 14 

(Phreatoicidea), Ligia oceanica (Oniscidea), Armadillidium vulgare (Oniscidea), Idotea 

balthica (Valvifera), Sphaeroma serratum (Sphaeromatidea), and Eurydice pulchra 

(Cymothoidea). No clear bias was detected for the valviferan Glyptonotus cf. 

antarcticus and the asellotan Janira maculosa. The reason for the taxon-specific 

differences of these biases is unclear. It could be caused by an alteration of the 

replication process, which is less asymmetrical, or by an additional reversal a short time 

ago.  In Janira maculosa additional changes in gene order indicate intensive 

rearrangements, which might also include another reversal of the control region and 

probably blurred a previous bias. In this regard, Janira maculosa is a special case. 

The fact that a clearly reversed bias was detected in all examined major isopod taxa 

except Asellota suggests a common origin of this state for parsimony reasons. This 

could be the case, if the clade which includes Asellus aquaticus would branch off first in 

isopod phylogeny. The reversal of the origin of replication would be a shared 

autapomorphy of the branch including all other isopods.  
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The fossil record (Schram 1970) and previous studies of isopod phylogeny favor the 

Phreatoicidea as the sister clade of the remaining isopods  (Brusca and Wilson 1991; 

Wägele 1989), a position which is also supported by the molecular analyses of this 

study. However, this causes a conflict in explaining the reversed isopod GC skew, 

which is present in Eophreatoicus sp. 14 and in the majority of isopods, but not in 

asellotan species. Considering Phreatoicidea as sistergroup to all other isopods, at least 

two reversals of the orientation of the mt control region must be assumed: Either a) at 

the base of the whole Isopoda clade and a re-reversal for some Asellota (including 

Asellus aquaticus); or b) two independent reversals for the Phreatoicidea and the 

Scutocoxifera (a clade of all remaining isopods, except Asellota). Although similar 

independent reversals of the GC skews were reported from other arthropod clades 

before (Hassanin 2006), they are not assumed to be common events. Thus, we take the 

differences in GC-skew to be a faithful indicator of reversals of control region 

orientation inside the mt genomes, which lends some support for the hypothesis that 

Asellota might have branched off earlier than Phreatoicidea. A recent combined 

analysis based on morphological and 18S data showed similar results (Wilson 2009) 

and placed the Asellota and not the Phreatoicidea as sister group to all other isopods. It 

has to be tested by further analyses including GC skews of more isopods, particularly 

asellotan species. 

The detection of a general reversed GC skew in some species should be considered also 

in phylogenetic analyses, as the compositional heterogeneity among taxa may cause 

higher substitution rates (Hassanin, Leger, and Deutsch 2005), promoting problems 

such as long branch attraction (LBA) (Felsenstein 1978). 

 

Non-canonical Start and Stop Codons 

Some of the protein coding genes begin with unconventional start codons in relation to 

the commonly used invertebrate mitochondrial code. Nevertheless, alternative initiation 

codons are known from literature, e.g. ATC in honey bee Apis mellifera (Crozier and 

Crozier 1993), GTG in the chiton Katharina tunicate (Boore and Brown 1994), or ACG 

in the shrimp Penaeus monodon (Wilson et al. 2000). The reason for postulating the 

existence of new codons is the absence of canonical start or stop codons at the 

beginning or end of a protein coding gene. A multiple alignment of genes from other 
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species allows to estimate the range that usually holds the start codons. In the case that 

an appropriate start codon is unavailable, a new potential start codon is suggested, 

which is in a comparable relative position like in the other related species. This seems 

more reasonable than to assume a significant expansion or reduction of a vital gene, 

which, however, cannot be ruled out completely.  

In general, ATG is the most frequent initial codon in isopod mt genomes, followed by 

the alternatives ATT and ATA. Another prevalent initial codon is ACG for the cox1 

gene, which has been repeatedly reported from malacostracan crustaceans, the first time 

for Penaeus monodon (Wilson et al. 2000). Isopods, which likewise show an ACG start 

codon in cox1 are Glyptonotus cf. antarcticus (this study), Janira maculosa (this study), 

Ligia oceanica (Kilpert and Podsiadlowski 2006), Idotea balthica (Podsiadlowski and 

Bartolomaeus 2006), Eophreatoicus sp. 14 (Kilpert and Podsiadlowski 2009). The start 

codon of cox1 is ACT in Sphaeroma serratum, and ACC in Asellus aquaticus. These 

are probably equivalent start codons to of ACG. 

The GTG initiation codon might not be too unusual as well. It was not only detected in 

the chiton mentioned above, but also in Ligia oceanica in the atp8 gene. In Eurydice 

pulchra we assume GTG to initiate atp8 and cox2, in Glyptonotus cf. antarcticus it 

initiates cox2, too. Another GTG finding is in nad3 of Sphaeroma serratum.  

Generally, a lot of different non-canonical codons were found for the extremely short 

gene atp8: GTG as mentioned above, CTG in Asellus aquaticus, TTG in Glyptonotus cf. 

antarcticus, GTT in Armadillidium vulgare. In addition there are usual start codons like 

ATT in Spharoma serratum. As the taxon sampling increases it becomes clearer that the 

invertebrate mitochondrial code may be less widely applicable than previously assumed, 

at least for start codons of some genes. 

In every isopod species included in this study incomplete termination codons have been 

found, at least for some of the mt protein coding genes (Supplementary file 4.4a-f). Like 

described for the initiation codons, no appropriate codon was found in a reasonable 

area. To ensure the proper termination of the gene it is assumed that the stop codon is 

not completely coded in the DNA. Rather it is created by polyadenylation of the mRNA 

subsequent to the transcription (Anderson et al. 1981; Ojala, Montoya, and Attardi 

1981). Therefore, only shortened stop codons like TA or T exist in the genome 

sequence, which are finally completed to a functional UAA codon able to terminate the 
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following translation process. In isopods incomplete terminal codons are particularly 

prevalent in the genes cox1 (in S. serratum, A. vulgare, J. maculosa,) and nad4 (in S. 

serratum, G. cf. antarcticus, A. aquaticus, E. sp. 14). 

 

tRNA Content and Secondary Structure Modifications 

The complete mt genome of Eophreatoicus sp. 14 demonstrates that the typical set of 22 

tRNA genes is present in isopod mt genomes as well (Kilpert and Podsiadlowski 2009). 

However, the gene trnR, specific for the transfer of arginine, was not be identified in the 

complete Ligia oceanica mt genome (Kilpert and Podsiadlowski 2006). Mitochondrial 

genes are unlikely to be dropped without replacement, as every gene usually is needed 

to maintain all the essential biochemical functions (e.g. oxidative phosphorylation), 

which the mitochondrion provides to the cell (Boore 1999). Since arginine is encoded in 

almost every mt protein coding gene of the species, the specific tRNA must be either 

imported from the cytoplasm or the corresponding gene (trnR) is modified beyond 

recognition in the mtDNA, due to altered nucleotides, which are probably subject to 

RNA editing (Brennicke, Marchfelder, and Binder 1999; Stuart et al. 2005).  

Due to the incomplete character of the available sequences from the other examined 

isopod species, not all of the tRNA genes were identified yet. A summary of the set of 

tRNA genes present in each taxon is provided in Supplementary file 4.7. The missing 

tRNA genes and the CR are probably located in the unknown part of the mt genomes, as 

suggested by the examples of Eophreatoicus sp. 14 and Ligia oceanica. These species 

host up to five tRNA genes surrounding CR. This corresponds to the expectations for 

Asellus aquaticus, Glyptonous cf. antarcticus, and Idotea balthica, where 4, 

respectively 5 for the latter, of the complete set of 22 tRNAs are missing. Sphaeroma 

serratum (7) and Eurydice pulchra (6) even show a higher number of missing of tRNAs 

in the known parts of their mtDNA sequence. Data from the control region are needed 

to elucidate the fate of these genes. The extraordinarily high number of absent genes in 

Janira maculosa (8) can be explained by greater changes compared to other isopods and 

the significantly less complete coverage of its mt genome. A maximum of tRNA genes 

is lacking in Armadillidium vulgare (9) despite our annotation update, which already 

increased the number of determined genes (Supplementary file 4.3). Although the 

overall mt gene order seems to correspond to the typical isopod arrangement, a 
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linearization of the mtDNA molecule was determined for this genome (Marcade et al. 

2007; Raimond et al. 1999). If the missing tRNA genes are located at the outer ends of 

the linear molecule is not clear. 

We consider the risk of having overlooked single tRNA genes as relatively low. 

Generally, in isopod mt genomes the remaining non-coding regions are short, leaving 

no place for additional tRNA genes. All larger non-coding regions, which still occur in 

some species, were thoroughly checked using different software and manual inspection. 

If tRNA genes remained undetected in these regions, they must be strongly modified. 

Some of the identified tRNAs show modifications to the usual clover-leaf secondary 

structure (Supplementary files 4.5 and 4.7). Most frequent is the loss of the DHU-arm 

(left arm). It is missing in tRNA-Cys in nearly all examined isopods, with the exception 

of Eurydice pulchra, where the TΨC-arm (right arm) is missing and Sphaeroma 

serratum, where tRNA-Cys could not be identified (Supplementary file 4.7). A loss of 

the DHU-arm in tRNA-Cys is so far not known from other malacostracan crustaceans 

and is a potential apomorphic character of isopods. In tRNA-Ser(AGY) of 

Eophreatoicus sp. 14 and Ligia oceanica  the left arm is also commonly missing. But 

here it corresponds to the usual state of this tRNA in Bilateria (Haen et al. 2007) and 

was also reported from various species of Malacostraca (Kilpert and Podsiadlowski 

2006). In other isopod species the according tRNA gene was not recovered by the 

partial genomes, but is most likely present in the unsequenced mt area next to the mt 

control region. A loss of the TΨC-arm (right arm) was detected in other tRNAs of 

several isopod species but no common pattern is detectable (Supplementary file 4.7). 

The highest number of derived tRNA secondary structures is found in Armadillidium 

vulgare. In addition to loss of arms Armadillidium also features an enlarged variable 

loop in tRNA-Asp and only few base parings in the acceptor arm of tRNA-His. The 

frequent tRNA modifications in this mt genome are another indication for an overall 

modified condition of the mt genome in this species. The determined tRNA 

modifications might emerge to be particularly useful in isopod phylogeny on a lower 

taxonomic level, e.g. comparing different Armadillidium species. 
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Isopod Phylogeny Inferred from Sequence Analysis 

The results from Bayesian inference (BI) and Maximum likelihood (ML) analyses 

(Figure 4.2) demonstrate some of the problems that sequence based analyses are facing 

in crustacean phylogeny. Resolution and support of isopod suborders is quite good with 

both methods. The tree topologies confirm the hypothesis of Phreatoicidea being the 

sister group of all other isopods, followed by successively branching Asellota, 

Oniscidea, Valvifera, and Sphaeromatidea+Cymothoidea. The only commonly accepted 

isopod clade that is not supported by our analysis is Oniscidea, which appears as a 

paraphylum here. In other analyses monophyly of the group is beyond doubt, as it 

comprises all terrestrial isopods (Brusca and Wilson 1991; Wägele 1989). Outside the 

Isopoda the results have to be regarded less suitable, as the Peracarida, here represented 

by Isopoda and Amphipoda, were not recovered as monophyletic in any of our analyses. 

Neither do the trees support Malacostraca. This may be due to the limited taxon 

sampling for the outgroup. But as the focus of this study is on the phylogeny of Isopoda, 

we consider the inadequacies in resolving peracarid and malacostracan relationships 

acceptable. The isopod branch of the sequence analysis was used to map structural 

characters of the mt genomes (see next paragraph; Figure 4.4). This way it serves as our 

isopod phylogeny hypothesis and allows evaluation of the putative apomorphic 

character states. It should also help to check genome morphology for homoplasious 

character states. 

 

Homoplasies in Gene Order Re-Arrangments 

Mt gene rearrangements are generally considered as very reliable not only because of 

rareness and selective neutrality of gene order, but also because of the high number of 

potential gene orders, which make convergently derived gene arrangements unlikely 

(Boore et al. 1995). Thus, reports about homoplasy of gene order are virtually 

inexistent; the only example for parallel evolution of mt genome organization is known 

from birds (Mindell, Sorenson, and Dimcheff 1998), but here only the relative position 

of genes towards the control region is different. In isopod species we have now detected 

strong indications for convergently derived structural characters. The gene trnV is 

located in most species in the ancestral relative position between rrnL and trnQ (Figure 

4.1). But three species from different main isopod suborders share a derived relative 
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position of trnV close to nad1: Eurydice pulchra (Cymothoidea), Armadillidium vulgare 

(Oniscidea), and Asellus aquaticus (Asellota). This derived gene arrangement cannot be 

reconciled with any reasonable phylogeny of Isopoda and must therefore be considered 

as homoplasious (Figure 4.4). 

Another strong indication for a convergently derived gene order was found in Asellus 

aquaticus and Eophreatoicus sp. 14, which also show a specific gene translocation 

mechanism: trnL1 probably is a remolded duplicate of trnL2, suggested by sequence 

similarity and a tandem arrangement of the two genes in both species. A modified gene 

order caused by this mechanism is probably more likely and occurs more frequently 

than usual gene translocations caused by duplication-random-loss. However, the shared 

position of trnL1 could also indicate a monophyly of a combined asellotan and 

phreatoicidean clade, as suggested by (Wilson 1999). This hypothesis cannot be ruled 

out currently, due to the open discussion about the first splits in isopod phylogeny.  

Most changes of gene order and of other characters of genome morphology are limited 

to single species (Figure 4.4) such as the multigene inversion (trnM to trnL2) in 

Eophreatoicus sp. 14 and the high number of rearranged genes in Armadillidium 

vulgare and Janira maculosa. But modified structural characters are also present in the 

mt genome of the other species. They emphasize that the mitochondrial gene order is 

less conserved inside the Isopoda than what is known from other major crustacean taxa. 

We are confident that a lot of these characters provide  valuable information in further 

studies of isopod phylogeny. They may be especially helpful for studying lower level 

relationships, e.g. of isopod suborders and families. 
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Figure 4.4. Apomorphic characters of genome morphology. Gene translocation events, tRNA 
secondary structure modifications and changes of GC skew mapped on the consensus tree 
from Bayesian and maximum likelihood analyses (Figure 4.3). 

 

4.6 Conclusions 

The taxon sampling of mt genomes from Isopoda was extended by five partial mt 

genomes (Eurydice pulchra, Sphaeroma serratum, Glyptonotus cf. antarcticus, Asellus 

aquaticus, Janira maculosa).  With the exception of Janira maculosa, which features a 

higher degree of mt gene rearrangements, these mt genomes can be regarded as nearly 

complete, missing only a small proportion surrounding the control region. In addition, 

we provide new data from Armadillidium vulgare, which benefits from an update of 

genome annotation. The broad comparison of all nine currently available isopod mt 

genomes reveals a greater variability of gene order and other structural characters than 

generally assumed for crustaceans. It can be confirmed that a number of derived genes 

are typically shared by isopod species of all major suborders. They are attributable to an 

arrangement of nad1/trnL1, rrnS, CR, cob, trnT, nad5/trnF, trnS1, which probably had 

its origin in a common isopod ancestor and is part of the isopod ground pattern. The 
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plesiomorph relative position of trnR was retained in the phreatoicidean species and in 

one of the asellotan species only. At the base of the Scutocoxifera trnR was 

translocated. Another  derived position of trnR is shared by the two valviferan species. 

Although gene order is generally considered as a reliable phylogenetic character, we 

found in some cases evidence of homoplasy: The derived location of trnV is shared by 

three unrelated isopod species; some species show a congruent loss of trnN, but with no 

proof of the new location; a translocation of trnL1, probably caused by a 

duplication/remolding mechanism, might also be evolved in parallel in phreatoicidean 

and asellotan species. However, the early splits in the isopod tree are still unclear. The 

phylogenetic analyses (ML, Bayes) based on amino acid sequences of all 13 protein 

coding genes favor the Phreatoicidea as the sister group of all other isopoda, comprised 

of the sistergroups Asellota and Scutocoxifera. A further structural character of 

mitogenomes, the nucleotide bias (GC-skew), was found inversed in most isopod 

species (except Asellus aquaticus) in comparison to other crustaceans. This character is 

able to indicate a very complex modification of the mt genome, the reversal of the 

replication origin, and probably is of special phylogenetic value. tRNA secondary 

structure modifications, found in nearly all isopod species may be helpful for deducing 

evolutionary relationships of lower level isopod groups. 
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4.8 Additional material 

Supplementary files 4.1-4.7 can be found in the appendix of this thesis (chapter 11).  
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5. The mitochondrial genome of the Japanese skeleton 
shrimp Caprella mutica (Amphipoda: Caprellidea) reveals a 
unique gene order and shared apomorphic translocations 
with Gammaridea 

 

 

5.1 Abstract 

This study presents the complete mitochondrial genome of the amphipod Caprella 

mutica, an east-asian species, which recently invaded coastal regions of North America, 

Europe and New Zealand. It is the first complete sequence of a member of the 

amphipod subclade Caprellidea. The mitochondrial genome has a total length of 15,427 

bp and is organized in a circular doublestrand molecule. All 37 mitochondrial genes are 

present, including the common set of 22 tRNAs. Particularly noticeable is a duplication 

of the control region. The additional control region is located between nad6 and cob and 

is almost identical to the original one. The most extensive changes in gene order affect 

nad5 and a block consisting of trnH, nad4, nad4L, and trnP—all were inserted near the 

original control region. The gene nad5 is also inverted. Furthermore, the comparison to 

the pancrustacean ground pattern reveals additional changes of individual tRNA genes. 

Some of these changes are also shared by Metacrangonxy longipes and by Parhyale 

hawaiensis. These arrangements were found only in amphipods and might be 

considered as apomorphic character states of Amphipoda. In all three species there is 

good evidence that trnG originated from a rare duplication/remolding event of the 

adjacent trnW gene. In addition to these common features all of the three available 

amphipod mt genome sequences bear unique rearrangements. Caprella mutica, 

however, shows the most extensive rearrangement in comparison to the pancrustacean 

ground pattern.  
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5.2 Introduction 

The mitochondrial (mt) DNA has become an important source of information for a 

variety of studies on populations, phylogeography, and phylogeny of animals in the last 

years. This may be due to certain advantages of these small extranuclear genomes (~16 

kb), which are among others: exclusive maternal inheritance, clear orthology of genes, 

and the lack of introns. (Avise 2000; Boore 1999; Lavrov 2007; Wolstenholme 1992). 

In addition, the nucleotide sequence shows a higher rate of evolution compared to the 

nuclear genome, whereas the sequence variation itself is generally assumed to be neutral 

to selection. A circular double-strand organization and a slightly different genetic code 

are additional special features. Although there are exceptions to all of this rules, mtDNA 

is still a valuable marker for  population genetics and phylogenetics (Rubinoff and 

Holland 2005).  

The arrangement of genes shows a very economical organization, leaving almost no 

non-coding sequence between adjacent genes, while small gene overlaps occur quite 

frequently. During the evolution of endosymbiotic bacteria to mitochondria, most of the 

genes were lost or transferred to the nucleus. In bilaterian animals a standard set of only 

37 genes (2 rRNA genes, 13 protein-coding genes, 22 tRNA genes) and one control 

region (CR) is retained in the mitochondrial genome (Boore 1999). However, 

exceptions are known, e.g. from the mt genomes of Chaetognatha, which lack all but 

one tRNA, as well as the protein coding genes atp6 and atp8 (Helfenbein et al. 2004; 

Papillon et al. 2004). Generally, mt genomes feature a relative conserved gene order. As 

there is virtually a limited amount of non-coding or non-vital sequence, rearrangements 

are likely to disrupt other genes. Identical gene arrangements can be retained for a long 

time, as found in distantly related species, e.g. among vertebrates hagfishes and 

mammals have the same mt gene order.  

The pancrustacean ground pattern is similarly present in many different species from 

Crustacea and Hexapoda (Kilpert and Podsiadlowski 2006). It differs from the 

arthropod ground pattern in the relative position or a single gene (trnL2) (Boore and 

Brown 2000; Boore, Lavrov, and Brown 1998). In Peracarida this ancestral state was 

modified in different ways. Isopoda show other changes in gene order (Kilpert and 

Podsiadlowski 2009) than the two available mt genomes from gammarid amphipods 

Parhyale hawaiensis (Cook, Yue, and Akam 2005) and Metacrangonxy longipes 
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(Bauza-Ribot et al. 2009). None of the detected rearrangements seems to be common to 

both, Amphipoda and Isopoda. Mt genomes from other peracarid taxa are so far 

unavailable.  

Here we present the complete mt genome of Caprella mutica. It is the first complete 

dataset of a member of the Caprellidea, a suborder of Amphipoda (Crustacea, 

Malacostraca, Peracarida) with more than 300 classified species (8 suborders; Laubitz 

1993; Martin and Davis 2001). The phylogeny of Caprellidea is not settled jet; 

historically Caprella mutica is belonging to the Caprellidae (skeleton shrimps). Species 

of this group can be found in benthic marine enviroments. Most of them use other 

organisms as substrata like hydroids, sponges, and seaweed. Caprella mutica is 

indigenous to sub-boreal waters of north-east asia, but has recently gained attention as 

one of the most rapidly invading marine species, meanwhile found at the coasts of 

North America, Europe and New Zealand (Ashton et al. 2007).   

