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Abstract 

The sponges (phylum Porifera) are defined by the presence of an aquiferous system 

in which choanoflagellate cells create a current and filter water flowing through the 

sponge body. The carnivorous sponges represent the only known exception to filter 

feeding within the phylum, and instead are able to capture prey including small 

crustaceans and larval plankton, using a combination of an adhesive surface and 

numerous filaments suitable for entangling prey. Mobile cells are able to slowly 

cover prey entangled on the surface of the sponge, and prey items are encapsulated 

and digested in a process that can last several days. The aquiferous system is either 

strongly reduced or entirely absent in the carnivorous sponges, which typically have 

an erect pennate, branching or stipitate pedunculate morphology. Carnivory is usually 

considered an adaptation to deep-sea conditions, where filter feeding is less efficient 

due to a lower density of suspended particulate matter. An exceptional evolutionary 

innovation within the phylum, sponge carnivory was not properly known to science 

until 1995. Interest in carnivorous sponges have been high in recent years, and over 

150 species are currently considered valid, up from some 90 known species at the 

turn of the millennium. 

Carnivorous sponges are found within the demosponge order Poecilosclerida, defined 

by the presence of skeletal chela microsclere spicules. Almost all carnivorous 

sponges have traditionally been assigned to Cladorhizidae, with a few species 

assigned to Guitarridae (Euchelipluma) and Esperiopsidae (five Esperiopsis spp.). As 

spicule morphology is the main diagnostic character in sponge systematics, the large 

diversity of chela forms found within the genera assigned to Cladorhizidae implies 

the possibility that the family is polyphyletic, and that carnivory has evolved in 

several independent poecilosclerid lineages. On the other hand, recent molecular 

studies have shown that spicule morphology is often more plastic and intricate than 

previously believed. Thus the question of whether carnivorous sponges represent a 

monophyletic group is currently unanswered. 
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Recent studies have greatly expanded the number and known distribution of 

carnivorous sponges, which are now known to be present at a variety of depths 

worldwide. Still, as deep-sea sponges, records are comparably sparse. The greatest 

number of records is from the North Atlantic. However, records are scattered, and 

species descriptions frequently lacking in detail. In other areas of the Atlantic and 

worldwide, species are typically known only from a few or even one collection event. 

As they have an affinity to the deep sea, carnivorous sponges are often reported in the 

vicinity of vent and seep sites. In one particular instance, chemoautotrophic 

symbiosis has been reported between the carnivorous sponge Cladorhiza 

methanophila and methanotrophic prokaryotes from the Barbados Accretionary 

Prism. The extent of this type of symbiosis within the group is unknown, however, 

and though general sponge microbiome data is increasingly published as NGS studies 

have become more prevalent, almost no such data is currently published for 

carnivorous sponges. 

Answering a number of current questions connected to carnivorous sponges, the aims 

of this thesis include (1) elucidating the systematic relationships of the carnivorous 

sponges using molecular data, (2) presenting a taxonomic inventory of carnivorous 

sponges focusing on Atlantic species, and (3) conducting a comparative study of the 

microbial community of several cladorhizid species including C. methanophila using 

mainly 16S rRNA Ion Torrent data. 

The work presented here provides a comprehensive phylogenetic analysis containing 

representatives of almost all carnivorous sponge groups, including species not 

traditionally included in Cladorhizidae, as well as an outgroup sampling of non-

carnivorous relatives. The phylogenetic study is able to show that carnivorous 

sponges represent a monophyletic group, strengthening the hypothesis that carnivory 

only has evolved once within the sponges, and assigning all carnivorous sponges to 

Cladorhizidae. Furthermore, this work shows the position of Cladorhizidae relative to 

other poecilosclerid families, and is able to reconstruct cladorhizid relationships at the 

genus and subgenus level in most cases. Using an integrated taxonomical approach, 
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molecular data and morphological characters are combined to create an updated 

classification for all known carnivorous sponges. 

The thesis adds to, and includes an overview of the known cladorhizid species 

diversity in different regions of the Atlantic Ocean. It offers a comprehensive 

overview of the cladorhizid fauna of the boreal North Atlantic and Arctic, including 

descriptions of 25 species and an overview of their known distributions, and explores 

the cladorhizid fauna of the abyssal Atlantic and Caribbean and adjacent areas 

respectively. A summary of known carnivorous sponges for the Atlantic Ocean in 

general, with a discussion on the relationships of the regional Atlantic faunas, is also 

presented, as well as observations on the depth preference of different species. 

Finally, this thesis also presents a comparative examination of 16S rRNA microbiome 

and isotope data from several carnivorous sponge species including Cladorhiza 

methanophila. Results show that cladorhizid sponges have rich microbial 

communities, which partially overlap between species. No further evidence of major 

chemoautotrophic symbiosis was found in species other than C. methanophila, where 

methanotrophic bacteria were abundant, suggesting that this species is likely an 

exception within carnivorous sponges in general. 

There is currently a high degree of interest in carnivorous sponges. As more 

morphological, molecular and biogeographic data is published, refinements to both 

the systematics, taxonomical diversity, function and ecology of this group are 

expected, further building on the results presented in this thesis and giving a more 

complete picture of the known diversity, evolutionary history and biogeography of 

the Cladorhizidae. 
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1 Introduction 

1.1 Phylum Porifera: the sponges 

The sponges, or Porifera, is one of the major animal phyla and are represented 

worldwide with over 8,700 described species. The vast majority of sponges are 

marine, with only some 200 freshwater species (van Soest et al., 2016). Sponges are 

present in almost all marine benthic habitats around the world, are important 

organisms in many aquatic systems, can act as ecosystem engineers in habitats such 

as sponge grounds, and include numerous examples of keystone species in a variety 

of habitats ranging from shallow tropical seas to polar areas and the deep sea 

(Maldonado et al., 2016; van Soest et al., 2012). Morphologically, they range from 

massive species such as the giant barrel sponge Xestospongia muta to branching or 

encrusting forms. Four extant classes, representing the major divisions within the 

phylum, are currently recognized: Demospongiae, silicate sponges containing the vast 

majority of species; Calcarea, containing sponges with a calcareous skeleton; 

Hexactinellida, the glass sponges; and more recently, Homoscleromorpha, which was 

raised to class rank from Demospongiae chiefly based on molecular evidence 

(Gazave et al., 2012; Hooper & van Soest, 2002a). 

While the sponges comprise a diverse phylum, nearly all sponges share some 

defining characteristics. The most important functional character that more than any 

other defines the sponges is the presence of an aquiferous system: a system of pores 

and canals allowing water to pass through the sponge (Fig. 1). Functionally, this 

arrangement allows water to pass through any number of inhalant pores into channels 

named ostia set with chambers lined with flagellated choanocytes, which beat their 

flagella creating a current through the sponge. By way of mucous collar structures, 

they are also able to trap food particles from the water, which is expelled through one 

or several larger openings called oscula (Bergquist, 1978). 

Sponges have no true tissues or body symmetry, and lack structures found in the vast 

majority of animals such as a digestive, nervous or circulatory system. They have a 
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simple organization consisting of a single cell outer surface layer of pinacocytes 

called the pinacoderm, while the interior surface is covered by a combination of 

choanocytes or porocytes. Between these two layers, the bulk of the sponge consists 

of a gelatinous extracellular matrix called the mesohyl. A combination of skeletal 

spicules (silicate or calcareous) and collagen fibers creates the structural skeleton of 

the sponge. Specialized cells move through the mesohyl, including totipotent 

amoeba-like archaeocytes that are able to change into any of a set of more specialized 

cells involved in secreting spicules, collagen or other structural elements, or in other 

functions such as reproduction or defense. The size, types and morphology of the 

skeletal spicules, in many groups divided into larger megascleres and smaller 

microscleres are, in addition to the organization of the skeleton, possibly the single 

most important type of morphological character for sponge systematics and taxonomy 

(Bergquist, 1978; Hooper & van Soest, 2002a). 

 
Figure 1. A diagram showing the structure of a filter-feeding sponge with a leuconoid 
aquiferous system. A) the osculum, an exhalant structure, B) the mesohyl, C) the pinacoderm 
cell layer, D) a chamber lined with choanocytes, E) an inhalant pore. 

Sponges can reproduce either asexually through fragmentation or budding, or 

sexually, and sponges can be either gonochoristic or hermaphroditic. Choanocytes 
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create spermatic cysts within the mesohyl, producing sperm, while eggs are usually 

produced from archaeocytes. Sperm are expelled through the aquiferous system and 

when in contact with a sponge of the same species, they are absorbed through capture 

by choanocytes of the new sponge. Eggs are either released in oviparous species, or  

kept after fertilization in viviparous species, with eggs or larvae being released into 

the water using the aquiferous system (Bergquist, 1978; Maldonado & Riesgo, 2008). 

Most sponges also contain a large number of microorganisms, with the extent, 

importance and specificity of the sponge microbial component variable among 

different sponge groups. The microorganism component of a sponge is usually 

referred to as the sponge microbiome, and often consist of dense and diverse 

communities of bacteria, archaea, as well as eukaryote single-cell organisms in 

concentrations several orders of magnitude higher than in surrounding sea water 

(Hentschel et al., 2012; Taylor et al., 2007).  

Symbiotic microorganisms are found in the mesohyl, and the host sponge is able to 

differentiate between symbiont organisms and food particles, which are also digested 

here. In many cases, intracellular symbionts are also present (Hentschel et al., 2012). 

The composition of the sponge microbiome has been compared to that of the gut 

microbiome of higher animals, filling a vital role in the metabolism and general 

function of the sponge (Hentschel et al., 2002; Hentschel et al., 2012; Hoffmann et 

al., 2009). Photoautotrophic symbionts are found in some sponges, where they can 

constitute a large percentage of total sponge biomass. Investigating the diversity of 

the microbiomes of different sponges is a work that has been greatly facilitated by 

recent advances in next-generation sequencing (NGS) platforms, with several recent 

studies greatly expanding current knowledge (e.g. Kennedy et al., 2014; Thomas et 

al., 2016). 

1.1.1 Systematics and evolution 

Sponges branch off very early from the rest of the animals and have traditionally been 

considered the most basal clade within Metazoa (e.g. Bergquist, 1978). Evidence of 

early sponges is mainly in the form of fossils, traces of sponge-specific biomarkers or 
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through the use of molecular clock models. The fossil record clearly shows sponges 

as present during the Cambrian (535 Mya), but much of the Precambrian fossil record 

is problematic (see Antcliffe et al., 2014 for a review). However, a recent study has 

published a more well-preserved fossil specimen some 60 My into the Precambrian 

(Yin et al., 2015). Biomarker compounds represent an alternative approach but have 

its own problems (dos Reis et al., 2015).  Still, though the exact date is uncertain, 

most authors place the origin of the sponges well into the Precambrian, with most 

molecular clock models supporting this hypothesis (dos Reis et al., 2015). 

In the last 15-20 years molecular analyses have challenged two assumptions 

regarding sponge origin: (1) that phylum Porifera, i.e. the sponges, is monophyletic, 

and (2) that it represents the most basal branching event within Metazoa. Several 

studies (e.g. Borchiellini et al., 2001; Sperling et al., 2007) have recovered 

phylogenies where Porifera is paraphyletic, with combinations of the sponge classes 

Demospongiae, Homoscleromorpha, Calcarea and Hexactinellida as separate 

branching events, a finding which if true strongly suggest a sponge-like ancestor for 

all extant metazoans. However, other studies have recovered the sponges as a 

monophyletic clade supporting the traditional interpretation (e.g. Philippe et al., 

2009; Wörheide et al., 2012). Secondarily, based on several molecular studies, 

phylum Ctenophora (comb jellies) has been suggested as the most basal branching 

event within Metazoa, predating the sponges (Dunn et al., 2008; Halanych, 2015; 

Hejnol et al., 2009; Whelan et al., 2015), though others disagree (Nosenko et al., 

2013; Pisani et al., 2015). If true, this would have major consequences for the 

interpretation of the evolution (and reduction) of early metazoan traits. Both these 

cases illustrate the difficulty of basal metazoan phylogeny, and neither question is 

settled; though in the case of sponge monophyly the weight of the evidence currently 

seems to favor the conservative interpretation (i.e. the sponges represent a 

monophyletic clade) (Fig. 2). 
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Figure 2. Hypotheses regarding early metazoan radiation. A) The traditional view, B) a 
variant of a sponge paraphyly hypothesis, C) Ctenophora as the earliest branching event 
hypothesis. 

While the precise arrangement of early metazoan radiation is a contentious issue, it is 

clear that ancestral sponges still are part of the very early radiation within the 

Metazoa, which make extant sponges invaluable in comparative evolutionary and 

developmental (Evo-Devo) investigations and studies of gene expression (e.g. 

Adamska et al., 2011; Dunn et al., 2015; Fortunato et al., 2012; Lanna, 2015). 

Comparative genomic analyses of basal metazoans such as the sponges and more 

derived phyla allow for the reconstruction of early animal evolution, the appearance 

of structural traits at the genomic level, and the rise of the metazoan “genetic toolkit”. 

Sponge systematics has a well-earned reputation for being difficult, with ambiguous 

and often obscure diagnostic characters owing to the frequently amorphous and 

plastic morphology of different sponge groups. This was greatly facilitated by the 

2002 publication of the two-volume reference work Systema Porifera (Hooper & van 

Soest, 2002a), whose numerous editors compiled a complete systematics of the 

phylum as understood at that time. The work undertaken in this publication is carried 

on through the World Porifera Database (van Soest et al., 2016) which aims to 

provide a readily available continually updated record of sponge systematics in the 

light of an ever increasing number of revisions based on the addition of molecular 

data to that of traditional, morphological characters. 

Demospongiae Sollas, 1885, currently containing over 7,000 species, is by far the 

largest of the four extant sponge classes with over 80% of described species, 
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dwarfing Calcarea Bowerbank, 1862 (~5%); Hexactinellida Schmidt, 1870 (~10%) 

and Homoscleromorpha Bergquist, 1978 (Maldonado & Riesgo, 2008). The 

systematics of this class, as previously codified by the Systema Porifera (Hooper & 

van Soest, 2002a) was recently subject to an extensive revision by Morrow and 

Cárdenas (2015) based on accumulated molecular data (e.g. Cárdenas et al., 2012; 

Morrow et al., 2012; Morrow et al., 2013; Redmond et al., 2013), and divided into 

three subclasses containing 22 orders. The main part of the demosponges is found 

within subclass Heteroscleromorpha Cárdenas, Pérez & Boury-Esnault, 2012, which 

in turn contains major orders such as Haplosclerida Topsent, 1928; Tetractinellida 

Marshall, 1876; Tethyida Morrow & Cárdenas, 2015 and Poecilosclerida Topsent, 

1928. 

1.2 Carnivorous sponges 

The aquiferous system forms the central basis for sponge function and nutrient 

acquisition in all sponges with only one known exception: the carnivorous sponges. 

Found within the Demospongiae order Poecilosclerida, this group of sponges has 

evolved the ability to entangle and capture small prey items such as crustaceans 

rather than relying on suspended particulate matter for nutrition (e.g. Vacelet & 

Duport, 2004). The aquiferous system is partially or completely reduced within the 

carnivorous sponges, and most species are composed of a solid spicule skeleton 

surrounded by looser surface tissue. Carnivorous sponges generally have an erect, 

branching, pedunculate or pennate morphology, typically with numerous thin 

filamentous processes facilitating prey capture. Prey items become entangled on the 

adhesive surface and filaments of the sponge, and the simple, plastic nature of the 

sponge organization makes it able to slowly draw the prey closer and envelop it using 

cells that migrate to the area of contact, creating a temporary digestive cavity. The 

sponges have been shown to not be particularly selective, and can feed on a variety of 

planktonic organisms upon contact (Vacelet & Duport, 2004). Among the largest and 

most notable reported prey, small crustaceans such as copepods and amphipods are 

common, as their numerous appendages allow easier entanglement by the sponge, but 
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smaller planktonic organisms such as nauplius larvae have also been reported (e.g. 

Chu & Reiswig, 2014) (Fig. 3). 

 
Figure 3. Examples of diversity within carnivorous sponges. From top left: Cladorhiza 
corticocancellata Lundbeck, 1905; Lycopodina lycopodium (Levinsen, 1887); Abyssocladia 
dominalba (Vacelet, 2006); partially digested copepods; C. gelida Lundbeck, 1905; 
Asbestopluma (Asbestopluma) furcata Lundbeck, 1905; Chondrocladia (Chondrocladia) 
grandis (Verrill, 1879) (x2). 

An early suspicion of carnivory was described by G.O. Sars who in 1872, when 

describing the first known cladorhizid, Cladorhiza abyssicola, wrote: “By means of 

these innumerable microscopic ‘claws’ which project everywhere from the surface of 

the sponge, all the more minute animals and the light floating particles which come 

into immediate contact with the sponge, become attached to it, and thus probably 

fulfil an essential condition for its nourishment” (Sars, 1872). Ironically, as general 

knowledge of the filter-feeding mode of nutrition in other sponges increased with 

subsequent investigations, later authors discounted the lack of pores or other signs of 

an aquiferous system (e.g. Lundbeck, 1905; Ridley & Dendy, 1887). Thus, evidence 

of carnivory in sponges was not firmly established until 1995, when Vacelet and 

Boury-Esnault published a detailed description of the process of prey capture by 
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Asbestopluma (Asbestopluma) hypogea (Vacelet & Boury-Esnault, 1996) from a 

submarine Mediterranean cave (Vacelet & Boury-Esnault, 1995). This initial 

publication established carnivory as a probable ubiquitous mode of nutrition within 

other cladorhizid genera (confirmed by e.g. Kübler & Barthel, 1999; Watling, 2007) 

as well as suspected carnivory within the (at the time) guitarrid genus Euchelipluma 

(Vacelet, 2007) and certain species of Esperiopsis (Ereskovsky & Willenz, 2007). 

The unusual feeding strategy of the carnivorous sponges make them comparatively 

charismatic animals compared to their filter-feeding relatives, and at times various 

cladorhizids have attracted some attention from the mainstream media including 

stories in among others the Sunday Courier (1996) “Killer sponges on the prowl”1, 

National Geographic (weird and wild section) (2014) “New killer sponges found in 

the deep sea“2, Wired (2014) “Absurd creature of the week: World’s most beautiful 

sponge dismantles its victims cell by cell”3, as well as more muted articles in among 

others the Washington Post (2014) “Biologists discover four new species of 

carnivorous sponge”4 and (surprisingly) the Daily Mail (2012) “Extraordinary harp-

shaped carnivorous sponge discovered living on the Pacific Ocean floor”5. 

The last two decades have also seen a large increase in scientific articles describing 

new cladorhizids (including, but not limited to Cristobo et al., 2015; Cristobo et al., 

2005; Downey & Janussen, 2015; Ereskovsky & Willenz, 2007; Hestetun et al., 

2016; Ise & Vacelet, 2010; Kelly & Vacelet, 2011; Lee et al., 2012; Lehnert et al., 

2005; Lopes et al., 2011; Lopes & Hajdu, 2014; Lundsten et al., 2014; Reiswig & 

Lee, 2007; Ríos et al., 2011; Vacelet, 2006; Vacelet, 2008; Vacelet et al., 2009; van 

                                              

1https://news.google.com/newspapers?nid=896&dat=19950126&id=y6RSAAAAIBAJ&sjid=wH0D
AAAAIBAJ&pg=6414,3544381&hl=en 
2http://voices.nationalgeographic.com/2014/04/18/sponges-animals-carnivores-science-weird-new-
species/ 
3http://www.wired.com/2014/06/absurd-creature-of-the-week-harp-sponge/ 
4https://www.washingtonpost.com/national/health-science/biologists-discover-four-new-species-of-
carnivorous-sponge/2014/04/28/be99c6a2-cbd3-11e3-a75e-463587891b57_story.html 
5http://www.dailymail.co.uk/sciencetech/article-2228640/Extraordinary-harp-shaped-carnivorous-
sponge-discovered-living-Pacific-Ocean-floor.html 
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Soest & Baker, 2011). While approximately 90 species were known at the end of the 

20th century (Vacelet, 2007), over 150 cladorhizids are currently considered valid in 

the World Porifera Database (van Soest et al., 2016). Much of this increase is due to 

more marine survey activity in previously little known areas around the world as well 

as a greater focus on the deep sea and the increased attention given to the group due 

to its unusual feeding mode. Doubtlessly, the number of new cladorhizid species will 

continue to grow.  
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1.2.1 Systematics and history 

Carnivorous sponges belong to Poecilosclerida (Porifera; Demospongiae; 

Heteroscleromorpha), a large order with 20 currently recognized families (van Soest 

et al., 2016). Originally defined as an order by Topsent (1928), its scope extended to 

25 families, 129 genera and 50 subgenera with several thousand species in 2002 when 

the Systema Porifera was published (Hooper & van Soest, 2002b). Consistent with 

the vital importance of skeletal spicules in sponge taxonomy and systematics, the 

main diagnostic character and a synapomorphy of Poecilosclerida is the presence of 

skeletal chela spicules, a type of microsclere (small type of skeletal spicule) derived 

from the more widespread sigma type spicule (Fig. 4). In Systema Porifera, a number 

of taxa lacking chelae were also assigned to the order based on the presence of other 

characters shared with members of Poecilosclerida following the interpretation that 

the lack of chelae represented basal forms or secondary loss (Hooper & van Soest, 

2002b). However, molecular data has shown that most of these groups do not form 

part of the Poecilosclerida (Erpenbeck et al., 2007; Redmond et al., 2013), and the 

order is now somewhat reduced in scope to a still significant “core” group of chela-

bearing taxa that has consistently been recovered as a monophyletic assemblage in 

molecular analyses (Morrow & Cárdenas, 2015). Megascleres (larger skeletal 

spicules making up the bulk of the structural skeleton of the sponge) are typically 

monactinal or diactinal, that is needle-like in shape, with one or both ends either 

sharpened into a point, rounded, or with a slight swelling. See Table 1 for an 

overview of spicule terminology used in this thesis6. 

                                              

6 Terminology varies slightly between authors and certain terms represent stages in a morphological 
continuity. Some notes here. 1) The term sigmancistra implies one or both of two distinct 
morphological modifications: a clearly flattened inner margin, and contortion; however the precise 
degree of both can vary between different species, see for instance Fig. 2M vs. 2O. The definition of 
what constitutes a sigmancistra can be difficult in some cases as borderline morphology is common, 
leading to some inconsistency in usage of the term. 2) Some chelae, especially in Abyssocladia and 
Asbestopluma, have a morphology that is on the border between palmate and arcuate. Here the 
definitions from Hajdu et al. (1994) are used; however, some chelae have been described as 
palmate/arcuate based on the ambiguity of their morphology in this thesis. 3) The terms style, 
mycalostyle, subtylostyle and tylostyle describe different stages in a continuum: the term style is here 
reserved for clearly non-fusiform monactinal megascleres; mycalostyles for fusiform styles; 



27 

 

 

Figure 4. Scanning electron microcopy images showing skeletal spicules of Poecilosclerida 
with a special emphasis on carnivorous sponges and close relatives. From top left, 
microscleres: A) Amphilectus fucorum (non-carnivorous), palmate chela; B) Mycale 
(Mycale) lingua (non-carnivorous), palmate anisochela; C) Lycopodina cupressiformis, 
palmate anisochela; D) Lycopodina infundibulum, arcuate anisochela, E) Asbestopluma 
(Asbestopluma) pennatula, palmate/arcuate anisochela and F) palmate anisochela; G) 
Abyssocladia dominalba, abyssochela; H) Chondrocladia (Chondrocladia) grandis, 
anchorate isochela; I) Cladorhiza abyssicola, anchorate anisochela; J) Cladorhiza mirabilis, 

                                                                                                                                            

subtylostyles for styles with faint, slightly offset tyles; and tylostyles for styles with clear, terminal 
tyles. Obviously there is some ambiguity in the morphology in many cases: A certain category of 
mycalostyle may feature slight tyles in the thinnest spicules, creating the category 
mycalostyle/subtylostyle, in other cases the distinction of subtylostyle and tylostyle is difficult to 
make. 4) Following Lopes et al. (2011) the usage of the term abyssochela is reserved for 
cleistochelae with a height to width ratio close to one, however, other authors commonly use the term 
for both cleistochelae and abyssochelae. 5) While the usage of ala/alae is commonly used for all 
chela appendages, following e.g. Vacelet (2007) the term is used here mostly to refer to lateral 
appendages partially fused to the shaft, while the term tooth/teeth is used for free/central appendages. 
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anchorate birotula; K) Euchelipluma n. sp., placochelae; L) Ch. (Meliiderma) rodgersi, 
trochirhabd; M) Ab. boletiphora, sigmancistra; N) Ab. hemiradiata, sigma; O) Ch. (C.) 
grandis, sigmancistra; P) Ch. (C.) verticillata, sigma; Q) L. cupressiformis, forceps spicule; 
R) Guitarra n. sp., (non-carnivorous) spiny palmate isochela. Megascleres: S) Ab. 
hemiradiata, mycalostyle, T) tylostyle; U) As. (A.) pennatula, subtylostyle; V) Ab. 
boletiphora, substrongyle; W) Cl. kenchingtonae, acanthoxea. 