 

5.3 Material and Methods 

Sample and DNA extraction 

A single specimen of Caprella mutica preserved in 99% ethanol was used for DNA 

extraction. Only legs (peraeopods) were applied to the DNeasy Tissue kit (Qiagen, 

Hilden, Germany) following the manufacturer’s protocol for total genomic DNA 

extraction. The specimen was collected at the coast of the North Sea island Helgoland in 

spring 2006. 

 

mtDNA amplification and processing 

We successfully amplified the almost complete mt genome of Caprella mutica by a 

single long range PCR. The whole procedure was inspired by a paper describing one-

step PCR amplification of complete mitogenomes in arthropods (Hwang et al. 2001). 

We used a combination of the primers Isop-16sf and Isopd-16sr, which already proved 

their usefulness for long range PCRs of an isopod species (Kilpert and Podsiadlowski 
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2009). The generated PCR product had a size of about 15 kb, indicated by gel 

electrophoresis. It was amplified using the TaKaRa LA Taq kit (Takara Bio Inc., 

distributed by MoBiTec, Göttingen, Germany). The reaction volumes amounted 25µl, 

each consisting of 2.5 µl 10× Takara LA PCR buffer, 4 µl Takara dNTP mixture 

(2.5 mM each), 0.25 µl Takara LA Taq polymerase (5 units/µl), 16.75 µl sterile distilled 

water (Bio Mol grade, 5Prime), 0.5 µl primer mixture (10 µM each; Metabion, 

München,Germany) and 1 µl DNA template. The thermal cycling protocol was setup 

with an initial denaturation step (94 °C, 1 min) followed by 30 cycles each comprising 

denaturation (98 °C, 15 s), annealing (58 °C, 45 s) and extension (68 °C, 14 min). The 

cycling was completed by a final extension (72 °C, 10 min). Eppendorf Mastercycler 

and an Eppendorf Mastercycler Gradient (Eppendorf, Hamburg, Germany) were used 

for all PCRs of this study. Clean-up of PCR products was accomplished by silica-

membrane spin columns (NucleoSpin Extract II, Macherey-Nagel, Dueren, Germany); 

Storage temperature for purified PCR products was always -20° C. 

The sequencing of this large PCR product generally followed the primer walking 

strategy. A large number of additional primers helped to advance the sequencing 

process: We used decapod, peracarid and isopod primers we built in the past based on 

conserved segments from single-gene alignments (Kilpert and Podsiadlowski 2009; 

Podsiadlowski and Bartolomaeus 2005). The insect based primers 16S2, N4, and 

N4(87) were proven to be useful as well (Roehrdanz, Degrugillier, and Black 2002), 

likewise several primers of a set of primers, which was originally designed for decapods 

crustaceans (Yamauchi et al. 2004). The complete list of primers successfully used is 

provided in Additional File 5.1. 

The two areas that turned out to contain control regions were hard to sequence and were 

verified by nested PCRs with the initial long-range PCR product as template. The 

primers pair Cm-6441/Cm-7613 (1173 bp) and Cm-464/Cm-14669 (1224 bp) were used 

for these amplifications.  

 

Sequencing 

Sequencing was performed on a CEQ 8000 capillary sequencer (Beckman Coulter, 

Krefeld, Germany), provided with the CEQ software package (instrument version: 



5. The mitochondrial genome of Caprella mutica (Amphipoda: Caprellidea) 

93 

6.0.2, software version: 5.0.360) for operation and analysis. For sequencing reactions 

we used the CEQ DTCS Quick Start Kit (Beckman Coulter) according to the 

manufacturer’s protocol. The thermal cycling comprised 30 cycles (20 sec at 94° C, 20 

sec at 45-58° C (primer specific), 4 min at 60° C). The reactions were cleaned-up by 

three ethanol washing/precipitation steps, subsequent vacuum drying and finally solved 

in sample loading solution. After we had complete sequencing of the mt genome of 

Caprella mutica by primer walking, we got the opportunity to verify the results by next 

generation sequencing. Thus, the PCR product from the first long-range amplification 

was introduced to the commercial 454 service provided by AGOWA (Berlin, Germany). 

We identified four contig sequences (from 1209 single reads) which covered almost the 

entire mt genome: A (457 reads, covering bp 22-6605), B (100 reads, covering bp 6606-

7290), C (169 reads, covering 7291-9704), D (383 reads, covering bp 10021-14764).  

 

Gene annotation and sequence analysis 

BioEdit 7.0.9.0 (Hall 1999) was used to align the complete mt genome from single 

DNA sequences. The complete mtDNA sequence of Caprella mutica was deposited at 

GenBank (NCBI, GU130250). Primers were designed to allow a fragment overlap of at 

least 50 bp. Every part of the mt genome was covered by at least two sequences to allow 

a detection of sequencing errors. In addition, there are four large  contigs  from 454 

sequencing covering 93% of the complete genome. Therefore, the coverage of two 

independent sequencing methods ensures a high sequence quality. Two computer 

programs, tRNAscan-SE 1.21  (Lowe and Eddy 1997) and ARWEN 1.2.3.c (Laslett and 

Canback 2008) were used to identify tRNAs by their secondary structure. Non-coding 

areas were manually checked for tRNA genes as well. Because identification of tRNA 

genes is anything but trivial and single genes are easily overlooked, we spent utmost 

care on this topic (see Additional File 5.2). Other genes were identified by BLAST 

search on GenBank databases and by comparison to the mitochondrial genome of 

Drosophila yakuba (NC_001322). Gene borders of protein-coding genes were 

determined by comparison to alignments of mitochondrial genes from several 

crustacean species. Gene boundaries were assumed to be the first start and stop codons 

in frame. rRNA genes are assumed to extend up to adjacent genes, due to the lack of 
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better resources to determine gene boundaries. The DAMBE 5.1.1 software package 

(Xia and Xie 2001) was used to calculate nucleotide frequencies.  

 

5.4 Results and Discussion 

Genome organization 

The mitochondrial genome of Caprella mutica is a circular doublestrand molecule of 

15,427 bp length (Figure 5.1, GenBank: GU130250). The ring shape topology is 

assumed due to the results of the sequencing of overlapping PCR fragments. All 37 

genes (2 rRNA genes, 13 protein-coding genes, and probably 22 tRNA genes), which 

are usually present in metazoan mt genomes were found. The genes are encoded on both 

strands and often overlap by a few nucleotides (Table 5.1); non-coding sequences are 

rare. Unusual, however, is the existence of a two major non-coding regions (control 

regions) instead of one. The highly similar nucleotide sequences suggest these were 

subject to a recent duplication event, because there is no significant amount of 

substitutions detectable. Normally the major non-coding regions of mt genomes are 

among the most variable regions, often useful markers in population genetics. . The 

relative positions of the major non-coding regions in the mt genome suggest that CR2 

between trnP and trnI is the original one, as it is found in a relative position comparable 

to that of other Crustceans, while and CR2 between nad6 and trnC seems to be the 

duplicate. Besides this duplication a number of gene translocation events also happened 

(see below).  

 

Strand bias 

It has been shown that the frequency of complementary nucleotides, most notably of G 

and C, differs between both strands in mtDNA (Perna and Kocher 1995). In 

malacostracan crustaceans there is regularly more C than G in +strand genes (negative 

GC skew) and more G than C in –strand genes (positive GC skew) (Hassanin 2006). 

This skew is probably caused by the asymmetrical replication process of the mt 

genome, whereby each mtDNA strand is exposed to different mutational pressure, 
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dependent from the direction of replication. It is therefore an indicator for the 

orientation of the control region (Hassanin, Leger, and Deutsch 2005). Caprella mutica 

keeps the usual arthropod GC skews (negative GC skew for +strand genes, positive GC 

skew for –strand genes) (Additional File 5.3). The gammarid amphipods 

Metacrangonyx longipes (Bauza-Ribot et al. 2009) and Parhyale hawaiensis (Cook, 

Yue, and Akam 2005) share these regular GC skews. This is an important difference to 

the mt genomes of Isopoda, which show a reversed GC skew (Kilpert and 

Podsiadlowski 2006; Kilpert and Podsiadlowski 2009; Podsiadlowski and Bartolomaeus 

2006).  

 

 

 

Figure 5.1. Map of the complete mitochondrial genome of Caprella mutica (Amphipoda: 
Caprellidae). Transfer-RNAs are represented by their one-letter amino acid code. Numbers 
specify the length of non-coding sequences (positive values) or the extent of gene overlaps 
(negative values). Arrows pointing clockwise indicate +strand genes; counter-clockwise arrows 
indicate -strand genes. The latter are shaded dark additionally. 
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Table 5.1. Gene content of the complete mitochondrial genome of Caprella mutica.  
The mtDNA is a circular molecule.  

Gene Strand GenBank position no. Size 
(nts) 

Size 
(aa) 

Start codon Stop codon Intergenic 
nucleotides 

trnI + 1-62 62    0 
trnM + 63-124 62    2 
trnY - 127-186 60    -8 
trnQ - 179-242 64    2 
nad2 + 245-1222 978 325 ATT TAA 7 
trnW + 1230-1289 60    2 
trnG + 1292-1353 62    0 
cox1 + 1354-2890 1537 512 ATT T 0 
trnL(UUR) + 2891-2951 61    0 
cox2 + 2952-3633 682 227 ATA T 0 
trnK + 3634-3696 63    -1 
trnD + 3696-3756 61    0 
atp8 + 3757-3915 159 52 ATA TAA -7 
apt6 + 3909-4580 672 223 ATG TAA -4 
cox3 + 4577-5365 789 262 ATA TAA -1 
nad3 + 5365-5715 351 116 ATG TAA -2 
trnA + 5714-5774 61    -1 
trnS(AGN) + 5774-5829 56    -3 
trnN + 5827-5889 63    -2 
trnE + 5885-5946 59    3 
trnR + 5950-6009 60    -3 
trnF - 6007-6066 60    -2 
trnT + 6065-6123 59    -18 
nad6 + 6106-6606 501 166 ATT TAA * 
non-cod. 1  6607-7311 705    * 
trnC - 7312-7367 56    5 
cob + 7373-8488 1116 371 ATG TAA -9 
trnS(UCN) + 8480-8544 65    10 
nad1 - 8555-9457 903 300 ATA TAA 6 
trnL(CUN) - 9464-9526 63    * 
rrnL - 9527-10516 990    * 
trnV - 10517-10574 58    * 
rrnS - 10575-11326 752    * 
nad5 + 11327-13027 1701 566 ATA TAA -12 
trnH - 13016-13075 60    -3 
nad4 - 13073-14390 1318 439 ATG T -7 
nad4L - 14384-14668 285 94 TTG TAA 0 
trnP - 14669-14728 60    * 
non-cod. 2  14729-15427 699    * 

* Gene borders determined by borders of adjacent genes 

 

Protein-coding genes 

The A+T content of the protein-coding genes amounts 67.7% (total genome: 68.0%; 

Table 5.2), which is within the usual 60-70% range of malacostracan mt genomes. The 

regular start codons ATA, ATT, and ATG can be found at all but one protein-coding 
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gene; only nad4L is supposed to start with a TTG (Table 5.1). This start codon is not 

regularly found in arthropods, but was at least suggested as start codon in an isopod 

species (Kilpert and Podsiadlowski 2009). Most genes uniformly end by the stop codon 

TAA. However, the three genes cox1, cox2, and nad4 show abbreviated stop codons, 

which consist of a single T. It is generally thought that these shortened stop codons are 

completed by post-transcriptional polyadenylation to a functional UAA in the transcript 

(Ojala, Montoya, and Attardi 1981). Abbreviated stop codons are often reported from 

mt genomes of various species, including the amphipods Parhyale hawaiensis (Cook, 

Yue, and Akam 2005) and Metacrangonyx longipes (Bauza-Ribot et al. 2009). 

 

Table 5.2. Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of 
Caprella mutica. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.298 0.223 0.121 0.359 65.6 -0.09 -0.30 
atp8(+) 0.453 0.151 0.057 0.340 79.2 0.14 -0.45 
cob(+) 0.280 0.217 0.135 0.368 64.8 -0.14 -0.23 
cox1(+) 0.260 0.201 0.176 0.362 62.3 -0.16 -0.07 
cox2(+) 0.318 0.199 0.145 0.337 65.5 -0.03 -0.16 
cox3(+) 0.278 0.197 0.165 0.361 63.9 -0.13 -0.09 
nad1(-) 0.233 0.145 0.207 0.415 64.8 -0.28 0.18 
nad2(+) 0.305 0.186 0.112 0.398 70.3 -0.13 -0.25 
nad3(+) 0.288 0.168 0.134 0.410 69.8 -0.18 -0.11 
nad4(-) 0.250 0.131 0.208 0.411 66.1 -0.24 0.23 
nad4L(-) 0.246 0.098 0.165 0.491 73.7 -0.33 0.25 
nad5(+) 0.276 0.202 0.145 0.377 65.3 -0.15 -0.17 
nad6(+) 0.321 0.198 0.114 0.367 68.9 -0.07 -0.27 
prot. cod. total 0.293 0.178 0.145 0.384 67.7 -0.14 -0.11 
rrnL(-) 0.332 0.116 0.171 0.381 71.3 -0.07 0.19 
rrnS(-) 0.358 0.112 0.153 0.378 73.5 -0.03 0.16 
rRNA total 0.345 0.114 0.162 0.379 72.4 -0.05 0.17 
non-cod. 1 0.355 0.136 0.112 0.397 75.2 -0.06 -0.10 
non-cod. 2 0.342 0.142 0.119 0.398 74.0 -0.08 -0.09 

total mt genome 0.332 0.188 0.133 0.348 68.0 -0.02 -0.17 

 

rRNA genes 

The size of rrnL (16S), located on the negative strand, has a length of only 990 bp. It is 

therefore  significantly shorter than available rrnL genes from related peracarid species: 

Metacrangonyx longipes (Amphipoda): 1137 bp, Eophreatoicus sp.-14 (Isopoda): 1224, 

Ligia oceanica (Isopoda): 1234 bp, Idotea balthica (Isopoda): 1216 bp. Although a 
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number of nucleotides are missing at the 3’-end of the gene, as shown by an alignment 

of these rrnL genes, a general loss of function is not probable. 

 

Transfer RNAs 

The regular set of 22 tRNA genes was identified in the mt genome of Caprella mutica 

(Table 5.1). With the exception of the two isoaccepting trnS genes, which were found 

by manual inspection of remaining non-coding regions, all tRNA genes were detected 

by the utilized computer software (Additional File 5.2). The secondary structure plots 

reveal that most tRNAs feature a usual t-shape or clover leaf secondary structure 

(Figure 5.2). Deviations from this pattern were found in tRNA-Cys, tRNA-Glu, and 

tRNA-Thr, where the TΨC-arm is missing. tRNA-Ser(AGN) on the other hand has no 

DHU-Arm. An elongation of the anticodon loop was found in tRNA-Ser(UCN). 

Aberrant secondary structures are also known from other related amphipod or peracarid 

species: In isopods tRNA-Cys is lacking the DHU-arm as well (Kilpert and 

Podsiadlowski 2009). The same arm shows very bad parings in tRNA-Ser(AGN) of 

Metacrangonyx longipes (Amphipoda) (Bauza-Ribot et al. 2009) and is also missing in 

isopod species. This is similar with the TΨC-arm of tRNA-Thr, which is missing in 

Metacrangonyx longipes (Amphipoda) and is most likely also absent in Ligia oceanica 

(Isopoda).  

There is evidence for a remolding event of two adjacent tRNA genes. The high 

sequence similarity of trnW and trnG (74.2 %) probably resulted from a duplication of 

trnW followed by several nucleotide mutations, which changed the identity to a 

functional trnG gene. Similar remolding events were reported only from isoaccepting 

trnL genes so far (Kilpert and Podsiadlowski 2009; Rawlings, Collins, and Bieler 2003). 

A complete identity change, however, requires not only mutations in the anticodon, but 

also in the accepting aminoacetyl tRNA synthetase . This kind of remolding is probably 

less frequent, due to the higher degree of complexity. 
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Figure 5.2. Secondary structure plots of tRNAs of Caprella mutica. Most tRNAs feature a typical 
clover-leaf structure. Exceptions: DHU-arm missing in tRNA-Cys, tRNA-Glu, and tRNA-Thr. TΨC-
arm missing in tRNA-Ser(AGN). 
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Control region duplication and repeats 

The mt genome of Caprella mutica features two control regions. As the relative 

positions suggest (see next paragraph), CR1 (705 bp; located between nad6 and trnC) 

most likely is a copy of CR2 (699 bp; located between trnP and trnI). The nucleotide 

sequence is practically identical (99.1%), except for additional sequence at the 3’-end of 

CR1 (41) and the  5’-end of CR2 (35 bp; Additional File 5.3). The occurrence of 

another control region is quite uncommon in mt genomes, as usually one control region 

bears everything needed for replication and transcription. It seems likely that the 

duplicates had no time to accumulate a significant amount of mutations or deletions. 

Therefore, it seems reasonable to assume very recent duplication event.. Further studies 

will show if a duplication of the control region also occurs in other caprellid amphipods. 

Other completely sequenced mt genomes from Peracarida are only known from 

Isopoda. The analyzed species show only one control region, although it is likely that 

the derived relative position of the isopod control region is the result of a 

duplication/random-loss event (Kilpert and Podsiadlowski 2006; Kilpert and 

Podsiadlowski 2009), which is generally assumed as the basic mechanism of gene 

rearrangements (Dowton, Castro, and Austin 2002). Duplications of the control region 

are occasionally reported, mainly from vertebrates (Amer and Kumazawa 2005; 

Eberhard, Wright, and Bermingham 2001; Gibb et al. 2007). Within the control region 

there is a 69 bp sequence, which−except for one nucleotide−is inversely repeated 

starting 56 bp downstream (Additional File 5.3). Together they may form a huge hairpin 

with a stem of about 70 bp length and a loop of 56 bp. However, typical control region 

hairpins are significantly smaller (Kilpert and Podsiadlowski 2006). A part of the 

inverse repeat sequence (28 bp) is present another time in the control region, but with 

no counterpart to form a second hairpin.  

 

Mt genome rearrangements 

The mt genome of Caprella mutica differs significantly from the gene order of the 

pancrustacean ground pattern and also from the other available amphipod species 

(Figure 5.3). The pancrustacean ground pattern (Lavrov, Boore, and Brown 2000) is 

still realized in many crustacean and hexapod species (Kilpert and Podsiadlowski 2006). 

A striking difference of Caprella mutica is the already mentioned duplication of the 
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control region. The comparison to the ground pattern indicates that the position of CR2 

in Caprella mutica corresponds to the control region of the ground pattern. CR1 

probably is a duplication of CR2 that was inserted between nad6 and cob. The other 

striking difference is a derived relative position of nad5 and a block of trnH, nad4, 

nad4L and trnP. Furthermore, nad5 must have switched strands in comparison to the 

pancrustacean ground pattern. It is conceivable that the whole area ranging from nad5 

to trnP was translocated as a whole and nad5 was inverted in place afterwards. 

Generally, the large number of potential gene arrangements makes it very unlikely that 

genes stay adjacent when moved by independent translocation events (Dowton, Castro, 

and Austin 2002). For nad5 a separate translocation followed by an inversion is the 

most parsimonious explanation. Generally, the best founded mechanistic explanation for 

mt gene translocations is the traditional duplication-random-loss model (Moritz, 

Dowling, and Brown 1987). However, large scale duplications followed by random 

losses, is not the first choice to parsimoniously generate the observed gene order of 

nad5 and the trnH/nad4/nad4L/trnP block. Intramitochondrial recombination may be 

more likely to move a block of genes around the mt genome (Dowton, Castro, and 

Austin 2002).  

 

 

Figure 5.3. Gene arrangements of Amphipoda. Caprella mutica (this study) is compared to 
Parhyale hawaiensis (FM957525, FM957526, Bauza-Ribot, Jaume, Juan, and Pons 2009; 
AY639937, Cook, Yue, and Akam 2005), and Metacrangonyx longipes (NC_013032, Bauza-
Ribot, Jaume, Juan, and Pons 2009). Colored genes indicate changes in comparison to the 
ground pattern of Pancrustacea (ancestral state). Green colored genes signal changes in 
individual species only; orange colored genes share derived positions.  
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A clear reference about the mechanism that caused the derived position of trnG can be 

found in all available amphipod mt genomes. In Caprella mutica high sequence 

similarity of trnW and trnG (74.2 %) suggest that trnG probably emerged from a 

duplication of trnW. The pancrustacean ground pattern shows that trnW stayed in its 

original position, while the position of trnG is new. The same high similarity of both 

tRNA genes is incidentally present Metacrangonyx longipes (76,6%; NC_013032) and 

Parhyale hawaiensis (67,2%; AY639937) as well. For the latter, a verification of 

tRNAs with ARWEN lead to an update of the annotation: trnC (in AY639937) is in fact 

trnW; and trnW is trnG. Therefore, all amphipods, including Parhyale hawaiensis, share 

the derived position of trnG, which apparently is the result from a duplication-random-

loss event that was followed by a remolding of the tRNA. For isoaccepting trnL genes it 

seems to happen every now and then at least in some lineages (Rawlings, Collins, and 

Bieler 2003), but shifts into different tRNAs, which also require changes of the acceptor 

stem, seem to occur much more rarely (Lavrov and Lang 2005). The derived location of 

trnG is an unequivocal apomorphic character of the Amphipoda, as it is no longer found 

between cox3 and nad3. In isopods, the only other peracarids with available mt 

genomes, trnG was not translocated (Kilpert and Podsiadlowski 2006; Kilpert and 

Podsiadlowski 2009). 

Other genes with derived relative positions in Caprella mutica are trnY (beside trnQ) 

and trnS1 (between trnA and trnN), and trnR (between trnE and trnR) (Figure 5.3). 

These genes are also translocated in Metacrangonxy longipes as well. In Parhyale 

hawaiensis the relative postions of trnY and trnR are also derived, but in comparison to 

the other two amphipods, additional changes are required to explain the situation. The 

region between the control region and nad2, which contains multiple tRNA genes, 

shows an increased variability in all amphipods. Even the number of tRNA genes varies 

significantly: Caprella mutica (4 tRNA genes), Parhyale hawaiensis (3 tRNA genes), 

Metacrangonxy longipes (7 tRNA genes). However, there is higher similarity in gene 

order between the two gammarid amphipods (Metacrangonxy longipes, Parhyale 

hawaiensis) than between these and to the caprellid amphipod Caprella mutica. In 

Parhyale hawaiensis changes are limited to rearranged tRNAs, mainly located in an 

area between trnP and trnT. In Metacrangonxy longipes most significant 

rearrangements can be found between the CR and nad2 (even involving cob). But most 

significant changes were found in Caprella mutica, which not only feature derived 
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tRNA gene orders but also a duplication of the CR and of protein-coding genes (nad4, 

nad4L and nad5). 
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6. Insights from the mitochondrial genome of Leucon nasica 
(Cumacea) – Implications for peracarid phylogeny 

 
 

6.1 General remarks and background 

This chapter presents first results from the ongoing sequencing process of the 

mitochondrial genome of Leucon nasica. About half of the mt genome has been 

determined so far. Therefore, our data represents the most extensive dataset for a 

cumacean species right now. On Genbank there are only single mt gene sequences 

(cox1, rrnS) available of different cumacean species, whereby the majority of them is 

far from complete. Although the sequencing of the Leucon nasica mt genome is not 

finished yet, the already determined gene order is meaningful enough to allow serious 

inferences on peracarid phylogeny and the relationship of Cumacea to Amphipoda and 

Isopoda.  

Cumacean species inhabit marine benthic sediments all over the world. They are 

particularly frequent in the deep sea, but are also found in the littoral zone. The normal 

size of these small peracarids is about 5-10 mm. The habitus is characterized by a 

balloon-shaped carapax, which regularly covers the first 3-6 thoracomers, and a long 

and thin pleon. The Cumacea comprise about thousand cumacean species, currently 

divided in eight subclades (Martin and Davis, 2001).  

 

6.2 Material and methods 

As the sequencing of Leucon nasica is work in progress, as mentioned above, it might 

be appropriate to briefly refer to the materials and methods sections of the previous 

chapters (Chapter 2-5). The mt genome of Leucon nasica was gained pretty much by the 

same techniques and protocols like the mt genomes of the isopods and the amphipod 
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species. Detailed information on each process can be looked up there; exceptions and 

particularities for Leucon nasica are listed here.  

The specimen of Leucon nasica (8 mm length) was collected in Bergen (Norway) and 

preserved in 99% ethanol. We used a complete pleon for DNA extraction with the 

DNeasy Tissue kit. It was possible to amplify the whole sequence, which is available by 

now, with primer pair L12167-16S and H4244-CO3 (Yamauchi et al., 2004) in a long 

range PCR. This fragment was then sequenced by primer walking using species specific 

primers (available in upcoming publication). For sequencing we relied on a commercial 

sequencing service (AGOWA, Berlin, Germany). Annotation and analysis were 

accomplished to the proven standards as before. 

 

6.3 Results and discussion 

A part of the mt genome of Leucon nasica with a size of 6216 bp was sequenced. The 

annotation revealed one rRNA gene (rrnL), six protein-coding genes (atp6, atp8, cox1, 

cox2, cox3, nad2), and seven tRNA genes (trnD, trnK, trnL1, trnL2, trnM, trnQ, trnV) 

in the linear fragment (Table 6.1). All tRNAs examined so far show a regular t-shape 

(clover-leaf) secondary structure (not shown). An unusually large non-coding sequence 

of 134 bp was detected between trnM and nad2. Apart from that only small non-coding 

regions (up to 3 bp) exist between genes as well as small gene overlaps (up to 7 bp), 

which are commonly found in mt genomes. Exceptional start codons were detected for 

the three protein coding genes: atp8 (TTG), cox1 (GCG), cox2 (GTT). Usual start 

codons do not exist near the start of the genes being preset by multiple sequence 

alignments of other crustaceans. This indicates that exceptional start codons also occur 

in cumacean mt genomes, similar to those in amphipods and isopods. An incomplete 

stop codon terminates atp6. These abbreviated stop codons (Ojala et al., 1981) have 

been reported from every peracarid mt genome. The partial mt genome generally 

features more C than G nucleotides for the +strand (negative GC-skew) and an inverse 

relationship for the –strand (positive GC-skew). The overall +strand GC skew of the 

sequenced fragment is -0.08. This slightly negative value corresponds to the generally 

negative GC skew of crustacean species, which was maintained in amphipods, but not 
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in most isopods. As the GC skew allows conclusions on the orientation of the control 

region (Hassanin et al., 2005), there is currently no indication for an inversion in 

peracarids before the origin of isopods. 

The gene order of the sequenced fragment, ranging from rrnL to cox3, shows some 

significant differences in comparison to the pancrustacean ground pattern (putative 

ancestral state) (Figure 6.1). The loss of a section containing rrnS, CR, and trnI is 

certainly most noticeable among them. As a result, trnV is located adjacent to trnQ in 

Leucon nasica, which is the exactly the same state as assumed for the ground pattern of 

isopods! A translocation of an rRNA gene or even the control region is anything but 

frequent. The commonly shared gene order therefore is a strong indication for a shared 

origin of this character in isopod and cumacean species. Convergence in derived gene 

order, especially of multiple genes, is unlikely, due to the enormous number of 

alternative gene orders (Dowton et al., 2002).  

Although the new relative position of rrnS, CR, and trnI are unknown by now, as they 

are probably located in the by now unsequenced part of the mt genome, the cumacean 

species Leucon nasica seems to share one of the most distinctive isopod mt gene 

rearrangements. This shared apomorphic character (synapomorphy) qualifies the 

Cumacea as a potential isopod sister group in the Peracarida tree. Amphipod species 

retained the original position of the control region of the pancrustacean ground pattern. 

Some species even show additional genes between trnV and trnQ (Chapter 5). 

Therefore, Amphipoda are certainly not the sister group of the Isopoda. For Tanaidacea 

there is no data available as it has still not yet been possible to sequence multigene 

fragments of the mt genome. 

 

An interesting difference in Leucon nasica is the loss of tRNAs gene between nad2 and 

cox1. Usually this position always holds multiple tRNA genes. In the pancrustacean 

ground pattern there are three tRNA genes (trnW, trnC, trnY) of which two remained in 

isopods (trnC, trnY). The Amphipoda show here always trnW and trnG, in which trnG 

probably originated from a duplication/remolding of trnW (Chapter 5). The fact that no 

tRNA genes are located between nad2 and cox1 therefore is an exception among 

Peracarida. It could be another good synapomorphic character for Cumacea, if it turns 

out that tRNA genes are similarly absent in other species of the group.  
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Table 6.1. Gene content of the partial mt genome of Leucon nasica (Cumacea) 

* Gene borders determined by borders of adjacent genes 
a

  Incomplete gene 
 
 
 

 
Figure 6.1. The partial mt gene arrangement of Leucon nasica (Cumacea) compared to the 
putative ancestral state (pancrustacean ground pattern) and the isopod ground pattern. rrnS, 
CR, and trnI were translocated in Leucon nasica, similar to Isopoda. Derived relative position of 
genes color: blue (Isopoda), red (Cumacea). 
 

 
 

Another derived position was detected for trnD, which is located between cox1 and 

trnL2 in Leucon nasica. This relative position was never reported for any crustacean 

species (see chapter 2: figures 6 and 8; Kilpert and Podsiadlowski, 2006). In the 

pancrustacean ground pattern and also in all known amphipod and isopod species trnD 

is always located between cox2 and trnK. 

Gene Strand GenBank 
position no. 

Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

rrnLa - 1-1017a 1017a    * 

trnV - 1018-1080 63    -3 
trnQ - 1078-1139 62    -2 
trnM + 1138-1201 64    134 
nad2 + 1336-2304 969 322 ATT TAA 1 
cox1 + 2306-3841 1536 511 GCG TAA 3 
trnD + 3845-3904 60    0 
trnL(UUR) + 3905-3964 60    3 
trnL(CUN) + 3968-4027 60    0 
cox2 + 4028-4693 666 221 GTT TAA 1 
trnK + 4695-4757 63    0 
atp8 + 4758-4907 150 49 TTG TAA -7 
atp6 + 4901-5564 664 221 ATG T 0 
cox3a + 5565-6216a 652a a ATG a  
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The gene position of trnL1 (between trnL2 and cox2) is probably attributable to a 

duplication/remolding event of the adjacent trnL2 gene (Rawlings et al., 2003). The 

sequence similarity of both trnL genes amounts 62.9%; therewith it is much higher than 

chance similarity of unrelated genes. Similar translocation events of trnL1 caused by the 

same mechanism are also known from phreatoicidean and asellotan isopods (Chapters 3 

and 4). However, trnL1 is located on the other side of trnL2 next to cox1 in two of the 

isopod species. Altogether, it seems like translocation events of trnL1 caused by 

duplication and remolding might be more frequent than most other translocation events. 

The shared position of trnL1 in the particularly derived mt genome of Janira maculosa 

and in the cumacean Leucon nasica is quite likely a result of homoplasy. 

6.4 Acknowledgements 
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them Leucon nasica. Thank you very much.  
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7. Concluding discussion 

 

Concluding remarks on the questions posed in the introduction: 

(1) What kinds of characters of ‘genome morphology’ actually exist in the examined mt 

genomes? Are these characters valuable for phylogenetic inference? Do they occur 

frequently enough to establish a phylogeny apart from sequence data? 

The comparison of isopod, amphipod, and cumacean mt genomes (Chapters 2 to 6), 

including new data from ten species, revealed variation in several structural and 

organizational characters, referred to as characters of ‘genome morphology’. In Isopoda, 

the taxon for which there is currently most data (Chapters 2 to 4), extensive 

rearrangements of the mt gene order were determined. In fact, none of the nine isopod 

species shares the same gene order with another species. In addition to gene order there 

are further remarkable features of mt genomes, which may be used in a character matrix 

for phylogenetic analysis: a) Some species show a reversed strand bias in nucleotide 

frequencies, expressed in the GC skew value, in comparison to other crustaceans. b) 

Modifications of the typical cloverleaf tRNA secondary structure are frequently 

recorded, predominantly missing stems. c) Some protein-coding genes feature unusual 

start codons apart from the invertebrate mitochondrial code and abbreviated stop 

codons. d) In species where it was possible to sequence the mt control region (CR), a 

hairpin-like stem-loop structure has been determined. e) In one species (Ligia oceanica) 

repetitive sequences were also found in the CR. With the exception of repetitive 

sequences, all the above described features also occured in the mt genomes of 

Amphipoda (Chapter 5) and Cumacea (Chapter 6). 

In the above-named cases, the mt genome serves as a model for the evolution of 

character states of ‘genome morphology’. Obviously, only changes of character states 

are useful for phylogenetic inferences. A comparison with character states from the 

outgroup allows to distinguish between plesiomorphic and apomorphic character states. 

The unequivocal traceability of changes may be limited in some cases: too many 

changes may blur ancestral similarity, so it may become impossible to reconstruct the 

series of events leading to differences. Examples of extensive rearrangements, which 

make the mt gene order hardly useful for phylogenetic inferences, can be found e.g. in 
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Copepoda (Ki et al., 2009) and Brachiopoda (Helfenbein et al., 2001). In the dataset 

from Peracarida presented in this thesis, there is good support from gene order changes 

for some clades, e.g. Valvifera (synapomorphic location of trnR), Isopoda (several 

synapomorphic changes) (Chapter 4), Amphipoda (trnY, trnG) (Chapter 5). Isopods and 

cumaceans share derived features as well, but as long as there is only limited data 

available for Cumacea this result remains preliminary. Despite all these useful 

phylogenetic features, many derived character states from this ‘genome morphology’ 

dataset are restricted to single species. With a broader taxon sampling they might 

become valuable as apomorphic character states resolving relationships on a lower 

taxonomic level. 

(2) Are there any rearrangement hotspots in the mt genome? Or is an equal distribution 

of translocated genes over the entire genome observed? Areas of increased gene order 

variability may be of less phylogenetic value, as they might be subject to homoplasious 

change. 

In the mt genomes of Isopoda there is an eye-catching aggregation of translocated genes 

(Chapter 4). Many of the derived gene positions, especially of protein-coding genes, are 

shared among isopods. They even allow proposing a ground pattern hypothesis of the 

gene order of isopods. What is remarkable is that although many genes originate from 

different locations, most of them were inserted in a certain area with the CR in its 

center, which likewise was a subject to translocation. In contrast to this hotspot of 

rearrangements, another large part of the mt genome (nad2 to nad3) always shows very 

little gene order variation in isopods, except an inversion found in one species 

(Eophreatoicus sp.14). It can be argued that the proximity to the CR might promote 

gene order changes, probably due to the presence of a large section of non-coding 

sequence. E.g. in the two examples where the CR was sequenced, the tRNA genes 

located around the CR show different relative positions. Unlike other parts of the 

mtDNA, such as those coding for vital genes, the CR might be less affected by a 

disruption of essential mitogenomic sequences caused by the insertion of translocated 

elements.  

In contrast, in the mt genomes of amphipod species no such hotspot for gene 

translocations was detected. Instead, each of the three currently available amphipod mt 

genomes features unique gene order changes. Most of them seem to affect tRNA genes 
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of tRNA clusters (>4 tRNA genes) (Chapter 5). Derived gene positions of protein-

coding genes were independently found in two species. As in isopods both were 

inserted adjacent to the CR. 

In the cumacean species Leucon nasica a significant part of the mt genome (rrnS, CR, 

trnI) must have been subject to translocation (Chapter 6). Although the definite position 

of the translocated elements remains unclear for the moment, as only about one half of 

the mt genome is sequenced so far, there is good evidence for a derived gene order 

shared with isopods. 

 

(3) What is the scenario of ‘genome morphology’ changes within Isopoda? How can the 

observed succession of character changes be most parsimoniously explained? What is 

the putative gene order in the isopod ancestor? 

As stated above, the comparison of mt genomes from Isopoda revealed some variation 

in ‘genome morphology’. However, there are not enough synapomorphic character 

states to infer isopod relationships based on structural mitogenomic characters alone. 

The determined character states were therefore mapped parsimoniously on a molecular 

tree (Chapter 4). This allowed the detection of apomorphies, synapomorphies, and 

putative homoplasies. In addition, the series of changes within certain lineages, e.g. of 

trnR or of the strand bias, became traceable. The broad comparison of the available mt 

genomes also resulted in a hypothesis for the putative isopod ground pattern (Chapter 

4). In Figure 7.1 the tree from Chapter 4 was extended by the cumacean and amphipod 

species to give an overview of changes in mt ‘genome morphology’ in Peracarida as far 

as it is known yet. 

Each change of a character state is caused by a specific event. A reversal of the GC-

skew is probably the result of an inversion of the replication origin. For short distance 

gene translocations on the same strand a TDRL mechanism remains the best 

explanation. For single translocations of highly similar tRNA genes a TDRL 

mechanism with a subsequent remolding event is very likely, as seen for trnL1 in isopod 

species (Chapter 4) or trnG in amphipod species (Chapter 5). The in-place inversion 

found in Eophreatoicus was most likely caused by an intramolecular recombination 

event.  
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Figure 7.1. Structural characters mapped on a peracarid tree. The molecular tree of Figure 4.4 
was extended by branches for cumacean and amphipod species. Similarity in gene order 
between the cumacean Leucon nasica and the isopod gene order was detected. Amphipoda 
show a set of derived characters different from Isopoda and Cumacea. Therefore, the ground 
pattern of Peracarida most probably resembles the pancrustacean ground pattern. 

 

 

(4) How reliable are characters of ‘genome morphology’? Is there any conflict in the 

data, e.g. are there specific examples of homoplasious events? 

The overall reliability of characters of ‘genome morphology’ may be affected by 

homoplasious character changes. However, until now, there have been almost no reports 

in literature with regard to convergent evolution of mt gene order, except from birds 
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(Mindell et al., 1998). Homoplasious character states can be identified through conflicts 

in the dataset. In this study a few cases of homoplasious gene translocations were 

identified in isopods (Figure 7.1), which all concern tRNA genes (Chapter 4). Most 

striking is a shared derived location of trnV in three species of different isopod subtaxa, 

whereas the ancestral position was maintained in all other isopods! Homoplasious gene 

translocations of larger genes like rRNA or protein-coding genes were not detected. 

This finding underscores the general reliability of gene rearrangements. Convergent 

tRNA translocation is not likely but may happen in some cases. 

Asellus aquaticus is the only isopod species that shows the same strand bias as most 

other crustaceans apart from Isopoda. The strand bias is an indicator for an inversion of 

the mitochondrial replication origin, which is generally more complex and very rare. 

Assuming that Phreatoicidea is the sister group of all remaining isopods, which is not 

undisputed, a re-reversal must have happened in the lineage leading to Asellus 

aquaticus. Otherwise two independent switches have to be assumed for Phreatoicidea 

and Scutocoxifera (Chapter 4). In fact, the GC skew on its own favours the Asellota as 

the sister group to the remaining isopods instead of the Phreatoicidea, but there is not 

much other evidence for this scenario. 

Two cases of convergent changes in tRNA secondary structure were found in amphipod 

species. Whether this suffices to describe derived tRNA secondary structures as less 

reliable features cannot be decided yet. 

 

(5) What is the basal split in isopod phylogeny? Phreatoicidea, Asellota or a common 

clade of both taxa are worth being considered to take the most basal position relative to 

the other isopods. 

There is conflicting evidence in the mitochondrial data regarding to the earliest splits of 

isopod phylogeny. In phreatoicidean and asellotan species trnR is retained in the same 

position as in other arthropods, while it is shifted to other positions in the remaining 

isopods. The shared location of trnL1, derived from duplication in Eophreatoicus sp. 14 

and Asellus aquaticus (but not in Janira maculosa), provides only weak evidence for a 

sister group relationship of Phreatoicidea and Asellota (Chapter 4). The reversed strand 

bias (GC skew) found in all isopods except Asellota favours the Asellota as the sister 
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group of all other isopods (Chapter 4). However, the phylogenetic analysis of 

mitochondrial protein-coding sequences supports a basal split between Phreatoicidea 

and all other isopods (Chapter 4). All these hypotheses have been raised before, based 

on morphological and sequence data. The data from the isopod mt genomes are 

somehow ambiguous on this point, but given the weakness of the two ‘genome 

morphology’ characters mentioned above, the sequence-based analysis may have more 

weight, and therefore Phreatoicidea is favoured as the sister group to the remaining 

isopods. 

 

(6) What is the sister group of the Isopoda? 

The Amphipoda were mentioned as the putative sister group to the Isopoda in some 

publications (Spears et al., 2005). Gene order comparison, however, shows no 

synapomorphies of amphipods and isopods (Figure 7.1, Chapter 5). This is significantly 

different for the sequenced partial mt genome of the cumacean species Leucon nasica, 

which corresponds to the mt gene order of Isopoda in one major point, the translocation 

of a segment spanning rrnS, CR and trnI (Chapter 6). Therefore, a sister group 

relationship between Amphipoda and Isopoda can clearly be rejected due to gene order 

characters. Currently, there is no data from Tanaidacea, another taxon which may be 

closely related to isopods. Despite several attempts, it was not possible to generate 

useful sequence information from a member of Tanaidacea. Until it will be possible to 

overcome the technical difficulties, the sister group to Isopoda cannot be determined by 

mt genome data. So far, only the isopod and cumacean mt genomes share apomorphic 

changes in gene order, making Cumacea a better candidate for being the sister group of 

Isopoda than Amphipoda. 
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8. Summary 

 

The mitochondrial genome features structural and organizational characters, also 

referred to as characters of ‘genome morphology’, in addition to primary sequence data. 