Table 1. Glossary of spicule terminology used in this thesis. Descriptions and definitions are 
taken from the Thesaurus of Sponge Morphology (Boury-Esnault & Rützler, 1997); 
secondarily from Topsent (1909) (1), Hajdu et al. (1994) (2), Vacelet et al. (2009) (3), Lopes 
et al. (2011) (4) and Ríos et al. (2011) (5). 

Megascleres:  

Style Monaxon spicule with one end pointed, the other (head or base) blunt. 

Mycalostyle 
(2) 

Fig. 2S 

A style with a characteristic fusiform shape where the spicule increases 
slightly in width from both ends toward the middle, and with a faintly 
constricted neck. Note: Despite the assertion in Hajdu et al. (1994) that the 
term is a phylogenetic rather than descriptive, it is commonly used for the 
characteristic style shape in Cladorhizidae and related families. 

Subtylostyle 

Fig. 2U 

Tylostyle with one end pointed, the other with a slight swelling or knob; 
the swelling, more or less distinct, may be displaced along the shaft. 

Tylostyle 

Fig. 2T 

A style with a tyle (globular swelling) at the base. 

Oxea Monaxon (diactinal) spicule pointed at both ends. Different types are 
distinguished by shape and tip morphology. 

Strongyle 

Fig. 2V 

An isodiametric, diactinal megasclere with rounded ends. 

Acantho- 

Fig. 2W 

Prefix meaning spined, as in acanthostyle or acanthomicrorhabd. 

Microscleres  

Chela 

Fig. 2A-K, R 

A microsclere with a curved shaft and recurved alae (wing shapes or 
derivatives) at each end. Note: The frontal ala(e) or alae only basally 
connected to the spicule (e.g. arcuate, anchorate chelae) are termed “teeth” 
by some authors, including here. 

Anisochela 

Fig. 2B-F, I 

A chela with unequal ends. 

Isochela 

Fig. 2A, G, J, 

A chela with equal ends. 
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K, R 

Anchorate 
chela 

Fig. 2H-I 

An isochela with three or more free alae (at each end) in the form of 
recurved processes shaped like anchor claws (unguiferous) or anchor 
blades (spatuliferous); with two incipient lateral alae fused with the shaft 
over their entire length and a gently curved, not abruptly arched shaft. An 
anchorate chela with three teeth is called a tridentate chela. 

Placochela 

Fig. 2K 

A special type of chela with plate-like alae. The alae and the shaft are 
internally ornamented by radial ridges. 

Palmate chela 

Fig. 2A-C, E-F 

An iso- or anisochela in which the lateral alae coalesce with the shaft over 
their entire length, and the single, median, anterior ala (one at each end) 
stands free and widens distally. 

Arcuate chela 

Fig. 9-1 

An isochela with three free alae and the shaft characteristically curved 
outward, often bow-shaped. 

Cleistochela 

Fig. 9-3 

A chela with the ends (anterior alae) very close to each other. 

Abyssochela 

Fig. 2G, 9-7 

Stout cleistochelae where the height x width ration is close to 1 (4). 

Cercichela 

Fig. 17-8 

Chela derived microscleres in the form of a laterally flattened, narrow, 
elongate, oval ring with the two sides slightly unequal in thickness (5). 

Birotula 

Fig. 2J 

A type of microsclere with a straight shaft and umbrella-shaped ends. 

Sigma 

Fig. 2M-P 

A microsclere of C or S shape. 

Sigmancistra 

Fig. 2M, O 

A sigma spicule often contorted about 90 degrees, where the inner margin 
is flattened, and often with notches close to both ends (1). 

Trochirhabd 

Fig. 2L 

Spicule made of a straight, slightly conical rhabd ending in a large, 
hemispherical bulge at the apex and in a smaller bulge at the thinner end. 
With one to three thick middle rings (annuli). Hemispherical upper surface 
of the two bulges covered with short, irregular spines or small buttons (3). 

Subtrochirhabd 

Fig. 11-6 

A spear-shaped rudimentary, less developed analogue to a trochirhabd. 
Originally called meliiderm spicule by Ridley and Dendy (1886) (3). 

Forceps 
spicule 

Fig. 2Q 

A U-shaped microsclere. 
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Chela morphology, usually varying between palmate, arcuate, anchorate as well as 

more derived forms, is one of the main diagnostic characters of poecilosclerids both 

at the family and genus level. However, it has proved difficult to find morphological 

support for inter-family relationships within the order given the apparent plasticity of 

chela shape, and a previous chela-based suborder level classification of the 

Poecilosclerida into Latrunculina, Microcionina, Mycalina and Myxillina (Hajdu et 

al., 1994; Hooper & van Soest, 2002b; Kelly & Samaai, 2002) has had to be 

abandoned in the light of molecular evidence (Hajdu et al., 2013; Morrow & 

Cárdenas, 2015). 

Of the 20 recognized poecilosclerid families, almost all carnivorous sponges have 

long been placed in family Cladorhizidae Dendy, 1922, containing only carnivorous 

species, with a small number of species assigned to the otherwise non-carnivorous 

families Guitarridae Dendy, 1924 (all Euchelipluma Topsent, 1909 spp.) and 

Esperiopsidae Hentschel, 1923 (four Esperiopsis Carter, 1882 spp.). In addition to 

Guitarridae and Esperiopsidae, the non-carnivorous family Mycalidae Lundbeck, 

1905 has also been considered a related family based on similarities in spicule 

morphology (Hajdu & Vacelet, 2002). Within Cladorhizidae species were organized 

within seven genera (Abyssocladia Lévi, 1964; Asbestopluma Topsent, 1901; 

Cercicladia Ríos, Kelly & Vacelet, 2011; Chondrocladia Thomson, 1873; 

Cladorhiza Sars, 1872; Lollipocladia Vacelet, 2008 and Neocladia Koltun, 1970) and 

five subgenera (Asbestopluma: Asbestopluma Topsent, 1901 and Helophloeina 

Topsent, 1929; Chondrocladia: Chondrocladia Vacelet, Kelly & Schlacher-

Hoenlinger, 2009, Meliiderma Ridley & Dendy, 1887 and Symmetrocladia Lee et al., 

2012).  

Cladorhizid genera are generally quite well characterized with diagnostic characters 

based on chela morphology: The genera Cladorhiza (anchorate anisochelae), 

Chondrocladia (anchorate isochelae) and Asbestopluma (palmate anisochelae) are all 

species-rich with a large NE Atlantic representation, and were described in the late 

19th and early 20th centuries. Cladorhiza and Chondrocladia were described as 

independent genera from their inception (with type species Cladorhiza abyssicola 
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Sars 1872, Chondrocladia virgata Thomson, 1873), though some Chondrocladia 

species were described as Cladorhiza (Fristedt, 1887; Verrill, 1879). Descriptions of 

species currently assigned to Asbestopluma were originally either assigned to 

Cladorhiza (e.g. Fristedt, 1887; Schmidt, 1875) based on habit similarity, or to 

Esperia Nardo, 1833, later Esperella Vosmaer, 1887 (as a replacement for Esperia, 

which was a preoccupied name) (e.g. Carter, 1874; Carter, 1876; Hansen, 1885; 

Lambe, 1900; Levinsen, 1887), a genus currently synonymized with Mycale 

(Aegogropila), based on the presence of palmate chelae rather than anchorate 

unguiferate chelae as found in Cladorhiza and Chondrocladia. Asbestopluma was 

finally established in its modern form by Topsent (1901). Other genera erected at this 

time were Axoniderma Ridley & Dendy, 1887 (unaccepted, synonymized with 

Cladorhiza), Crinorhiza Schmidt, 1880 (unaccepted, synonymized with 

Chondrocladia), Cometella Schmidt, 1870 (unaccepted, synonymized with 

Asbestopluma), Meliiderma Ridley & Dendy, 1887 (=Trochoderma, Ridley & Dendy, 

1886) (now considered a valid subgenus of Chondrocladia) and Helophloeina 

Topsent, 1929 (now considered a valid subgenus of Asbestopluma). Asbestopluma 

was further subdivided into the subgenera Asbestopluma sensu stricto, Cotylina and 

Lycopodina by Lundbeck (1905). However, following Hentschel (1914), despite 

Lycopodina being raised to genus rank by de Laubenfels (1936), these subgenera 

have generally not been considered valid as they relied partly on habit rather than 

spicule characters (Hajdu & Vacelet, 2002; Vacelet & Boury-Esnault, 1996). 

These genera were considered part of various groups reflecting the systematic 

understanding at that time, such as Desmacidonidae, Desmacidinae, Mycalinae and/or 

Esperellinae (e.g. Fristedt, 1887; Levinsen, 1887; Lundbeck, 1905; Ridley & Dendy, 

1887). Cladorhizidae was first erected as subfamily Cladorhizinae by Dendy (1922), 

and elevated to family rank by de Laubenfels (1936), who also went on to define the 

genera Exaxinata (containing only C. oxeata based on the presence of oxeas rather 

than styles), and Raoa (based on the curious C. tridentata), both currently unaccepted 

as they are considered synonyms of Cladorhiza. 
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In the mid-20th century, genera Abyssocladia Lévi, 1964 (abyssochelae, arcuate 

isochelae) and Neocladia Koltun, 1970 (birotula-like chelae, anchorate chelae) were 

established based on newly discovered cladorhizid sponges from the Pacific rather 

than the Atlantic. These genera were synonymized with Phelloderma and 

Chondrocladia respectively in the Systema Porifera (Hajdu & Vacelet, 2002), but 

were later resurrected by Vacelet (2006, 2008). More recently, the genera 

Lollipocladia Vacelet, 2008 (palmate/arcuate isochelae, strongly arched anchorate 

chelae) and Cercicladia Ríos, Kelly & Vacelet, 2011 (cercichelae) were established 

based on further investigations in the South Pacific. Meliiderma and Helophloeina, 

considered as synonyms of Chondrocladia and Asbestopluma (Hajdu & Vacelet, 

2002), were resurrected as subgenera of these respective genera. Lastly, 

Symmetrocladia was described as a monotypic subgenus of Chondrocladia (Lee et 

al., 2012). 

In two cases, carnivorous sponges were placed outside Cladorhizidae: genus 

Euchelipluma and four Esperiopsis species (Vacelet, 2007). The close association 

between Euchelipluma and Asbestopluma was recognized by Topsent when he 

established the genus (Topsent, 1909), with both placed in Mycalinae at that time. 

Genus Euchelipluma was later placed in Guitarridae based on the presence of 

placochelae; isochelae with elaborate lamellar ornamentation, that species in the 

genus shares with the non-carnivorous genus Guitarra. The carnivorous species 

placed within the otherwise non-carnivorous genus Esperiopsis were done so based 

on the simpler shared character of having palmate isochelae. 

Different characters, including a carnivorous habit as well as spicule morphology, 

have been given different levels of consideration in the assignment of carnivorous 

sponges at the generic and family level. Cladorhizidae lacks a clear spicule-based 

synapomorphy, being instead a collection of genera with a carnivorous habit, a 

character given less consideration in the placement of Euchelipluma and Esperiopsis 

spp. in different genera based on spicule characters rather than habit. The question of 

which morphological characters to prioritize highlights a central uncertainty 

regarding carnivory in sponges: Whether this feeding mode has evolved several times 
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in different poecilosclerid lineages, with Cladorhizidae being polyphyletic (as 

possibly suggested by the great variety of chela types within this family), or whether 

there has been radiation of spicule morphology in a single carnivorous lineage 

(Vacelet, 2007) (Fig. 5). 

 

 

Figure 5. A schematic of systematic relationships within carnivorous sponges. Red branches 
indicate carnivorous lineages. A) The current systematics previous to the work of this thesis, 
B) a hypothetical multi-lineage origin of carnivory (“spicule” hypothesis), C) a single-origin 
hypothesis of carnivory (“habit” hypothesis). 

1.2.2 Function 

Despite external variation and differences in spicule morphology, all carnivorous 

sponges share structural and functional characteristics. Carnivorous sponges have 

different types of erect morphology, including pedunculate, clavate, pennate or 

branching forms (Fig. 3). Depending on the habitat, they can be connected to the 

substrate either with a small basal plate (hard bottom), or larger, branching root-like 

structures (soft bottom). The structural skeleton is composed of needle-like 

monactinal or diactinal megascleres (Fig. 3, 6): most often mycalostyles or 

subtylostyles, but sometimes styles, oxeas, or tylostyles. 
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Figure 6. Examples of skeletal organization in carnivorous sponges. A) The branching 
species Asbestopluma (A.) ramuscula, with skeletal detail of a branch end and bifurcating 
stem; B) a stalked body belonging to Abyssocladia polycephalus, with skeletal detail and a 
partially denuded filament end; C) Chondrocladia (C.) grandis, with a cross section of the 
main stem and side branch, and a longitudinal section through an inflatable swelling. 
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The stem and any branches are composed of a strong, but flexible central core of 

tightly packed longitudinally arranged bundles of megascleres points toward the 

apical part.  The central stem is covered by looser tissue with more confusedly 

arranged megascleres. In Chondrocladia, which retains a partial aquiferous system, 

canals and choanocyte chambers are situated in a middle lacunose layer of the sponge 

between the central stem and a more solid outer layer (Kübler & Barthel, 1999). The 

skeleton of the filaments is supported my megascleres in a similar manner as in the 

stem, and is usually inserted perpendicularly into the main stem skeleton. 

Pedunculate species have a stem or peduncle supporting the main body of the sponge, 

which can be spherical or disc-shaped. Here the skeleton is often radial (e.g. Vacelet, 

2006). Microscleres, usually a combination of chelae and sigmas or forceps spicules, 

are found throughout the tissue. In many cases microsclere types are location specific, 

such as the presence of spiny microtylostyles in the lower stem cover or larger chelae 

covering the upper stem in many Asbestopluma species, or presence of smaller 

sigmas or sigmancistras in the branch ends of Cladorhiza species. At the exterior of 

the sponge, chelae are usually found with part of their hook-like morphology 

protruding from the surface, and it is believed that this arrangement facilitates 

entanglement by providing a “Velcro-like” surface (Lopes et al., 2011; Vacelet & 

Duport, 2004), which together with a mucous, sticky surface covering (Watling, 

2007) are reported mechanisms of prey capture. 

A remnant, partial aquiferous system is found within genus Chondrocladia, between 

the central stem and the outer tissue layer (Fig. 6C). While most cladorhizids are 

fairly small (e.g. a couple of mm to 20 cm tall), many species within Chondrocladia 

are comparatively massive, with a reported length over 50 cm reported in one case 

(Tendal & Barthel, 1993), and often having thicker stems. The apparent function of 

this system is not filter-feeding as in non-carnivorous sponges. Rather it is used in 

order to inflate spherical swellings usually found either terminally or subterminally 

situated on the branching appendages common in the genus; more solid than the 

filaments usually found in the other cladorhizid genera. These swellings, which are 

capable of rapid deflation upon contact, may aid in feeding by trapping prey items 

(Kübler & Barthel, 1999), but are also important sites of reproduction, as shown for 
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Chondrocladia (Symmetrocladia) lyra Lee et al., 2012, where careful investigation 

revealed that terminal swellings were associated with spermatophore production, 

while mid-branch swellings were sites of oocyte production (Lee et al., 2012).  

Excepting Chondrocladia, carnivorous sponges completely lack an aquiferous 

system, and thus they are not able to use this structure for the release of gametes or 

larvae as in non-carnivorous sponges. While embryos have been recognized in 

carnivorous sponges by previous authors (Lundbeck, 1905) and are often readily 

visible through the outer layer of the sponge, only a few studies have investigated 

reproductive strategies in carnivorous sponges, using Asbestopluma (A.) occidentalis 

(Chu & Reiswig, 2014; Riesgo, 2010; Riesgo et al., 2007) (reassigned to Lycopodina 

following the work in this thesis, see Paper IV). This erect, single-stem species is a 

viviparous contemporaneous hermaphrodite, and spermatocytes, oocytes and 

embryos can be present at the same time in a single specimen. In contrast to non-

carnivorous sponges, spermatocytes are released in spermatic cysts captured intact by 

the receiving sponge, allowing synchronous fertilization of multiple oocytes (Riesgo 

et al., 2007). Surprisingly, release of larvae is, at least in this species, accompanied by 

disassociation of host tissue, which re-aggregates into asexual propagules, leaving a 

denuded central stem behind (Chu & Reiswig, 2014). Besides noting the presence of 

embryos, reproduction in other genera has not been investigated, though arbuscular 

Cladorhiza species often have smaller terminal swellings at their branch ends 

associated with special sigma spicules suggesting a reproductive function such as 

gamete production. Reproductive structures seemingly often have special spicules, 

such as forceps or sigmas (Riesgo et al., 2007), which sometimes can make species 

identification difficult when these structures are absent. 

1.2.3 Biogeography 

A prevalent hypothesis regarding the evolution of carnivory is that it is an adaptation 

to oligotrophic conditions in the deep sea. Carnivorous sponges are generally 

regarded as deep-sea species, and, together with hexactinellid sponges, increasingly 
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dominates the sponge fauna at greater depths, where filter feeding is less efficient due 

to the lower concentration of particulate matter in the water column. 

Some cladorhizids have been reported at depths as shallow as >20 m in some habitats 

(e.g. Chevaldonné et al., 2015; Vacelet, 1996; van Soest & Baker, 2011). Numerous 

records also exist at depths of 50-300 m, especially in polar areas such as the Barents 

and Kara Seas or the Southern Ocean (e.g. Fristedt, 1887; Hentschel, 1914; Lambe, 

1893; Levinsen, 1887; Lundbeck, 1905). However, cladorhizids become more 

prevalent at depths >400 m, and are widely distributed on continental shelves 

worldwide. Furthermore, carnivorous sponges are commonly found in deep sea 

habitats such as mid-ocean ridges, seamounts and submarine canyons, as well as on 

abyssal plains and even in hadal trenches. They are frequently found in great numbers 

in the vicinity of vent and seep systems. Here, chemoautotrophic microorganisms 

often form the basis of thriving ecosystems, and some carnivorous sponges are able to 

profit from the increased prey density at these sites (Vacelet, 2007). 

While certain species, such as Cladorhiza gelida and Asbestopluma (A.) occidentalis, 

have been reported with a eurybathic range (Koltun, 1964; Koltun, 1970a; Lambe, 

1893; Lundbeck, 1905), a difference in species composition can generally be 

discerned for shelf and upper bathyal compared to lower bathyal and abyssal 

cladorhizid species. As more areas are explored around the world, a comparison of 

species reported from different areas seems to indicate that shelf faunas appear 

mostly regionally endemic. Abyssal species, on the other hand, seems to be able to 

have a much wider distribution (e.g. Paper I). Given the limited dispersal capabilities 

of sponge larvae, a uniform environment seems to preserve connectivity over greater 

distances in abyssal carnivorous sponges, though distribution records are often as yet 

rudimentary. 

1.2.4 Carnivorous sponge microbial associations 

The importance of the associated microbial community to sponge function and 

metabolism has been thoroughly established, and sponge microbial diversity is a very 

active field of research (e.g. Hentschel et al., 2012; Thomas et al., 2016). For 
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carnivorous sponges specifically, microbial interactions are not well known, but 

presumably symbiotic microorganism play an important role in the digestion of prey 

items given the large range of potential metabolic pathways found within prokaryote 

organisms. Preliminary studies have given some insight into the microbiome of 

Asbestopluma (A.) hypogea Vacelet & Boury-Esnault, 1996 (Dupont et al., 2014; 

Dupont et al., 2013), though data from other carnivorous sponges are lacking. 

Of particular interest is the report of chemoautotrophic symbionts in the carnivorous 

sponge Cladorhiza methanophila Vacelet & Boury-Esnault, 2002 from a mud 

volcano at the Barbados Accretionary Prism (Vacelet & Boury-Esnault, 2002; 

Vacelet et al., 1995). Chemoautotrophic symbiosis is well-known in vent and seep 

fauna such as the giant Riftia tube worms, bivalves or crustaceans, but little is known 

regarding the extent of this kind of metabolism in carnivorous sponges or sponges in 

general, and C. methanophila remains one of only a handful of vent/seep-related 

chemolithoautotrophic symbioses within the phylum. 

1.3 Thesis aims 

Since the discovery of carnivory, interest in this group of sponges has been high. 

Taxonomic articles describing new carnivorous species are published regularly (e.g. 

Downey & Janussen, 2015; Kelly & Vacelet, 2011; Lopes & Hajdu, 2014; Lundsten 

et al., 2014), and of the ~150 species known today, some 60 species has been 

described in the last 20 years. In many cases, spicule characters from new species 

found in underexplored regions deviate from generic diagnoses, which, originally 

simple, have as a result grown longer and more qualified. Together with the 

inconsistent use of a combination of habit and spicule characters in assignment of 

carnivorous species in Cladorhizidae, Guitarridae and Esperiopsidae, the 

morphological characters used for carnivorous sponge systematics are not sufficient 

to resolve the question of whether carnivorous sponges represent one or several 

lineages: A strict spicule-based approach would imply that Cladorhizidae, containing 

genera with both anchorate, arcuate and palmate (an)isochela morphology, is 

polyphyletic; a habit-based approach implies that species assigned to Guitarridae and 



39 

Esperiopsidae should be assigned to Cladorhizidae based on the shared carnivorous 

feeding mode. Thus molecular data, almost non-existent for the cladorhizids at the 

start of this thesis, is needed to firmly establish the systematic relationships of 

carnivorous sponges. 

The North Atlantic and Arctic are, in terms of deep-sea biology, comparatively well 

sampled when compared to other marine regions, and a number of species records 

exist for these areas. However, species descriptions and available data is scattered 

among many, often old, sources which, while many are of excellent quality, generally 

lack information considered standard in current publications. No attempt has been 

made to update species descriptions, bring together available data and provide a 

comprehensive biogeographical overview of the cladorhizid fauna of these areas. 

Finally, despite the initial reports of methanotrophic symbiosis within Cladorhiza 

methanophila, the study of microbial interactions within the carnivorous sponges is 

still in its infancy. Thus, the aims of this PhD project can be summed up in three main 

objectives: 

1. A taxonomical inventory of cladorhizid sponges in the Atlantic 

Previous work has provided descriptions of carnivorous sponges from one or a 

couple of investigations/expeditions. However, there are no larger, regional 

studies of the cladorhizid fauna from the Atlantic or adjoining Arctic. 

Information and available distribution information for carnivorous sponges is 

scattered, and many older species are poorly known as they lack information 

considered standard in newer species descriptions such as SEM, or even 

measurements or figures at all. Thus the main taxonomic part of this PhD 

project has been to provide overviews of the known cladorhizid fauna of the 

North Atlantic and Arctic, the deep Atlantic, and the Caribbean, and adding to 

this knowledge using newly collected material and undescribed specimens 

from existing collections. 

This part of the PhD thesis is based on cladorhizid specimens acquired from a 

variety of sources such as cruises organized by the Centre for Geobiology at 
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the University of Bergen, newly collected material from Fisheries and Oceans 

Canada, the French IFREMER Institute, museum collections at the 

Copenhagen, London and Bergen natural history museums, the Smithsonian, 

the Yale Peabody Museum and others. It is addressed in Papers I, II, and III. 