This thesis analyzes the state, evolution, and phylogenetic value of these characters in 

peracarid crustaceans, with the focus on Isopoda and putative isopod sister group taxa 

(Amphipoda, Cumacea). Therefore, eight complete or almost complete isopod mt 

genomes were sequenced, as well as an entire amphipod mt genome and about half of a 

cumacean mt genome. The comparison revealed several significant changes of character 

states of the mtDNA (mitochondrial gene order, nucleotide strand bias, tRNA secondary 

structure etc.). These characters were mapped on a molecular tree of isopods to trace the 

sequence of changes and to evaluate their phylogenetic significance. It is striking that 

gene arrangements differ in all examined mt genomes. However, several derived gene 

positions are shared among isopods, which even allow inferences on the gene order of 

the isopod ancestor (isopod ground pattern). There are also indications that the Cumacea 

share main rearrangements with isopods. This is not the case for the Amphipoda, which 

therefore do not qualify as the isopod sister group. Although there are also indices on 

rare homoplasious translocation events of tRNA genes in isopods, gene order changes 

can be overall evaluated as phylogenetically informative characters. This applies 

particularly to complex rearrangements comprising protein-coding and rRNA genes, 

which are unlikely to emerge by convergent evolution. The overall frequency of 

rearrangements appears to be higher in the examined species than usually assumed for 

mt genomes, but is still far from saturation. The diversity in gene order should be also 

valuable for inferring phylogenetic relationships of closer related isopod or peracarid 

species. In some cases it is even possible to infer the mechanism of a translocation 

event, e.g. inversion by intramolecular recombination or translocation by remolding of 

tRNA genes. Another rare and complex character, a bias in the nucleotide composition 

of DNA strands, is shared by the Asellota and most other crustaceans, but is reversed in 

the majority of Isopoda. This finding is contrary to the position of the Phreatoicidea 

being the sister group to all other isopods e.g. proposed by the sequence analysis. 
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9. Zusammenfassung 

 

Das mitochondriale Genom weist neben der DNA-Sequenz weitere strukturelle 

Merkmale auf, die als „Genom-morphologische“ Merkmale bezeichnet werden. Zur 

Rekonstruktion der mitochondrialen Veränderungen innerhalb der Peracariden und 

Bewertung des phylogenetischen Signals solcher Merkmale wurden vollständige bzw. 

nahezu vollständige mt-Genome von acht Isopoden-Arten sequenziert, ebenso ein 

weiteres vollständiges mt-Genom eines Amphipoden sowie ungefähr die Hälfte des mt-

Genoms eines Vertreters der Cumacea. Im Vergleich zeigten sich mehrere deutliche 

Merkmalsänderungen, u.a. in der Genreihenfolge, der Basenverteilung zwischen den 

Strängen und der Sekundärstruktur von tRNAs. Diese Merkmale wurden auf die 

Ergebnisse der molekularen Stammbaumanalyse aufgetragen, um die Veränderungen 

nachvollziehbar zu machen und ihre Relevanz für phylogenetische Analysen 

festzustellen. Auffällig ist, dass alle untersuchten mt-Genome eine andere 

Genreihenfolge aufweisen. Dennoch gibt es einige abgeleitete Gen-Positionen, die 

übereinstimmend in vielen Isopoden vorhanden sind und die Rückschlüsse auf das 

Grundmuster der Isopoden erlauben. Ebenso gibt es Hinweise auf Gemeinsamkeiten in 

der Genanordnung mit den Cumacea, nicht jedoch mit den Amphipoda, die daher als 

Schwestergruppe der Isopoda ausscheiden. Obwohl es einige seltene Hinweise auf 

Homoplasien bei tRNA-Translokationen gibt, können Veränderungen der 

Genreihenfolge insgesamt als phylogenetisch wertvolle Merkmale angesehen werden.  

Insbesondere komplexe Veränderungen unter Beteiligung mehrerer Gene dürften kaum 

durch konvergente Evolution entstanden sein. Insgesamt scheinen 

Genreihenfolgeveränderungen bei den Peracariden etwas häufiger vorzukommen als bei 

anderen Crustacea, dennoch sind sie meist noch gut nachzuvollziehen. In einigen Fällen 

sind auch Rückschlüsse auf die Mechanismen möglich, die den Translokationen 

zugrunde liegen. So wurden z. B. Inversionen wahrscheinlich durch intramolekulare 

Rekombination verursacht und einige tRNAs durch Identitätsänderungen neu 

angeordnet. Ein anderes, selten beobachtetes, komplexes Merkmal ist die Umkehrung 

der Verhältnisse der Nukleotidfrequenzen für die einzelnen Stränge. Anders als die 

übrigen Asseln zeigen die Asellota dieselben Verhältnisse wie die meisten übrigen 

Crustacea. Dieses Merkmal steht somit im Widerspruch zu der sonst oft vertretenen 

Hypothese, wonach die Phreatoicidea die Schwestergruppe aller übrigen Isopoden sind.  
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The appendix contains all additional figures and tables for reference, which are part of 

the digital supplementary material of the respective publications (chapters 2-5).  The 

files are usually provided by download only. 
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Number of effective codons used in mitochondrial protein-coding genes of Crustacea.  

Species Taxon Acc.Number atp6 cox1 cox2 cox3 cob nad1 nad2 nad3 nad4 nad5 nad6 

Speleonectes tulumensis Remipedia NC_005938 41,8 32,8 29,7 42,4 36,9 36,2 34,1 36,6 38,1 41,1 36,8 

Hutchinsoniella macr. Cephalocarida NC_005937 32,7 34,9 33,2 34,3 37,9 41,5 28,8 32,1 45,6 45,4 39,5 

Armillifer armillatus Pentastomida NC_005934 39,3 41,4 44,6 35,2 38,8 33,3 43,4 40,0 37,7 38,8 43,1 

Argulus americanus Branchiura NC_005935 33,9 32,9 35,8 33,6 36,0 36,1 30,6 27,9 35,5 32,1 40,7 

Vargula hilgendorfii Ostracoda NC_005306 50,6 49,8 51,2 49,9 47,9 44,1 44,8 40,5 41,1 44,8 49,8 

Lepeophtheirus salmonis Copepoda NC_007215 43,6 50,6 51,1 45,6 48,1 46,4 52,7 39,9 46,0 46,3 37,7 

Tigriopus japonicus Copepoda NC_003979 56,7 51,3 52,2 55,8 55,0 52,6 51,9 40,6 51,7 54,8 58,6 

Megabalanus volcano Cirripedia NC_006293 44,2 42,5 47,6 41,7 48,0 37,1 44,4 37,9 43,5 44,8 49,1 

Pollicipes polymerus Cirripedia NC_005936 50,4 44,6 49,6 50,1 48,2 44,9 46,0 43,1 48,8 42,0 52,0 

Tetraclita japonica Cirripedia NC_008974 43,6 46,5 44,4 50,2 45,7 38,7 49,2 49,3 44,8 42,9 56,0 

Artemia franciscana Branchiopoda NC_001620 48,0 47,2 46,8 54,4 48,8 52,2 54,0 61,0 53,3 49,9 53,8 

Daphnia pulex Branchiopoda NC_000844 52,7 53,5 58,8 53,7 48,3 46,4 50,0 51,0 52,5 52,1 40,2 

Triops cancriformis Branchiopoda NC_004465 46,8 41,7 45,3 49,2 42,9 38,4 41,2 48,6 42,3 38,8 51,2 

Triops longicaudatus Branchiopoda NC_006079 41,7 38,9 43,6 40,8 44,2 37,5 46,5 50,6 41,5 41,5 36,8 

Gonodactylus chiragra Stomatopoda NC_007442 49,0 43,5 45,4 40,8 44,8 40,6 42,9 49,6 39,0 42,0 47,3 

Harpiosquilla harpax Stomatopoda NC_006916 39,8 40,3 40,1 39,5 47,1 44,4 37,3 43,5 39,7 38,6 32,5 

Lysiosquillina maculata Stomatopoda NC_007443 46,8 50,6 44,1 51,1 47,7 49,4 46,1 45,8 52,3 48,8 51,7 

Squilla empusa Stomatopoda NC_007444 46,8 43,7 37,5 41,2 48,7 43,4 41,0 34,7 39,5 38,5 44,6 

Squilla mantis Stomatopoda NC_006081 42,0 43,0 40,3 42,0 50,2 37,6 37,9 45,3 38,4 38,2 50,9 

Callinectes sapidus Decapoda NC_006281 43,7 41,0 46,0 46,9 39,1 40,8 43,5 43,2 36,4 41,3 40,9 

Cherax destructor Decapoda NC_011243 55,5 51,7 52,7 51,0 54,7 44,3 49,0 47,8 52,1 51,1 43,6 

Eriocheir sinensis Decapoda NC_006992 42,3 40,8 48,3 43,7 43,9 36,9 37,4 49,4 43,5 37,3 35,6 

Geothelphusa dehaani Decapoda NC_007379 40,5 39,6 37,9 40,7 38,3 38,6 38,8 36,6 35,6 37,4 33,5 

Macrobrachium ros. Decapoda NC_006880 47,6 42,3 42,6 45,1 38,6 39,6 44,5 51,2 40,5 41,5 41,5 

Marsupenaeus japonicus Decapoda NC_007010 46,3 42,8 45,6 45,6 48,9 48,7 45,9 44,4 40,7 44,8 39,7 

Pagurus longicarpus Decapoda NC_003058 40,8 37,9 38,0 34,2 38,3 37,4 38,3 50,5 35,1 35,3 39,5 

Panulirus japonicus Decapoda NC_004251 49,3 47,7 56,9 56,9 46,9 52,3 51,3 53,8 49,0 46,2 45,5 

Penaeus monodon Decapoda NC_002184 35,1 42,6 36,6 38,0 42,3 36,1 39,0 38,8 35,4 33,9 36,1 

Portunus trituberculatus Decapoda NC_005037 42,2 39,6 39,0 40,8 38,5 37,3 39,4 44,8 37,2 38,0 35,5 

Pseudocarcinus gigas Decapoda NC_006891 46,0 39,2 38,9 46,7 41,0 39,2 43,1 44,2 37,9 38,3 39,3 

Idotea baltica Peracarida DQ442915 53,2 52,6 45,0 53,9 51,0 55,7 45,7 61,0 52,8 49,5 41,8 

Ligia italica Peracarida DQ442914 56,8 53,5 54,7 59,9 51,6 57,1 53,9 54,1 54,1 48,8 47,0 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17750�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17749�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17746�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17747�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17510�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18537�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=16451�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17929�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17748�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17683�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=10504�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=15068�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=16837�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17852�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18792�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18301�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18793�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18794�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17854�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17917�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17686�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18366�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18712�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18266�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18383�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=15759�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=16666�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=15276�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=17311�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18276�
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PCR primers used to amplify mitochondrial gene fragments from Ligia oceanica. 
Primer Nucleotide sequence (5’-3’) Reference 

CB2H TCCTCAAAATGATATTTGTCCTCA Roehrdanz et al. (2002) 
N4(87) TCAGCTAATATAGCAGCTCC Roehrdanz et al. (2002) 
16S2 GCGACCTCGATGTTGGATTAA Roehrdanz et al. (2002) 
N4 GGAGCTTCAACATGAGCTTT Roehrdanz et al. (2002) 
crust-12f CAGCAKYCGCGGTTAKAC Podsiadlowski and Bartolomaeus (2005) 
crust-12sr ACACCTACTWTGTTACGACTTATCTC Podsiadlowski and Bartolomaeus (2005) 
crust-16sf TGACYGTGCDAAGGTAGC this study 
crust-16sr CCGGTCTGAACTCAYATC Podsiadlowski and Bartolomaeus (2005) 
crust-cox1f ACTAATCACAARGAYATTGG Podsiadlowski and Bartolomaeus (2005) 
crust-cox1r TAGTCTGAGTANCGTCGWGG Podsiadlowski and Bartolomaeus (2005) 
crust-cox3f ATAATTCAATGATGACGAGA Podsiadlowski and Bartolomaeus (2005) 
crust-cox3r CCAATAATWACATGWAGACC Podsiadlowski and Bartolomaeus (2005) 
crust-nd4f TTGAGGTTAYCAGCCYG Podsiadlowski and Bartolomaeus (2005) 
crust-nd4r ATATGAGCYACAGAAGARTAAGC Podsiadlowski and Bartolomaeus (2005) 
crust-nd5f AGAATTCTACTAGGDTGRGATGG Podsiadlowski and Bartolomaeus (2005) 
crust-nd5r AAAGAGCCTTAAATAAAGCATG Podsiadlowski and Bartolomaeus (2005) 
Lo-12s-f AGGAGCAGGTGGGTTACAATC this study 
Lo-12sf-r CTTTGGGTTTGAAGTACATAGC this study 
Lo-12sf-2 TATCTTTGAAGGATAATAGTTTTTAG this study 
Lo-12sf-3 AAATGCCTGCCTATCAAACC this study 
Lo-12sfr-2 TTACCTCAACTTGACAGATAAATGTG this study 
Lo-12sfr-3 CCTTGCTGGGTAGATTACGGTC this study 
Lo-16s-r ATCTTAAAGGCTTACGAAATTCAG this study 
Lo-C1f-2 TTTCTTTGCATTTAGCTGGTG this study 
Lo-C1f-r GGGGAAAGGCTATATCAGGAG this study 
Lo-C1r-2 AACCCCAATACCCCAATG this study 
Lo-C3-12 CTACTGGGAGTGTATTTTAGTCGTC this study 
Lo-C3f_r CTACAGGGAGGTCAGATTCTAC this study 
Lo-C3f-2 GGAGTGTATTTTAGTCGTCTCTTC this study 
Lo-Cb-f GTCCTACCACTACTCTCACACCTG this study 
Lo-Cbf-2 CCCGAATGATACTATCTATTTGCC this study 
Lo-Cbf-3 ACAGTAATGTGTTAGACACCTCCG this study 
Lo-CB-r CAGGATATTTTTCTTGACTTTTAGG this study 
Lo-Co3-c ATTATCTTTTTGGTATTTGATGTGG this study 
Lo-control-12s CTTTAAAGGTTCTAAGGGTATAAGG this study 
Lo-control-cyb AATTGGAGCCCGACCC this study 
Lo-CyB-N5 CCAGATCGACCCCAACG this study 
Lo-H4251 CAAAAAAAGGAAAAGAAGAATAGGAC this study 
Lo-L3400 TGTGGGAGAGGTTTTCAGCC this study 
Lo-L3401 ATTTGTTTGTTCTCGCCCAG this study 
Lo-L39r-2 AAGAACCATTACTACCTTTTGTATCAG this study 
Lo-L4250 CGGGGTTCAGGAGAGAGTTTAG this study 
Lo-L4251 TTTGCCCTAGAGGTTGCTGTG this study 
Lo-L5100 GAGTCACCGTTTACTATCGCCG this study 
Lo-N4f TTATGTTAATTTTAGGATGGGGC this study 
Lo-N4f-2 TCTTACTCAAACTGACCTCAAACACC this study 
Lo-N4-N5 ATTTTAGGATGGGGCTATCAG this study 
Lo-N5-CyB AATAAAATCTGCAGCATCGC this study 
Lo-N5f-3 TGTGTGGATTTCCGTTTATGG this study 
Lo-N5f-4 TTATGATCTAAGTGTGGTCTAGTGTTG this study 
Lo-N5-N4 TAGTTTTAGTATTCTCCTTTGTGGC this study 
Lo-N5N4-2 TAGGGCACTTGTCCATTCTTC this study 
Lo-N5N4-r CAGAGTAGAAGAATGGACAAGTGC this study 
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PCR products used to cover the complete mt genome of Eophreatoicus sp. 14. In a first step short 
intragenic fragments were obtained by using general crustacean primer pairs (Crust-12sf/Crust-12sr, 
Crust-Cbf/Crust-Cbr, Crust-16sf/Crust-16sr, Crust-N5f/Crust-N5r.) New species specific (Eo-)primers 
were designed based on these sequences. They were also combined with general isopod primers (Isop-
16sf, Isop-16sr). The remaining gaps were bridged by four PCR products and sequenced by primer 
walking strategy. For the complete list of primers see supplementary file 3.2. The largest two PCR 
products (dotted lines) were amplified by a long range Taq polymerase. The alignment of the 
overlapping fragments indicates a circular organization of the mt genome. 
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Primers used for amplification and sequencing of mitochondrial gene fragments from Eophreatoicus 
sp. 14. 
Primer Orientation Sequence (5’-3’) Reference 

Crust-16sf Reverse TGACYGTGCDAAGGTAGC Podsiadlowski & Bartolomaeus 2005 
Crust-16sr Forward CCGGTCTGAACTCAYATC Podsiadlowski & Bartolomaeus 2005 
Crust-CBf Reverse CGAGATGTAAAYTAYGGSTGAC This study 
Crust-CBr Forward CTACGGGAGTGCACCRATYC  This study 
Crust-12sf Forward CAGCAKYCGCGGTTAKAC Podsiadlowski & Bartolomaeus 2005 
Crust-12sr Reverse ACACCTACTWTGTTACGACTTATCTC Podsiadlowski & Bartolomaeus 2005 
Crust-N5f Forward AGAATTCTACTAGGDTGRGATGG Podsiadlowski & Bartolomaeus 2005 
Crust-N5r Reverse AAAGAGCCTTAAATAAAGCATG Podsiadlowski & Bartolomaeus 2005 
Crust-N4f Reverse TTGAGGTTAYCAGCCYG Podsiadlowski & Bartolomaeus 2005 
Crust-N4r Forward ATATGAGCYACAGAAGARTAAGC Podsiadlowski & Bartolomaeus 2005 
Isop-16sf Reverse AARAAWGATTGCGACCTCGATGTTGAATTG This study 
Isop-16sr Forward TATGCTACCTTAGCACAGTYAGRATACTGCGGC   This study 
L39-Met Forward AAGCTHVTGGGCTCATACCCC Yamauchi et al. 2004 
H718-ND2 Forward AABCCHGDGAAMGGDGGHAVHCCHCC Yamauchi et al. 2004 
L1384-CO1 Reverse GGTCAACAAATCATAAAGATATTGG Yamauchi et al. 2004 
L1564-CO1 Reverse ATGGTWATACCGATTWTRATTGG Yamauchi et al. 2004 
H1602-CO1 Forward GGGAADGCTATGTCWGGGGC Yamauchi et al. 2004 
L2020S-CO1 Reverse AATACHTCMTTCTTTGATCCWGCHGGDGGDGGDGACCC Yamauchi et al. 2004 
H2043-CO1 Forward TAAACTTCAGGGTGACCAAAAAATCA Yamauchi et al. 2004 
H2619-CO1 Forward GGTATWCCWGCKAGWCCTAAGAAATGTTG Yamauchi et al. 2004 
L3020-CO2 Forward ATTTTTTTYCATGAYCATGC Yamauchi et al. 2004 
H3290CO2 Reverse GGSATTATGTAWGAATCAAATT Yamauchi et al. 2004 
H3514-CO2 Reverse CCACAAATTTCKGAACATTGWCCATAAAA Yamauchi et al. 2004 
L3542-CO2 Forward GGNCAATGTTCAGAAATTTGTGG Yamauchi et al. 2004 
H4375-A6 Reverse GCDATCATGTTDGCDGMWAGTCG Yamauchi et al. 2004 
L5170-CO3 Forward TTGTDGCNACHGGMTTTCATGG Yamauchi et al. 2004 
L5281-CO3 Forward CATCATKTWGGGTTTGAGGCHGCHGCWTGGTATTGGCA Yamauchi et al. 2004 
L5526-ND3 Forward CCHTWTGAGTGTGGWTTTGATCC Yamauchi et al. 2004 
Eo-752 Reverse TTTTTATTTACTGTAGGAGGATTGAC This study 
Eo-1326 Forward TAAGTGAAGAGAAAAGATTGC This study 
Eo-1787 Reverse ACAGTGTTATTTACGCAACGATG This study 
Eo-1824 Forward GGTATTCCCCCTTTGTTGAC This study 
Eo-2400 Forward ATTTCATTTACACCCCCATTG This study 
Eo-2568 Forward AGAGGTAATCAGAAGTGAAAAGGTGC This study 
Eo-2677 Reverse CTCCAAATAAGAATAACAAGGG This study 
Eo-2672 Forward TTGGAGGAAAATAAGAGAGGC This study 
Eo-2726 Forward TTCAGGTTTTAAGTTTCTTTTTCC This study 
Eo-2804 Reverse AGTATGAGTAGGAATAGAACTAAACC This study 
Eo-3184 Reverse ACCAAAATAAAAGCAGGAAGAATAG This study 
Eo-3414 Forward CGGTTATTAGTGACTGCGGC This study 
Eo-3820 Reverse AGCCTCACACTCCCAAATAC This study 
Eo-3900 Forward TTTTGACCCTGCTACTGG This study 
Eo-4115 Forward TGATAAGGAATGTAATGGG This study 
Eo-4272 Reverse TCCCTGAGGAACTATGTG This study 
Eo-4293 Forward TTTTATGGTTATTATTGAGAGTATTAG This study 
Eo-4390 Forward GCTTTAATAGGAGGGTCTGC This study 
Eo-5268 Reverse CAGCCTCAAACCCAAAATG This study 
Eo-5529 Reverse CCACATTCAAAAGGAGACAAC    This study 
Eo-5653 Forward GGTTGAGTTTATTTCTTGGTTGTG This study 
Eo-6061 Forward GGTCTTTCGCTTCCTCC This study 
Eo-6495 Reverse TCTTTTTCTTTCCTGCCTGAG    This study 
Eo-6865 Reverse CTATTTTGGCTTTACTCTTTCTGC This study 
Eo-7298 Reverse TACTACCTTTCTAAAGTCCTGGAATAAC This study 
Eo-7480 Forward GCGTATAACTAAGTTGGGATGGG  This study 
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Eo-7963 Reverse CACCTGCTTTCCACTGC This study 
Eo-8350 Forward ATTTAAGGTAGATTTTGGAAG This study 
Eo-8375 Reverse GAAATCTTCCAAAATCTACC This study 
Eo-8789 Reverse ACCCAGAAAACTTTATTCCAGC   This study 
Eo-9036 Forward CTGCGAATCCTCCTCAAAGTC This study 
Eo-10224 Reverse GGAAGCCAAGCAGAGAAAGG This study 
Eo-10341 Forward ATTTGTTTTTATTTGTAGTAGGGGG This study 
Eo-10841 Forward ACTAGAGTCAAAGAGGAGGATG This study 
Eo-11180 Forward TGGAGTGAAATGTTTGGTGG This study 
Eo-11619 Forward GCGAAAAACACTAAAAGCCTG This study 
Eo-13084 Reverse AATCCTTCAACTAAGATCAAACC  This study 
Eo-13530 Reverse TCAACCACACTATCCAAGTAACC This study 
Eo-14120 Forward TTTATAGGGTCTTGTCGTCTTGC This study 
Eo-14449 Forward AGGTTTATTGTTGGTACTTTGGGG This study 
Eo-14749 Forward TTAAATCTCCCTGATACAAAAG  This study 
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Detection performance of utilised computer software identifying tRNA genes of Eophreatoicus sp. 14. 
Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were found, the less strict ‘Nematode Mito’ model was used 
instead. ARWEN was used with “Invertebrate mitochondrial genetic code” option. Results were 
manually checked afterwards. 
tRNA tRNAscan-SE 1.21 ARWEN 1.2.2.c manual 

tRNA-Ala found found accepted 
tRNA-Asn found found accepted 
tRNA-Asp found found accepted 
tRNA-Arg found found accepted 
tRNA-Cys found (‘Nematode Mito’ model) found accepted 
tRNA-Gln found found accepted 
tRNA-Glu found found accepted 
tRNA-Gly found found accepted 
tRNA-His found found accepted 
tRNA-Ile not found found accepted 
tRNA-Leu(CUN) found found accepted 
tRNA-Leu(UUR) found found accepted 
tRNA-Lys found found accepted 
tRNA-Met found found accepted 
tRNA-Phe found (‘Nematode Mito’ model) not found improved 
tRNA-Pro found found accepted 
tRNA-Ser(AGY) found found accepted 
tRNA-Ser(UCN) found found accepted 
tRNA-Thr found found accepted 
tRNA-Trp found found accepted 
tRNA-Tyr found found accepted 
tRNA-Val found found accepted 
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Start codons of cox1 gene of crustacean species. Besides common start codons for the invertebrate 
mitochondrial code (ATG, ATA, ATT), alternatives exist in a number of species. It is noticeable that 
Malacostraca, excluding Brachyura, clearly show the ACG start codon for cox1. An exception is H. rubra, 
starting with CCG. Probably, the ACG start codon for cox1 is the ancestral state of Malacostraca. Start 
codons are taken from published GenBank entries. 
Species Taxon Start codon (cox1) 

Speleonectes 
tulumensis 

Remipedia   ATA        

Hutchinsoniella 
macracantha 

Cephalocarida   ATA        

Vargula hilgendorfii Ostracoda  ATG         
Artemia franciscana Branchiopoda  ATG         
Daphnia pulex Branchiopoda          ATT 
Triops cancriformis Branchiopoda   ATA        
Triops longicaudatus Branchiopoda   ATA        
Argulus americanus Maxillopoda    TCG       
Armillifer armillatus Maxillopoda     CTG      
Lepeophtheirus 
salmonis 

Maxillopoda   ATA        

Megabalanus volcano Maxillopoda        TTG   
Pollicipes mitella Maxillopoda       ACA    
Pollicipes polymerus Maxillopoda    TCG       
Tetraclita japonica Maxillopoda      ATC     
Tigriopus californicus Maxillopoda   ATA        
Tigriopus japonicus Maxillopoda   ATA        
Cherax destructor Malacostraca ACG          
Eophreatoicus sp.-14 Malacostraca ACG          
Euphausia superba Malacostraca ACG          
Fenneropenaeus 
chinensis 

Malacostraca ACG          

Gonodactylus chiragra Malacostraca ACG          
Halocaridina rubra Malacostraca         CCG  
Harpiosquilla harpax Malacostraca ACG          
Ligia oceanica Malacostraca ACG          
Litopenaeus vannamei Malacostraca ACG          
Lysiosquillina maculata Malacostraca ACG          
Macrobrachium 
rosenbergii 

Malacostraca ACG          

Marsupenaeus 
japonicus 

Malacostraca ACG          

Pagurus longicarpus Malacostraca ACG          
Panulirus japonicus Malacostraca ACG          
Penaeus monodon Malacostraca ACG          
Squilla empusa Malacostraca ACG          
Squilla mantis Malacostraca ACG          
Eriocheir sinensis Malacostraca, 

Brachyura 
 ATG         

Callinectes sapidus Malacostraca, 
Brachyura 

 ATG         

Geothelphusa dehaani Malacostraca, 
Brachyura 

 ATG         

Portunus 
trituberculatus 

Malacostraca, 
Brachyura 

 ATG         

Pseudocarcinus gigas Malacostraca, 
Brachyura 

 ATG         
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a) Amplification and sequencing primers used to obtain the partial mt genome of Eurydice pulchra. 
Primer  Orientation  Sequence (5'-3')  Reference  

16S2  Reverse  GCGACCTCGATGTTGGATTAA  Roehrdanz et al. 2002  
CB2H  Forward  TCCTCAAAATGATATTTGTCCTCA  Roehrdanz et al. 2002  
N4  Forward  GGAGCTTCAACATGAGCTTT  Roehrdanz et al. 2002  
N4(87)  Reverse  TCAGCTAATATAGCAGCTCC  Roehrdanz et al. 2002  
Crust-12sf  Forward  CAGCAKYCGCGGTTAKAC  Podsiadlowski & Bartolomaeus 2005  
Crust-12sr  Reverse  ACACCTACTWTGTTACGACTTATCTC  Podsiadlowski & Bartolomaeus 2005  
Crust-16sr  Forward  CCGGTCTGAACTCAYATC  Podsiadlowski & Bartolomaeus 2005  
Crust-cox1f  Forward  ACTAATCACAARGAYATTGG  Podsiadlowski & Bartolomaeus 2005  
Crust-cox1r  Reverse  TAGTCTGAGTANCGTCGWGG  Podsiadlowski & Bartolomaeus 2005  
Crust-CytB-f1  Reverse  CGAGATGTAAAYTAYGGSTGAC  This study  
Crust-CytB-f2  Reverse  CGAGATGTAAAYTAYGGWTGAC  This study  
Isop-16sr-lrange  Forward  TATGCTACCTTAGCACAGTYAGRATACTGCGGC  This study  
Pera-Co1r  Reverse  AADGCTATATCAGGAGCCCCAATTATTAAAGG  This study  
HPK16saa  Forward  ATGCTACCTTTGCACRGTCAAGATACYGCGGC  Hwang et al. 2001  
L329-ND2 (S5,S7)  Forward  GGWGCHGCHCCNTTWCATTTTTG  Yamauchi et al. 2004  
H1368-CO1 (S5)  Reverse  TATAGAGTTCCAATRTCYTTGTGATT  Yamauchi et al. 2004  
H1602-CO1 (S7)  Reverse  GGGAADGCTATGTCWGGGGC  Yamauchi et al. 2004  
L3020-CO2 (S13)  Forward  ATTTTTTTYCATGAYCATGC  Yamauchi et al. 2004  
H3514-CO2 (S13)  Reverse  CCACAAATTTCKGAACATTGWCCATAAAA  Yamauchi et al. 2004  
L4268-A6 (S16)  Forward  GGDTGGDTTAAWMAHACWCAACA  Yamauchi et al. 2004  
H4806-CO3 (S16)  Reverse  GADGHAATGAAHAGGATTATDCCTCA  Yamauchi et al. 2004  
L4672-CO3 (S18, S19)  Forward  GGWCTWGTBAAATGGTTTCA  Yamauchi et al. 2004  
H5244S-CO3 (S18)  Reverse  GCTTCAAATCCWAMGTGGTG  Yamauchi et al. 2004  
H5252-CO3 (S19)  Reverse  CAWGCKGCVGCTTCAAATCC  Yamauchi et al. 2004  
L6909-ND5 (S28)  Reverse  AAAAAGMAGGGCTTTAAAWAGWGCATG  Yamauchi et al. 2004  
H7343-ND5 (S28)  Forward  TTATCWAATCGAGTGGGKGATGT  Yamauchi et al. 2004  
L8321-ND4 (S32)  Forward  ATATGDGCHACAGAWGAGTAAGC  Yamauchi et al. 2004  
H9302-Thr (S32)  Reverse  AAGAGGTTSTTTTGWWTTTGGTTTACAAGACC  Yamauchi et al. 2004  
Ep-178  Reverse  GGGTGTTCAGATCGTTAGGGG  This study  
Ep-1039  Reverse  TCTAAACCGAATCAATAAATATACCC  This study  
Ep-1023  Forward  TATTGATTCGGTTTAGACCAGTATTG  This study  
Ep-2250  Reverse  GCCCCCCTACCTTCATTTAC  This study  
Ep-2789  Reverse  ACGGGGTTTTTCGGGTATC  This study  
Ep-3161  Reverse  ATTTGATTTGGTTTTATATTTACTTTG  This study  
Ep-3201  Forward  CAGCCAAAGTAACAAGAAGAGTG  This study  
Ep-3229  Reverse  ATCTTCCACTCTTCTTGTTACTTTG  This study  
Ep-4145  Reverse  GCTGAAGTCCTCCTCATCCTG  This study  
Ep-4588  Reverse  AGCAAATAGTTCAAGTTACTTTAGGG  This study  
Ep-4696  Forward  GTCTTTACCAATGAAGTTTTATAGGG  This study  
Ep-5089  Reverse  ATTCCAAAAGTTTAATGTTCC  This study  
Ep-5165  Reverse  ACCTAAACATTGTACCTCAGCG  This study  
Ep-6588  Forward  TAAACTTCAGTCACTTCGCC  This study  
Ep-7034  Forward  TTGGGGATCTTTTCGTTGC  This study  
Ep-7504  Forward  GCGGGCTTATTTTACTTCTGCTAC  This study  
Ep-7583  Reverse  GCAAAGTCCTTAGACCATC  This study  
Ep-7954  Forward  TATTGTTTCTTCCCTTGGCTC  This study  
Ep-8249  Forward  ATGGGGCAGTTTAGGGC  This study  
Ep-8538  Forward  AGTTTTGCCCGCTGTG  This study  
Ep-9633  Reverse  ATAGATACAGCCCCAACTCATAG  This study  
Ep-10033  Reverse  AAAGCCCCTACCGAACTGG  This study  
Ep-10275  Reverse  ACCTTCTATGGAAAAACGCTC  This study  
Ep-10303  Reverse  ACTGCTCCTAACTCCACACACGGTC  This study  
Ep-10403  Forward  TCATAGGTTGATAGAAGGAGGTC  This study  
Ep-10726  Forward  TGTATTGGTGAGGAGGGGC  This study  
Ep-11047  Forward  AGGCGGAGAAAGCACTG  This study  
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Ep-11545  Forward  AGCGATAGTCCTCCTCC  This study  
Ep-12293  Reverse  ATTTCAATCCCCATCACTG  This study  
Ep-12685  Reverse  TTTTGGAAGTTTACCCTCTTATAGTG  This study  
Ep-12853  Forward  AAGGCAGGTCAAGGTGTAGCG  This study  
Ep-12925  Forward  ATTAGATGGAGGGGCAAATGG  This study  

 
 
 
b) Amplification and sequencing primers used to obtain the partial mt genome of Sphaeroma serratum. 
Primer  Orientation  Sequence (5'-3')  Reference  

 16S2    Reverse    GCGACCTCGATGTTGGATTAA    Roehrdanz et al. 2002   
 Crust-12sf    Forward    CAGCAKYCGCGGTTAKAC    Podsiadlowski & Bartolomaeus 2005  
 Crust-12sr    Reverse    ACACCTACTWTGTTACGACTTATCTC    Podsiadlowski & Bartolomaeus 2005  
 Crust-16sr    Forward    CCGGTCTGAACTCAYATC    Podsiadlowski & Bartolomaeus 2005  
 Crust-cox1f    Forward    ACTAATCACAARGAYATTGG    Podsiadlowski & Bartolomaeus 2005  
 Crust-cox1r    Reverse    TAGTCTGAGTANCGTCGWGG    Podsiadlowski & Bartolomaeus 2005  
 Crust-cox3f    Forward    ATAATTCAATGATGACGAGA    Podsiadlowski & Bartolomaeus 2005  
 Crust-cox3r    Reverse    CCAATAATWACATGWAGACC    Podsiadlowski & Bartolomaeus 2005  
 Crust-CytB-f1    Reverse    CGAGATGTAAAYTAYGGSTGAC    This study   
 Crust-CytB-r    Forward    CTACGGGAGTGCACCRATYC    This study   
 Pera-Co1r    Reverse    AADGCTATATCAGGAGCCCCAATTATTAAAGG    This study   
 Pera-Co1r-seq    Reverse    GGAGCCCCAATTATTAAAGG    This study   
 Isop-16sf-range    Reverse    AARAAWGATTGCGACCTCGATGTTGAATTG    This study   
 Isop-16sr-range    Forward    TATGCTACCTTAGCACAGTYAGRATACTGCGGC    This study   
 L39-Met (S2)    Forward    AAGCTHVTGGGCTCATACCCC    Yamauchi et al. 2004   
 H718-ND2 (S2)    Reverse    AABCCHGDGAAMGGDGGHAVHCCHCC    Yamauchi et al. 2004   
 L329-ND2 (S5)    Forward    GGWGCHGCHCCNTTWCATTTTTG    Yamauchi et al. 2004   
 H1368-CO1 (S5)    Reverse    TATAGAGTTCCAATRTCYTTGTGATT    Yamauchi et al. 2004   
 L1384-CO1 (S8)    Forward    GGTCAACAAATCATAAAGATATTGG    Yamauchi et al. 2004   
 H2043-CO1 (S8)    Reverse    TAAACTTCAGGGTGACCAAAAAATCA    Yamauchi et al. 2004   
 H2619-CO1 (S9, S10, 
S11)   

Reverse GGTATWCCWGCKAGWCCTAAGAAATGTTG Yamauchi et al. 2004 

 L1564-CO1 (S10)    Forward    ATGGTWATACCGATTWTRATTGG    Yamauchi et al. 2004   
 L2020S-CO1 (S11)    Forward    GACCCTGCGGGWGGRGGRGATCC  Yamauchi et al. 2004   
 L2302-CO1 (S12)    Forward    TTCCTACSGGRATTAAGATTTTTAG    Yamauchi et al. 2004   
 H3290-CO2 (S12)    Reverse    GGSATTATGTAWGAATCAAATT    Yamauchi et al. 2004   
 L3020-CO2 (S13, S14)    Forward    ATTTTTTTYCATGAYCATGC    Yamauchi et al. 2004   
 H3514-CO2 (S13)    Reverse    CCACAAATTTCKGAACATTGWCCATAAAA    Yamauchi et al. 2004   
 H4375-A6 (S14, S15)    Reverse    GCDATCATGTTDGCDGMWAGTCG    Yamauchi et al. 2004   
 L3542-CO2 (S15)    Forward    GGNCAATGTTCAGAAATTTGTGG    Yamauchi et al. 2004   
 L4672-CO3 (S18, S19)    Forward    GGWCTWGTBAAATGGTTTCA    Yamauchi et al. 2004   
 H5244S-CO3 (S18)    Reverse    GCTTCAAATCCWAMGTGGTG    Yamauchi et al. 2004   
 H5252-CO3 (S19)    Reverse    CAWGCKGCVGCTTCAAATCC    Yamauchi et al. 2004   
 L6369-ND5 (S26, 
S27)    Reverse    AGGDVWGGTAWGAATCATATWGAHCC    Yamauchi et al. 2004   
 H6995-ND5 (S26)    Forward    ATGATCTWAAAMGAGTWATTGC    Yamauchi et al. 2004   
 H7343-ND5 (S27)    Forward    TTATCWAATCGAGTGGGKGATGT    Yamauchi et al. 2004   
 L8519-ND4 (S33)    Forward    GGRGCCTCWACGTGGGCYTTAGG    Yamauchi et al. 2004   
 H9302-Thr (S33, S34)    Reverse    AAGAGGTTSTTTTGWWTTTGGTTTACAAGACC    Yamauchi et al. 2004   
 L8738-ND4 (S34)    Forward    CGTTCGGGTTGGTAHCCTCA    Yamauchi et al. 2004   
 L10061-CYB (S38)    Reverse    GGATTWTTTTTAGCKATRCATTACAC    Yamauchi et al. 2004   
 H10699-CYB (S38)    Forward    GCAAATAGAAAATATCATTCWGGTTG    Yamauchi et al. 2004   
 L12167-16S (S43)    Forward    CCTGGCTTACGCCGGTCTGAACTCAGATCATG    Yamauchi et al. 2004   
 H12663-16S (S43)    Reverse    CGCCTGTTTACCAAAAACAT    Yamauchi et al. 2004   
 L13337-12S (S48)    Reverse    YCTACTWTGYTACGACTTATCTC    Yamauchi et al. 2004   
 H13845-12S (S48)    Forward    GTGCCAGCAGCTGCGGTTA    Yamauchi et al. 2004   
 Ss-141    Reverse    TCGGGACCCCAAGAGCC    This study   
 Ss-175    Forward    AAATATGGATAATAACTAAACCTAGAGCG    This study   
 Ss-405    Reverse    TTATCGTTATAGCCGCCGC    This study   
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 Ss-470    Forward    TCCGATGTGAAGGTAGAGGC    This study   
 Ss-3980    Forward    CGAAGAGAGAGAAGTATTATCATTGC    This study   
 Ss-4527    Reverse    TAAAAATAAGATGTACGAAAACCAC    This study   
 Ss-4797    Reverse    CGAGCAACAAATACAGCACG    This study   
 Ss-5244    Reverse    ACAAAATCCACCTAAACGTAATCAAC    This study   
 Ss-5259    Forward    ACCGCCCCAGTAAAACCC    This study   
 Ss-5295    Forward    TAAGTAGATCGTTTGAAGGG    This study   
 Ss-5525    Reverse    TGAAACTACTCACGGTCTGTC    This study   
 Ss-5560    Forward    TGCCGAGTTCTTTGACGC    This study   
 Ss-7206    Reverse    CCTCTTCCTCACACTCCAACG    This study   
 Ss-7375    Forward    TTTGTATTTTATTTTCGGGGC    This study   
 Ss-7673    Reverse    ACCCTCTCCTCAGCAATAATG    This study   
 Ss-7759    Forward    TGGTATTTTTTCGCTTCATTTAG    This study   
 Ss-8684    Reverse    ACACGCTGTTCCAAAACCC    This study   
 Ss-8970    Reverse    GAGAGACCCCGTTTTGTAGACC    This study   
 Ss-9347    Forward    CGTGGTCTTGCCCATACAGG    This study   
 Ss-9796    Forward    TCGTAAGAGTGGTTGGG    This study   
 Ss-10173    Forward    TGGTATTTACGGCGAGGC    This study   
 Ss-10712    Forward    TAGTTCAATGGTGACGAGATG    This study   
 Ss-11471    Reverse    TAACCAAGAACGCCAACC    This study   
 Ss-12310    Reverse    AGCCTCGCTATCACCC    This study   
 Ss-12797    Reverse    GCAGTCTGTAACAAAAACCG    This study   
 Ss-12861    Forward    TGAGTTCTTCAGAGAGCACCC    This study   
 Ss-13180    Reverse    ACTACTACCCTCTCTGCCCG    This study   
 Ss-13217    Forward    CCAGCACAGCCAGAGGAGAC    This study   
 Ss-13354    Reverse    GCACCTTGATCTGACATACTGG    This study   
 Ss-13420    Reverse    TCGTCCTGACTGCCCTCG    This study   

 
 
 
c) Amplification and sequencing primers used to obtain the partial mt genome of Glyptonotus cf. 
antarcticus. 
Primer  Orientation  Sequence (5'-3')  Reference  