2. The systematics of carnivorous sponges and the origin of carnivory in 

sponges 

At the start of this project, almost no molecular data existed with regards to 

carnivorous sponges, and systematics was based almost solely on 

morphological characters. Family Cladorhizidae contains genera with a variety 

of spicule types suggesting the possibility that carnivory had originated several 

times within the order, and spicule-based systematics by itself is not sufficient 

to establish the systematics of carnivorous sponges. Using a large, global 

dataset, a comprehensive phylogeny covering the different genera and 

morphological diversity of carnivorous sponges is presented in Paper IV, and 

furthermore connects the results of this phylogeny to morphological 

characters, revising and updating the previous systematics of this group. 

3. Carnivorous sponge microbial communities 

Investigations of microbial interactions within the carnivorous sponges are still 

in their infancy. While some results have been published for microbial 

interactions within sponges in general, little was known for carnivorous 

sponges specifically, with the exception of the remarkable finding of 

methanotrophic, chemoautotrophic symbionts within the seep-associated 

Cladorhiza methanophila. However, recent developments in next generation 

sequencing (NGS) methods have immensely facilitated investigations of 

microbial diversity, yielding an incredible increase in genomic data compared 

to older Sanger sequencing methods. 

In Paper V, we present an overview of the microbiomes of several cladorhizid 

species using Ion Torrent 16S rRNA amplicon data, in comparison with that of 

newly collected C. methanophila specimens. Together with δ13C and δ15N 



41 

isotope signatures, this data gives further insights into the microbial 

communities and extent of chemoautotrophic symbiosis within carnivorous 

sponges. 
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2 Materials and methods 

2.1 List of abbreviations 

Geographical names: AMOR, Arctic Mid-Ocean Ridge; GIF Ridge, Greenland-

Iceland-Faroe Ridge; GIN Seas, Greenland-Icelandic-Norwegian Seas; MAR, Mid-

Atlantic Ridge; NAC, the North Atlantic Current. 

Museum collection abbreviations: BMNH, Natural History Museum (UK); CMN, 

Canadian Museum of Nature; MNHN, Muséum Nationale d’Histoire Naturelle de 

Paris; MNCN, Museo Nacional de Ciencias Naturales (Spain); NIWA, National 

Institute of Water and Atmospheric Research (New Zealand); NTNU, NTNU 

University Museum (Norway); QMG, Queensland Museum (Australia); SMF, 

Senckenberg Naturmuseum Frankfurt (Germany); USNM, Smithsonian Institution 

National Museum of Natural History (USA); YPM, Yale Peabody Museum (USA), 

ZIN RAS, Zoological Institution of Russian Academy of Sciences, Saint-Petersburg 

(Russia); ZMAPOR, Naturalis Biodiversity Center, Leiden (Netherlands); ZMUC, 

Natural History Museum of Denmark, Zoological Museum; ZMBN, University 

Museum of Bergen (Norway). 

2.2 Area description 

The Atlantic Ocean is the second largest of the world’s oceans, with its northern limit 

bordered by the Arctic and its southern limit bordered by the Southern Ocean, defined 

by the Polar Front. It contains some 60-70 currently known cladorhizid species. As 

most of the earliest descriptions of cladorhizids are from the NE Atlantic, 

cladorhizids from this area were instrumental in creating the diagnoses of the largest 

of the currently recognized genera within Cladorhizidae (e.g. Carter, 1874; Lundbeck, 

1905; Sars, 1872; Thomson, 1873; Topsent, 1901; Topsent, 1909), and the NE 

Atlantic remains the region where the cladorhizid fauna is best known. For the 

purposes of delineating distinct cladorhizid faunas, the Atlantic Ocean is roughly 

divided into five distinct regions here (Fig. 7). These regions should be regarded as 
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working areas suitable for distinguishing general trends in the currently known 

cladorhizid fauna rather than more stringently defined systems such as for instance  

the Marine Ecoregions of the World (MEOWS) (Spalding et al., 2007) or Global 

Oceans and Deep Seabed (GOODS) (Vierros et al., 2009) classifications: 

1. The boreal Atlantic is closely affiliated with adjacent areas in the Arctic. Its 

southern border is defined here as roughly coinciding with the North Atlantic 

Current (NAC). This area is comparatively well-explored, and contains most 

of the first cladorhizid species described by early investigators, though the NW 

Atlantic including the Eastern USA and Canada has been less explored. It 

includes the Greenland-Icelandic-Norwegian (GIN) Seas containing the Arctic 

Mid-Ocean Ridge, the Faroe-Iceland-Greenland (FIG) Ridge, the banks to the 

west of the British Isles, the North Sea, the Greenland Shelf, New England and 

Nova Scotian Shelf, as well as adjacent arctic areas such as the Davis Strait, 

Baffin Bay, and the shallow Barents, Kara, Laptev and Chukchi Seas. This 

region is defined by large shelf areas, with some differentiation between NE 

and NW Atlantic and Arctic species. 

2. The Southeastern North Atlantic and Mediterranean. This area contains several 

islands and archipelagoes such as the Azores, Cape Verde, Madeira and the 

Canary Islands. The species composition in this area has some overlap with 

the boreal Atlantic fauna, but most species are different. 

3. The Caribbean, Gulf of Mexico and adjacent North Atlantic Ocean. A few 

species of indigenous cladorhizids are known from this area, mainly from the 

works of Schmidt (Schmidt, 1870; Schmidt, 1880) based partly on the USS 

Blake surveys in 1877-1880. 

4. Southern Atlantic Ocean. Several indigenous species have recently been 

described on the SE shelf of South America, off Brazil, Argentina as well as 

Chile, showing the contours of a regional fauna with some affinities to the SW 

Indian Ocean as well as Pacific species. The cladorhizid fauna of the African 

shelf is virtually unknown. 

5. Atlantic deep-sea basins. At depths of ~2500-3000 m and lower, the 

cladorhizid species composition typically features different species than in 
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shallower areas, though this should be regarded more as a rule of thumb than a 

strict separation. The lower bathyal and abyssal fauna is not well known, and it 

is the rule rather than the exception that species are known only from one or a 

small number of specimens. Even so, some species have been reported from 

several collection localities separated by great distances, a situation similar to 

that of the abyssal Pacific. The depth distribution also includes features such 

as the lower slopes of seamounts and the Mid-Atlantic Ridge. 

 
Figure 7. A map showing areas corresponding to the regional cladorhizid faunas of the 
Atlantic Ocean (left) and lower bathyal and abyssal fauna (>3000 m) (right). 

2.3 Specimen collection and overview of samples 

The thesis sample material comprises specimens and other data from many different 

sources. Initially, the main source of cladorhizid specimens was the University of 

Bergen, Centre for Geobiology cruises to the Arctic Mid-Ocean Ridge (AMOR) from 

2006 onwards. As the project progressed, however, this material was complemented 
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by a wide variety of other sources, which provided essential in providing good 

coverage of cladorhizid species in the investigations of the cladorhizid fauna in 

specific parts of the Atlantic Ocean in Papers I, II and III, as well as the phylogenetic 

analysis in Paper IV (Table 2). Major sample sources for this thesis can be divided 

into two main sources: Recent research cruises, and samples from museum 

collections. In both cases, we are greatly indebted to international colleagues, who 

readily agreed to collaborate on specific projects, and share their specimen material 

and expertise. 

Recent research cruises include the previously mentioned Centre of Geobiology 

research cruises mapping the Arctic Mid-Ocean Ridge and other areas of interest in 

the Greenland-Iceland-Norwegian (GIN) Seas such as the Håkon Mosby Mud 

Volcano. The cladorhizids from these cruises are mainly from the Jan Mayen vent 

fields and the Schultz Massif Seamount. Additional material from the GIN Seas and 

Norwegian Shelf was provided by the Norwegian MAREANO cruises, as well as 

IceAGE 2. 

Other major sources of cladorhizid specimens from recent cruises include material 

collected by the French IFREMER Institute, made available through collaboration 

with Nicole Boury-Esnault and Jean Vacelet at the Institut Méditerranéen de 

Biodiversité et d'Ecologie (IMBE) in Marseille; a large number of cladorhizids from 

the NW Atlantic Ocean and Arctic made available through collaboration with 

Gabrielle Tompkins-MacDonald and Ellen Kenchington at Fisheries and Oceans 

Canada (DFO); samples from among others the ATLANTIS and PATAGONIA 

cruises (Patagonia and Madagascar) made available through collaboration with Javier 

Cristobo and Pilar Ríos at the Instituto Español de Oceanografía (IEO); newly 

described and undescribed Pacific cladorhizids for molecular analysis from Michelle 

Kelly at the New Zealand National Institute of Water and Atmospheric Research 

(NIWA); and specimens of the methanotrophic cladorhizid Cladorhiza methanophila 

from the 2012 R/V “Atlantis” 21-02 cruise, courtesy of Cindy van Dover at Duke 

University. 
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Major contributions from museum collections include the large number of 

cladorhizids at the Zoological Museum, Natural History Museum of Denmark, from 

the large number of Danish expeditions mainly to the GIN Seas, from the late 19th to 

the late 20th centuries, courtesy of Ole Secher Tendal; cladorhizids from the U.S. 

Smithsonian Institution Museum of Natural History and the Yale Peabody Museum, 

encompassing both late 19th century material as well as more recently collected 

cladorhizids from a variety of sources, courtesy of Klaus Rützler and Bill Moser (US 

National Museum) and Eric Lazo-Wasem and Lourdes Rojas (Yale); the Natural 

History Museum in London, containing both some of the earliest described 

cladorhizids from the GIN Seas as well as the species from the HMS “Challenger” 

expedition, courtesy of Emma Sherlock; more recent samples suitable for molecular 

analysis from the Naturalis Biodiversity Center in Leiden (Netherlands), courtesy of 

Rob van Soest and Elly Beglinger; and finally a smaller number of specimens from 

the Natural history museums in Bergen, Oslo and Trondheim. 

Table 2. A list of sources for Atlantic and Arctic cladorhizid specimens examined in the 
course of this PhD project. 

Material  Year Area Location No spec Paper(s) 

NORWAY      

GeoBio cruises 2006-
2014 

Boreal Arctic Mid-Ocean 
Ridge, Norw. shelf 

90 Paper II, III, 
IV, V 

Bergen 
Museum 

1880-
1980 

Boreal, 
Caribbean, 
SE North 
Atlantic 

Various 20 Paper III 

MAREANO 2013 Boreal Norwegian EEZ 7 Paper III, 
IV 

IceAGE 2 2013 Boreal GIF Ridge 7 Paper III, 
IV 

Others 1900-
2013 

Boreal, 
Pacific 

Various 25 Paper III, 
IV 

Trondheim 
Museum 

1880-
1996 

Boreal Norwegian EEZ 10 Paper III, 
IV 

Oslo Museum 1952 Boreal Norwegian EEZ 4 Paper III 
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CANADA      

Paamiut 2010-
2014 

Boreal Davis Strait, Baffin 
Bay 

54 Paper III 

Hudson 2007-
2013 

Boreal Scotian Shelf, 
Flemish Cap 

56 Paper III 

NEREIDA 2007-
2009 

Boreal Flemish Cap 8 Paper III 

LAR 2009-
2012 

Boreal Davis Strait, Baffin 
Bay 

13 Paper III 

NAT. HIST. 
MUS. 
COPENHAGE
N 

     

BIOICE 1991-
2000 

Boreal GIN Seas/GIF 
Ridge 

35 Paper III 

BIOFAR 1987-
1990 

Boreal GIN Seas/GIF 
Ridge 

9 Paper III 

Ingolf 
Expedition 

1895-
1896 

Boreal GIN Seas 43 Paper III 

Other 1876-
2004 

Boreal, SE 
North 
Atlantic 

Various 77 Paper III 

FRANCE      

IFREMER 1981-
2003 

Abyssal 
Atlantic 

Various 39 Paper I, III 

Other 1976-
2014 

Atlantic, 
Pacific 

Various 6 Paper I, III, 
IV 

NAT. HIST. 
MUS. 
LONDON 

1873-
2011 

Boreal, SE 
North 
Atlantic, 
South 
Atlantic, 
abyssal 
Atlantic, 
Indian 
Ocean, 
Pacific 

Various 25 Paper III, 
IV 

UNITED 
STATES 

     

Smithsonian 
Institution 

1879-
1983 

Boreal, 
Caribbean 

Scotian Shelf, off 
Florida, Beata 

14 Paper II, III 
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Basin 

Yale Peabody 
Museum 

1879-
2003 

Boreal, 
Caribbean 

Scotian Shelf, Muir 
Seamount 

10 Paper II, III 

Harbor Branch 
Oceanographic 
Institution 

2011 Caribbean Off Florida 1 Paper II 

Duke 
University 

2012 SW North 
Atlantic 

Barbados 
Accretionary Prism 

15 Paper V 

SPAIN      

ATLANTIS/ 

PATAGONIA 

2007-
2011 

SW Atlantic Patagonian Shelf 20 Paper IV 

Other 2011 SW North 
Atlantic 

Gorringe Bank 2 Paper III, 
IV 

NEW 
ZEALAND 

     

NIWA 1988-
2012 

Pacific Macquarie Ridge, 
various 

14 Paper IV 

NETHERLAN
DS 

     

Naturalis 
Biodiversity 
Center 

2000-
2007 

Boreal NE Atlantic 10 Paper III, 
IV 

OTHER 
SOURCES 

1997-
2013 

Atlantic, 
Southern 
Ocean, 
Pacific 

Various 37 Paper IV 

2.4 Morphological methods 

Sponge specimens were photographed submerged in ethanol where possible, with a 

stand-mounted camera on a black velvet background and detached or ring-mounted 

flash. Additional pictures of details of interest were obtained with a stereo 

microscope camera with stacking software. Histology section pictures were obtained 

with a microscope camera. SEM images were obtained with a Zeiss Supra 55VP 

Scanning Electron Microscope. Image processing was done using Adobe Photoshop 

CS5. 
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Creation of optical microscope and SEM spicule preparations was done through 

subsampling the specimen in several locations depending on suspected genus and 

species (as some spicules are typically found at specific locations in the sponge). 

Subsamples were dissolved using boiling 65% nitric acid, and the spicule suspensions 

were rinsed several times using ddH20 and ethanol as described in Boury-Esnault and 

Rützler (1997). Microscope slides were sealed with Eukitt quick-hardening mounting 

medium under a suitable cover slide; SEM stubs were prepared by putting a circular 

glass slide on top of a piece of carbon tape, and then coated after application of 

spicules. 

2.5 Molecular methods 

The thesis contains two different types of molecular analysis: Sanger sequencing of 

cladorhizid gene partitions for phylogenetic analysis, and Ion Torrent prokaryote 16S 

amplicon sequencing to explore the microbial diversity in specific sponge samples. 

In the case of samples used for molecular analysis, DNA extraction was done using 

either the Qiagen Blood and Tissue kit, or the EZNA Mollusc kit, with an extra step 

of removing the spicule after tissue lysis, but before adding ethanol (spicules were 

then often subsequently saved, cleaned and used for spicule preps as detailed above). 

DNA extracts were kept at 4°C or frozen for longer-term storage. For the NGS 16S 

amplicon samples, DNA extraction was done in a sterile environment to minimize 

bacterial contamination issues. For the Sanger analysis, contaminating DNA from 

microorganisms and prey in the samples remained a consistent issue when 

sequencing sponge sequence, most severely for the COI gene partition, which was 

mostly solved by modifying existing primers to more specific variants. Secondary 

structure issues in the sequenced 28S partition were solved by use of Qiagen “Q-

solution” (possibly containing BSA) in PCR samples. 

Sequence data was organized and handled mostly using Geneious 6.1.8 (Biomatters). 

Sanger sequence datasets were analyzed using a combination of Maximum likelihood 

(with RAxML) and Bayesian (with MrBayes) approaches, and prepared for analysis 
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using Geneious, gBlocks and Mesquite. For the 16S amplicon dataset, the USEARCH 

and QIIME pipelines were used to prepare the Ion Torrent fastq output files for 

further analyses using R (ggplot2, vegan and pheatmap packages, with dependents. 
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3 Results and discussion 

3.1 The cladorhizid fauna of the Atlantic and Arctic Oceans 

3.1.1 The boreal Atlantic and Arctic Oceans 

The boreal Atlantic and Arctic (Fig. 7-1) covers a large area and there are numerous 

records of carnivorous sponge species from this region. Large shelf areas in the arctic 

seas as well as the area bordering the GIN Seas and the coast of Greenland and North 

America means that there are many records of cladorhizids from shallow to mid-

bathyal depths (e.g. 50-2500 m). For this project we were able to examine a number 

of newly collected cladorhizids from the 2006-2014 Centre of Geobiology cruises, 

the 2007-2010 “Hudson” cruises, the 2009 NEREIDA cruise, 2009-2015 “Paamiut” 

cruises, and the 2013 IceAGE 2 and MAREANO cruises. We were also able to 

examine specimens from several museum collections: The Natural History Museum 

of Denmark, containing specimens from various early Danish cruises such as the 

Ryder (1891-1892), Ingolf (1895-1896) and Godthaab (1928) expeditions (including 

types of specimens from Hansen (1885) and Lundbeck (1905)), as well as substantial 

material from newer programs such as BIOICE and BIOFAR and other material from 

various sources; the Natural History Museum in London, containing type material 

from among other Thomson (1873) and Carter (1874); the Smithsonian Institution 

National Museum of Natural History and Yale Peabody Museum, containing various 

cladorhizid material including types and other specimens deposited by Verrill (1879); 

as well as other sources (Table 2). This allowed us to examine type material for many 

of the described species from the area. The results from the review investigation into 

this boreal North Atlantic and Arctic fauna, in all over 400 specimens, are the subject 

of Paper III. 

Genus Lycopodina is represented by several common species in the area, including L. 

lycopodium (Levinsen, 1887) and L. cupressiformis (Carter, 1874) which share a 

single-stem erect habit. This genus is challenging from a taxonomic perspective as 

many species share a very similar spicule complement and general morphology, and 
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some currently recognized species might actually be several, closely related species 

(e.g. Koltun, 1970a; van Soest, 2016). Difficulty also arises in the fact that forceps 

spicules, connected with spermatophores (Riesgo et al., 2007) are sometimes rare or 

absent. We were able to distinguish a new species, L. tendali, from L. lycopodium, 

based on a combination of molecular and morphological results. The status of L. 

cupressiformis is uncertain. While the spicule complement is similar, morphological 

tendencies suggest that southern specimens from the GIF ridge might be different 

from more northern specimens from e.g. the AMOR, with L. robusta and L. ruijsi 

added as closely related species to L. cupressiformis based on habit characters (van 

Soest, 2016). From the NW Atlantic, we describe L. novangliae, which has a 

morphology intermediate between L. lycopodium and L. tendali, and L. 

cupressiformis. Other relatives to this group can be found in the North Pacific, with 

species such as L. occidentalis (Lambe, 1893), L. hadalis (Lévi, 1964) and L. gracilis 

(Koltun, 1955). An additional species with a small, pedunculate spherical body is L. 

hydra (Lundbeck, 1905) recorded from the GIN Seas. This species is more closely 

related to species such as the more southern L. hypogea (Vacelet & Boury-Esnault, 

1996) and the abyssal L. parvula (Hestetun et al., 2015) rather than the longer, stem-

shaped species such as L. lycopodium. 

The genus also contains several species with a pedunculate cup-shaped morphology. 

The most conspicuous of these is L. infundibulum (Levinsen, 1887), which is reported 

mainly from the GIN Seas and Arctic (Levinsen, 1887; Lundbeck, 1905), but also 

from a few locations in the southern North Atlantic (Boury-Esnault et al., 1994; 

Hestetun et al., 2015). In addition to L. infundibulum, two other closely related 

species, L. minuta (Lambe, 1900) and L. comata (Lundbeck, 1905) have also been 

recorded from the GIN Seas and Davis Strait (Koltun, 1959; Lambe, 1900; Lundbeck, 

1905). A fourth species, L. versatilis (Topsent, 1890), is known from the area close to 

the Grand Banks. In this case, as for L. lycopodium, molecular evidence helped 

establish the identity of L. minuta as an independent species rather than as a synonym 

of L. infundibulum. 
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Chondrocladia records from the area are common, and have traditionally been 

assigned almost exclusively to C. (C.) gigantea (Hansen, 1885). In addition to C. (C.) 

gigantea, the species C. (C.) grandis (Verrill, 1879) was described based on 

specimens from the banks of the Nova Scotian Shelf, but as Verrill’s descriptions 

lacked any mention of spicules (Verrill, 1879; Verrill, 1885), no new records have 

been assigned to that species. Still, previous authors (e.g. Lundbeck, 1905; Topsent, 

1930) have noted the similarity between C. (C.) grandis and C. (C.) gigantea, and 

speculated whether they could actually represent the same species. By examining 

most of the original C. (C.) grandis material together with C. (C.) gigantea type 

material and additional specimens, together with molecular data, we have been able 

to show that C. (C.) gigantea is a synonym to C. (C.)  grandis (Paper III). Thus C. 

(C.) grandis should be considered the accepted name of the species. C. (C.) grandis is 

widely distributed in the boreal Atlantic and Arctic, with records from the GIN Seas 

and shelf areas, the Davis Strait, Baffin Bay, the New England and Nova Scotian 

shelf and Flemish Cap, with most records between 400-1500 m in depth. It is the only 

known Chondrocladia species in this part of the Atlantic and a close relative of more 

southern species on each side of the Atlantic including C. (C.) concrescens (Schmidt, 

1880), C. (C.) verticillata Topsent, 1920 and C. (C.) virgata Thomson, 1873.  

Several Cladorhiza species are known from the area. Most species are closely related 

arbuscular species including C. abyssicola Sars, 1872, C. corticocancellata Carter, 

1876, C. gelida Lundbeck, 1905, C. iniquidentata Lundbeck, 1905, C. oxeata 

Lundbeck, 1905 and C. tenuisigma Lundbeck, 1905. The distribution is a bit different 

between species with C. abyssicola having a wide geographical distribution also 

including the Southeast North Atlantic Ocean and Mediterranean, while the others are 

either known only from the GIN Seas (C. corticocancellata, C. iniquidentata, C. 

tenuisigma) or have a wider boreal Atlantic and Arctic distribution (C. gelida, C. 

oxeata). In addition to these arbuscular species, C. arctica Koltun, 1959 has been 

reported from the slope of the polar basin, and C. kenchingtonae from the lower 

Flemish Cap slope, but these species could more accurately described as lower 

bathyal and abyssal fauna. 
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Four Asbestopluma species have been described from the boreal Atlantic and Arctic: 

A. (A.) bihamatifera (Carter, 1876), A. (A.) furcata Lundbeck, 1905, A. (A.) pennatula 

(Schmidt, 1875) and the newly described A. (A.) ruetzleri Hestetun, Tompkins-

MacDonald & Rapp, in press. A. (A.) bihamatifera was considered a synonym to A. 

(A.) pennatula given its almost identical spicule complement to A. (A.) pennatula. 

However, careful investigation of the large chelae as well as consistent difference in 

number of spicule rows and differences in molecular sequence (Paper III; Paper IV) 

shows that it should be resurrected as an independent species. A. (A.) furcata, 

previously known only from the GIN Seas, was shown (Paper III) to also be present 

in the NW Atlantic. Finally, the new species A. (A.) ruetzleri, morphologically similar 

to A. (A.) pennatula, but with clear spicule differences, was discovered upon 

investigation of specimens from the NW Atlantic and Arctic, where it seems to be the 

most common Asbestopluma species. 

The NW Atlantic has been comparatively poorly investigated compared to the NE 

Atlantic. The cladorhizids examined from this area, from the East coast of the United 

States to the Davis Strait, yielded two new species, A. (A.) ruetzleri and L. 

novangliae, which are close relatives of NE Atlantic species (A. (A.) pennatula and L. 

lycopodium). In other cases, examined species from this area turned out to belong to 

previously described species such as A. (A.) furcata, Ch. (C.) grandis, Cl. abyssicola 

and Cl. gelida, which thus have amphi-boreal Atlantic distributions. The Arctic has, 

as argued by e.g. Koltun (1970b) a fauna consisting of a subset of adjacent areas. This 

seems to be true for the cladorhizid fauna: Species reported from the Russian high 

Arctic Seas (with the exception of C. arctica) are species also found in the adjacent 

Atlantic (e.g. Fristedt, 1887; Gorbunov, 1946; Koltun, 1959; Levinsen, 1887). Thus it 

would seem that this fauna extends all the way to the Bering Strait, with the Bering 

Sea and North Pacific home to different species (e.g. Downey & Janussen, 2015; 

Koltun, 1970a; Lambe, 1893). 

Owing to multiple previous investigations in the NE Atlantic and Arctic there is a 

comparatively good record of cladorhizid species from this region. This is in contrast 

to the situation in most other areas, where cladorhizid species are usually known from 
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its collection locality or a couple of records. Including previous collection records in 

our dataset allowed us to plot individual species giving an outline of their 

distributions. This showed that distributions of individual species varied significantly, 

with some species, such as for instance Cladorhiza oxeata, having a more northern 

distribution, while others, such as C. abyssicola, are more widespread. However, 

many species are known almost exclusively from the GIN Seas and adjacent areas, 

which indicates that this area is still oversampled compared to neighboring areas. 

While the nature of deep sea research means that this kind of analysis is qualitative 

and somewhat rudimentary, it is a step up from the almost non-existent distribution 

information in previous works, where records typically are mentioned in the text 

only. 

In all, 25 cladorhizids are now known from the boreal Atlantic and Arctic, belonging 

to Asbestopluma, Chondrocladia, Cladorhiza and Lycopodina. Of these, we were 

able to examine specimens from 23 species, and three species were originally 

described as part of this thesis (Paper III). Our results have also expanded the known 

distribution of many of the previously known species from the area, and provided an 

overview of the fauna of the region which is more comprehensive than anything done 

for cladorhizids in this or other areas. 

3.1.2 The southeastern North Atlantic and the Mediterranean 

The southeast part of the North Atlantic (Fig. 7-2) has a distinct cladorhizid species 

composition to that of the boreal Atlantic fauna. Most early records from this area are 

from Topsent (Topsent, 1904; Topsent, 1909; Topsent, 1929) from the expeditions 

sponsored by Albert I to the Azores, Tenerife, Cape Verde and other areas, with some 

exceptions (Arnesen, 1920; Thomson, 1873). Reported cladorhizids indigenous to 

this area include Asbestopluma (Helophloeina) stylivarians Topsent, 1929, 

Chondrocladia (C.) virgata Thomson, 1873, Cladorhiza flosabyssi Topsent, 1909, Cl. 

grimaldii Topsent, 1909, Lycopodina hypogea (Vacelet, 1996), and the previously 

non-cladorhizid carnivorous sponge Euchelipluma pristina Topsent, 1909. Some 

cladorhizids overlap with the boreal fauna reported at a lower depth such as A. (A.) 
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pennatula and Cl. gelida (Mid-Atlantic Ridge) (Desbruyères et al., 2001) and L. 

infundibulum (Boury-Esnault et al., 1994). However, most conspicuous is C. 

abyssicola, which has a wide distribution in this area (Boury-Esnault et al., 1994; 

Topsent, 1909), though recent results show that some records off Mauretania is a 

new, closely related species (Göcke et al., 2016).  

The Mediterranean has a subset of the fauna of the area, with records of L. hypogea 

and C. abyssicola only (Aguilar et al., 2011; Babić, 1922; Bakran Petricioli et al., 

2007; Boury-Esnault et al., 1994; Chevaldonné et al., 2015; Vacelet, 1969; Vacelet, 

1996). 

Chondrocladia (C.) virgata, the type species of Chondrocladia, was originally 

mentioned and pictured by Thomson (1873), and subsequently described by Carter 

(1874), who misidentified its location as the Faroe Ridge rather than off Gibraltar 

however. Based on erroneous measurements, Arnesen (1920) later re-described this 

species as C. michaelsarsi. Finally, the species was yet again re-described by 

Cristobo et al. (2015) this time as C. (C.) robertballardi. Through a re-examination of 

the type material from all three species, we were able to establish their identity as the 

same species using type specimens of C. (C.) virgata, C. (C.) michaelsarsi and C. 

(C.) robertballardi (Paper III). 

3.1.3 The Caribbean Sea and the adjacent Atlantic Ocean 

Not many carnivorous sponges are known from the Caribbean Sea and adjacent areas 

(Fig. 7-3) compared to that of the rest of the North Atlantic, and the currently known 

fauna consists of five indigenous upper bathyal species (Asbestopluma (A.) gracilior 

(Schmidt, 1870), Chondrocladia (C.) amphactis (Schmidt, 1880), C. (C.) concrescens 

(Schmidt, 1880), C. (C.) verticillata Topsent, 1920 and Euchelipluma congeri de 

Laubenfels, 1936), one species also reported from the rest of the North Atlantic, L. 

infundibulum (Paper I), and three species from lower bathyal and abyssal depths 

(Abyssocladia polycephalus Hestetun Pomponi & Rapp, in press, Asbestopluma (A.) 

caribica Hestetun Pomponi & Rapp, in press and Cladorhiza methanophila Vacelet 

& Boury-Esnault, 2002) (Paper II). 
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The relationship between C. (C.) concrescens and C. (C.) verticillata is a bit unclear, 

as these two species were apparently both part of the material described by Schmidt 

as C. (C.) concrescens. However, following the suggestion of (Topsent, 1920), they 

should in all probability both be considered valid, though very closely related, 

species. Other close relatives include C. (C.) grandis and C. (C.) virgata, and an 

undescribed Chondrocladia from Patagonia included in the molecular phylogeny in 

Paper IV. 

Given the poor sampling of this area, the carnivorous sponge fauna of the Caribbean 

is still quite poorly known, and future investigations will in all probability discover a 

further number of new cladorhizid species. 

3.1.4 The South Atlantic Ocean 

The cladorhizid fauna of the South Atlantic is not well known, and the whole sub-

equatorial part of the Atlantic is included here as a single region for the purposes of 

describing the current knowledge of cladorhizids from this area, though in all 

probability future research will refine this view (Fig. 7-4). A small number of 

cladorhizids have been previously reported from the abyssal South Atlantic (Cristobo 

et al., 2005; Ridley & Dendy, 1886; Tendal, 1973; Topsent, 1909). Recent work by 

Lopes et al. (2011) from off the Diego Ramírez Islands (south of Chile), Lopes and 

Hajdu (2014) and Castello-Branco et al. (2016) from off the SW Atlantic off SE 

Brazil, and Ríos et al. (2011) off Patagonia  have added in all 16 species to the upper 

bathyal and shelf of the SW Atlantic Ocean, showing that there is a rich, probably 

mostly still undiscovered, cladorhizid fauna in the region. Interestingly, this includes 

the only Abyssocladia known from non-abyssal depths in the Atlantic (Lopes & 

Hajdu, 2014), as well as records of the monotypic genus Cercicladia (Ríos et al., 

2011). While not yet formally described, several species not belonging to any 

previously known cladorhizid were collected by the ATLANTIS program off 

Patagonia and were part of the molecular phylogeny in Paper IV. The eight species 

from the Diego Ramírez Islands material may strictly speaking be considered SE 

Pacific or Southern Ocean species, but are included here due to their proximity to the 
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SW Atlantic as their distribution in all probability includes the Patagonian shelf. The 

only known shelf cladorhizid from the SE Atlantic Ocean is the new species 

Cladorhiza acanthoxea Hestetun et al., 2015 from off Gabon-Congo (Paper I).  

The cladorhizids described in (Lopes et al., 2011) and (Lopes & Hajdu, 2014) show 

interesting similarities to cladorhizids from the Pacific (Kelly & Vacelet, 2011; 

Vacelet, 2006) and SW Indian Ocean (Hestetun et al., 2016), with several 

Asbestopluma species having a more anchorate to unguiferate rather than 

palmate/arcuate morphology, and a larger presence of Abyssocladia, showing that 

there is some affinities in the known southern hemisphere cladorhizid fauna between 

oceans. Several works on Antarctic cladorhizids have either recently been published 

or are in prep (Janussen & Tendal, 2007), which will in all probability show more 

clearly the relationship between the Antarctic fauna to that of the South Atlantic 

Ocean. 

3.1.5 Lower bathyal and abyssal fauna 

Most cladorhizid species in the Atlantic have been reported from less than 2500-3000 

m depth on shelf areas along the coasts of adjoining continents, but many records also 

exist of species from lower bathyal and abyssal depths, either on the lower 

continental slopes, the abyssal plains of the deep-sea Atlantic or on the Mid-Atlantic 

Ridge (Cristobo et al., 2005; Ridley & Dendy, 1886; Tendal, 1973; Topsent, 1909; 

Vacelet & Boury-Esnault, 2002). The species reported from these depths are for the 

most parts different than cladorhizid species from shallower depths. A couple of 

species, such as C. (C.) vaceleti and L. parvula, have also been collected from widely 

different collection localities, suggesting that lower bathyal and abyssal cladorhizids 

can have a very large distribution, which most likely is related to the uniform 

conditions of the deep Atlantic basins. In this project, lower bathyal and abyssal 

species were mainly described in Paper I, with some species also from Paper II and 

Paper III. 

The abyssal Chondrocladia fauna is dominated by smaller, stipitate species of the 

“Crinorhiza” form such as C. (C.) vaceleti, C. (C.) guiteli (Cristobo et al., 2005; 
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Topsent, 1904), but exceptions exist such as C. (C.) nicolae, C. (C.) albatrossi and C. 

(C.) burtoni (Cristobo et al., 2005; Tendal, 1973). The methanotrophic species C. 

methanophila, closely related to other, shallower arbuscular Cladorhiza species such 

as C. abyssicola has been reported from Barbados Accretionary Prism and the MAR 

(Vacelet & Boury-Esnault, 2002; Vacelet et al., 1995), and some records of what is 

probably C. gelida are also known from the abyssal North Atlantic (Paper I), with 

another Cladorhiza species, C. thomsoni, being reported from the South Atlantic 

(Paper I) (Topsent, 1909). Other Cladorhiza species, C. flosabyssi, C. arctica and C. 

kenchingtonae, differ from the arbuscular morphology of e.g. C. abyssicola, either by 

having a small, stipitate morphology, or a long, threadlike morphology in the case of 

C. kenchingtonae. Two species of Asbestopluma have been reported from the abyssal 

Atlantic: A. (A.) caribica, from the Venezuela basin (Paper II), and A. (A.) belgicae 

(Paper I), otherwise known from shallower depths in the Antarctic (Topsent, 1901). 

Several of these species were collected in canyons or at seamounts, such as 

Cladorhiza kenchingtonae. Interestingly, such sites, including the Muir Seamount off 

Bermuda and the MAR, are also home to three of the four Abyssocladia-species 

recovered from the Atlantic, a genus otherwise almost exclusively found in the 

Pacific and Indian Oceans (e.g. Hestetun et al., 2016; Vacelet, 2006). As shown by 

Paper I, the abyssal cladorhizid fauna is severely understudied, and is likely to 

contain many undescribed species. 

3.1.6 Biogeography discussion 

The Atlantic Ocean has a species-rich and diverse cladorhizid fauna present. As 

argued here, the cladorhizid fauna of the Atlantic Ocean can be thought of as a series 

of related regional faunas at continental shelf and upper bathyal depths, with some 

overlap in adjacent regions.  

In the North Atlantic, the fauna contains a set of arbuscular Cladorhiza species 

related to the type species of the genus, C. abyssicola, while the morphology of 

Cladorhiza species in deeper areas, special features such as seamounts and abyssal 

basins is more diverse, including stipitate and other forms (Paper III). In the case of 
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Chondrocladia, the four dominating species C. (C.) grandis, C. (C.) virgata, C. (C.) 

verticillata and C. (C.) concrescens are close relatives with an additional undescribed 

relative in the South Atlantic (Paper IV). These are all large species of the 

“concrescens” type, and are found at comparatively shallow depths. For 

Asbestopluma, species are relatives of the type species, A. (A.) pennatula, with 

different types of modifications, but looking at the phylogenetic information, 

Asbestopluma species forms a quite diverse group, with species belonging to different 

clades. Diversity within Asbestopluma can often be connected to the morphology of 

the large type of anisochela, which is often modified into different derived forms 

(Paper II). For Lycopodina, the Atlantic also has a quite diverse fauna, including L. 

lycopodium and L. cupressiformis as representatives for long-stalked forms, while L. 

infundibulum and L. minuta are two species with a pedunculate morphology and 

arcuate rather than palmate chelae. Abyssocladia, with the exception of Ab. atlantica 

from off SE Brazil, seems to be mainly present at lower bathyal to abyssal depths. 

While some of the species at lower bathyal and abyssal depths are morphologically 

quite similar to shallower species, such as Cladorhiza methanophila or A. (A.) 

caribica, others, such as C. kenchingtonae, C. arctica, C. flosabyssi, and stipitate 

“Crinorhiza” type Chondrocladia, have a different morphology, suggesting that they 

belong to different clades within their respective genera than their shallow water 

congeners. 

As reflected in the length of the discussion here, knowledge of the cladorhizid fauna 

of the boreal North Atlantic and Arctic is still much higher than for other areas of the 

Atlantic, though recent studies have begun to rectify this. As knowledge of the 

southern Atlantic and abyssal basins improve, the number of species deviating from 

traditional conceptions of the different cladorhizid genera will undoubtedly increase, 

as already seen in several studies (e.g. Hestetun et al., 2016; Lopes et al., 2011; 

Lopes & Hajdu, 2014; Vacelet, 2006; Vacelet, 2007). Given the great number of new 

species continually being described, there is no doubt that the cladorhizid diversity on 

continental shelves and slopes as well as in the abyssal basins and at features such as 
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seamounts and mid-ocean ridges is very high, and that a more complete picture will 

take time to fully emerge. 

3.2 Carnivorous sponge systematics 

3.2.1 Carnivorous sponge molecular phylogeny 

Chela morphology is the most important morphological diagnostic character in 

classification of poecilosclerid sponges, though other traits such as habit, skeletal 

organization and the rest of the spicule complement are also used (Hooper & van 

Soest, 2002b). Most poecilosclerid families are defined by a dominant chela type 

(together with assumed derivatives), with further refinements at the generic level. 

However, while Hajdu et al. (1994) tried to use, among others, broad patterns of 

chela morphology to create a subordinal classification of Poecilosclerida, recent 

molecular studies have shown that microsclere morphology is not always a good 

systematic indicator, and the suborders have now been abandoned (Hajdu et al., 

2013; Morrow & Cárdenas, 2015). Nevertheless, chela morphology is still usually 

considered valid at the family level. 

In contrast, family Cladorhizidae lacks a strong synapomorphy (Hajdu & Vacelet, 

2002). Cladorhizidae encompasses genera with several different chela types, 

including palmate, arcuate and anchorate/unguiferate aniso- and isochelae. 

Morphological characters associated with a carnivorous feeding strategy such as an 

erect habit with a completely or partially reduced aquiferous system and 

filaments/projections have thus, despite the common assertion that habit is unreliable 

and should be sparingly used for classification, clearly played a defining role in 

placing the vast majority of carnivorous sponges within Cladorhizidae: A more 

stringent chela-based classification would likely place the anchorate genera 

(Cladorhiza, Chondrocladia) in a different genus than palmate and arcuate groups 

(Asbestopluma, Abyssocladia). In two particular examples, chela-based characters 

have actually been given greater consideration in systematic assignment than habit 

morphology: Euchelipluma has been placed within family Guitarridae, based on the 
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presence of placochelae, elaborate, ribbed, modifications of palmate chelae. Four 

species with arcuate to palmate isochelae have, as this spicule morphology is 

diagnostic for that family, been placed within Esperiopsis (Esperiopsidae), a genus 

otherwise containing only non-carnivorous sponges. 

Recognizing this inconsistency in classification and the lack of a clear 

synapomorphy, several authors (e.g. Hajdu & Vacelet, 2002; Lopes et al., 2011; 

Vacelet, 2007) have discussed the possibility that sponge carnivory is a trait that has 

evolved separately in several poecilosclerid lineages. This is an intriguing possibility 

in that it implies that characters such as for instance the hook-like chela microscleres 

make poecilosclerid sponges pre-adapted for a carnivorous feeding strategy to evolve 

given the right evolutionary pressure (i.e. oligotrophic deep-sea conditions), and 

make sponge carnivory into something more than a simple one-time oddity. 

Thus the question of whether the carnivorous sponges represent a monophyletic 

assemblage hinges on the degree of plasticity of chela microscleres. In light of recent 

molecular data, there has been an increasing appreciation of the fact that sponge 

spicule characters may be more plastic than previously thought (e.g. Cárdenas et al., 

2012; Hajdu et al., 2013). Modifications to spicule morphology found in newly 

described carnivorous sponges support this view. Thus the alternative hypothesis is 

that carnivory evolved once, and that the diversity of chela morphology represents 

evolution in spicule characters within one lineage. 

Next to no molecular data was available to complement morphological evidence at 

the start of this PhD project, and one of the main goals of this thesis has been to 

construct a comprehensive molecular phylogeny of known carnivorous sponges, and 

use a combination of this molecular data together with known morphological 

characters to construct an updated and revised systematics of the group. The results of 

this work are presented in Paper IV, with molecular data for a small number of 

additional species added in subsequently published Papers II, III and V. 

The main aim for the phylogenetic component of this thesis was to test the hypothesis 

that carnivorous sponges constitute a monophyletic group, which if true has 
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implications for the ease of evolution of carnivory within sponges. Specifically, this 

meant providing a comprehensive dataset in terms of genera within Cladorhizidae, as 

well as a representative each for Euchelipluma and a carnivorous Esperiopsis species. 

Secondary aims were to show the position of carnivorous sponges more generally 

within Poecilosclerida, test the monophyly of cladorhizid genera, and generally 

elucidate phylogenetic relationships between species. This information was used to 

update the existing systematics for the group (Paper IV).  

Resolving the phylogeny of carnivorous sponges involved two different datasets: The 

main dataset consisted of 101 sequences from GenBank data and 80 newly sequenced 

specimens and representing 40 species, belonging to 7 of 9 recognized genera and 4 

of 5 recognized subgenera. Only the minor monotypic genera Lollipocladia and 

Neocladia, as well as the three species subgenus Helophloeina were omitted from the 

dataset. The main dataset analysis was performed on a concatenated three gene 

partitioned alignment using maximum likelihood (ML) and Bayesian inference, based 

on partial 28S rDNA C1-D2 domains (Chombard et al., 1997), partial cytochrome 

oxidase subunit I (COI) including the Folmer partition and proposed “Erpenbeck” 

extension, (Folmer et al., 1994; Rot et al., 2006) and the nuclear asparagine-linked 

glycosylation 11 protein gene (ALG11) (Belinky et al., 2012); in all 2890 base pairs. 

A subset consisting of representatives of the majority of carnivorous genera was 

included in an auxiliary analysis of nearly complete 18S rDNA data. A large number 

of existing poecilosclerid 18S rDNA sequences was available from GenBank, mainly 

through the Porifera Tree of Life (PorToL) project (e.g. Redmond et al., 2013). This 

allowed comparison with a majority of poecilosclerid genera (18 of 20), placing 

carnivorous sponges in a wider systematic context. In all 148 GenBank sequences  

and 11 newly sequenced specimens were aligned and fitted to a RNA secondary 

structure model (Voigt et al., 2008) for use in Bayesian and ML analysis. 

Both analyses recovered carnivorous sponges as a monophyletic group, including 

Euchelipluma and carnivorous Esperiopsis spp., with high support. Mycalidae and 

Guitarridae were found to be the closest relatives to the carnivorous sponges, though 
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the exact relationship between these two families was not established. This 

strengthens the hypothesis that all known carnivorous sponges represent a single 

lineage, and suggests that a carnivorous habit should be considered as a main 

diagnostic character in place of spicule morphology. As a result, Cladorhizidae was 

retained as a monophyletic family, with Euchelipluma moved to Cladorhizidae as an 

independent genus, and carnivorous Esperiopsis species included as Abyssocladia 

spp. 

The genera Chondrocladia and Cladorhiza were found to be monophyletic. 

Asbestopluma was found to be paraphyletic, with species with a plate-like lower 

chela morphology and forceps spicules moved to the re-erected genus Lycopodina. 

Abyssocladia was found to be monophyletic with the additional inclusion of 

carnivorous Esperiopsis species and Cercicladia. The diagnosis of this genus was 

expanded to allow arcuate isochelae only rather than abyssochelae or cleistochelae. 

Euchelipluma was recovered basally to the rest of Abyssocladia, and was retained as 

an independent genus. The monotypic genus Cercicladia was recovered within 

Abyssocladia, but as only partial COI was recovered from both Cercicladia 

specimens, no changes were made to its status as an independent genus, though future 

data might show that it belongs within Abyssocladia. On the subgeneric level, the 

Chondrocladia subgenera Chondrocladia, Meliiderma and Symmetrocladia were 

shown to be polyphyletic, implying a split between “Crinorhiza” and “concrescens” 

type species as previously used as informal groups, though no formal new subgeneric 

classification was proposed. 

As a particular interesting result, Chondrocladia was recovered nested within 

Cladorhizidae in a derived position related to other genera. This genus retains a 

partial aquiferous system, which has led to the reasonable assumption that it 

represents an intermediate between filter-feeding sponges and other cladorhizids, 

where the aquiferous system has been completely reduced. The phylogenetic results 

thus imply a parallel complete reduction of the aquiferous system in several 

independent cladorhizid lineages. 
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Initially, getting clean sequences from the cladorhizid material proved challenging 

due to a combination of poorly preserved or old specimens and the high surface to 

volume ratio and adhesive surface of the sponges. Thus sequences were prone to 

contamination, especially in the case of the COI Folmer partition, until specific 

modifications of the Folmer primers suitable for Cladorhizidae were developed. Still, 

in many cases not all gene partitions were successfully sequenced. 

The markers chosen for the phylogenetic analyses worked well in all cases: The two 

analyses were able to answer the question of monophyly of carnivorous sponges, 

place the carnivorous sponges within Poecilosclerida, and elucidate relationships at 

the genus and species levels, with few exceptions. Consistent with the finding that 

this gene evolves more slowly in basal phyla (Huang et al., 2008) COI, even with the 

“Erpenbeck” extension, was found to be too conserved to resolve relationships at the 

species level in some cases, but ALG11 was found to be somewhat less conserved 

than COI and performed well at both family, genus and species level, making it a 

good choice for future analysis. The 28S and 18S sequences were adequate for their 

respective use, but required care in identifying and removing variable loop regions 

that were unaligneable from the dataset. 

Thus the study in Paper IV successfully revealed the major lines in the phylogeny of 

carnivorous sponges as well as putting to rest the question of whether the carnivorous 

sponges represented one or several lineages. By applying morphological data to the 

phylogenetic results, it proved possible to make an updated systematics of the group 

using an integrative taxonomic approach; a work that will in all probability be further 

revised and refined in future studies. 
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3.2.2 Carnivorous sponges and barcoding 

COI was employed in a phylogenetic capacity in the analyses employed in Paper IV. 

This was done in order to more easily accommodate future barcoding of species 

included in the analysis. However, COI is known to be comparatively conservative in 

basal phyla including Porifera and Cnidaria (Huang et al., 2008). In some cases, COI 

by itself was unable to distinguish closely related species in the phylogeny, even with 

the extension advocated by the sponge barcoding project 

(http://www.palaeontologie.geo.uni-muenchen.de/SBP/). Initial lab results showed 

that standard and degenerated Folmer primers picked up significant amount of 

contamination, limiting their use as barcoding primers for carnivorous sponges in 

Sanger sequencing applications, an issue that would be less important in NGS 

approaches, however. 

3.3 Microbial community and symbiosis 

Sponge microbial ecology studies is a field that has grown exponentially in the last 

ten years, aided by the increasing ease and decreasing cost provided by the 

availability of next generation sequencing (NGS) platforms (Hentschel et al., 2012). 

While early studies typically used pyrosequencing in recent years platforms such as 

Illumina and Ion Torrent, which are able to provide vast amounts of data at a much 

lower price, have become more common, allowing the routine use of vast amounts of 

genomic data in microbial ecology studies as well as other applications. 

Using 16S rRNA amplicon data for microbial community sequencing is a standard 

approach, and has been extensively been applied in microbial ecology since before 

NGS was available through the use of cloning libraries in Sanger sequencing. The 

stem regions of the 16S ribosome are extremely conserved, and can thus be used for 

large-scale phylogeny of prokaryotic organisms. Employing universal prokaryotic 

primers used together  with a NGS platform allows the parallel sequencing of partial 

16S rRNA from all prokaryote organisms within the sample (though all primer sets 

have some inherent taxonomic bias that should be kept in mind when discussing 
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results). Resulting 16S rRNA amplicon data can be grouped into operational 

taxonomic units (OTUs) based on percentage similarity, and annotated sequence 

databases such as SILVA (https://www.arb-silva.de/) or Green genes 

(http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) can then be used to apply taxonomic 

information to the OTUs, giving an overview of the microbial diversity of the sample. 