N4  Forward  GGAGCTTCAACATGAGCTTT  Roehrdanz et al. 2002  
Crust-12sf  Forward  CAGCAKYCGCGGTTAKAC  Podsiadlowski & Bartolomaeus 2005  
Crust-12sr  Reverse  ACACCTACTWTGTTACGACTTATCTC  Podsiadlowski & Bartolomaeus 2005  
Crust-16sf Reverse TGACYGTGCDAAGGTAGC Podsiadlowski & Bartolomaeus 2005  
Crust-16sr   Forward   CCGGTCTGAACTCAYATC   Podsiadlowski & Bartolomaeus 2005  
Crust-16sf2 Reverse GCGACCTCGATGTTGGATTAA This study 
Crust-16sr2 Forward  CCGGTCTGAACTCAYGTA This study 
Crust-cox3r   Reverse   CCAATAATWACATGWAGACC   Podsiadlowski & Bartolomaeus 2005  
Crust-CytB-f1   Reverse   CGAGATGTAAAYTAYGGSTGAC   This study   
Crust-CytB-r   Forward   CTACGGGAGTGCACCRATYC   This study   
Crust-N5r Reverse AAAGAGCCTTAAATAAAGCATG Podsiadlowski & Bartolomaeus 2005 
HCO2198 Reverse TAAACTTCAGGGTGACCAAAAAATCA Folmer t al. 1994 
Pera-Co1f Forward GGNGCTATTACAATACTWTTGACAGACCG This study   
Pera-Co1r  Reverse  AADGCTATATCAGGAGCCCCAATTATTAAAGG  This study  
L39-Met(S1,S2,S3) Forward AAGCTHVTGGGCTCATACCCC Yamauchi et al. 2004 
L329-ND2 (S4,S5,S6)  Forward  GGWGCHGCHCCNTTWCATTTTTG  Yamauchi et al. 2004 
H718-ND2 (S1,S4)   Reverse   AABCCHGDGAAMGGDGGHAVHCCHCC   Yamauchi et al. 2004   
H1368-CO1 (S2,S5)  Reverse  TATAGAGTTCCAATRTCYTTGTGATT  Yamauchi et al. 2004  
L1384-CO1 (S8) Reverse GGTCAACAAATCATAAAGATATTGG Yamauchi et al. 2004 
H1420-CO1 (S6)) Reverse AGTGCCWACTATWCCWGMTCA Yamauchi et al. 2004 
H1602-CO1 (S7)  Reverse  GGGAADGCTATGTCWGGGGC  Yamauchi et al. 2004  
H3514-CO2 Reverse  CCACAAATTTCKGAACATTGWCCATAAAA  Yamauchi et al. 2004  
L5170-CO3 Forward TTGTDGCNACHGGMTTTCATGG Yamauchi et al. 2004  
L5526-ND3 Forward CCHTWTGAGTGTGGWTTTGATCC Yamauchi et al. 2004 
H10104-CYB Forward AAGTCANCCGTAGTTTACGTCWCG Yamauchi et al. 2004 
H10699-CYB   Forward   GCAAATAGAAAATATCATTCWGGTTG   Yamauchi et al. 2004   
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Gly-895 Reverse TAAAATAAATAAACCGCCTCTTG This study 
Gly-1052 Forward AGCGGGAGTTATATGGGAG This study 
Gly-1274 Reverse CTAAAAATAAAACCTTGTAGACCTC This study 
Gly-1275 Forward TGGGGGTGTTGACTAATCTG This study 
Gly-1866 Forward ATTTAGCACTGTGTGGATTTC This study 
Gly-2791 Reverse AGGTGCTTCTTCTTTCTTATTCAG This study 
Gly-3086 Reverse ACGGATTTTGCTCTTCTGG This study 
Gly-3648 Reverse ACATTTATTTTAATCTTAGGCTGAGG This study 
Gly-3780 Forward TTTGTCATCTTGCTTGAAGTATTAG This study 
Gly-4233 Forward AAATCTAATGAAACCCATCGTG This study 
Gly-4719 Reverse TATTTTCCCTGAGCAGTAAGTC This study 
Gly-5150 Reverse CCAAAAATGATTACCACCTCG This study 
Gly-5191 Forward AGTAACTTGTTCTTAATTCTTTACATAGG This study 
Gly-5595 Forward TGCCGAGTTAATTTCTTTCTTC This study 
Gly-6534 Reverse TAAAGATGAACAAGCCTGAACTAAG This study 
Gly-7778 Reverse TACAAACCCTCTCCCGAGTAATAG This study 
Gly-7853 Forward TGATATGGGAATCTTTTCTTTACAC This study 
Gly-8203 Forward AGGAAGCCAGAAAGAAAGAGTC This study 
Gly-9243 Reverse AATAATAGCGGGCAAGGC This study 
Gly-9415 Forward ATGTCTGGCGGATTTCGTC This study 
Gly-9719 Forward TGGCTGATTTAGGTGTGAG This study 
Gly-10639 Reverse AGAGTTCTTAGGATAGCAAATAC This study 
Gly-11459 Reverse ACATATTTGGCTATCTCCCCC This study 
Gly-12035 Reverse ATTATTCATTCTTATTTTTTAGTCTTC This study 
Gly-12081 Forward AACACTTTTCATGCCAATCTTATC This study 
Gly-12506 Forward TTCATAGGAAATAGTTTGAGCCAC This study 
Gly-13015 Reverse TTTGGCTTTACCTTGTTTGGC This study 
Gly-13423 Reverse TCAGAGAATAGTGGGGTATCTAATCC This study 

 
 
 
d) Amplification and sequencing primers used to obtain the partial mt genome of Armadillidium vulgare. 
Primer  Orientation  Sequence (5'-3')  Reference  

16S2  Reverse  GCGACCTCGATGTTGGATTAA  Roehrdanz et al. 2002  
CB2H  Forward  TCCTCAAAATGATATTTGTCCTCA  Roehrdanz et al. 2002  
N4  Forward  GGAGCTTCAACATGAGCTTT  Roehrdanz et al. 2002  
N4(87)  Reverse  TCAGCTAATATAGCAGCTCC  Roehrdanz et al. 2002  
Crust-12sf  Forward  CAGCAKYCGCGGTTAKAC  Podsiadlowski & Bartolomaeus 2005  
Crust-12sr  Reverse  ACACCTACTWTGTTACGACTTATCTC  Podsiadlowski & Bartolomaeus 2005  
Crust-cox1f   Forward    ACTAATCACAARGAYATTGG   Podsiadlowski & Bartolomaeus 2005  
Crust-cox1r   Reverse    TAGTCTGAGTANCGTCGWGG   Podsiadlowski & Bartolomaeus 2005  
L39-Met (S1,S2)   Forward   AAGCTHVTGGGCTCATACCCC   Yamauchi et al. 2004   
L329-ND2 (S4,S5,S7)  Forward  GGWGCHGCHCCNTTWCATTTTTG  Yamauchi et al. 2004  
H718-ND2 (S1,S4)   Reverse   AABCCHGDGAAMGGDGGHAVHCCHCC   Yamauchi et al. 2004   
H1368-CO1 (S2,S5)   Reverse   TATAGAGTTCCAATRTCYTTGTGATT   Yamauchi et al. 2004   
L1384-CO1 (S8,S9)   Forward   GGTCAACAAATCATAAAGATATTGG   Yamauchi et al. 2004   
L1564-CO1 (S10)   Forward   ATGGTWATACCGATTWTRATTGG   Yamauchi et al. 2004   
H1602-CO1 (S7)  Reverse  GGGAADGCTATGTCWGGGGC  Yamauchi et al. 2004  
H2043-CO1 (S8)   Reverse   TAAACTTCAGGGTGACCAAAAAATCA   Yamauchi et al. 2004   
L2020S-CO1 (S11)   Forward   GACCCTGCGGGWGGRGGRGATCC Yamauchi et al. 2004   
H2619-CO1 (S9-11)   Reverse   GGTATWCCWGCKAGWCCTAAGAAATGTTG   Yamauchi et al. 2004   
L3020-CO2 (S13)  Forward  ATTTTTTTYCATGAYCATGC  Yamauchi et al. 2004  
H3514-CO2 (S13)  Reverse  CCACAAATTTCKGAACATTGWCCATAAAA  Yamauchi et al. 2004  
L4672-CO3 (S18, S19)  Forward  GGWCTWGTBAAATGGTTTCA  Yamauchi et al. 2004  
H5244S-CO3 (S18)  Reverse  GCTTCAAATCCWAMGTGGTG  Yamauchi et al. 2004  
H5252-CO3 (S19)  Reverse  CAWGCKGCVGCTTCAAATCC  Yamauchi et al. 2004  
L12167-16S (S43)   Forward   CCTGGCTTACGCCGGTCTGAACTCAGATCATG   Yamauchi et al. 2004   
H12663-16S (S43)   Reverse   CGCCTGTTTACCAAAAACAT   Yamauchi et al. 2004   
Av-320 Forward GCTGGGTTATTTTTCCGCAC This study 
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Av-439 Reverse ATAGACTTATTCATTTATTTTCTTTCTCTC This study 
Av-871 Reverse TCAGTAACAATGCAGAATCACC This study 
Av-1166 Forward CTAGATTAAGGGCATTATTTGAGC This study 
Av-1616 Forward ATGTTTCTTTAATAAGGGATGAGG This study 
Av-2618 Reverse ATTTTGCTCTTCTGGTTTATTTTG This study 
Av-3101 Reverse GTCTCTTCCGTTACTTGTTGC This study 
Av-3375 Forward AAGGATAAAGTATCTGTAAATAGACC This study 
Av-4209 Reverse TATTAAACCCTCCTAAATATACATC This study 
Av-4434 Forward AAAATTAATACTTAAAAATTCCTAACG This study 
Av-4757 Forward AAGGTTTTAGGGTCTTATCGTC This study 
Av-4903 Forward CACAGTTAGGATACTGCGGCTC This study 
Av-5618 Reverse GATAAAAAATATAAAACCCCAAAATG This study 
Av-6048 Reverse CTACAACTCCGCCAACAATAATAC This study 
Av-6306 Reverse CTAAGGATAAGAAACTAACTAACAAGG This study 
Av-6410 Forward TGTGGTTACTTTATTTTATTATTTACG This study 
Av-6554 Forward AGTTTTATTTTTTCATAAGGTTTTTGC This study 
Av-6872 Reverse TTACTATAAAAAAAATTATTACAAAAGC This study 
Av-6995 Reverse ATAAAGTTAAAGAAGGGGGTAAAAGTC This study 
Av-7022 Forward AGGAGTAGGAACAGGGTGGACAG This study 
Av-7032 Reverse TTCCTACTCCTCTTTCTAACTAATCC This study 
Av-7531 Reverse TGGGCTCATACTACAAAACCTAAC This study 
Av-7607 Forward TACGGGTATTAAAATCTTTAGGTG This study 
Av-7621 Reverse ATTTTAATACCCGTAGGAACAGC This study 
Av-8140 Forward AGTGGTTACACCCTTATCCCC This study 
Av-8377 Reverse ATACCCTACTAAGGATAAAATTAAAAC This study 
Av-9027 Forward AGGTTCCACAAATAGGTCCTTTAC This study 
Av-9066 Reverse AATAAAAAAACTCACGGTAAAGGAC This study 
Av-9392 Reverse AAAATTACAGCAACTATCTTTCTACTTC This study 
Av-9788 Reverse GCTACTGCTACTTCTAACACCAC This study 
Av-10184 Reverse CTCTGACCTTGGTGATAATCTTCTATG This study 
Av-10202 Reverse AGGTCATACTCTGCCTATCTCTG This study 
Av-10357 Forward TTGGGGTTTACTTTACAACTCTAC This study 
Av-10996 Forward GGTGTTCTACGAATGGTGGG This study 
Av-11020 Reverse CCCTTCCCACCATTCGTAG This study 
Av-11383 Reverse CTGGATTTAACACAGAGTATAGCG This study 
Av-11669 Forward TAGCTGATAGACAGCATAAAATAAAG This study 
Av-12039 Reverse GCCTCTATGGTTTGGCTTTAC This study 
Av-12513 Reverse AAGGTAAGATTTATCGTGGGG This study 
Av-12595 Forward GCTTTTAGAGGAGAAGATGGG This study 
Av-12925 Reverse ACCTCCTCTGCTATGAAAAAACAGGATGC This study 

 
 
 
e) Amplification and sequencing primers used to obtain the partial mt genome of Asellus aquaticus. 
Primer  Orientation  Sequence (5'-3')  Reference  

N4  Forward  GGAGCTTCAACATGAGCTTT  Roehrdanz et al. 2002  
Crust-12sf Forward CAGCAKYCGCGGTTAKAC Podsiadlowski & Bartolomaeus 2005 
Crust-12sr Reverse ACACCTACTWTGTTACGACTTATCTC Podsiadlowski & Bartolomaeus 2005 
Crust-16sf Reverse TGACYGTGCDAAGGTAGC Podsiadlowski & Bartolomaeus 2005  
Crust-16sr   Forward   CCGGTCTGAACTCAYATC   Podsiadlowski & Bartolomaeus 2005  
Crust-cox1f  Forward  ACTAATCACAARGAYATTGG  Podsiadlowski & Bartolomaeus 2005  
Crust-cox1r  Reverse  TAGTCTGAGTANCGTCGWGG  Podsiadlowski & Bartolomaeus 2005  
Crust-cox3r   Reverse   CCAATAATWACATGWAGACC   Podsiadlowski & Bartolomaeus 2005  
Crust-ND5f Reverse   AGAATTCTACTAGGDTGRGATGG Podsiadlowski & Bartolomaeus 2005  
L329-ND2 (S5,S6,S7)  Forward  GGWGCHGCHCCNTTWCATTTTTG  Yamauchi et al. 2004  
H1368-CO1 (S5) Reverse TATAGAGTTCCAATRTCYTTGTGATT Yamauchi et al. 2004 
H1410-CO1 (S6) Reverse AGTGCCWACTATWCCWGMTCA Yamauchi et al. 2004 
H1602-CO1 (S7) Reverse GGGAADGCTATGTCWGGGGC Yamauchi et al. 2004 
L2302-CO1 (S12) Forward TTCCTACSGGRATTAAGATTTTTAG Yamauchi et al. 2004 
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Primer  Orientation  Sequence (5'-3')  Reference  

H3290-CO2 (S12) Reverse GGSATTATGTAWGAATCAAATT Yamauchi et al. 2004 
L3020-CO2 (S13) Forward ATTTTTTTYCATGAYCATGC Yamauchi et al. 2004 
H3514-CO2 (S13) Reverse CCACAAATTTCKGAACATTGWCCATAAAA Yamauchi et al. 2004 
L3542-CO2 (S15) Forward GGNCAATGTTCAGAAATTTGTGG Yamauchi et al. 2004 
H4375-A6 (S15) Reverse GCDATCATGTTDGCDGMWAGTCG Yamauchi et al. 2004 
H10315-CYB Forward GTGATDACHGTDGCTCCTCA Yamauchi et al. 2004 
Aa-1082 Reverse TTATTAACCCAGCCCCATC This study 
Aa-1384 Reverse CCAATAAGGCGATAGATAGAAGG This study 
Aa-1654 Forward ACCTTTCTTACTACCTTTATGGC This study 
Aa-2113 Forward TGCCCTTCACTGCCCTC This study 
Aa-3129 Reverse TGGGCTGTTTTGTATCGC This study 
Aa-3297 Reverse AGGTGTCTATGTAAGGATGGC This study 
Aa-3710 Reverse TCGCTTATCCCAACTTTTATGC This study 
Aa-3885 Forward GGAATACCCTACACTATCCCAGC  This study 
Aa-4295 Reverse AGTTGGCGTAGTGTCCTTTGTG   This study 
Aa-4387 Forward ATTTTTACTAAACTATCTTCTGCGTGG This study 
Aa-4803 Reverse ACGGGTAGACTAAAGGTGAAAAAAG This study 
Aa-5188 Forward TGCTGTTATCCCTAAAGTAACTTATTC  This study 
Aa-5296 Reverse TTGAGCTGGGGCGGTATTC This study 
Aa-5985 Forward TAAATACCCCTGATACAAAAG This study 
Aa-6386 Reverse TGTTAATATGATAATAGGTAAAAATG This study 
Aa-6830 Reverse ATAGGTGATAAGGTAGAGAGTCCAAG This study 
Aa-7139 Forward ACCTCTCTTTCTTATACTAGCACTCC This study 
Aa-7632 Reverse GGGAGGGAGAAGCCAGAAAC             This study 
Aa-7773 Forward CGCTAGTTCTATTTTAGGCTCTG This study 
Aa-8270 Reverse ATTTTAATACCTGTTGGGACTGC This study 
Aa-8324 Forward TTATATGAGCCCTCGGGTTTG This study 
Aa-9396 Forward CGAGTCACCCTTCCACAATC This study 
Aa-10100 Forward CCATTCTATTACCACATAAATCTAAAC This study 
Aa-10297 Forward ATAATAGCCCACCTTGTGCC This study 
Aa-11026 Forward TGACCTGAGCACACCATAGAATC This study 
Aa-11352 Forward TACACCTTTATCTATTGATGGGG This study 
Aa-11249 Reverse ATAGTTCAGGTCCGTTTGC This study 
Aa-13084 Reverse ATTTACTTACTTTTCTTATTTAGCAGG This study 
Aa-13307 Reverse TTGGGTTTGTTGGGCGTATC This study 
Aa-13378 Reverse AGTAGGGTATAGGGTGGATTGTC This study 

 
 
 
f) Amplification and sequencing primers used to obtain the partial mt genome of Janira maculosa. 
Primer  Orientation  Sequence (5'-3')  Reference  

16S2  Reverse  GCGACCTCGATGTTGGATTAA  Roehrdanz et al. 2002  
CB2H  Forward  TCCTCAAAATGATATTTGTCCTCA  Roehrdanz et al. 2002  
N4  Forward  GGAGCTTCAACATGAGCTTT  Roehrdanz et al. 2002  
Crust-cox1f  Forward  ACTAATCACAARGAYATTGG  Podsiadlowski & Bartolomaeus 2005  
Crust-cox1r  Reverse  TAGTCTGAGTANCGTCGWGG  Podsiadlowski & Bartolomaeus 2005  
Crust-N5f Forward AGAATTCTACTAGGDTGRGATGG Podsiadlowski & Bartolomaeus 2005 
Crust-N5r Reverse AAAGAGCCTTAAATAAAGCATG Podsiadlowski & Bartolomaeus 2005 
Crust-12sf  Forward  CAGCAKYCGCGGTTAKAC  Podsiadlowski & Bartolomaeus 2005  
Crust-12sr  Reverse  ACACCTACTWTGTTACGACTTATCTC  Podsiadlowski & Bartolomaeus 2005  
Crust-16sr   Forward   CCGGTCTGAACTCAYATC   Podsiadlowski & Bartolomaeus 2005  
Pera-Co1f Forward GGNGCTATTACAATACTWTTGACAGACCG This study   
L39-Met (S2)   Forward   AAGCTHVTGGGCTCATACCCC   Yamauchi et al. 2004   
L329-ND2 (S5,S6,S7)  Forward  GGWGCHGCHCCNTTWCATTTTTG  Yamauchi et al. 2004  
H1368-CO1 (S2,S5)  Reverse  TATAGAGTTCCAATRTCYTTGTGATT  Yamauchi et al. 2004  
L1384-CO1 (S8,S9)   Forward   GGTCAACAAATCATAAAGATATTGG   Yamauchi et al. 2004   
L1564-CO1 (S10)   Forward   ATGGTWATACCGATTWTRATTGG   Yamauchi et al. 2004   
H1602-CO1 (S3,S7)  Reverse  GGGAADGCTATGTCWGGGGC  Yamauchi et al. 2004  
H2043-CO1 (S8)   Reverse   TAAACTTCAGGGTGACCAAAAAATCA   Yamauchi et al. 2004   
H2619-CO1 (S9-11)   Reverse   GGTATWCCWGCKAGWCCTAAGAAATGTTG   Yamauchi et al. 2004   
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Primer  Orientation  Sequence (5'-3')  Reference  

Jm-91 Reverse TTATCTCATGCTAATGGTGCTTCTC This study   
Jm-218 Reverse TCTTTGTCTTGCTATTCAGATTGTTAC This study   
Jm-1007 Reverse CTTTTGCTAGTTTTCTTTGTTACCG This study   
Jm-1367 Reverse ATTATTATCTTATTTTTTATACAGTATTTGC This study   
Jm-1989 Forward ACAAAGCAAAAAAAAGGTTC This study   
Jm-2073 Forward ATTCTTAAATAAACTACCTTGAAAAC This study   
Jm-3017 Forward AAAGTTTTACAGGGTCTTATCGTCTTC This study   
Jm-3717 Reverse ATAAACACTGTAAAGGTTTCAAAATTAG This study   
Jm-4137 Reverse TACTAAACATAAAGACCCAGTTGATTG This study   
Jm-6026 Forward GGGACTGACAGGAGTAGTTTTAGC This study   
Jm-7118 Reverse TGATGTTCTAACAAATGCCG This study   
Jm-7317 Forward TGAAGATACAAAAGAGAGCC This study   
Jm-8212 Reverse TTGTTCTAATAACCTGTGATGAGC This study   
Jm-8265 Forward ATTTTACACGAGTCCAAGTCATAG This study   
Jm-8953 Reverse CTCACTCATATACAGTACCCACCC This study   
Jm-9555 Reverse TTTAGGTTTGATGGTTATCTCATTTAG This study   
Jm-9545 Forward TCAAACCTAAAGAATGTGGCGGC This study   
Jm-9642 Forward ACCGTCGTCTAAGTTGGCTCTGG This study   
Jm-9856 Reverse AGAGAYTGACGGGCGATATG This study   
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Supplementary file 4.2 

 

a) Method of tRNA detection in the Eurydice pulchra mt genome. 16 tRNA genes were detected. 
Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were detected, the less strict ‘Nematode Mito’ model was 
used instead. ARWEN was used with ‘Invertebrate mitochondrial genetic code’ option. Results were 
manually checked afterwards. Noticeable features in bold letters. 

- Genes most likely missing by incomplete mt genome sequences 

 

 

 

 

 
 
 
 
 
 
 
 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala detected detected accepted 
tRNA-Asn detected detected accepted 
tRNA-Asp detected (‘Nematode Mito’ model) detected accepted 
tRNA-Arg - - - 
tRNA-Cys not detected detected accepted 
tRNA-Gln not detected detected accepted 
tRNA-Glu - - - 
tRNA-Gly detected detected accepted 
tRNA-His not detected not detected detected 
tRNA-Ile - - - 
tRNA-Leu(CUN) - - - 
tRNA-Leu(UUR) detected detected accepted 
tRNA-Lys detected detected accepted 
tRNA-Met detected detected accepted 
tRNA-Phe - - - 
tRNA-Pro detected detected accepted 
tRNA-Ser(AGY) - - - 
tRNA-Ser(UCN) not detected detected accepted 
tRNA-Thr detected detected accepted 
tRNA-Trp detected detected accepted 
tRNA-Tyr detected detected accepted 
tRNA-Val detected detected accepted 
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b) Method of tRNA detection in the Sphaeroma serratum mt genome. 15 tRNA genes were detected. 
Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were detected, the less strict ‘Nematode Mito’ model was 
used instead. ARWEN was used with ‘Invertebrate mitochondrial genetic code’ option. Results were 
manually checked afterwards. Noticeable features in bold letters. 