Data pipelines such as QIIME (Caporaso et al., 2010) and/or UPARSE (Edgar, 2013) 

are used to treat sequence output data, depending on the purpose of the analysis. 

Depending on the primers used, results may vary between studies in terms of relative 

abundance of different prokaryote groups. However, the increasing amount of 

sponge-centered microbial ecology studies have revealed that sponges have a rich 

microbial fauna that can be divided into shared and more specific microbial groups 

depending on the sponge in question (Thomas et al., 2016). For carnivorous sponges 

in particular, only a preliminary study has been published using the 16S rRNA 

amplicon approach, however (Dupont et al., 2013). 

Paper V is a comparative study of microbiome 16S rRNA amplicon data from several 

carnivorous sponge species collected near vent and seep sites, including Cladorhiza 

methanophila, which is known to contain methanotrophic symbionts. The results 

presented as part of this thesis are mostly descriptive, in that they provide an 

overview of the relative abundance of specific microbial taxa in the different 

specimens examined. Thus it was possible to show that Proteobacteria and 

Bacteriodetes are the two largest bacterial phyla present in all samples, divided into 

certain prevalent bacterial groups such as among others Oceanospirillales, 

Thiohalorhabdales, Rhodobacterales, Flavobacteriales, and the archaeal 

Nitrosopumilus. Methylococcales was very abundant in C. methanophila, confirming 

the studies describing the symbiosis found in this species. No obvious similar 

associations were found in any other cladorhizid, however, as also confirmed by 

diverging δ13C and δ15N isotope signatures for this species compared to the rest of the 

sampled cladorhizids. Thus C. methanophila should be considered an isolated case of 

symbiosis within Cladorhizidae rather than an example of a more widespread 

phenomenon.  
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3.4 Diversity of the carnivorous sponges 

Many cladorhizid species, especially from the North Atlantic, were described during 

the late 19th and early to mid-20th centuries, which settled the larger cladorhizid 

genera such as Asbestopluma, Chondrocladia and Cladorhiza into Cladorhizidae, 

while the status of the two genera established in the sixties and seventies, 

Abyssocladia and Neocladia (now Koltunicladia), have not been considered secure 

until recently (Vacelet, 2006; Vacelet, 2008). The recent discovery of the carnivorous 

feeding habit led to renewed interest in the group, and in recent years, coinciding with 

increased research activity in previously unexplored deep-sea areas, the number of 

articles describing new cladorhizid species has been high: At the turn of the century, 

60 species were described, as opposed to ~150 species today (van Soest et al., 2016). 

These recent studies have shown that the morphological and spicule diversity within 

Cladorhizidae is greater than what was previously known, though some results (e.g. 

Koltun, 1970a; Lévi, 1964; Ridley & Dendy, 1887) had hinted at this from earlier 

Pacific investigations. 

Following recent studies describing new carnivorous sponges from the Pacific 

(Downey & Janussen, 2015; Ise & Vacelet, 2010; Kelly & Vacelet, 2011; Lee et al., 

2012; Lehnert et al., 2006; Lehnert et al., 2005; Lopes et al., 2011; Lundsten et al., 

2014; Reiswig & Lee, 2007; Vacelet, 2006; Vacelet, 2008; Vacelet & Kelly, 2014), 

South Atlantic (Castello-Branco et al., 2016; Lopes & Hajdu, 2014; Ríos et al., 

2011), Indian Ocean (Hestetun et al., 2016), and Southern Ocean (Dressler-Allame et 

al., 2016; Goodwin et al., in press; Janussen & Tendal, 2007; van Soest & Baker, 

2011), a clearer picture is emerging regarding the cladorhizid fauna worldwide, 

including the resurrection of Neocladia (now Koltunicladia), Meliiderma  and 

Helophloeina  (the two latter as subgenera) (Vacelet, 2006; Vacelet, 2008; Vacelet et 

al., 2009), as well as establishment of the monotypic genera Cercicladia, 

Lollipocladia, and subgenus Symmetrocladia (Lee et al., 2012; Ríos et al., 2011; 

Vacelet, 2008). This increase in diversity is not restricted to newly erected groups, 

and a range of examples of species deviating from the usual spicule morphology have 

now been described from existing genera, including modifications of chelae between 
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anchorate and palmate forms, isochelae, anisoplacochelae, monocrepid desmas, or 

comb-like extensions (Fig. 8). 

 

 
Figure 8. A schematic overview of morphological variation within Cladorhizidae showing 
the most significant changes in spicule morphology. Solid lines indicate clades that were 
recovered with at least one species in the phylogeny in Paper IV. Dotted lines indicate 
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hypothetical relationships based on a qualitative evaluation of morphological characters 
only, and should be regarded as tentative. Spicules representing Cercicladia are drawn from 
the description by Ríos et al. (2011); Lollipocladia from Vacelet (2008); Koltunicladia from 
Koltun (1970a); other spicules are drawn from own material. 

In most cases, the identity of new species with deviating spicule morphology can be 

inferred through the rest of the spicule complement. As an example, the larger chela 

type in Asbestopluma is in some cases missing or modified into a non-palmate 

morphology. However, species belonging to this genus can often still be identified by 

presence of a combination of mycalostyles, characteristic subtylostyles, smaller chela, 

together with sigmancistras. In a few cases, several species with the same type of 

morphological modification have been described (e.g. Hestetun et al., 2016; Kelly & 

Vacelet, 2011; Lopes & Hajdu, 2014), showing that what was originally thought to be 

specific aberrations from the standard may instead represent larger clades within the 

genus. 

As shown in this thesis, phylogenetic analysis based on molecular data is an 

indispensable tool to clarify the relationship between previously known and newly 

reported variations in spicule morphology, such as the relative intra-generic position 

of branches with different modification of spicule types. While taxonomic 

morphological characters have not been combined with molecular data in a 

quantitative phylogenetic way here, ancestral reconstruction of spicule characters 

may prove fruitful in the future as the number of species increases even further. In the 

following text, data from the molecular phylogeny in Paper IV has been used as a 

baseline for exploring part of the morphological variation within cladorhizid genera. 

The groups listed below are meant as descriptive hypotheses of possible intra-generic 

relationships, but are considered working hypotheses based on current (often 

incomplete) data, and are expected to change in the future as more evidence becomes 

available. 
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3.4.1 Abyssocladia 

Diagnosis. Cladorhizidae most often pedunculate, carrying a disciform or 

flabelliform body with a radial architecture, in other cases pinnate or branching. 

Microscleres are a combination of abyssochelae, cleistochelae, arcuate chelae and/or 

sigmancistras, but not placochelae (from Paper IV). 

Abyssocladia was originally described by Lévi based on a specimen collected from 

the deep Pacific during the 1950-1952 Galathea Expedition, but only a few species 

(Koltun, 1970a; Lévi, 1964) were described until recently. The original diagnosis of 

this genus was based on the presence of abyssochelae (called thaumatochelae by 

Lévi, later renamed in the Systema Porifera). Derived from arcuate isochelae, 

abyssochelae have the upper and lower middle tooth touching or almost touching in 

the middle of the spicule. The term was later restricted to forms also having a small 

height to width ratio (Lopes et al., 2011), who used the term cleistochelae to describe 

forms with teeth touching or nearly touching, but with a general form more closely 

resembling arcuate isochelae, and arguing for a transformation series from arcuate 

isochela through cleistochela and finally abyssochela. 

The genus was synonymized with Phelloderma (Phellodermidae) in the Systema 

Porifera based on a similar chela type in that genus (van Soest & Hajdu, 2002), but 

was reinstated to Cladorhizidae by Vacelet (2006), later confirmed by molecular COI 

data (Vargas et al., 2013). The number of known Abyssocladia species has increased 

rapidly in recent years. Several newly described species lack cleistochelae or 

abyssochelae, having only arcuate isochelae, which means that 

abyssochelae/cleistochelae no longer can be considered a synapomorphy and 

necessitating a revision of the diagnosis of the genus. This includes the four 

Esperiopsis spp. added to Abyssocladia as a result of the phylogeny included in Paper 

IV, who have arcuate isochelae only. As Euchelipluma, shown to be a probable sister 

genus to Abyssocladia also has arcuate isochelae in combination with placochelae, 

Abyssocladia at this time lacks a clear synapomorphy (Fig. 9). 
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Figure 9. Variation of spicule and habit morphology found within currently described 
Abyssocladia. All images from own data except chela 11, which is reproduced from Kelly 
and Vacelet (2011). A) Arcuate isochela, A. boletiphora; B) arcuate isochela, A. 
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hemiradiata; C) cleistochela, A. tecta; D) arcuate isochela, A. polycephalus; E) laterally 
shifted cleistochela, A. (A.) corniculiphora; F) closed-off cleistochela, A. dominalba; G) 
abyssochela, A. boletiphora; H) abyssochela, A. tecta; I) abyssochela, A. dominalba; J) 
contorted palmate isochela, A. dominalba; K) multidentate isochela, A. carcharias; L) 
sigmancistra, A. boletiphora; M) sigma, A. hemiradiata; N) mycalostyle, A. corniculiphora; 
O) polytylote tylostyle, A. hemiradiata; P) substrongyle, A. boletiphora. Habit of Q) A. 
boletiphora, R) A. dominalba, S) A. corniculiphora and T) A. hemiradiata. 

From only three known species previous to 2006, over 20 species have been 

described to date, mainly from the Pacific. Though four species have now been 

described including Lopes and Hajdu (2014) and the papers collected in this thesis, 

the genus is not particularly well represented in the Atlantic, which probably explains 

its relative obscurity until the last ten years. Most species tend to occur at 2500-5000 

m depth meaning that this genus is truly “abyssal” even compared with most other 

cladorhizid sponges. Species are usually in the range of 2-7 cm, and are often found 

at places of interest such as seamounts and vent and seep sites. 

Many of the initially described Abyssocladia species were pedunculate disc-shaped 

(e.g. Lévi, 1964; Vacelet, 2006), which is still partly reflected in the genus diagnosis, 

but newly described species show that a range of morphologies are common within 

the genus, also including flattened single-stem species with filaments in two opposite 

rows, round single-stem species with filaments in all directions, and species with a 

branching habit (e.g. Hestetun et al., 2016; Lehnert et al., 2006; Lopes et al., 2011). 

In some species, curious stalked bodies are found, possibly associated with 

reproductive processes (Hestetun et al., 2016; Lopes et al., 2011; Vacelet, 2006). 

Another interesting deviation from the more standard morphology is found in the 

special branched habit of A. koltuni (Ereskovsky & Willenz, 2007), where filaments 

are as crown-like structures at branch ends only rather than along the stem. Chela 

morphology, while usually arcuate isochela to abyssochela, can vary between species, 

with some species, such as A. carcharias Kelly & Vacelet, 2011, having specific 

modifications to morphology, and others having special spicules including 

orthancistras, desmas or auxiliary palmate anisochelae (Hooper & Lévi, 1989; 

Vacelet, 2006). 
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Cercicladia was recovered within Abyssocladia in the phylogenetic analysis in Paper 

IV, though based on partial (592 bp) COI sequence only. While the tentative state of 

the evidence of inclusion into Abyssocladia meant that no formal revision was done 

in this case, the special cercichelae of that species could be seen as a possible 

modification of a cleistochela. The phylogeny recovered Cercicladia australis within 

Abyssocladia, with Euchelipluma in a basal position. The position of Euchelipluma is 

not completely settled, but it has clear similarities to Abyssocladia in the arcuate 

chela morphology, and is thus currently considered a sister genus to Abyssocladia. 

It is at this point difficult to make any hypotheses, even preliminary, regarding any 

internal divisions regarding the majority of Abyssocladia species. Spicule 

morphology includes the transformation series proposed by Lopes et al. (2011): 

arcuate isochela – cleistochela – abyssochela, however, it is difficult to see any 

patterns in spicule morphology compared to habit, with the different combinations of 

these three chelae being found in all listed habit types. Furthermore many 

Abyssocladia specimens from the Paper IV phylogeny remain undescribed, and thus 

there is a lack of morphological data for drawing further morphological conclusions 

using the molecular data. Abyssocladia is mostly reported from the Pacific, but with a 

couple of species from the Atlantic and Southern Oceans. Species: A. atlantica, A. 

boletiphora, A. bruuni, A. carcharias, A. claviformis, A. corniculiphora, A. 

desmophora, A. diegoramirezensis, A. dominalba, A. faranauti, A. flagrum, A. 

hemiradiata, A. huitzilopochtli, A. inflata, A. koltuni, A. lakwollii, A. leverhulmei, A. 

myojinensis, A. natushimae, A. naudur, A. oxeata, A. polycephalus, A. symmetrica, A. 

tecta, A. umbellata. 

3.4.2 Asbestopluma 

Diagnosis. Cladorhizidae with at least one type of palmate, or in one case anchorate 

unguiferate, anisochela. Usually with a second larger type of palmate to arcuate 

anisochela that may in some cases be modified to isochela, anisoplacochela or 

tridentate anchorate chela. Sigmancistras and basal acantho(sub)(tylo)styles are also 

present with a few exceptions. Never forceps spicules (from Paper IV). 
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Originally described as a subgenus by Topsent (1901), Asbestopluma was elevated to 

genus rank by Lundbeck (1905). The main diagnostic criterion is the presence of 

palmate anisochelae in combination with sigmas or sigmancistras. Species in this 

genus typically have mycalostyles, subtylostyles, two types of palmate anisochelae, 

sigmancistras, and acanthotylostyles in the basal sheath. More recently described 

species have shown that the chelae in some species have a different morphology, 

including isochelae and unguiferate forms (Hestetun et al., 2016; Lopes & Hajdu, 

2014), as well as more radical changes such as anisoplacochelae (Kelly & Vacelet, 

2011) or diancistras (Paper II). A few Asbestopluma species have spear-like 

microtylostyles instead of acanthotylostyles. These are included in subgenus 

Helophloeina, while other Asbestopluma are included in subgenus Asbestopluma by 

default. Monocrepid desmas have been reported for a few species, connected to the 

basal plate. Species lacking sigmas and with chelae with a special plate-like lower 

part were, as part of this thesis (Paper IV), taken out of Asbestopluma and into the 

revived genus Lycopodina (see below) (Fig. 10). 
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Figure 10. Variation of main spicule and habit morphology found within currently described 
Asbestopluma. All images from own data except spicules 8-11, 14 and 20, which are 
reproduced from Kelly and Vacelet (2011), Vacelet (2006), Lopes et al. (2011) and Goodwin 
et al. (in press). Large chela types: A) arcuate/palmate anisochela, A. (A.) pennatula; B) 
arcuate anisochela, A. (A.) unguiferata; C) arcuate anisochela, A. (A.) pseudoisochela; D) 
cleistoanisochela, A. (A.) ruetzleri; E) arcuate anisochela, A. (A.) jamescooki; F) 
anisocercichela, A. (A.) caribica; G) laminate palmate anisochela, A. (A.) laminachela; H) 
anisoplacochela, A. (A.) anisoplacochela; I) arcuate anisochela, A. (H.) formosa; J) 
abyssochela, A. (H.) keraia; K) palmate isochela, A. (H.) delicata. Small chela types: L) 
palmate anisochela, A. (A.) pennatula; M) unguiferate anchorate anisochela, A. (A.) 
pseudoisochela; N) palmate anisochela, A. (H.) formosa. Other spicules: O) Sigmancistra, A. 
(A.) pennatula; P) desma, A. (A.) pseudoisochela; Q) mycalostyle, A. (A.) pennatula; R) 
subtylostyle, A. (A.) pennatula; S) acanthotylostyle, A. (A.) pennatula; T) spear-like 
microtylostyle, A. (H.) formosa. Habit of U) A. (A.) pennatula, V) A. (A.) pseudoisochela, X) 
A. (A.) furcata and Y) A. (A.) laminachela. 

Species belonging to Asbestopluma have been reported from shelf areas and upper 

bathyal features such as seamounts both in the Atlantic, Pacific and Indian Ocean, 

and it is a common and species-rich genus worldwide, with 24 reported species. A 

couple of species have also been reported from lower bathyal and abyssal depths. 

Asbestopluma species are either single-stem or branching. Filaments are ordered in 

rows, which gives them either a pennate morphology (two, opposite rows) or a brush-

like morphology (4-8 rows). The lower stem is usually covered in a special coating 

layer, and species have either a basal plate or a system of rhizoids. Based on the 

currently described species of Asbestopluma, a rough division into different 

subgroups based on spicule morphology overlaid on a simplified version of the 

results from the molecular phylogeny allows the identification of a couple of 

morphological tendencies within the genus (Figure 11): 
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Figure 11. A schematic overview of morphological variation within Asbestopluma. Solid 
lines indicate clades that were recovered with at least one species in the phylogeny in Paper 
IV. Dotted lines indicate hypothetical relationships based on a qualitative evaluation of 
morphological characters only, and should be regarded as tentative. Spicules representing 
group D are drawn from the description by Vacelet (2006) of A. (H.) formosa; other spicules 
are drawn from own material. 

Fig. 11A: A subgroup of Pacific and Indian Ocean species where the large anisochela 

has been somewhat modified into a rounded, arcuate form. Small anisochelae of the 

common palmate form. Desmas and strongyles present in one species each. Mostly 

bifurcating, but one single-stem species. Species: A. (A.) agglutinans, A. (A.) 

desmophora, A. (A.) jamescooki, A. (A.) ramuscula.  

Fig. 11B: The main group of Asbestopluma species with a morphology most 

resembling that of the type species A. (A.) pennatula. The main character is a clearly 
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palmate form of small anisochela without elongated central lower tooth, and no 

spear-like microtylostyles. Large anisochelae are palmate to arcuate, but are missing 

in around half of described species and with specific, derived modifications in the 

species A. (A.) anisoplacochela and A. (A.) caribica. Acanthotylostyles are usually 

present. No record of strongyles or desmas. Around half of species are single-stem, 

the other half bifurcating. Species: A. (A.) anisoplacochela, A. (A.) belgicae, A. (A.) 

bihamatifera, A. (A.) biserialis, A. (A.) biserialis var. californiana, A. (A.) caribica, A. 

(A.) furcata, A. (A.) gracilior, A. (A.) magnifica, A. (A.) monticola, A. (A.) obae, A. 

(A.) pennatula, A. (A.) quadriserialis, A. (A.) ramosa, A. (A.) rickettsi, A. (A.) sarsi, 

A. (A.) voyager, possibly A. (A.) wolffi sensu Lévi, 1964. 

Fig. 11C: A group of species from the southern hemisphere where the small 

anisochela has an unguiferate arcuate rather than palmate morphology. Large chelae 

are mostly arcuate (an)isochelae. Acanthotylostyles are usually present. Both 

strongyles or desmas common. Both single-stem and bifurcating species. Species: A. 

(A.) bitrichela, A. (A.) gemmae, A. (A.) inexpectata, A. (A.) pseudoisochela, A. (A.) 

unguiferata. Based on the fact that the unguiferate anchorate anisochelae seems 

identical to those of other species in this group, Cladorhiza diminuta Lopes & Hajdu, 

2014 may belong here, if it is considered a species that has lost its large anisochelae 

similar to many species in group B. 

Fig. 11D: Subgenus Helophloeina are diagnosed based on the presence of spear-

shaped microtylostyles, a probable modification of the acanthotylostyles found in 

other Asbestopluma species. Small anisochelae are palmate, but with an elongated 

central lower tooth. Large chelae morphology is variable: Either lacking, or in the 

form of arcuate anisochelae, isochelae or even abyssochela-like. Species are bush-like 

and bifurcating. Species: A. (H.) formosa, A. (H.) delicata, A. (H.) keraia, A. (H.) 

stylivarians. 

Fig. 11E: These are pedunculate species with the large type of anisochela missing. 

The detailed chela morphology of A. (A.) flabellum is not apparent from the source. 

For A. (A.) laminachela the lateral alae are fused. Placed within Asbestopluma on the 
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basis of presence of sigmas, however, an alternative hypothesis would be placing 

them in a clade basal to the rest of Lycopodina. 

3.4.3 Chondrocladia 

Diagnosis. Cladorhizidae with anchorate isochelae (from Lee et al., 2012). 

The diagnosis of Chondrocladia is based on the presence of anchorate isochelae. It 

contains most of the larger cladorhizid species, and includes species with a remnant 

aquiferous system. Subgenus Meliiderma is diagnosed on the additional presence of 

trochirhabds or subtrochirhabds, and contains five small, stipitate species with 

spherical bodies from the Pacific and Indian Oceans. The monotypic subgenus 

Symmetrocladia contains the remarkable C. (S.) lyra, a species with a series of vanes 

or spokes containing numerous vertical branches giving the impression of a harp, and 

rostriform subtylostyles (Lee et al., 2012). The majority of Chondrocladia species are 

placed in subgenus Chondrocladia by default (Fig. 12). 
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Figure 12. Variation of spicule and habit morphology found within currently described 
Chondrocladia. All images from own data except chela 5, which is reproduced from 
Schmidt (1880). A) Large anchorate isochela, C. (C.) grandis; B) small anchorate isochela, 
C. (C.) grandis; C) large tridentate anchorate isochela, C. (C.) vaceleti; D) small tridentate 
anchorate isochela, C. (C.) vaceleti; E) small anchorate isochela, C. (C.) concrescens; F) 
subtrochirhabd, C. (M.) stipitata; G) trochirhabd with two annuli, C. (C.) rodgersi; H) 
sigmancistra, C. (C.) grandis; I) sigma, C. (C.) verticillata; J) sigma, C. (C.) vaceleti; K) 
mycalostyle, C. (C.) grandis; L) acanthostyle, C. (C.) grandis. Habit of M) C. (C.) grandis, 
N) C. (C.) verticillata, O) C. (M.) rodgersi and P) C. (C.) vaceleti. 
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Most Chondrocladia species have processes that are larger than the filaments 

common in other cladorhizid genera. In many species, the remnant aquiferous system 

is used to inflate swellings along or at the end of these branches. Some authors have 

speculated that rapid deflation of these swellings could have a role in prey capture 

(Kübler & Barthel, 1999), but they also seem to have a reproductive function (Lee et 

al., 2012).  

Species belonging to subgenus Chondrocladia have at times roughly been divided 

into two groups: The “Crinorhiza” group (named after Crinorhiza amphactis Schmidt 

1880, currently accepted as Chondrocladia (C.) amphactis) contains smaller, stipitate 

species with branches without obvious swellings issuing from the body and with 

isochelae with three teeth in each end. The “concrescens” group (named after 

Cladorhiza (C.) concrescens Schmidt, 1880, currently accepted as Chondrocladia 

(C.) concrescens) contains species with an erect, single-stem or branching 

morphology with numerous side branches at intervals along the stem; isochelae have 

five teeth in each end. Molecular results from Paper IV confirmed that current 

subgenus Chondrocladia is polyphyletic with respect to Meliiderma and 

Symmetrocladia roughly along the lines of “Crinorhiza” and “concrescens” type 

species, but finding complete and consistent diagnostic characters for these subgenera 

remains challenging, given exception to characters listed above in some cases. 

“Crinorhiza”-like species seem more common at lower bathyal and abyssal depths, 

while the larger “concrescens” type species are more common at upper bathyal to 

shallow depths. Interestingly, specimens of C. (C.) grandis caught at greater depths 

seem to have a more “scepter”-like morphology, with a longer stem and more 

concentrated branching part (Paper III). This was previously reported by Koltun 

(1970a) who, however, also ended up synonymizing species considered valid today 

based on perceived habitat-induced variation. 

Polynoid polychaetes have been reported from the surface of several Chondrocladia 

species, including C. (C.) verticillata, C. (C.) lampadiglobus, C. (C.) robertballardi 

and C. (C.) virgata. 
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Figure 13. A schematic overview of morphological variation within Chondrocladia, based 
on clades including at least one species in the phylogeny in Paper IV. 

Fig. 13A: “Crinorhiza” form species are usually pedunculate with spherical bodies 

and with tridentate anchorate isochelae. While a few species have been reported from 

shallower depths, many are lower bathyal and abyssal. Most are reported from the 

Pacific and Indian Oceans, but with some Atlantic and Southern Ocean species. 

Similar to pedunculate Cladorhiza species, the main peduncle usually penetrates the 

body of the sponge and protrudes slightly at the apex in many species. 

Branches/filaments are thinner than in the concrescens group, lack swellings and 

usually emerge laterally on the body. Most species are comparatively small for the 

genus (e.g. 20-100 mm). A couple of species have anisochelae with more than three 

teeth, e.g. C. (C.) albatrossi, C. (C.) guiteli and C. (C.) levii. In the current 

systematics, this group is polyphyletic with regards to “concrescens” type 

Chondrocladia in subgenus Chondrocladia. Species: C. (C.) albatrossi, C. (C.) 

amphactis, C. (C.)  antarctica, C. (C.)  arenifera, C. (C.)  clavata, C. (C.) crinita, C. 
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(C.) fatimae, C. (C.) gracilis, C. (C.) guiteli, C. (C.) levii, C. (C.) nani, C. (C.) 

pulvinata, C. (C.) scolionema, C. (C.) vaceleti. 

Fig. 13B: The monotypic subgenus Symmetrocladia contains the spectacular Eastern 

Pacific species C. (S.) lyra. This large species is composed of a central root system 

connecting a radial system of horizontal vanes set with long, vertical branches giving 

the impression of a harp or lyre. Inflatable swellings are found both terminally and 

subterminally on the long, vertical branches, which also feature secondary filaments; 

uniquely in the genus. 

Fig. 13C: Subgenus Meliiderma contains a few comparatively small, pedunculate 

species defined by the presence of trochirhabds or subtrochirhabds. These spicules 

are usually found in an outer stem layer, and may be derived from the finely spiny 

styles that fulfil a similar function in “concrescens” type Chondrocladia species. 

Isochelae have five teeth. No obvious remnant aquiferous system. Species have been 

reported mostly from the Southern hemisphere in the Indian and Pacific Oceans at 

medium depths (1000-3000 m). Species:  C. (M.) latrunculioides, C. (M.) occulta, C. 

(M.) rogersi, C. (M.) stipitata, C. (M.) tasmaniensis, C. (M.) turbiformis. 

Fig. 13D: Species with the “concrescens” form represent the largest known 

cladorhizids. The habit is composed of a single or branching stem, the upper part of 

which is set with branches projecting in all directions. Branches have inflatable 

swellings, usually terminally, but subterminally in the case of at least one species (C. 

(C.) virgata). The upper part may be elongated and comprising most of the stem, or 

be reduced in length to the top part, in what Koltun (1970) evocatively referred to as 

a “scepter”-form. Isochelae most often have 6-9 teeth with a couple of exceptions. A 

rough covering layer usually containing finely spiny styles and a system of rhizoids is 

usually reported for specimens where the basal part is recovered. About an equal 

number of species have been reported from the Atlantic and Pacific, and species are 

known both from upper bathyal, lower bathyal and abyssal depths. This group is 

polyphyletic with regards to “Crinorhiza” forms in the current systematics. Species: 

C. (C.) asigmata, C. (C.) burtoni, C. (C.) concrescens, C. (C.) dichotoma, C. (C.) 



87 

grandis, C. (C.) koltuni, C. (C.) lampadiglobus, C. (C.) multichela, C. (C.) nicolae, C 

(C.) robertballardi, C. (C.) saffroni, C. (C.) schlatteri, C. (C.) verticillata, C. (C.) 

virgata, C. (C.) yatsui. The species C. (C.) magna is also placed here tentatively, 

though the description of this species (Tanita, 1965) is somewhat ambiguous; lacking 

size measurements and with no swellings on branches. 

3.4.4 Cladorhiza 

Diagnosis. Cladorhizidae with only anchorate/unguiferate anisochelae (from Lopes 

and Hajdu, 2014). 

Cladorhiza contains cladorhizid species with anchorate anisochelae, including the 

first cladorhizid species described, Cladorhiza abyssicola Sars, 1872. The genus has 

an uncomplicated taxonomic history, and was recovered as a monophyletic group in 

the phylogenetic analyses of Paper IV as sister group to Chondrocladia. 

Most Cladorhiza species may either have an arbuscular, single-stem, or stipitate 

morphology (Reiswig & Lee, 2007). In the latter case, the body, suspended on a 

peduncle, may be cup-shaped or umbrella-shaped, with filaments emerging from the 

rim, and the main stem protruding through the body and creating an apical extension. 

Interestingly, stipitate Cladorhiza species have anchorate anisochelae with three 

teeth, while arbuscular forms have five teeth. Additionally, stipitate forms are 

generally smaller, and are typically found at greater depths than larger, branching 

forms, a situation that mirrors that of Chondrocladia. Indeed, “Crinorhiza” form was 

actually used by early authors (e.g. Ridley & Dendy, 1886) to also refer to stipitate 

species of Cladorhiza in addition to Chondrocladia (Fig. 14). 
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Figure 14. Variation of spicule and habit morphology found within currently described 
Cladorhiza. All images from own data. A) Five-toothed anisochela, C. abyssicola; B) 
tridentate anisochela, C. moruliformis; C) tridentate anisochela with lower teeth bifurcated, 
C. tridentata; D) birotula-like “pseudoamphiaster”, C. mirabilis; E) sigma, C. abyssicola; F) 
sigmancistra, C. abyssicola; G) sigma, C. moruliformis; H) acanthoxea, C. kenchingtonae; I) 
mycalostyle, C. abyssicola. Habit of J) C. kenchingtonae, K) C. abyssicola, L) C. inversa, 
M) C. tridentata and N) C. moruliformis. 
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The parallel division in both Cladorhiza and Chondrocladia into stipitate tridentate 

and arbuscular five-toothed chela forms is puzzling, and raises a possible alternative 

hypothesis: That stipitate Cladorhiza species might be more closely related to 

stipitate Chondrocladia species rather than the rest of Cladorhiza, making Cladorhiza 

polyphyletic. On the other hand, evolutionary pressure adapting to lower bathyal and 

abyssal depths could have induced parallel evolution in both closely related genera, 

with similar morphological results, though it does not adequately explain the 

reduction in number of teeth in both clades. Regrettably, current molecular data is 

heavily biased towards the arbuscular North Atlantic species such as C. abyssicola 

and its relatives, and no sequences are currently available for stipitate Cladorhiza, 

and this hypothesis would need additional evidence to test its viability (Fig. 15). 

 
Figure 15. A schematic overview of morphological variation within Cladorhiza. Solid lines 
indicate clades that were recovered with at least one species in the phylogeny in Paper IV. 
Dotted lines indicate hypothetical relationships based on a qualitative evaluation of 
morphological characters only, and should be regarded as tentative. 
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Fig. 15A: Cladorhiza species with a branching, bush-like morphology such as the 

type species of the genus, C. abyssicola. Branches are set with filaments in all 

directions and often end in slight swellings that are associated with reproductive 

structures. Spicules usually include one type of mycalostyle, five-toothed anchorate 

anisochelae, sigmas and contorted sigmancistras. Sigmancistras may be rare or 

absent, and are usually associated with branch end swellings. Known species are 

almost exclusively Atlantic, and often found in comparatively shallow waters (e.g. 

200-2000 m), though some species are deeper. Species: C. abyssicola, C. 

corticocancellata, C. gelida, C. iniquidentata, C. methanophila, C. oxeata, C. 

scanloni, C. tenuisigma, C. thomsoni. 

Fig. 15B: Cladorhiza species with a single-stem morphology set with filaments in all 

directions (“bottle-brush” shape). Spicule complement similar to arbuscular forms, 

with mycalostyles, five-toothed (sometimes seven) anchorate anisochelae, sigmas, 

and often contorted sigmancistras. Some species are described from fragments and 

are placed here simply based on lack of evidence of branching. A couple of Atlantic 

representatives, but mostly Pacific, typically depths of 2000 m and below. Species: C. 

acanthoxea, C. caillieti, C. evae, C. grimaldii, C. linearis, C. penniformis, C. 

rectangularis, C. segonzaci, C. septemdentalis. Also possibly C. microchela 

(tridentate). 

Fig. 15C: Cladorhiza kenchingtonae: A long filiform, basal stem, a middle branching 

point, and three long filiform branches ~2 m long, with two ventral, oblique filament 

rows. No known relative (though possibly one or more species known only from 

fragments could have a similar morphology). Two types of mycalostyle, five-toothed 

anchorate anisochelae, acanthoxeas and sigmas. Placement here based on molecular 

evidence from Paper III. 

Fig. 15D: Pedunculate Cladorhiza species with tridentate anisochelae. Morphology 

variation includes conical umbrella and upturned umbrella-like species, spherical, 

pyriform, and derived morphology (e.g. C. pteron). Typically the peduncle grows 

though the sponge body and emerges apically, either as a short swelling or a longer, 
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filiform structure; a region that seems related to reproduction. Filaments are usually 

arranged laterally, either as an upwards or downwards-facing crown, or more loosely 

arranged outwards, similar to that of “Crinorhiza”-type Chondrocladia species. 

Atlantic, Pacific and Indian Ocean species. Many abyssal, but some also shallower. 

Typically smaller than 10 cm, with two known exceptions, the >30 cm species C. 

pteron and C. corona. Species: C. arctica, C. bathycrinoides, C. corona, C. 

flosabyssi, C. inversa, C. longipinna, C. mani, C. mirabilis, C. moruliformis, C. 

nematophora, C. nicoleae, C. pentacrinus, C. pteron, C. similis. 

Fig. 15E: A few species with an uncommon or unclear morphology: The solid, cup-

shaped C. tridentata; and the species C. ephyrula and C. schistochela, that though 

different in morphology, cannot readily be assigned to any of the other groups. All 

three species have tridentate anisochelae with unusually large upper teeth and 

articulated, bifurcated lower teeth. 

3.4.5 Lycopodina 

Diagnosis. Cladorhizidae pedunculate with body either in the form of an erect stem 

or sphere with filaments in all directions, or cup-shaped. Megascleres are 

mycalostyles and commonly shorter (tylo)styles. Microscleres are one type of arcuate 

or palmate anisochela where the smaller end is in the shape of a central plate and two 

rudimentary, flat, lateral teeth, all with serrated edges towards the middle. To this 

forceps spicules are often added, but may be rare or absent in particular species or 

specimens of a single species. Never sigmas or sigmancistras (from Paper IV). 

Lycopodina contains species with a single type of palmate to arcuate anisochelae with 

a characteristic plate-like lower part, and in many cases with forceps spicules. 

Originally erected as a subgenus of Asbestopluma by Lundbeck (1905), Lycopodina 

was elevated to genus rank by de Laubenfels (1936), but was not considered valid 

until molecular data (Paper IV) showed that genus Asbestopluma was paraphyletic 

with respect to the species currently assigned to Lycopodina. Subgenus Cotylina 

Lundbeck, 1905, erected to account for stipitate Lycopodina species, is synonymized 

with Lycopodina based on molecular evidence. The genus is among the major 
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cladorhizid genera, with approximately 25 described species. Species are usually 

either single stem, in most cases brush-like with filaments in all directions; or they 

are small, pedunculate, with a spherical or cup-shaped body (Fig. 16). 

 
Figure 16. Variation of spicule and habit morphology found within currently described 
Lycopodina. All images from own data. A) Palmate anisochela, L. lycopodium; B) palmate 
anisochela, L. cupressiformis; C) palmate anisochela, L. rastrichela; D) arcuate anisochela, 
L. infundibulum; E) forceps, L. lycopodium; F) forceps, L. cupressiformis; G) forceps, L. 
tendali; H) style, L. lycopodium; I) microsubtylostrongyle, L. cupressiformis. Habit of J) L. 
cupressiformis, K) L. parvula, L) L. infundibulum and M) L. lycopodium. 
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The major difference in spicule morphology within the genus (excepting certain 

specific modifications such as the long comb-like extensions of the lower part of the 

anisochelae of L. rastrichela) is between the clearly palmate chelae of e.g. L. 

lycopodium, and the arcuate type of e.g. L. infundibulum. Based on currently known 

species and available molecular data, it would seem that clearly palmate anisochelae 

are more widespread and present in most of the genus, while the arcuate type is 

confined to a single, smaller clade within the genus associated with stipitate cup-

shaped species. 

Central to the current genus diagnosis is the presence of forceps spicules (uniquely 

among the Cladorhizidae) and lack of any sigmas or sigmancistras. There are some 

signs that this might be a simplification of actual phylogenetic relationships: The 

species A. (A.) laminachela Hestetun, Rapp and Xavier, 2016 from the Indian Ocean, 

while assigned to Asbestopluma based on the presence of sigmas, has several 

characters suggesting a placement within Lycopodina such as palmate chela 

morphology reminiscent of Lycopodina and a pedunculate morphology. Sigmas or 

sigmancistras are found in all other genera within Cladorhizidae, as well as in 

Mycalidae and Guitarridae, suggesting their secondary loss within Lycopodina, 

alternatively that forceps spicules are derived from sigmas. A probable explanation 

for the presence of sigmas within some Lycopodina species would be that these 

represent a basal branch within the genus, before loss/modification of sigmas in the 

rest of the genus. 
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Figure 17. A schematic overview of morphological variation within Lycopodina. Solid lines 
indicate clades that were recovered with at least one species in the phylogeny in Paper IV. 
Dotted lines indicate hypothetical relationships based on a qualitative evaluation of 
morphological characters only, and should be regarded as tentative. 

Fig. 17A: A particular form of arcuate morphology retaining the plate-like lower part 

of the spicule diagnostic for Lycopodina is associated with a cup-shaped morphology 

within the genus. The molecular results in Paper IV established that this group is a 

derived clade within the rest of the  Lycopodina, and the arcuate form should thus be 

considered a modification of the palmate form in group B. Species are usually smaller 

than 50 mm, with a cup-shaped body that may be closed off into a flattened pyriform 

shape, however. Sometimes the rim is lined with tiny filaments. Species are known 

from the Atlantic, Southern and Pacific Oceans. Species: L. calyx, L. comata, L. 

infundibulum, L. infundibulum orientalis, L. minuta, L. pediculifera, L. 

rhaphidiophorus, L. versatilis. Also placed here is L. bilamellata, a curious species 
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Fig. 17B: This group contains species with the most common anisochela morphology 

in the genus: A clearly palmate anisochela with a plate-like lower end. Species are 

either elongate single stem or pedunculate spherical. In either case filaments  emerge 

in all directions, and the stem morphology could thus be seen as an elongated version 

of the spherical or subspherical morphology. Common in the Atlantic, Pacific and 

Southern Oceans. Some species very shallow, e.g. L. hypogea, L. vaceleti; some very 

deep, e.g. L. hadalis, L. parvula, L. wolffi (sensu Koltun). Some confusion exists 

regarding the exact identification of L. occidentalis-like species from the North 

Pacific (e.g. L. lebedi, L. hadalis, L. occidentalis, L. gracilis). The species L. 

globularis has a “globular”, deviating morphology from the rest. The species L. 

rastrichela has anisochelae where the lower plate tips have been extended into long 

protrusions. Species: L. callithrix, L. communis, L. cupressiformis, L. drakensis, L. 

ecoprof, L. globularis, L. gracilis, L. hydra, L. hypogea, L. lebedi, L. lycopodium, L. 

hadalis, L. microstrongyla, L. novangliae, L. occidentalis, L. parvula, L. rastrichela, 

L. rhabdostylophora, L. robusta, L. ruijsi, L. tendali, L. vaceleti. Possibly also 

including L. wolffi sensu Koltun, 1970. 

Fig. 17C: If the argument is accepted that forceps spicules represent a derived form of 

the sigma spicules present in all related genera, there is a possibility that there exists a 

basal clade within Lycopodina with sigma-bearing forms. Group C represents a 

possible alternative hypothesis regarding the placement of the two species A. (A.) 

flabellum and A. (A.) laminachela that are currently placed in Asbestopluma on the 

basis of presence of sigmas, but otherwise have several characters lacking for that 

genus: Habit is small, pedunculate with filaments in all directions; a morphology 

otherwise not present in the genus; megascleres are polytylote and different from the 

common subtylostyle shape in Asbestopluma; finally the chelae of A. (A.) 

laminachela, while unique, are more similar to those of Lycopodina; the chelae of A. 

(A.) flabellum are not visible in detail from the species description.  
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3.4.6 Other cladorhizid genera 

Other genera within Cladorhizidae include Cercicladia, Euchelipluma, Koltunicladia 

(formerly Neocladia, see Paper IV) and Lollipocladia. Compared with the larger 

cladorhizid genera, containing around 140 species, these genera collectively contain 

only 11 species, and except Euchelipluma, are monotypic. Molecular data shows that 

Euchelipluma and Cercicladia are associated with Abyssocladia, though their exact 

positions are uncertain. Sequence data is lacking for Koltunicladia and Lollipocladia, 

though a combination of spicule and habit characters display some similarity to 

Abyssocladia, and possibly Chondrocladia and Cladorhiza. An overview of 

diagnostic spicules is given in Fig. 18. 

Euchelipluma contains five species and is defined by the presence of placochelae. 

This spicule type has an elaborate, ribbed morphology, and is also found within 

Guitarridae, where the genus was placed previous to the molecular evidence 

presented in Paper IV. Euchelipluma species also have arcuate isochelae, a shared 

character with Abyssocladia, and the phylogenetic analyses recovered Euchelipluma 

(with variable support, however) as a sister group to the rest of Abyssocladia. 

Euchelipluma species have a single stem pennate or branching morphology, and have 

been reported from Japan, the Aleutian Islands, Cape Verde, the Caribbean and the 

Patagonian shelf. 

The main diagnostic criterion of the monotypic genus Cercicladia (containing C. 

australis Ríos, Kelly & Vacelet, 2011) is the presence of ring-shaped modified chelae 

named cercichelae. For the molecular analyses, only the COI extension was 

successfully sequenced (592 bp, see paper IV), which placed it within Abyssocladia. 

Given the relative lack of molecular data, no systematic revision synonymizing 

Cercicladia with Abyssocladia was done in Paper IV. However, a similar type of 

reduction of a palmate anisochela in the Asbestopluma species A. (A.) caribica (Paper 

II), lends additional support to the hypothesis that cercichela morphology represents a 

reduction of an arcuate chela or cleistochela. 
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Koltunicladia and Lollipocladia are both monotypic genera containing K. 

flabelliformis (Koltun, 1970a) and L. tiburoni Vacelet, 2008 respectively. They are 

defined of the basis of strongly curved birotula-like microscleres and sigmancistras in 

the case of Koltunicladia, and large strongly curved anchorate isochelae in 

combination with palmate isochelae and sigmancistras in the case of Lollipocladia. 

Given the relative plasticity of spicule morphology and their stipitate disc-shaped 

habit, they could possibly be part of the Abyssocladia clade systematically, but their 

positions have not been tested with molecular evidence. 

 
Figure 18. Variation of spicule and habit morphology found within other cladorhizid genera. 
First three images from own data, otherwise reproduced from Vacelet (2008), Koltun 
(1970a) and Ríos et al. (2011). A) palmate/arcuate isochela, E. pristina; B) placochela, E. n. 
sp.; C) sigmancistra, E. n. sp.; D) palmate/arcuate isochela, L. tiburoni; E) arched anchorate 
isochela, L. tiburoni; F) arched, birotula-like anchorate isochela, K. flabelliformis; G) arched 
anchorate isochela, K. flabelliformis; H) cercichela, C. australis. 
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4 Closing remarks 

Twenty years after the discovery of carnivory in sponges, progress has been rapid in 

furthering knowledge of this exceptional group of sponges: Numerous studies have 

been published both greatly increasing the number of known species as well as 

elucidating aspects of physiology and reproduction within the group, and over 150 

species have currently been described. Carnivory is an exceptional example of 

evolution using an existing body plan to develop a completely different life strategy 

in the face of selective evolutionary pressure, and is clearly a very successful 

development helping sponges colonize the deep sea. 

The Atlantic is home to a species-rich, highly diverse cladorhizid fauna, and in a first 

for carnivorous sponges, sufficient information allowing for a complete updated set 

of species descriptions and biogeographic records have been compiled in a single 

publication in the case of the boreal North-Atlantic and Arctic. Records for other 

parts of the Atlantic are still at a more rudimentary stage, but progress has been made 

in several of these regions here and by other authors, to be added to in the future. 

Increasing the amount of available data allow increasingly accurate comparative 

estimates of biogeographic and depth distributions between cladorhizid species. 

The work contained in this thesis has helped establish that carnivory arose only once 

within currently known sponges rather than in several separate lineages, a finding that 

has major implications for assessing the difficulty in transitioning from a filter-

feeding to a carnivorous nutrient acquisition strategy. Furthermore, the fact that the 

only clade retaining a remnant aquiferous system is nested within other cladorhizid 

taxa shows that evolutionary pressure for reduction of the aquiferous system once 

carnivorous is high. Systematic reassignments here have simplified carnivorous 

sponge classification and reorganized it to correspond to phylogenetic relationships 

within the group, facilitating the addition of new species to Cladorhizidae and 

resolving long-standing questions regarding inter- and intrageneric relationships of 

the morphological variation found within carnivorous sponges. 
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The great amount of newly reported data is increasingly showing a more complete 

picture of total diversity within the carnivorous sponges, moving focus away from the 

relatively narrow previous understanding of the group based mostly on North Atlantic 

species, and showing that morphological variation within carnivorous sponges is 

greater than previously thought. The most striking example of this is Abyssocladia, a 

genus re-erected only ten years ago, now shown to contain over 20 species with a 

huge amount of spicule variation, and found in all of the world’s major oceans, but a 

similar re-appreciation of intrageneric diversity has also happened in, for instance, 

Asbestopluma and Lycopodina. 

Finally, microbiome studies, which aided by NGS techniques have started to become 

more prevalent in sponges in general, are still in their infancy for carnivorous 

sponges. However, results from this thesis represent the first multi-species 

investigation into carnivorous sponge microbial communities, showing that 

carnivorous sponges have a distinct microbial composition that is partly overlapping 

from species to species. They also show that Cladorhiza methanophila represents an 

exception in its use of chemoautotrophic symbionts to obtain a significant part of its 

nutrition among currently known carnivorous sponges. Given the affinity of 

carnivorous sponges to vent and seep areas around the world, it is possible, however, 

that new examples of similar symbioses will be reported in the future.  
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5 Future perspectives 

Cladorhizid species continue to be described at a high rate. This is highlighting the 

diversity within the carnivorous sponges as new species have new spicule 

morphologies, but is also adding species with similar spicule modifications to 

previous species with morphologies deviating from the standard of the genus, giving 

a fuller picture of the diversity and relative size of different clades of carnivorous 

sponges, and bridging gaps between known species. 

This diversity also highlights the evolution and plasticity of spicule morphology, 

showing that spicules by themselves are not always sufficient to establish systematic 

relationships in the Cladorhizidae, and increasing the strain on spicule-based 

diagnoses, which have tended to become longer in recent times, with repeated 

amendments. 

Future species will undoubtedly shed more light on the relationships between groups 

of carnivorous sponges, especially when morphological characters are augmented by 

molecular data. While the classification presented in Paper IV has provided a much 

needed update to existing systematics of the group and answered basic questions 

regarding the monophyly of family Cladorhizidae, new data will undoubtedly lead to 

further revisions and amendments in the future. 

As the monophyly of carnivorous sponges has been more securely established, 

questions remain about the exact relationship between Cladorhizidae and the two 

closest related families Guitarridae and Mycalidae, with the goal of identifying 

preadaptations that could explain the evolutionary event leading to carnivory in 

Cladorhizidae. In addition to morphological studies, NGS sequencing methods would 

make it feasible to look further into differences in gene expression and microbiome 

components on either side of the carnivorous habit. Special interest could be given to 

genus Chondrocladia: Some species (such as Meliiderma spp.) seem to lack a 

remnant aquiferous system present in the rest of the genus. The role of the aquiferous 
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system and associated gene expression would prove an interesting study, given the 

apparent strong evolutionary pressure to reduce this system entirely. 