- Genes most likely missing by incomplete mt genome sequences 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala detected detected accepted 
tRNA-Asn not detected detected accepted 
tRNA-Asp detected detected accepted 
tRNA-Arg - - - 
tRNA-Cys - - - 
tRNA-Gln detected detected accepted 
tRNA-Glu - - - 
tRNA-Gly detected detected accepted 
tRNA-His detected detected accepted 
tRNA-Ile - - - 
tRNA-Leu(CUN) - - - 
tRNA-Leu(UUR) detected detected accepted 
tRNA-Lys detected detected accepted 
tRNA-Met detected detected accepted 
tRNA-Phe detected (‘Nematode Mito’ model) detected accepted 
tRNA-Pro detected detected accepted 
tRNA-Ser(AGY) - - - 
tRNA-Ser(UCN) detected detected accepted 
tRNA-Thr detected detected accepted 
tRNA-Trp - - - 
tRNA-Tyr detected detected accepted 
tRNA-Val detected detected accepted 
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c) Method of tRNA detection in the Glyptonotus cf. antarcticus  mt genome (incomplete). 18 tRNA genes 
were detected. Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were detected, the less strict ‘Nematode Mito’ model was 
used instead. ARWEN was used with ‘Invertebrate mitochondrial genetic code’ option. Results were 
manually checked afterwards. Noticeable features in bold letters. 

- Genes most likely missing by incomplete mt genome sequences 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala detected detected accepted 
tRNA-Asn detected detected accepted 
tRNA-Asp detected detected accepted 
tRNA-Arg detected detected accepted 
tRNA-Cys detected (‘Nematode Mito’ model) detected accepted 
tRNA-Gln detected (‘Nematode Mito’ model) detected accepted 
tRNA-Glu - - - 
tRNA-Gly detected detected accepted 
tRNA-His detected detected accepted 
tRNA-Ile - - - 
tRNA-Leu(CUN) detected detected accepted 
tRNA-Leu(UUR) detected detected accepted 
tRNA-Lys detected detected accepted 
tRNA-Met detected detected accepted 
tRNA-Phe not detected detected accepted 
tRNA-Pro detected detected accepted 
tRNA-Ser(AGY) - - - 
tRNA-Ser(UCN) detected detected accepted 
tRNA-Thr detected detected accepted 
tRNA-Trp - - - 
tRNA-Tyr detected detected accepted 
tRNA-Val detected detected accepted 
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d) Method of tRNA detection in the Armadillidium vulgare mt genome (incomplete). 13 RNA genes were 
detected. Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were detected, the less strict ‘Nematode Mito’ model was 
used instead. ARWEN was used with ‘Invertebrate mitochondrial genetic code’ option. Results were 
manually checked afterwards. Noticeable features in bold letters 

- Genes most likely missing by incomplete mt genome sequences 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala - - - 
tRNA-Asn - - - 
tRNA-Asp detected not detected accepted 
tRNA-Arg - - - 
tRNA-Cys not detected detected accepted 
tRNA-Gln detected (‘Nematode Mito’ model) not detected improved 
tRNA-Glu - - - 
tRNA-Gly detected detected accepted 
tRNA-His detected (‘Nematode Mito’ model) detected accepted 
tRNA-Ile - - - 
tRNA-Leu(CUN) - - - 
tRNA-Leu(UUR) - - - 
tRNA-Lys - - - 
tRNA-Met detected not detected accepted 
tRNA-Phe detected (‘Nematode Mito’ model) not detected accepted 
tRNA-Pro detected not detected improved 
tRNA-Ser(AGY) - - - 
tRNA-Ser(UCN) detected not detected accepted 
tRNA-Thr detected (‘Nematode Mito’ model) detected accepted 
tRNA-Trp detected (‘Nematode Mito’ model) detected accepted 
tRNA-Tyr detected (‘Nematode Mito’ model) detected accepted 
tRNA-Val detected detected accepted 
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e) Method of tRNA detection in the Asellus aquaticus mt genome (incomplete). 18 tRNA genes were 
detected. Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were detected, the less strict ‘Nematode Mito’ model was 
used instead. ARWEN was used with ‘Invertebrate mitochondrial genetic code’ option. Results were 
manually checked afterwards. Noticeable features in bold letters. 

- Genes most likely missing by incomplete mt genome sequences 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala detected detected accepted 
tRNA-Asn detected detected accepted 
tRNA-Asp detected detected accepted 
tRNA-Arg detected detected accepted 
tRNA-Cys not detected detected accepted 
tRNA-Gln detected detected accepted 
tRNA-Glu - - - 
tRNA-Gly detected detected accepted 
tRNA-His detected detected accepted 
tRNA-Ile - - - 
tRNA-Leu(CUN) detected detected accepted 
tRNA-Leu(UUR) detected detected accepted 
tRNA-Lys detected detected accepted 
tRNA-Met detected detected accepted 
tRNA-Phe detected detected accepted 
tRNA-Pro detected detected accepted 
tRNA-Ser(AGY) - - - 
tRNA-Ser(UCN) detected detected accepted 
tRNA-Thr detected detected accepted 
tRNA-Trp - - - 
tRNA-Tyr detected detected accepted 
tRNA-Val detected detected accepted 
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f) Method of tRNA detection in the Janira maculosa mt genome (incomplete). 14 tRNA genes were 
detected. Standard search with tRNAscan-SE performed with ‘Invertebrate Mito’ genetic code and 
‘Mito/Chloroplast’ model. When no tRNAs were detected, the less strict ‘Nematode Mito’ model was 
used instead. ARWEN was used with ‘Invertebrate mitochondrial genetic code’ option. Results were 
manually checked afterwards. Noticeable features in bold letters. 

- Genes most likely missing by incomplete mt genome sequences 
 

 

 

 

 

 

 

 

 

 

 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala detected detected accepted 
tRNA-Asn - - - 
tRNA-Asp detected detected accepted 
tRNA-Arg - - - 
tRNA-Cys - detected accepted 
tRNA-Gln detected (‘Nematode Mito’ model) detected accepted 
tRNA-Glu - - - 
tRNA-Gly detected detected accepted 
tRNA-His - detected accepted 
tRNA-Ile - - - 
tRNA-Leu(CUN) detected detected accepted 
tRNA-Leu(UUR) detected (‘Nematode Mito’ model) detected accepted 
tRNA-Lys - - - 
tRNA-Met detected (‘Nematode Mito’ model) detected accepted 
tRNA-Phe - - - 
tRNA-Pro detected (‘Nematode Mito’ model) detected accepted 
tRNA-Ser(AGY) - - - 
tRNA-Ser(UCN) detected detected accepted 
tRNA-Thr detected detected accepted 
tRNA-Trp - - - 
tRNA-Tyr detected detected accepted 
tRNA-Val detected (‘Nematode Mito’ model) detected accepted 
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Supplementary file 4.3 

 

 

Reannotations of the Armadillidium vulgare and the Ligia oceanica mt genome. The software tool 
ARWEN (Laslett and Canback 2008) was used in addition to tRNAscan-SE (Lowe and Eddy 1997) for an 
improved identification of tRNA genes. The figure confronts the old with the new annotation. 
Deprecated genes are colored in orange, new additions in blue. a) The presented annotation of A. 
vulgare of this study is based on our own sequence data. Seven further tRNA genes (trnQ, trnM, trnD, 
trnG, trnV, trnW, trnT) were identified by ARWEN. No indications have been found for trnA at the same 
locus of trnV. trnL1 was not detected by any of the computer programs, although our sequence for this 
area is no different to the other published sequence. b) The new trnV gene identified by ARWEN is more 
convincing than the old one, which had an odd nucleotide in the anticodon. 
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Supplementary file 4.4 

 

a) Gene content of the mitochondrial genome of Eurydice pulchra. 
Gene Strand GenBank  

position no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cob a - 1-303 a 303 a 101 a ATA ? a 0 
trnT - 304-363 60    1 
nad5 + 365-2074 1710 569 ATT TAG -1 
trnH - 2074-2135 62    -26 
nad4 - 2110-3462 1353 450 ATT TAA -13 
nad4L - 3450-3743 294 97 ATC TAG 0 
trnP - 3744-3803 60    2 
nad6 + 3806-4282 477 158 ATG TAA -11 
trnS-UCN + 4272-4324 53    * 
rrnL - 4325-5461 1137    * 
trnQ - 5462-5523 62    -9 
trnM + 5515-5574 60    -18 
nad2 + 5557-6510 954 317 ATG TAA -13 
trnC - 6498-6555 58    -9 
trnY - 6547-6607 61    0 
cox1 + 6608-8146 1539 512 ATG TAA -5 
trnL-UUR + 8142-8199 58    18 
trnW + 8218-8280 63    60 
cox2 + 8341-9022 682 227 GTG T 0 
trnK + 9023-9084 62    -2 
trnD + 9083-9141 59    0 
atp8 + 9142-9294 153 50 GTG TAA -7 
atp6 + 9288-9959 672 223 ATG TAA 0 
cox3 + 9960-10748 789 262 ATG TAA -1 
trnG + 10748-10807 60    0 
nad3 + 10808-11153 346 115 ATA T 91 
trnA + 11245-11304 60    -2 
trnV + 11303-11365 63    10 
nad1 - 11376-12293 918 305 ATT TAA 1 
trnN + 12295-12357 63    * 
rrnS a + 12358-13055 a 698 a     

* Gene borders determined by borders of adjacent genes 
a Incomplete gene sequence 
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b) Gene content of the mitochondrial genome of Sphaeroma serratum. 
Gene Strand GenBank  

position no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cob a - 1-769 a 769 a 256 a ATT ? a 0 
trnT - 770-829 60    1 
nad5 + 831-2558 1728 575 ATT TAG -17 
trnF + 2542-2599 58    0 
trnH - 2600-2659 60    0 
nad4 - 2660-4001 1342 447 ATG T -7 
nad4L - 3995-4300 306 101 ATA TAA 0 
trnP - 4301-4360 60    10 
nad6 + 4371-4856 486 161 ATC TAG -2 
trnS-UCN + 4855-4915 61    * 
rrnL - 4916-6069 1154    * 
trnV - 6070-6131 62    -2 
trnQ - 6130-6191 62    -9 
trnM + 6183-6243 61    0 
nad2 + 6244-7230 987 328 ATT TAG 40 
trnY - 7271-7329 59    -3 
cox1 + 7327-8863 1537 512 ACT T 0 
trnL-UUR + 8864-8926 63    0 
cox2 + 8927-9607 681 226 ATA TAG -1 
trnK + 9602-9666 60    0 
trnD + 9667-9727 61    0 
atp8 + 9728-9883 156 51 ATT TAA -7 
atp6 + 9877-10548 762 253 ATG TAA -1 
cox3 + 10548-11334 787 262 ATG T 0 
trnG + 11335-11395 61    0 
nad3 + 11395-11743 349 116 GTG T -1 
trnA + 11744-11803 60    11 
nad1 - 11815-12750 936 311 ATA TAA 2 
trnN + 12753-12816 64    * 
rrnS a + 12817-13467 a 651 a     

* Gene borders determined by borders of adjacent genes 
a Incomplete gene sequence 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



11. Appendix 

153 

c) Gene content of the mitochondrial genome of Glyptonotus cf. antarcticus. 
Gene Strand GenBank  

position no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cob a - 1-760 a 760 a 253 a ATA ? a 0 
trnT - 761-819 59    1 
nad5 + 821-2541 1721 273 ATT TA 0 
trnF + 2542-2601 60    3 
trnH - 2605-2666 62    -3 
nad4 - 2664-4005 1342 447 ATG T -7 
nad4l - 3999-4286 288 95 ATT TAA 15 
trnP - 4302-4366 65    1 
nad6 + 4368-4868 501 166 ATT TAG -2 
trnS-UCN + 4867-4927 61    * 
rrnL - 4928-6142 1215    * 
trnV - 6143-6203 61    2 
trnQ - 6206-6268 63    -2 
trnM + 6267-6330 64    0 
nad2 + 6331-7329 999 332 ATT TAG -9 
trnC - 7321-7369 49    1 
trnY - 7369-7430 62    0 
cox1 + 7431-8969 1539 512 ACG TAA -5 
trnL-UUR + 8965-9027 63    0 
cox2 + 9028-9711 684 227 GTG TAA 0 
trnK + 9712-9772 61    -2 
trnD + 9771-9834 64    0 
atp8 + 9835-9993 159 52 TTG TAA -7 
atp6 + 9987-10661 675 224 ATG TAG 2 
cox3 + 10664-11449 786 261 ATA TAG 7 
trnR + 11457-11526 70    -13 
trnG + 11514-11575 62    0 
nad3 + 11576-11929 354 117 ATA TAA -2 
trnA + 11928-11992 65    21 
nad1 - 12014-12943 930 309 ATT TAG 0 
trnL-CUN - 12994-13005 62    -5 
trnN + 13001-13064 64    * 
rrnS a + 13065-13809 a 745 a     

* Gene borders determined by borders of adjacent genes 
a Incomplete gene sequence 
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d) Gene content of the mitochondrial genome of Armadillidium vulgare. 
Gene Strand GenBank  

position no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cob a - 1-366 a 366 a 122 a ATA ? a -26 
trnT - 341-402 62    27 
nad5 + 430-2109 1680 559 ATA TAA -2 
trnF + 2108-2164 57    -26 
trnH - 2139-2201 63    -16 
nad4 - 2186-3541 1356 451 ATG TAA 5 
nad4L - 3547-3825 279 92 ATA TAA -23 
trnP - 3803-3877 75    1 
nad6 + 3879-4373 495  ATT TAA -13 
trnS-UCN + 4361-4425 65    * 
rrnL - 4426-5468 1043    * 
trnQ - 5469-5523 55    1 
trnM + 5525-5587 63    -6 
nad2 + 5582-6583 1002 333 ATA TAA -14 
trnC - 6570-6622 53    -23 
trnY - 6600-6668 69    -3 
cox1 + 6666-8199 1534 511 ATG T 55 
cox2 + 8255-8932 678 225 ATA TAA 43 
trnD + 8976-9047 72    -22 
atp8 + 9026-9181 156 51 GTT TAA -7 
atp6 + 9175-9843 669 222 ATG TAA 2 
cox3 + 9846-10637 792 263 ATG TAA -5 
trnG + 10633-10697 65    -13 
nad3 + 10685-11038 354  ATA TAA -2 
trnV + 11037-11101 65    -26 
nad1 - 11076-12005 930 309 ATA TAA * 
rrnS + 12006-12831 826    * 
trnW + 12832-12890 59     

* Gene borders determined by borders of adjacent genes 
a Incomplete gene sequence 
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e) Gene content of the mitochondrial genome of Asellus aquaticus. 
Gene Strand GenBank  

position no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cob a - 1-837 a 837 a 279 a ATT ? a 0 
trnT - 838-896 59    15 
nad5 + 912-2606 1695 564 ATA TAG 0 
trnF + 2607-2675 69    11 
trnH - 2665-2724 60    0 
nad4 - 2725-4051 1327 442 ACA T 7 
nad4L - 4045-4347 303 100 ATA TAA 0 
trnP - 4348-4407 60    10 
nad6 + 4418-4897 480 159 ATA TAA 1 
trnS-UCN + 4899-4958 60    * 
rrnL - 4959-6126 1168    * 
trnQ - 6127-6188 62    -9 
trnM + 6180-6241 62    0 
nad2 + 6242-7219 978 325 ATT TAA -15 
trnC - 7205-7253 49    -1 
trnY - 7253-7316 64    0 
cox1 + 7317-8855 1539 512 ACC TAA -5 
trnL-CUN + 8851-8911 61    0 
trnL-UUR + 8912-8971 60    0 
cox2 + 8972-9649 678 225 ATC TAA -2 
trnK + 9648-9710 63    -1 
trnD + 9710-9774 65    0 
atp8 + 9775-9933 159 52 CTG TAA -7 
atp6 + 9927-10595 669 222 ATG TAA -1 
cox3 + 10595-11380 786 261 ATG TAA -1 
trnG + 11380-11439 60    0 
nad3 + 11440-11793 354 117 ATT TAA -2 
trnA + 11792-11852 61    2 
trnR + 11855-11915 61    -1 
trnV + 11915-11974 60    -4 
nad1 - 11971-12885 915 304 ATT TAA 16 
trnN + 12902-12964 63    * 
rrnS a + 12965-13639 a 675 a     

* Gene borders determined by borders of adjacent genes 
a Incomplete gene sequence 
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 f) Gene content of the mitochondrial genome of Janira maculosa. 
Gene Strand GenBank 

position no. 
Size 
(nts) 

Size 
(aa) 

Start 
codon 

Stop 
codon 

Intergenic 
nucleotides 

cob a - 1-331 a 331 110 ATA ? a -18 
trnT - 314-385 72    -13 
trnH - 373-443 71    -5 
nad4 - 439-1740 1302 433 ATG TAA -7 
nad4L - 1734-2030 297 98 ATT TAA -3 
trnP - 2028-2086 59    3 
nad6 + 2090-2581 492 163 ATA TAA -1 
trnS-UCN + 2581-2650 70    * 
rrnL - 2651-3752 1102    * 
trnV - 3753-3812 60    -27 
trnQ - 3787-3862 76    0 
trnM + 3863-3930 68    -10 
nad2 + 3921-4880 960 319 ATA TAA -15 
trnC - 4866-4916 51    -12 
trnY - 4905-4973 69    -4 
cox1 + 4970-6503 1534 511 ACG T 94 
trnL-UUR + 6598-6657 60    215 
trnL-CUN + 6873-6932 60    -1 
cox2 + 6932-7603 672 223 ATT TAA 61 
trnD + 7665-7728 64    4 
cox3 + 7733-8527 795 264 ATG TAA 37 
trnG + 8565-8638 74    -18 
nad3 + 8621-8968 348 115 ATT TAA 5 
trnA + 8974-9040 67    * 
rrnS a + 9041-9871 831 a     

* Gene borders determined by borders of adjacent genes 
a Incomplete gene sequence 
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Supplementary file 4.5 

 

 

a) tRNA structure plots of Eurydice pulchra. 
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b) tRNA structure plots of Sphaeroma serratum. 
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c) tRNA structure plots of Glyptonotus cf. antarcticus. 
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d) tRNA structure plots of Armadillidium vulgare. 
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e) tRNA structure plots of Asellus aquaticus. 
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f) tRNA structure plots of Janira maculosa. 
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Supplementary file 4.6 

 
a) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Eurydice pulchra. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.2083 0.1786 0.2783 0.3348 54.3 -0.23 0.22 
atp8(+) 0.2157 0.1699 0.2484 0.3660 58.2 -0.26 0.19 
cob(-)* 0.2409 0.2145 0.1980 0.3465 58.7 -0.18 -0.04 
cox1(+) 0.2099 0.1813 0.2632 0.3457 55.6 -0.24 0.18 
cox2(+) 0.2214 0.1891 0.2654 0.3240 54.5 -0.19 0.17 
cox3(+) 0.2193 0.1850 0.2573 0.3384 55.8 -0.21 0.16 
nad1(-) 0.2222 0.2244 0.2211 0.3322 55.4 -0.20 -0.01 
nad2(+) 0.2212 0.1583 0.3008 0.3197 54.1 -0.18 0.31 
nad3(+) 0.2110 0.1416 0.3295 0.3179 52.9 -0.20 0.40 
nad4(-) 0.2247 0.2446 0.1803 0.3503 57.5 -0.22 -0.15 
nad4L(-) 0.1905 0.2687 0.1803 0.3605 55.1 -0.31 -0.20 
nad5(+) 0.2556 0.1281 0.3018 0.3146 57.0 -0.10 0.40 
nad6(+) 0.2201 0.1300 0.3187 0.3312 55.1 -0.20 0.42 
prot. cod. total* 0.2201 0.1857 0.2572 0.3371 55.7 -0.21 0.16 
rrnL(-) 0.3036 0.2307 0.1756 0.2901 59.4 0.02 -0.14 
rrnS(+)* 0.2607 0.2249 0.2708 0.2436 50.4 0.03 0.09 
rRNA total* 0.2822 0.2278 0.2232 0.2669 54.9 0.03 -0.02 
total* 0.2649 0.1769 0.2645 0.2937 55.9 -0.05 0.20 

* Incomplete sequence 
 

 
 
 
b) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Sphaeroma 

serratum. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.1949 0.1949 0.3244 0.2857 48.1 -0.19 0.25 
atp8(+) 0.2179 0.1987 0.3718 0.2115 42.9 0.01 0.30 
cob(-)* 0.2497 0.2575 0.1612 0.3316 58.1 -0.14 -0.23 
cox1(+) 0.2010 0.2115 0.2746 0.3129 51.4 -0.22 0.13 
cox2(+) 0.2188 0.2129 0.2746 0.2937 51.3 -0.15 0.13 
cox3(+) 0.1703 0.2452 0.2834 0.3011 47.1 -0.28 0.07 
nad1(-) 0.1775 0.2759 0.2524 0.2941 47.2 -0.25 -0.04 
nad2(+) 0.2067 0.1429 0.2958 0.3546 56.1 -0.26 0.35 
nad3(+) 0.1433 0.2063 0.3926 0.2579 40.1 -0.29 0.31 
nad4(-) 0.2422 0.2809 0.1490 0.3279 57.0 -0.15 -0.31 
nad4L(-) 0.2582 0.2484 0.1536 0.3399 59.8 -0.14 -0.24 
nad5(+) 0.2425 0.1082 0.2940 0.3553 59.8 -0.19 0.46 
nad6(+) 0.2284 0.1214 0.2778 0.3724 60.1 -0.24 0.39 
prot. cod. total* 0.2116 0.2081 0.2696 0.3107 52.2 -0.19 0.12 
rrnL(-) 0.3105 0.2133 0.1614 0.3147 62.5 -0.01 -0.14 
rrnS(+)* 0.2413 0.2427 0.3236 0.1925 43.4 0.11 0.14 
rRNA total* 0.2759 0.2280 0.2425 0.2536 53.0 0.05 0.00 
total* 0.2533 0.1782 0.2778 0.2907 54.4 -0.07 0.22 