The microbiome work in this thesis has increased knowledge of the diversity of 

microbial organisms within Cladorhizidae. Prokaryotes have an important 

contribution to the metabolism and working of the host sponges. Future work could 

more thoroughly look into the pathways and enzymatic activity utilized by prokaryote 

symbionts in the metabolism of the host. In terms of autotrophy, only C. 

methanophila is as yet known, with few other observations of such high biomass right 

at sites of emission, rather more usual slightly higher biomass feeding on vent 

animals. This still remains the most obvious use of autotrophic symbionts in a vent 

and seep setting among sponges in general, and no autotrophic activity was found 

even in closely related species. The possibility thus exists that further exploration of 

vent and seep habitats will yield additional autotrophic symbioses between 

autotrophic symbionts and carnivorous sponges. 

While stemming from a single evolutionary event, carnivory in sponges has proved to 

be a successful strategy, and from being treated as exotics, increasingly, it is shown 

that carnivorous sponges are present in a variety of habitats worldwide, also in 

shallower habitats. Carnivory represents a radical departure from the usual habit of 

sponges, and thus can give valuable insights into early animal evolution. 
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a b s t r a c t

Carnivorous sponges are characterized by their unique method of capturing mesoplanktonic prey coupled
with the complete or partial reduction of the aquiferous system characteristic of the phylum Porifera.
Current systematics place the vast majority of carnivorous sponges within Cladorhizidae, with certain
species assigned to Guitarridae and Esperiopsidae. Morphological characters have not been able to show
whether this classification is evolutionary accurate, and whether carnivory has evolved once or in several
lineages.
In the present paper we present the first comprehensive molecular phylogeny of the carnivorous

sponges, interpret these results in conjunction with morphological characters, and propose a revised clas-
sification of the group. Molecular phylogenies were inferred using 18S rDNA and a combined dataset of
partial 28S rDNA, COI and ALG11 sequences. The results recovered carnivorous sponges as a clade closely
related to the families Mycalidae and Guitarridae, showing family Cladorhizidae to be monophyletic and
also including carnivorous species currently placed in other families. The genus Lycopodina is resurrected
for species currently placed in the paraphyletic subgenus Asbestopluma (Asbestopluma) featuring forceps
spicules and lacking sigmas or sigmancistras. The genera Chondrocladia and Cladorhiza are found to be
monophyletic. However, results indicate that the subgenus Chondrocladia is polyphyletic with respect
to the subgenera Meliiderma and Symmetrocladia. Euchelipluma, formerly Guitarridae, is retained, but
transferred to Cladorhizidae. The four known carnivorous species currently in Esperiopsis are transferred
to Abyssocladia. Neocladia is a junior homonym and is here renamed Koltunicladia.
Our results provide strong evidence in support of the hypothesis that carnivory in sponges has evolved

only once. While spicule characters mostly reflect monophyletic groups at the generic level, differences
between genera represent evolution within family Cladorhizidae rather than evolution of carnivory in
separate lineages. Conflicting spicule characters can be reinterpreted to support the inclusion of all
carnivorous sponges within Cladorhizidae, and a carnivorous habit should thus be considered the main
diagnostic character in systematic classification.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

An aquiferous system used to filter water for particulate matter
is generally considered a defining feature of sponges (e.g.
Bergquist, 1978). The only known exceptions are the carnivorous

sponges (Demospongiae: Poecilosclerida) which have developed
the ability to trap, envelop, and digest prey items, representing a
unique evolutionary innovation within the phylum Porifera. Prey
capture is dependent on the plastic nature of the sponge and
happens through initial entanglement of the prey followed by
migration and complete envelopment into the sponge by amoebo-
cytes, which are able to digest the prey over a period of several
days (Vacelet and Duport, 2004). Morphological adaptations to
carnivory include an erect body morphology, a complete or partial
reduction of the aquiferous system and the presence of filaments
or inflatable spheres with an adhesive surface to catch and digest
suitable prey. Typical prey items are small crustaceans, but the
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sponges are not very selective, and prey suitability seems to be
governed mainly by the prey having appendages that can become
entangled in contact with the sponge (Vacelet, 2007; Vacelet and
Duport, 2004).

This carnivorous feeding strategy is generally considered to be
an evolutionary adaptation to the oligotrophic conditions of the
deep sea, where filter feeding is less viable for obtaining nutrients
(e.g. Vacelet, 2007). Carnivorous sponges are thus mainly consid-
ered deep-sea sponges, and they constitute a large part of the
sponge fauna at bathyal, abyssal and even hadal depths, with a
depth record of 8840 m (Koltun, 1970). They are, however, also
very much present in shallower habitats on the upper slope and
shelf and are not uncommon up to a depth of a couple of hundred
meters. Certain species have been reported even shallower
(<100 m), and a couple of species are known as shallow as 20 m,
mainly, but not exclusively, in cave habitats (Aguilar et al., 2011;
Bakran-Petricioli et al., 2007; Chevaldonné et al., 2014; Vacelet,
1996; Vacelet and Boury-Esnault, 1996; van Soest and Baker,
2011). Carnivorous sponges are frequently found in the general
enrichment zones around hydrothermal vents and seeps, benefit-
ing from the increased prey availability at these sites (Vacelet,
2006b). Chemoautotrophic symbiotic bacteria have been reported
from two species of carnivorous sponges, but the extent of symbi-
otic relationships is not known (Riesgo et al., 2007; Vacelet and
Boury-Esnault, 2002; Vacelet et al., 1995, 1996). However, the
symbiotic microbiome could be involved in the digestion process
(Dupont et al., 2014, 2013; Vacelet and Duport, 2004).

Approximately 130 species with a morphology suggesting
carnivory have been described to date. Due to the poor sampling
of most of the world’s oceans this number probably represents only
a portion of the total amount of carnivorous sponges, and new spe-
cies are continually being described (Kelly and Vacelet, 2011). The
vast majority of carnivorous sponges are presently placed within
Cladorhizidae Dendy, 1922 (Porifera: Demospongiae: Poeciloscle-
rida). This family currently contains seven genera and five subgen-
era accepted by the World Porifera Database (van Soest et al.,
2015): Abyssocladia Lévi, 1964; Asbestopluma (Asbestopluma)
Topsent, 1901; Asbestopluma (Helophloeina) Topsent, 1929; Cerci-
cladia Ríos, Kelly & Vacelet, 2011; Chondrocladia (Chondrocladia)
Thomson, 1873; Chondrocladia (Meliiderma) Ridley and Dendy,
1887; Chondrocladia (Symmetrocladia) Lee et al., 2012; Cladorhiza
Sars, 1872; Lollipocladia Vacelet, 2008 and Neocladia, Koltun,
1970. Morphological adaptations suggesting a carnivorous feeding
strategy (erect morphology, filaments, lack of aquiferous system,
observations of partially digested prey) are also present in certain
other taxa such as Euchelipluma spp. Topsent, 1909 (Guitarridae
Dendy, 1924) and some species currently placed within Esperiopsis
Carter, 1882 (Esperiopsidae Hentschel, 1923).

Carnivorous sponges belong to order Poecilosclerida, which
forms part of the clade Heteroscleromorpha Cárdenas, Pérez &
Boury-Esnault, 2012 in molecular analyses (Borchiellini et al.,
2004; Cárdenas et al., 2012; Erpenbeck and Wörheide, 2007;
Lavrov et al., 2008; Morrow et al., 2012; Redmond et al., 2013).
Chela microscleres are unique to the order Poecilosclerida, and a
clade containing chela-bearing poecilosclerids is usually recovered
in molecular analyses close to several polyphyletic assemblages of
mostly hadromerid sponges (Erpenbeck et al., 2007a; Erpenbeck
and Wörheide, 2007; Lavrov et al., 2008; Morrow et al., 2012;
Redmond et al., 2013; Thacker et al., 2013). Within the order, chela
morphology was previously one of the major characters forming
the basis of the subordinal classification, comprising Microcionina,
Latrunculina, Myxillina and Mycalina (Hajdu et al., 1994; Hooper
and van Soest, 2002; Kelly and Samaai, 2002). Molecular evidence
shows that this classification does not describe the true evolution-
ary relationships of the order (Erpenbeck and Wörheide, 2007;
Hajdu et al., 2013) and it is no longer considered valid in a newly

proposed classification of the Demospongiae (Morrow and
Cárdenas, 2015).

The systematics of the carnivorous sponges is currently based
primarily on spicule characters, with a special emphasis on chela
type at the generic level (Hajdu and Vacelet, 2002). While the cur-
rent cladorhizid genera are quite well characterized, they collec-
tively contain a large range of chela morphologies, including both
palmate and anchorate forms of both iso- and anisochelae as well
as more particular forms such as abyssochelae, cleistochelae and
cercichelae. This has caused several authors to question the mono-
phyly of family Cladorhizidae (Lopes et al., 2011; Vacelet, 2006a).
Thus morphological characters alone have not been able to answer
the question of whether carnivory has evolved multiple times
within the Poecilosclerida, or whether the carnivorous sponges
represent a monophyletic group with a wide range of spicule
assemblages (see Kelly and Vacelet, 2011). Only a few molecular
sequences are available for carnivorous sponges (Borchiellini
et al., 2004; Chevaldonné et al., 2014; Riesgo et al., 2014; Vargas
et al., 2013) and there has been no comprehensive attempt to
establish the phylogenetic relationships of the group and their
relationship to other poecilosclerids.

Accordingly, we investigated (1) whether carnivory in sponges
has evolved once or several times, i.e. whether the carnivorous
sponges constitute a monophyletic group, (2) the systematic posi-
tion of carnivorous sponges in relation to other poecilosclerids, (3)
the accuracy of the current intra-family systematics of family Cla-
dorhizidae as well as (4) the systematics of carnivorous species
currently assigned to other families. In this study, our overall aim
has been to construct the first comprehensive phylogeny of the
carnivorous sponges using molecular data, and relate the molecu-
lar findings to morphological characters. Based on our findings, we
propose a revision of the current systematics of the carnivorous
sponges and provide an overview of and key to identification of
carnivorous genera and subgenera.

2. Materials and methods

2.1. Collection, preservation and identification

Specimens from the North Atlantic and Arctic were collected on
board the Norwegian Institute of Marine Research and University
of Bergen research vessels RV ‘‘G.O. Sars” and RV ‘‘Hans
Brattström”, and the German GEOMAR research vessel RV ‘‘Posei-
don”. Specimens from the New Zealand EEZ were collected on
board the National Institute of Water & Atmospheric Research
(NIWA) research vessel RV ‘‘Tangaroa”. SW Atlantic specimens
were collected on board the RV ‘‘Miguel Oliver” as part of the
ATLANTIS project mapping the continental margin off Argentina.
SW Indian Ocean specimens were collected on board the RV
‘‘Vizconde de Eza” in April 2009 during the MAINBAZA cruise to
study benthic biodiversity of the continental margin off Mozam-
bique, and the RV ‘‘James Cook” cruise no. 66 to the Southwest
Indian Ocean Ridge (SWIOR) in 2011. Additional specimens were
obtained from the collections at the Naturalis Biodiversity Center
(Leiden) as well as single specimens from several sources (Table 1).

Most of the material was preserved in 96% ethanol. Some mate-
rial originally preserved in 70% ethanol was also successfully
sequenced, though in many cases only partially. All samples used
for the phylogenetic analyses, as well as additional specimens used
for morphological comparison, were examined and identified to
species level. Species yet to be formally described have been
assigned alphabetical characters to distinguish separate species.
Taxonomic descriptions of these species will be presented in forth-
coming papers.
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Table 1
List of specimens used in this study with taxonomic identification of voucher given, accession numbers and collection localities. Sequences from GenBank in bold. Abbreviations
used for voucher identification: BMNH, Natural History Museum (London, UK); CASIZ, California Academy of Sciences (USA); MNHN, Muséum National d’Histoire Naturelle (Paris,
France); NIWA, National Institute of Water and Atmospheric Research (Wellington, New Zealand); NTNU, Museum of Natural History and Archaeology (Trondheim, Norway); QM,
Queensland Museum (Brisbane, Australia); WAM, Western Australian Museum; ZMAPOR, Porifera collections of Naturalis Biodiversity Center (Leiden, Netherlands); ZMBN, The
Natural History Collections, University Museum of Bergen (Norway). AT and PAT abbreviations refer to 2008–2009 ‘‘Atlantis” and ‘‘Patagonia” cruise material deposited at Centro
Oceanográfico de Gijón.

Species Voucher 28S rDNA COI ALG11 Collection locality

Carnivorous sponges
Abyssocladia
A. dominalba ZMBN 103443 LN870577 LN870543 Lau Basin
A. dominalba ZMBN 103444 LN870578 LN870440 LN870544 Lau Basin
A. dominalba ZMBN 103445 LN870579 LN870441 LN870545 Lau Basin
A. dominalba ZMBN 103446 LN870580 LN870442 LN870546 Lau Basin
A. lakwollii NIWA 81378 LN870581 LN870443 Solomon Islands
A. n. sp. A NIWA 52674 LN870582 LN870444 Macquarie Ridge
A. n. sp. B NIWA 41033 LN870583 LN870445 Macquarie Ridge
A. n. sp. C NIWA 40540 LN870584 LN870446 Macquarie Ridge
A. sp. SMF 11750 HE611581

Asbestopluma
A. (A.) cf. belgicae 193-8 AGT 12 LN870588 LN870450 LN870518 Antarctica
A. (A.) bihamatifera ZMBN 103447 LN870587 LN870449 LN870517 Btw. Iceland/Faroe
A. (A.) cupressiformis ZMBN 103448 LN870589 LN870451 LN870519 Jan Mayen
A. (A.) cupressiformis ZMBN 103449 LN870590 LN870452 LN870520 Jan Mayen
A. (A.) cupressiformis ZMBN 103450 LN870591 LN870453 LN870521 Jan Mayen
A. (A.) cupressiformis ZMBN 103451 LN870592 LN870454 LN870522 Jan Mayen
A. (A.) cupressiformis ZMBN 103452 LN870593 LN870455 LN870523 Jan Mayen
A. (A.) desmophora QM G331844a LN870594 LN870456 Macquarie Ridge
A. (A.) furcata ZMBN 103453 LN870595 LN870457 LN870524 Mid-Arctic Ridge
A. (A.) furcata ZMBN 103454 LN870596 LN870458 LN870525 Mid-Arctic Ridge
A. (A.) furcata ZMBN 103455 LN870597 LN870459 LN870526 Jan Mayen
A. (A.) furcata ZMBN 103456 LN870598 LN870460 LN870527 Jan Mayen
A. (A.) furcata ZMBN 103457 LN870599 LN870461 LN870528 Jan Mayen
A. (A.) furcata ZMBN 103458 LN870600 LN870462 LN870529 Jan Mayen
A. (A.) furcata ZMBN 103459 LN870601 LN870463 LN870530 Jan Mayen
A. (A.) hypogea HE611582 W. Mediterranean
A. (A.) infundibulum ZMBN 103460 LN870602 LN870464 Nyegga (Norw. Shelf)
A. (A.) infundibulum ZMBN 103461 LN870603 LN870465 LN870531 Nyegga (Norw. Shelf)
A. (A.) lycopodium ZMBN 103462 LN870604 LN870466 Nyegga (Norw. Shelf)
A. (A.) lycopodium ZMBN 103463 LN870605 LN870470 LN870532 Jan Mayen
A. (A.) lycopodium ZMBN 103464 LN870606 LN870467 LN870533 Skjold (Norw. Shelf)
A. (A.) lycopodium ZMBN 103465 LN870607 LN870468 LN870534 Nyegga (Norw. Shelf)
A. (A.) lycopodium ZMBN 103466 LN870608 LN870469 LN870535 Skjold (Norw. Shelf)
A. (A.) obae NIWA 28893 HE611583 Ross Sea
A. (A.) occidentalis MCZ:DNA 105732 JX999062
A. (A.) pennatula ZMBN 103467 LN870613 LN870475 LN870540 Barents Sea
A. (A.) pennatula ZMBN 103468 LN870614 LN870476 LN870541 Barents Sea
A. (A.) pennatula ZMBN 103469 LN870615 LN870477 LN870542 Barents Sea
A. (A.) n. sp. A BMNH 2015.6.4.1 LN870609 LN870471 LN870536 SW Indian Ocean
A. (A.) n. sp. A BMNH 2015.6.4.2 LN870610 LN870472 LN870537 SW Indian Ocean
A. (A.) n. sp. A BMNH 2015.6.4.3 LN870611 LN870473 LN870538 SW Indian Ocean
A. (A.) n. sp. B AT-0309 6LO15 LN870612 LN870474 LN870539 Patagonia

Cercicladia
C. australis NIWA 39599 LN870478 Macquarie Ridge
C. australis PAT-0108 77DR5 LN870479 Patagonia

Chondrocladia
C. (C.) antarctica SMF 11752 HE611586 E. Weddell Sea
C. (C.) fatimae BPCP 3729 LN870616 LN870480 LN870557 Papua New Guinea
C. (C.) fatimae BPCP 3736 LN870617 LN870481 LN870558 Papua New Guinea
C. (C.) gigantea NTNU 15204a LN870618 LN870482 Ross Isl. (Svalbard)
C. (C.) gigantea NTNU 15204b LN870619 LN870483 LN870559 Ross Isl. (Svalbard)
C. (C.) nani MNHN.D.NBE.1088 LN870492 NW of Kerguelen
C. (C.) robertballardi MNHN.D.CL.4110 LN870627 LN870493 LN870567 Gorringe Bank
C. (C.) vaceleti AT-0308 9LO93 LN870628 LN870494 LN870568 Patagonia
C. (C.) vaceleti PAT-0108 51DR16 LN870495 Patagonia
C. (C.) vaceleti PAT-0108 76DR15 LN870496 Patagonia
C. (C.) n. sp. A AT-0308 8LO115 LN870622 LN870486 LN870562 Patagonia
C. (C.) n. sp. A AT-0308 2DR3 LN870621 LN870561 Patagonia
C. (C.) n. sp. A PAT-0108 52DR16 LN870623 LN870487 LN870563 Patagonia
C. (C.) n. sp. A PAT-1208 46DR5 LN870624 LN870488 LN870564 Patagonia
C. (C.) n. sp. A PAT-1208 58DR5 LN870625 LN870489 LN870565 Patagonia
C. (C.) n. sp. B NIWA 25838 LN870491 Ross Sea
C. (C.) n. sp. C NIWA 25826 LN870626 LN870490 LN870566 Otago (NZ)
C. (M.) n. sp. A BMNH 2015.6.4.4 LN870485 LN870560 SW Indian Ocean
C. (S.) lyra CASIZ 18877 LN870620 LN870484 South Escanaba Ridge

(continued on next page)
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2.2. Datasets

We created one main multi-gene dataset to infer the phylogeny
of the carnivorous sponges, and one 18S rDNA dataset with larger
outgroup sampling to infer the general position of the carnivorous
sponges within Poecilosclerida. For the multi-gene dataset, includ-
ing all available carnivorous sponges as well as outgroup species,
we chose three independent molecular markers with suitable res-
olution for species, genus and family level phylogeny: the 28S
rDNA C1–D2 partition (Chombard et al., 1997), the overlapping
‘‘Folmer” and ‘‘Erpenbeck” fragments of COI (Folmer et al., 1994;

Rot et al., 2006), and part of the protein-coding nuclear gene
ALG11 (Belinky et al., 2012). Due to a combination of variable
preservation quality, large surface to mass ratio and adhesive sur-
face, the carnivorous sponges represented a challenging material.
Thus we used modifications of standard barcoding primers for
COI to exclude contamination.

For the 28S rDNA, COI and ALG11 dataset we sequenced speci-
mens from the carnivorous family Cladorhizidae Dendy, 1922 and
the families Guitarridae Dendy, 1924, Mycalidae Lundbeck, 1905
and Esperiopsidae Hentschel, 1923. These families are regarded as
close relatives to Cladorhizidae, and Guitarridae and Esperiopsidae

Table 1 (continued)

Species Voucher 28S rDNA COI ALG11 Collection locality

Cladorhiza
C. abyssicola ZMBN 103470 LN870631 LN870499 LN870550 Skagerrak
C. abyssicola ZMA POR 19500 LN870629 LN870497 LN870548 SE Rockall Bank
C. abyssicola ZMA POR 19732 LN870630 LN870498 LN870549 SE Rockall Bank
C. corticocancellata ZMBN 103471 LN870632 LN870500 LN870551 Nyegga (Norw. Shelf)
C. cf. gelida SMF 11753 HE611584 Greenland Sea
C. gelida ZMBN 103472 LN870633 LN870501 LN870552 Mid-Arctic Ridge
C. gelida ZMBN 103473 LN870634 LN870502 LN870553 Jan Mayen
C. gelida ZMBN 103474 LN870635 LN870503 LN870554 Jan Mayen
C. penniformis SMF 11751 HE611585 E. Weddell Sea
C. tenuisigma ZMBN 103475 LN870636 LN870504 LN870555 Bear Isl. Shelf
C. tenuisigma ZMBN 103476 LN870637 LN870505 LN870556 Faroe-Shetland Channel

Euchelipluma
E. n. sp. A PAT-0108 75DR15 LN870640 LN870508 LN870571 Patagonia
E. n. sp. A AT-0309 14LO103 LN870639 LN870507 LN870570 Patagonia
E. n. sp. A PAT-1208 96DR5 LN870641 LN870509 LN870572 Patagonia

Esperiopsis
E. koltuni ZIN RAS 10774 LN870638 LN870506 LN870569 Sea of Okhotsk

Poecilosclerida
Coelosphaeridae
Lissodendoryx (A.) fibrosa NCI 401 KC869529 Malaysia
Lissodendoryx (E.) arenaria NCI 321 KC869561 South Africa
Lissodendoryx (L.) complicata ZMBN 103478 LN870644 LN870513 LN870574 Mid-Arctic Ridge

Crambeidae
Crambe crambe UCM PWC 933 AY561883
Crambe crambe AF526297 Mediterranean
Monanchora arbuscula SI06x202 KC869447 Panama

Desmacididae
Desmapsamma anchorata UCM PWC 1660 HE591461 HE591451 Panama

Esperiopsidae
Amphilectus fucorum ZMA POR 19817 LN870585 LN870447 Helgoland
Amphilectus fucorum ZMA POR 22561 LN870586 LN870448 LN870547 North Sea
Amphilectus fucorum BELUM:Mc5093 HQ379226 Wales
Ulosa stuposa ZMA POR 22527 LN870648 LN870516 LN870576 Roscoff, Eng. Channel

Guitarridae
Guitarra antarctica ECOQUIM 786e LN870642 LN870510 LN870573 Weddell Sea
Guitarra fimbriata NCI 405 KC869537 South Africa
Guitarra n. sp. A WAM Z31763 LN870511 Off. Ningaloo Coast

Mycalidae
Mycale (A.) laxissima SBP S44 EF519651 Belize
Mycale (A.) mirabilis QM BG306269 HE611590 Queensland
Mycale (A.) mirabilis QM BG307148 HE611591 Queensland
Mycale (A.) mirabilis QM BG305553 HE611592 Queensland
Mycale (A.) mirabilis QM BG300561 HE611589 Shark Bay, W. Aus.
Mycale (M.) lingua ZMBN 103479 LN870646 LN870514 Langenuen, W. Norw.
Mycale (M.) lingua ZMA POR 20445 LN870645 Skagerrak
Mycale (R.) marshallhalli ZMA POR 20471 LN870647 LN870515 LN870575 Skagerrak

Podospongiidae
Negombata magnifica TAU:25198 NC_010171 FR819668 Red Sea

Merliida (Hamacanthidae)
Hamacantha (V.) falcula ZMBN 103477 LN870643 LN870512 Korsfjord, W. Norw.

a Originally NIWA 41013.
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are considered to contain carnivorous species. Additionally, we
sequenced Lissodendoryx (Lissodendoryx) complicata (Hansen,
1885) and added poecilosclerid sequences from GenBank (Table 1).
As it is considered a sister group to Poecilosclerida, Hamacantha
(Vomerula) falcula (Bowerbank, 1874) (Merliida) was chosen as out-
group for the analyses. Eighty specimens representing 40 species
were successfully partially or completely sequenced for this data-
set, giving a total of 101 taxa including GenBank sequences.

For the 18S rDNA dataset, we sequenced a subset of 11 speci-
mens (7 cladorhizids, Euchelipluma n. sp. A, Guitarra antarctica
Hentschel, 1914, Ulosa stuposa (Esper, 1794) and Hamacantha (V.)
falcula). A large number of nearly complete demosponge 18S rDNA
sequences have been made available through the Porifera Tree of
Life (PorTOL) project (e.g. Redmond et al., 2013). As 18S rDNA is
more conserved than the markers chosen for the combined 28S
rDNA, COI and ALG11 analysis, adding carnivorous species to exist-
ing 18S rDNA sequence data from order Poecilosclerida presented
an opportunity to put the carnivorous sponges into a wider sys-
tematic context.