* Incomplete sequence 
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c) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Glyptonotus cf. 

antarcticus. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.2815 0.1748 0.1556 0.3881 67.0 -0.16 -0.06 
atp8(+) 0.3774 0.1321 0.1447 0.3459 72.3 0.04 0.05 
cob(-)* 0.2342 0.1961 0.1842 0.3855 62.0 -0.24 -0.03 
cox1(+) 0.2411 0.1845 0.2092 0.3652 60.6 -0.20 0.06 
cox2(+) 0.2865 0.1988 0.1594 0.3553 64.2 -0.11 -0.11 
cox3(+) 0.2125 0.2020 0.2074 0.3779 59.0 -0.28 0.01 
nad1(-) 0.2570 0.1462 0.1892 0.4075 66.5 -0.23 0.13 
nad2(+) 0.2743 0.1552 0.1692 0.4014 67.6 -0.19 0.04 
nad3(+) 0.2684 0.1554 0.2006 0.3757 64.4 -0.17 0.13 
nad4(-) 0.2498 0.1782 0.1611 0.4109 66.1 -0.24 -0.05 
nad4L(-) 0.2639 0.1563 0.1632 0.4167 68.1 -0.22 0.02 
nad5(+) 0.2697 0.1383 0.2199 0.3721 64.2 -0.16 0.23 
nad6(+) 0.2894 0.1178 0.1856 0.4072 69.7 -0.17 0.22 
prot. cod. total* 0.2697 0.1643 0.1807 0.3853 65.5 -0.18 0.05 
rrnL(-) 0.3770 0.1366 0.1366 0.3498 72.7 0.04 0.00 
rrnS(+)* 0.3356 0.1919 0.1866 0.2859 62.2 0.08 -0.01 
rRNA total* 0.3563 0.1643 0.1616 0.3179 67.4 0.06 -0.01 
total* 0.3160 0.1665 0.1797 0.3378 65.4 -0.03 0.04 

* Incomplete sequence 

 
 
 
 
d) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Armadillidium 

vulgare. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.3139 0.1196 0.1734 0.3931 70.7 -0.11 0.18 
atp8(+) 0.3269 0.0897 0.1218 0.4615 78.8 -0.17 0.15 
cob(-)* 0.3060 0.1694 0.1366 0.3880 69.4 -0.12 -0.11 
cox1(+) 0.2653 0.1525 0.1897 0.3924 65.8 -0.19 0.11 
cox2(+) 0.3083 0.1386 0.1711 0.3820 69.0 -0.11 0.10 
cox3(+) 0.2525 0.1654 0.1793 0.4028 65.5 -0.23 0.04 
nad1(-) 0.4140 0.1495 0.1398 0.2968 71.1 0.16 -0.03 
nad2(+) 0.3094 0.0898 0.1776 0.4232 73.3 -0.16 0.33 
nad3(+) 0.2712 0.0960 0.2090 0.4237 69.5 -0.22 0.37 
nad4(-) 0.3119 0.1593 0.1091 0.4196 73.2 -0.15 -0.19 
nad4L(-) 0.2867 0.1219 0.1039 0.4875 77.4 -0.26 -0.08 
nad5(+) 0.3149 0.0798 0.1851 0.4202 73.5 -0.14 0.40 
nad6(+) 0.3030 0.0606 0.1939 0.4424 74.5 -0.19 0.52 
prot. cod. total* 0.3065 0.1225 0.1608 0.4102 71.7 -0.14 0.14 
rrnL(-) 0.3883 0.1112 0.1179 0.3826 77.1 0.01 0.03 
rrnS(+)* 0.3535 0.1380 0.1901 0.3184 67.2 0.05 0.16 
rRNA total* 0.3709 0.1246 0.1540 0.3505 72.1 0.03 0.09 
total* 0.3389 0.1182 0.1683 0.3747 71.4 -0.05 0.17 

* Incomplete sequence 
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e) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Asellus aquaticus. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.2855 0.1928 0.1390 0.3827 66.8 -0.15 -0.16 
atp8(+) 0.2642 0.3019 0.1321 0.3019 56.6 -0.07 -0.39 
cob(-)* 0.2186 0.2079 0.2366 0.3369 55.6 -0.21 0.06 
cox1(+) 0.2521 0.2385 0.1761 0.3333 58.5 -0.14 -0.15 
cox2(+) 0.2832 0.2330 0.1593 0.3245 60.8 -0.07 -0.19 
cox3(+) 0.2506 0.2188 0.1768 0.3537 60.4 -0.17 -0.11 
nad1(-) 0.2350 0.1257 0.2120 0.4273 66.2 -0.29 0.26 
nad2(+) 0.2894 0.1963 0.1728 0.3415 63.1 -0.08 -0.06 
nad3(+) 0.2712 0.2090 0.1582 0.3616 63.3 -0.14 -0.14 
nad4(-) 0.2344 0.1665 0.2238 0.3753 61.0 -0.23 0.15 
nad4L(-) 0.2475 0.1551 0.2145 0.3828 63.0 -0.21 0.16 
nad5(+) 0.2248 0.2307 0.2212 0.3233 54.8 -0.18 -0.02 
nad6(+) 0.2729 0.2208 0.1479 0.3583 63.1 -0.14 -0.20 
prot. cod. total* 0.2561 0.2075 0.1823 0.3541 61.0 -0.16 -0.06 
rrnL(-) 0.3322 0.1476 0.1931 0.3270 65.9 0.01 0.13 
rrnS(+)* 0.3917 0.1721 0.1335 0.3027 69.4 0.13 -0.13 
rRNA total* 0.3620 0.1599 0.1633 0.3149 67.7 0.07 0.00 
total* 0.3105 0.2132 0.1669 0.3094 62.0 0.00 -0.12 

* Incomplete sequence 

 
 
 
 
f) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Janira maculosa. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) - - - - - - - 
atp8(+) - - - - - - - 
cob(-)* 0.2719 0.1390 0.1964 0.3927 66.5 -0.18 0.17 
cox1(+) 0.2771 0.1617 0.1695 0.3918 66.9 -0.17 0.02 
cox2(+) 0.3155 0.1637 0.1518 0.3690 68.5 -0.08 -0.04 
cox3(+) 0.2704 0.1535 0.1698 0.4063 67.7 -0.20 0.05 
nad1(-) - - - - - - - 
nad2(+) 0.3000 0.1365 0.1229 0.4406 74.1 -0.19 -0.05 
nad3(+) 0.2816 0.1178 0.1638 0.4368 71.8 -0.22 0.16 
nad4(-) 0.2939 0.1338 0.1516 0.4207 71.5 -0.18 0.06 
nad4L(-) 0.3333 0.0909 0.1582 0.4175 75.1 -0.11 0.27 
nad5(+) - - - - - - - 
nad6(+) 0.3089 0.1159 0.1199 0.4553 76.4 -0.19 0.02 
prot. cod. total* 0.2947 0.1348 0.1560 0.4145 70.9 -0.17 0.07 
rrnL(-) 0.3869 0.1090 0.1299 0.3742 76.1 0.02 0.09 
rrnS(+)* 0.3498 0.1846 0.1882 0.2774 62.7 0.12 0.01 
rRNA total* 0.3684 0.1468 0.1591 0.3258 69.4 0.07 0.05 
total* 0.3419 0.1467 0.1411 0.3703 71.2 -0.04 -0.02 

* Incomplete sequence 
- gene is not available 
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g) Nucleotide frequencies, AT content, AT- and GC-skew for mitochondrial genes of Idotea balthica. 
Gene(strand) Nucleotide frequency %AT AT skew GC skew 
 A C G T    

atp6(+) 0.2365 0.1916 0.1961 0.3757 61.2 -0.23 0.01 
atp8(+) 0.2692 0.1731 0.2115 0.3462 61.5 -0.13 0.10 
cob(-)* 0.2463 0.2562 0.1665 0.3310 57.7 -0.15 -0.21 
cox1(+) 0.2280 0.1816 0.2319 0.3586 58.7 -0.22 0.12 
cox2(+) 0.2328 0.1728 0.2430 0.3514 58.4 -0.20 0.17 
cox3(+) 0.2168 0.2092 0.2219 0.3520 56.9 -0.24 0.03 
nad1(-) 0.2296 0.2370 0.1979 0.3354 56.5 -0.19 -0.09 
nad2(+) 0.2413 0.1253 0.2322 0.4012 64.3 -0.25 0.30 
nad3(+) 0.2308 0.1481 0.2877 0.3333 56.4 -0.18 0.32 
nad4(-) 0.2455 0.2493 0.1507 0.3545 60.0 -0.18 -0.25 
nad4L(-) 0.2823 0.2211 0.1463 0.3503 63.3 -0.11 -0.20 
nad5(+) 0.2429 0.1437 0.2375 0.3758 61.9 -0.21 0.25 
nad6(+) 0.2742 0.1149 0.1875 0.4234 69.8 -0.21 0.24 
prot. cod. total* 0.2443 0.1865 0.2085 0.3607 60.5 -0.19 0.06 
rrnL(-) 0.3347 0.1900 0.1546 0.3207 65.5 0.02 -0.10 
rrnS(+)* 0.2885 0.1893 0.2337 0.2885 57.7 0.00 0.10 
rRNA total* 0.3116 0.1897 0.1942 0.3046 61.6 0.01 0.00 
total* 0.2819 0.1633 0.2267 0.3281 61.0 -0.08 0.16 

* Incomplete sequence 
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Supplementary file 4.7 

 
tRNA availability and secondary structure modification. 
tRNA 
 

gene 
 

Eophreatoicus 
sp. 14 

Janira 
maculosa 

Asellus 
aquaticus 

Ligia 
oceanica 

Armadillidium 
vulgare 

Glyptonotus 
cf. 

antarcticus 

Idotea 
balthica 

Sphaeroma 
serratum 

Eurydice 
pulchra 

tRNA-Ala trnA ● ● ● ● ? ● ● ● ● 
tRNA-Arg trnR ● ? ● ? ? ● ● ? ? 
tRNA-Asn trnN ● ? ● ● ? ● ? ● ● 

tRNA-Asp trnD ● ● ● ● V ● R ● ● 
tRNA-Cys trnC L L L L L L L ? R 
tRNA-Gln trnQ ● ● ● ● R ● ● ● ● 
tRNA-Glu trnE ● ? ? ● ? ? ? ? ? 
tRNA-Gly trnG ● ● ● ● ● ● ● ● ● 

tRNA-His trnH ● ● ● ● A ● ● ● ● 
tRNA-Ile trnI L ? ? R ? ? ? ? ? 
tRNA-
Leu(CUN) 

trnL1 ● ● ● ● ? ● ● ? ? 

tRNA-
Leu(UUR) 

trnL2 ● ● ● ● ? ● ● ● ● 

tRNA-Lys trnK ● ? ● ● ? ● ● ● ● 

tRNA-Met trnM ● ● ● ● ● ● ● ● ● 
tRNA-Phe trnF ● ? ● ● R ● ● ● ? 
tRNA-Pro trnP ● R ● ● ● ● ● ● ● 
tRNA-
Ser(AGY) 

trnS1 L ? ? L ? ? ? ? ? 

tRNA-
Ser(UCN) 

trnS2 ● ● ● ● ● ● R ● L 

tRNA-Thr trnT ● ● ● ● ● ● ● ● ● 
tRNA-Trp trnW ● ? ? ● R ? ? ? ● 

tRNA-Tyr trnY ● ● ● ● ● ● ● ● ● 
tRNA-Val trnV ● R ● ● ● ● ● ● ● 

●: usual clover-leaf; A: poor acceptor arm pairings; L: left arm (DHU-arm) missing; R: right arm (TΨC-arm) missing; 
V: variable loop elongation; ?: missing data 
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Supplementary file 5.1 

 
Amplification and sequencing primers used to obtain the complete mt genome of Caprella mutica. 
Primer Orientation Sequence (5’-3’) Reference 

Isop-16sf  Reverse AARAAWGATTGCGACCTCGATGTTGAATTG Kilpert & Podsiadlowski 2009 
Isop-16sr Forward TATGCTACCTTAGCACAGTYAGRATACTGCGGC Kilpert & Podsiadlowski 2009 
Pera-Co1r Reverse AADGCTATATCAGGAGCCCCAATTATTAAAGG Kilpert & Podsiadlowski 2009 
Crust-12sf Reverse CAGCAKYCGCGGTTAKAC Podsiadlowski & Bartolomaeus 2005 
Crust-12sr Forward ACACCTACTWTGTTACGACTTATCTC Podsiadlowski & Bartolomaeus 2005 
Crust-16sf Reverse TGACYGTGCDAAGGTAGC  Podsiadlowski & Bartolomaeus 2005 
Crust-16sr Forward CCGGTCTGAACTCAYATC Podsiadlowski & Bartolomaeus 2005 
Crust-16sf2 Reverse GCGACCTCGATGTTGGATTAA Kilpert & Podsiadlowski 2009 
Crust-16sr2 Forward CCGGTCTGAACTCAYGTA Kilpert & Podsiadlowski 2009 
Crust-cox1f Forward  ACTAATCACAARGAYATTGG Podsiadlowski & Bartolomaeus 2005 
Crust-cox1r Reverse TAGTCTGAGTANCGTCGWGG Podsiadlowski & Bartolomaeus 2005 
Crust-cox3f Forward ATAATTCAATGATGACGAGA Podsiadlowski & Bartolomaeus 2005 
Crust-cox3r Reverse CCAATAATWACATGWAGACC Podsiadlowski & Bartolomaeus 2005 
Crust-CytB-f1 Forward  CGAGATGTAAAYTAYGGSTGAC Kilpert & Podsiadlowski 2009 
Crust-CytB-f2 Forward CGAGATGTAAAYTAYGGWTGAC Kilpert & Podsiadlowski 2009 
Crust-CytB-r Reverse CTACGGGAGTGCACCRATYC Kilpert & Podsiadlowski 2009 
Crust-N4f Reverse TTGAGGTTAYCAGCCYG Podsiadlowski & Bartolomaeus 2005 
Crust-N4r Forward ATATGAGCYACAGAAGARTAAGC Podsiadlowski & Bartolomaeus 2005 
Crust-N5f Forward AGAATTCTACTAGGDTGRGATGG Podsiadlowski & Bartolomaeus 2005 
Crust-N5r Reverse AAAGAGCCTTAAATAAAGCATG Podsiadlowski & Bartolomaeus 2005 
16S2 Reverse GCGACCTCGATGTTGGATTAA Roehrdanz et al. 2002 
N4 Forward GGAGCTTCAACATGAGCTTT Roehrdanz et al. 2002 
N4(87) Reverse TCAGCTAATATAGCAGCTCC Roehrdanz et al. 2002 
L39-Met (S1-S3) Forward AAGCTHVTGGGCTCATACCCC Yamauchi et al. 2004 
L329-ND2 (S5) Forward GGWGCHGCHCCNTTWCATTTTTG Yamauchi et al. 2004 
H718-ND2 (S1) Reverse AABCCHGDGAAMGGDGGHAVHCCHCC Yamauchi et al. 2004 
H1368-CO1 (S2) Reverse TATAGAGTTCCAATRTCYTTGTGATT Yamauchi et al. 2004 
L1564-CO1 (S10) Forward ATGGTWATACCGATTWTRATTGG Yamauchi et al. 2004 
H1602-CO1 (S3) Reverse GGGAADGCTATGTCWGGGGC Yamauchi et al. 2004 
L2020S-CO1 (S11) Forward GACCCTGCGGGWGGRGGRGATCC Yamauchi et al. 2004 
H2619-CO1 (S10,S11) Reverse GGTATWCCWGCKAGWCCTAAGAAATGTTG Yamauchi et al. 2004 
H3514-CO2 (S15) Reverse CCACAAATTTCKGAACATTGWCCATAAAA Yamauchi et al. 2004 
L4268-A6 (S16) Forward GGDTGGDTTAAWMAHACWCAACA Yamauchi et al. 2004 
H4375-A6 (S15) Reverse GCDATCATGTTDGCDGMWAGTCG Yamauchi et al. 2004 
H4806-CO3 (S16) Reverse GADGHAATGAAHAGGATTATDCCTCA Yamauchi et al. 2004 
L5170-CO3 (S20) Forward TTGTDGCNACHGGMTTTCATGG Yamauchi et al. 2004 
L5928-Asn (S25) Forward GAAGCTAATWGGTAGCRTWTCATTGTTAATG Yamauchi et al. 2004 
H6110-Phe (S20) Reverse AAGAGTATAGCACTGAAGATG Yamauchi et al. 2004 
H6721-ND5 (S25) Reverse TTTTWTTCWAAGGATTTAATT Yamauchi et al. 2004 
L13337-12S (S48) Reverse YCTACTWTGYTACGACTTATCTC Yamauchi et al. 2004 
H13845-12S (S48) Forward GTGCCAGCAGCTGCGGTTA Yamauchi et al. 2004 
Cm-464 Reverse ACGATAAAATAAGTACAGACGACATAGC This study 
Cm-839 Reverse AAATAATAAAGTAAACAACTCAAG This study 
Cm-943 Forward AATAATGAATATACTGGCAATCGC This study 
Cm-1108 Forward ATCCTTGATAGATTCCTCG This study 
Cm-1682 Reverse AAAGTTAAAGAGGGAGGTAGTAGCC This study 
Cm-1878 Forward ATACTTAGACCGAATGCCTTTG This study 
Cm-2309 Reverse ATTTTGATTCCTGTGGG This study 
Cm-2390 Forward TATTTACTTTAGGTGGTCTCACTGG This study 
Cm-2861 Forward GCTACGACGACATTCCTTTAC    This study 
Cm-3943 Reverse GAGGGGTCAAAAATTCTAAATAAG This study 
Cm-4175 Forward TACTTTTACAGCCACATCGCAC   This study 
Cm-4966 Reverse GATTTCAAATGGGTTAAAAGAC This study 
Cm-5051 Forward GAAACAAAAACAGCCCTAATCG   This study 
Cm-5981 Forward TCGGATTGACAAATGCTC This study 
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Primer Orientation Sequence (5’-3’) Reference 

Cm-6441 Forward TGCCCACTATTTTTCCGAC This study 
Cm-7613 Reverse GGATTAACCACCCTTTGTCTG    This study 
Cm-8002 Reverse CAGATTGTTGGAAGACCCG This study 
Cm-8151 Forward ACCCTTCTGTCACTCCTCACC    This study 
Cm-10080 Reverse AGTACAGCCTGCCCAGTGC This study 
Cm-10342 Forward CTAAATCGAAAGACTCTCACCG   This study 
Cm-10769 Reverse GAGGTGAGGATATACAGAAGGAG This study 
Cm-10871 Forward TAACAAACAAACTCCTCTGAATAG This study 
Cm-11832 Forward ACTTGTTTACAATCCTTAGACTCCC This study 
Cm-11863 Reverse AGAATAAGGGAGTCTAAGGATTGTAAAC This study 
Cm-12019 Forward CTTTGTTAGAGGCGTCCCG This study 
Cm-14034 Forward ATAAAAACAGGTAAAACACTACACTCG     This study 
Cm-14669 Forward AATCAGAAAGAAGGTTCCCC    This study 
Cm-15233 Reverse ACGACCCATCTACTTACTCTTGTTG This study 
Cm-15378 Reverse TAACAAAAGAGCTGGGACC     This study 
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Supplementary file 5.2 

 
Method of tRNA detection used for mt genome of Caprella mutica. All 22 tRNA genes were identified by 
software or by manual search of non-coding parts of the mt genome. Standard search with tRNAscan-SE 
performed with ‘Invertebrate Mito’ genetic code and ‘Mito/Chloroplast’ model. When no tRNAs were 
detected, the less strict ‘Nematode Mito’ model was used instead. ARWEN was used with ‘Invertebrate 
mitochondrial genetic code’ option. All results were manually checked afterwards.  

* Detection with ‘Nematode Mito’ setting only 

 

 

 

 

 

 

 

 

 

tRNA tRNAscan-SE 1.21 (software) ARWEN 1.2.2.c (software) manual 

tRNA-Ala detected detected accepted 
tRNA-Asn detected detected accepted 
tRNA-Asp detected detected accepted 
tRNA-Arg detected detected accepted 
tRNA-Cys detected detected accepted 
tRNA-Gln detected detected accepted 
tRNA-Glu detected detected accepted 
tRNA-Gly detected detected accepted 
tRNA-His detected detected accepted 
tRNA-Ile detected detected accepted 
tRNA-Leu(CUN) detected detected accepted 
tRNA-Leu(UUR) detected detected accepted 
tRNA-Lys detected detected accepted 
tRNA-Met detected detected accepted 
tRNA-Phe detected detected accepted 
tRNA-Pro detected* detected accepted 
tRNA-Ser(AGY) not detected not detected detected 
tRNA-Ser(UCN) not detected not detected detected 
tRNA-Thr detected detected accepted 
tRNA-Trp detected detected accepted 
tRNA-Tyr detected detected accepted 
tRNA-Val detected detected accepted 
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Supplementary file 5.3 

 
Comparison of the two control regions of the Caprella mutica mt genome. Complementary sections 
within the control region are colored (red and blue).  
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