Molecular analyses have shown that several taxa previously
placed within Poecilosclerida (chiefly Raspailiidae but also others)
are polyphyletic to other poecilosclerids (e.g. Erpenbeck et al.,
2007a; Redmond et al., 2013), and in the newly proposed classifi-
cation of Morrow and Cárdenas (2015) the scope of the order has
been reduced to encompass only those families who have been
consistently recovered as a monophyletic assemblage. We added
all available 18S rDNA sequences from GenBank belonging to Poe-
cilosclerida sensu Morrow and Cárdenas (2015) >1250 bp in length
(with a large majority >1700 bp in length), as well as sister taxa
including Merlia normani Kirkpatrick, 1908 (Merliida), Desmacella
spp. (Desmacellida) and Xenospongia patelliformis Gray, 1858
(Tethyida) for a total of 159 specimens (accession numbers given
in the supplementary information phylogenetic trees). The dataset
comprises 18 of the 20 currently recognized families of Poeciloscle-
rida, including Mycalidae, Guitarridae and Esperiopsidae, and pro-
vides comprehensive coverage of the order.

2.3. Extraction, amplification and sequencing

DNA extraction was performed using the Qiagen Blood and Tis-
sue kit (QIAGEN) according to the manufacturer’s instructions,

with the additional step of removing spicules by pipetting after
lysis before adding ethanol to the mixture. The mitochondrial
and ALG11markers were amplified in 25 ll reactions using TaKaRa
Ex Taq HS DNA Polymerase (TaKaRa Bio) following the recom-
mended quantities of the manufacturer. The ribosomal sequences
were amplified using TaKaRa Ex Taq HS taq with Qiagen buffer
adding 5 ll Q-solution to each reaction (QIAGEN). PCR products
were purified using ExoSAP-IT (USB Europe, Germany).

For 18S rDNA the primer pairs SP18aF-600R18S, 400F18S-
1350R18S and 1200F18S-18SgR were used (Redmond et al.,
2007) (Table 2) (1 cycle [5 min/94 �C; 2 min/48–54 �C, 2 min/72 �C];
35 cycles [1 min/94 �C, 30–50 s/48–54 �C, 1 min/72 �C]; 7 min/
72 �C). For the C1–D2 28S partition the Ep1b0 and D2 primer pair
was used (Chombard et al., 1997) (Table 2) (1 cycle [5 min/94 �C,
2 min/62 �C, 2 min/72 �C]; 35 cycles [1 min/94 �C, 45 s/62 �C,
1 min/72 �C]; 7 min/72 �C). For the ALG11 fragment a nested
approach using the D1 and R1, then the D2 and R2 primer pairs
was used using the same PCR cycling profile both times (Belinky
et al., 2012) (Table 2) (1 cycle [5 min/94 �C; 2 min/54 �C,
2 min/72 �C]; 35 cycles [1 min/94 �C, 30 s/54 �C, 1 min/72 �C];
7 min/72 �C). For the overlapping Folmer and Erpenbeck fragments
the modified LCO1490-Neg and HCO2198-Cla, and COX1-D2-Cla
and COX1-R1 primers were used (Folmer et al., 1994; Rot et al.,
2006) (Table 2) (5 min/94 �C; 5 cycles [45 s/94 �C, 30 s/45 �C,
1 min/72�]; 30 cycles [45 s/94 �C, 30 s/50 �C, 1 min/72 �C];
7 min/72 �C). The LCO1490-Neg primer modification is based on
the full mitochondrial genome of Negombata magnifica
(NC_010171) from GenBank, while the internal primers
HCO2198-Cla and COX-D2-Cla are modifications to the original
primers based on initial results from this study.

2.4. Alignment

Sequence contigs were assembled, quality checked, and
trimmed using Geneious 6.1.7 by Biomatters (www.geneious.com),
and sequences were checked for contamination using BLAST
searches (http://blast.ncbi.nlm.nih.gov).

Alignment of the protein-coding COI and ALG11 partitions was
done using MUSCLE 3.8.425 (Edgar, 2004), and alignments were
examined and corrected as necessary using Geneious 6.1.7. The
COI alignment contains 1216 characters of which 587 are variable

Table 2
List of primers used in this study.

Partition Sequence Source

18S rDNA
1F18S 50-AAC CTG GTT GAT CCT GCC AGT-30 Redmond et al. (2007)
600R18S 50-CGA GCT TTT TAA CTG CAA PCR-30 Redmond et al. (2007)
400F18S 50-CCT GAG AAA CGG CTA CCA CA-30 Redmond et al. (2007)
1350R18S 50-CGG GAC TAG TTA GCA GGT TAA-30 Redmond et al. (2007)
1200F18S 50-TAA TTT GAC TCA ACA CGG G-30 Redmond et al. (2007)
1800R18S 50-GTT CAC CTA CYG AAA CCT TGT T PCR-30 Redmond et al. (2007)

28S rDNA
Ep1b0 50-GTG GCC GGG AGA GGC AGC-30 Chombard et al. (1997)
D2 50-TCC GTG TTT CAA GAC GGG-30 Chombard et al. (1997)

ALG11
ALG11-D1 50-TTY CAY CCN TAY TGY AAY GCN GGN GG-30 Belinky et al. (2012)
ALG11-R1 50-ATN CCR AAR TGY TCR TTC CAC AT-30 Belinky et al. (2012)
ALG11-D2 50-TGY AAY GCN GGN GGN GGN GGN GA-30 Belinky et al. (2012)
ALG11-R2 50-CCR AAR TGY TCR TTC CAC ATN GTR TG-30 Belinky et al. (2012)

COI
LCO1490-Neg 50-TTT CAA CAA ATC ATA AGG ATA TAG G-30 This study (original primer Folmer et al., 1994)
HCO2198-Cla 50-TAA ACC TCC GGG TGG CCA AAA AAC CA-30 This study (original primer Folmer et al., 1994)
COX1-D2-Cla 50-AAC ACA GCT TTT TTT GAT CCT GCG GG-30 This study (original primer Rot et al., 2006)
COX1-R1 50-TGT TGR GGG AAA AAR GTT AAA TT-30 Rot et al. (2006)
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and 447 parsimony informative while the ALG11 alignment con-
tains 940 characters of which 644 are variable and 578 parsimony
informative. As an additional quality check and in order to identify
codon positions, sequence alignments were translated using Bio-
Edit 7.2.3 (Hall, 1999). Codon saturation plots were examined for
all three positions in each gene using DAMBE 5.3.108 (Xia, 2013)
with no saturation detected.

Several studies have shown the utility of using secondary struc-
ture in analysis of ribosomal sequences (e.g. Erpenbeck et al.,
2007b; Voigt et al., 2008). Accordingly, initial alignment of 18S
rDNA was done using ClustalW 2.1 (Larkin et al., 2007), and this
alignment was manually fitted to a modified version of the consen-
sus 18S rRNA secondary structure published by Voigt et al. (2008)
using SeaView 4 (Gouy et al., 2010), creating a 1784 bp sequence
alignment embedded in a 1864 bp secondary structure model
alignment to preserve stem and loop structure. Two ambiguously
aligned loop regions 10 and 32 bp long were identified using a
combination of manual examination and gBlocks 0.91b
(Castresana, 2000; Talavera and Castresana, 2007) with default
parameters except all gap positions were set to allowed. These
regions were excluded from further analysis. The resulting align-
ment contains 1742 characters of which 350 are variable and
259 are parsimony informative.

Alignment of 28S rDNA was done in MAFFT7 (Katoh and
Standley, 2013) using the Q-INS-i algorithm, and the alignment
was trimmed using gBlocks 0.91b with default parameters except
all gap positions were set to allowed, reducing alignment size from
957 to 734 characters, of which 351 are variable and 447 parsi-
mony informative. As we only had a partial 28S rDNA sequence,
which we incorporated into a concatenated phylogenetic analysis
(see Section 2.5) we did not employ a secondary structure model
for this partition.

2.5. Phylogenetic analysis

The use of multispecies coalescent models has been shown to
outperform analyses of concatenated (supermatrix) datasets in
recent studies (e.g. Heled and Drummond, 2010; Lambert et al.,
2015). However, the majority of species in our main dataset are
represented by single specimens only precluding the use of these
models, and thus we used a concatenated dataset of 28S rDNA,
COI and ALG11 (2890 bp) for multi-locus analyses. In this dataset,
28S (AY561883) and COI (AF526297) sequences from two different
GenBank Crambe crambe specimens were combined into a chimeric
sequence.

All phylogenetic analyses were performed both by Bayesian
inference using MrBayes 3.2.2 (Huelsenbeck et al., 2001;
Ronquist and Huelsenbeck, 2003) and maximum likelihood (ML)
using RAxML 8.0.20 (Stamatakis, 2014b). JModelTest 2.1.5
(Darriba et al., 2012; Guindon and Gascuel, 2003) was used to find
the optimal site model for each gene and codon position (where
applicable). In each case the GTR + G or GTR + I + G model was con-
sidered the most appropriate according to the Akaike Information
Criterion. As argued by among others Stamatakis (2014a), invari-
able sites represents an additional approach to incorporate rate
heterogeneity already covered by the gamma distribution parame-
ter, and thus we choose to not employ invariable sites in our
analyses.

For 18S rDNA the dataset was partitioned into stem and loop
regions according to the secondary structure alignment, with spe-
cial substitution models used for the paired sites of the stem
regions. The Perl script 2analysis, available from the Porifera SSU
rRNA secondary structures Database (http://www.palaeontolo-
gie.geo.lmu.de/molpal/RRNA/) was used to build the MrBayes
model from the 18S alignment. In MrBayes the GTR + G model
was used for loop regions while the supported RNA16B substitu-

tion model was used for stem regions. The Markov chain Monte
Carlo (MCMC) analysis was performed with two four-chain runs
for 12 ⁄ 106 generations with 3 ⁄ 106 generations burn-in and sam-
pling every 1000 generations, with final deviation of split frequen-
cies at 0.004 and log likelihood ESS at 5030. In RAxML we used the
GTRGAMMAmodel with the RNA7D substitution model applied for
stem regions with 2000 rapid bootstraps, the default hill climbing
algorithm and a randomized stepwise addition starting MP tree.

For 28S rDNA, COI and ALG11, MrBayes and RAxML analyses
were run both on the concatenated dataset and on each gene sep-
arately. For both the MrBayes and the RAxML analyses the concate-
nated dataset was partitioned into seven unlinked partitions
comprising 28S rDNA and the three codon positions of COI and
ALG11 respectively. Codon partitioning was also employed for
single-gene COI and ALG11 analyses. The MCMC analysis com-
prised two four-chain runs for 16.56 ⁄ 126 generations with
4.12 ⁄ 106 generations burn-in for the concatenated dataset and
12 ⁄ 106 generations with 3 ⁄ 106 generations burn-in for single-
gene analyses, with sampling every 1000 generations. Chain con-
vergence was monitored by observation of log likelihood values
and standard deviation of split frequencies (in the range of
0.002–0.007 for all analyses). Posterior log likelihood ESS scores
were examined using Tracer 1.6 (Drummond et al., 2012) (in the
range of 2500–7000 for all analyses). For the ML analysis in RAxML
the GTRGAMMA model was used with 2000 rapid bootstraps and
the default rapid hill climbing algorithm with a randomized step-
wise addition starting MP tree.

3. Results

With the exception of the monotypic genera Lollipocladia and
Neocladia (the latter here renamed Koltunicladia, see Section 4.9)
and the Asbestopluma subgenus Helophloeina (containing three spe-
cies), we were able to obtain sequence data from all recognized
taxa with known carnivorous sponges at the subgenus level or
higher, providing a comprehensive dataset representing the known
diversity of carnivorous sponges. The RAxML best trees from the
18S rDNA and concatenated three gene dataset are illustrated
(Figs. 1 and 2) with bootstrap values (BS) over 50 from the ML anal-
yses and posterior probabilities (PP) over 0.5 from the Bayesian
analyses shown. Genetrees for each analysis, including individual
28S rDNA, COI and ALG11 analyses, are given in supplementary
Figures A–J.

3.1. 18S rDNA tree

The general results from the 18S rDNA genetree are comparable
to those of Redmond et al. (2013) (Fig. 1). Two clades of Merlia and
Hamacantha (V.) falcula together with Desmacella Schmidt, 1870
were recovered as sister groups to the rest of Poecilosclerida.
Amphilectus fucorum (Esper, 1794) (Esperiopsidae, non-
carnivorous) was recovered in a separate clade close to the families
Isodictyidae Dendy, 1924 and Podospongiidae de Laubenfels, 1936
and is not closely related to the carnivorous sponges nor to Mycal-
idae or Guitarridae. While earlier studies has found Ulosa stuposa
(BELUM:Mc4523; KC901912) outside order Poecilosclerida
(Morrow et al., 2012; Redmond et al., 2013), our specimen identi-
fied as U. stuposa was recovered within the Esperiopsidae clade
(BS = 82; PP = 0.88). All included carnivorous sponges were recov-
ered in a well-supported clade with Guitarra Carter, 1874
(BS = 77; P = 0.95) and Mycalidae (BS = 96; P = 0.99) as sister
groups, providing support to the hypothesis that carnivorous
sponges represent a monophyletic assemblage, though the dataset
is too conserved to confidently resolve relationships within the
carnivorous sponges.
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3.2. Combined 28S rDNA, COI and ALG11 tree

The results from the combined partial 28S rDNA, COI and ALG11
phylogenetic analyses (Fig. 2) recovers all carnivorous sponges,
including Cladorhizidae, Esperiopsis koltuni Ereskovsky & Willenz,
2007 and genus Euchelipluma Topsent, 1909, as a monophyletic
group with high support (BS = 95; PP = 1), closely related to Mycale
(BS = 73; PP = 0.81) and Guitarra (BS = 100; PP = 1). Contrary to the
18S rDNA analyses, Mycale rather than Guitarra is recovered as the
closest sister group to the carnivorous sponges, and the precise
relationship between these three families is thus not entirely clear.
Similar to the 18S rDNA analysis the non-carnivorous Esperiopsi-
dae species Amphilectus fucorum and Ulosa stuposa are recovered

in a separate, more distant clade (BS = 79; PP = 0.99). Thus the
analyses provide additional support for the inclusion of all carniv-
orous species into Cladorhizidae.

Asbestopluma species were recovered as a paraphyletic group
(BS = 95–96; P = 1) sister to the remaining carnivorous sponges.
Surprisingly, the species A. (A.) lycopodium is not monophyletic.
The species Cercicladia australis Ríos, Kelly & Vacelet, 2011 and
Esperiopsis koltuni were recovered within genus Abyssocladia
Lévi, 1964 (BS = 68; PP = 0.72). Euchelipluma was recovered as a
sister group to Abyssocladia (BS = 45; PP = 0.9). Chondrocladia
Thomson, 1873 and Cladorhiza Sars, 1872 are sister clades
(BS = 85; PP = 1), and Chondrocladia subgenera Meliiderma Ridley
and Dendy, 1887 and Symmetrocladia Lee et al., 2012 were both

Fig. 1. ML best tree of the Poecilosclerida 18S rDNA phylogenetic dataset. Bootstrap values and posterior probabilities (from the Bayesian analysis) are indicated in full for
main nodes and using symbols for internal nodes. The tree is rooted using Xenospongia patelliformis (Hadromerida). Species names in bold represent sequences downloaded
from GenBank. The shaded area indicates the carnivorous sponge clade. High support defined as BS 85–100, PP 0.9–1; medium support as BS 70–84, PP 0.8–0.89; low support
as BS 50–69, PP 0.5–0.79. Unmarked nodes have support values of either less than 50 (BS) or 0.5 (PP).
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recovered within subgenus Chondrocladia, though the exact place-
ment of Meliiderma is not entirely certain (BS = 54; PP = 0.92). Of
the genes in the combined dataset COI is the most conservative
while 28S rDNA and ALG11 are more variable. The combined
28S rDNA, COI and ALG11 analyses are able to provide strong
support for the monophyly of carnivorous sponges, and resolved
the phylogeny with robust support for almost all genus level
clades.

4. Discussion

4.1. Systematic position of the carnivorous sponges

Almost all carnivorous species are currently assigned to Clador-
hizidae. However, the family lacks a clear spicule-based synapo-
morphy and contains genera with different chela morphologies.
Based on chela characters, certain carnivorous species have been

Fig. 2. ML best tree of the combined 28S rDNA, COI and ALG11 phylogenetic dataset. Bootstrap values and posterior probabilities (from the Bayesian analysis) are indicated in
full for main nodes and nodes of special importance, and using symbols for other internal nodes. The tree is rooted using Hamacantha (V.) falcula. Species names in bold
represent sequences collected from GenBank. High support defined as BS 85–100, PP 0.9–1; medium support as BS 70–84, PP 0.8–0.89; low support as BS 50–69, PP 0.5–0.79.
Unmarked nodes have support values of either less than 50 (BS) or 0.5 (PP). The most common microscleres for each genus are indicated.
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placed within Guitarridae and Esperiopsidae. Several authors have
suggested that Cladorhizidae might be polyphyletic and that a
carnivorous feeding mode has evolved several times in different
poecilosclerid lineages as a response to oligotrophic deep-sea
conditions (Lopes et al., 2011; Vacelet, 2006a, 2007).

In all molecular analyses, carnivorous sponges were recovered
as a monophyletic assemblage closely associated with Mycalidae
and the rest of Guitarridae. Based on spicule similarities, and given
that the 18S rDNA dataset contains nearly all families within Poe-
cilosclerida, this suggests that the latter two families are sister
groups to the carnivorous sponges. However, the analyses were
not able to completely resolve whether Guitarridae or Mycalidae
is the closest sister group, or if they constitute their own separate
clade. In contrast Esperiopsidae, excluding carnivorous species,
was recovered in a different part of the Poecilosclerida tree
(Fig. 1; Fig. 2; supplementary Figures A–J).

The molecular analyses thus support the hypothesis that a
carnivorous habit has evolved only once within the sponges
and that Cladorhizidae is monophyletic with the addition of
Euchelipluma and carnivorous species of Esperiopsis Carter, 1882.
This result is congruent with earlier molecular data providing
support for the abandonment of the chela-based suborders of
the Poecilosclerida (Erpenbeck and Wörheide, 2007; Hajdu
et al., 2013; Morrow and Cárdenas, 2015) and shows that differ-
ences in chela morphology represents evolutionary change within
Cladorhizidae. The spicule complement of the carnivorous Esperi-
opsis species can be reinterpreted to fit into Cladorhizidae (see
Section 4.4), and the close affinity of Euchelipluma to Abyssocladia
means that the presence of placochelae in Guitarra, Euchelipluma
and Asbestopluma (A.) anisoplacochela should be interpreted as a
homoplasy.

A carnivorous feeding mode represents a radical transition from
a filter-feeding sponge to a different body plan. Chondrocladia is
unique among the carnivorous sponges in that the genus has
retained a partial aquiferous system. A reasonable hypothesis has
thus been that this genus represents an intermediate form
between filter-feeding sponges and carnivory, implying an early
divergence within the Cladorhizidae (e.g. Kübler and Barthel,
1999), a hypothesis also supported by evidence showing that this
genus might have existed as early as the early Jurassic (Vacelet
and Kelly, 2008). Surprisingly, Chondrocladia was recovered nested
within the Cladorhizidae, suggesting the independent complete
reduction of the aquiferous system in all preceding cladorhizid
lineages.

4.2. Genera Asbestopluma Topsent, 1901 and Lycopodina Lundbeck,
1905

Asbestopluma is generally defined as Cladorhizidae with
palmate anisochelae together with either sigma(ncistra)s, forceps
spicules (which are only found in this genus among the Cladorhizi-
dae), or microtylostyles (subgenus Helophloeina Topsent, 1929)
(Hajdu and Vacelet, 2002; Lundbeck, 1905; Vacelet, 2006a, 2007).
In recent years, several individual species have been described
that, while overall conforming to the description above, depart
from it in some way (e.g. presence of isochelae, anchorate aniso-
chelae, anisoplacochelae) (Kelly and Vacelet, 2011; Lopes et al.,
2011; Lopes and Hajdu, 2014).

Asbestopluma was originally erected by Topsent as a subgenus
of Cladorhiza on the basis of an unpublished record by Lankester
in 1882 (Topsent, 1901). Lundbeck (1905) elevated Asbestopluma
to genus rank and erected three subgenera of Asbestopluma named
Asbestopluma sensu strictu (containing the type species), Lycopodina
and Cotylina. In Lundbeck’s subgeneric classification Asbestopluma
s.s. was defined as pinniform species with sigma(ncistra)s and a

stalk coating containing acantho(tylo)styles or strongyles, Lycopo-
dina as species with forceps spicules with an elongated body axis,
and Cotylina as species also with forceps spicules but with a short,
pedunculate body (Lundbeck, 1905). Hentschel (1914) cast doubt
on the validity of the distinction between Lycopodina and Cotylina,
and while de Laubenfels (1936) elevated Lycopodina to genus rank
(not mentioning its relation to Cotylina, so his view of their rela-
tionship is unknown) these subgenera have generally not been
considered valid as the diagnoses are partly based on habit
(Hajdu and Vacelet, 2002; Vacelet and Boury-Esnault, 1996).

In the molecular results from our combined analysis Asbesto-
pluma (Asbestopluma) was recovered in two separate clades with
high support making the subgenus and also the genus itself clearly
paraphyletic. The two clades recovered in the analysis correspond
to Lundbeck’s Asbestopluma s.s. and a separate clade containing
both Lycopodina and Cotylina (Fig. 2).

In our opinion, this split is well-supported by morphological
characters. The type species of Asbestopluma (Asbestopluma), A.
(A.) pennatula (Schmidt, 1875), features two categories of palmate
anisochela (with the larger type being more accurately described
as intermediate between palmate and arcuate), sigmancistras,
acanthotylostyles in a clearly separate basal coating, but never for-
ceps spicules, which corresponds to Lundbeck’s Asbestopluma s.s.
subgenus (Fig. 3A–F). Other species of this type may vary in certain
aspects, most often in regards to the large type of anisochela,
which may be absent, transformed into isochelae or in one case
anisoplacochelae. On the other hand the species of the second,
more basal clade feature one type of palmate or arcuate anisochela
only. There are no special coating spicules in the basal stalk, sigmas
or sigmancistras are never present, and forceps spicules may be
present though in many cases rare or missing as they seem con-
nected to spermatic cysts (Riesgo et al., 2007) (Fig. 3G–L). This cor-
responds to both Lundbeck’s Cotylina and Lycopodina subgenera,
with the distinction between them being the habit (pedunculate,
spherical or cup-shaped vs. elongated main body).

We thus propose to revive Lycopodina as a genus understood to
include both subgenera Lycopodina and Cotylina, which removes
the need to use the habit in the diagnosis. The first species
described within this genus is A. (A.) cupressiformis (Carter, 1874).
However de Laubenfels (1936) designated A. (A.) lycopodium
(Levinsen, 1887) as the type species when elevating Lycopodina
to genus rank and the affinity to A. (A.) lycopodium is also implied
in the genus name, meaning that A. (A.) lycopodium should be con-
sidered as the type species of the genus.

The species A. (A.) lycopodium was recovered in two separate
locations within the Lycopodina clade in the combined analysis
(Fig. 2). These results were reproduced with more than one speci-
men in each clade and appear solid. While the specimens in both
clades have a habit similar to A. (A.) lycopodium and no discernable
differences in the spicule complements were found, the three spec-
imens from the sister clade to A. (A.) infundibulum (Levinsen, 1887)
have a thicker, stouter habit than those of the sister clade to A. (A.)
occidentalis (Lambe, 1893). The habit and molecular differences
imply that the specimens belong to two different species, though
it is not possible to ascertain which of the two clades is actually
A. (A.) lycopodium using the original species description
(Levinsen, 1887). A possible interpretation is that this morphology
represents the basal form within this clade (Fig. 3G), implying the
existence of one or several cryptic species complexes, which is
interesting in the light of the extreme depth range (70–8840 m)
(Koltun, 1970; Lambe, 1893) reported for the morphologically very
similar species A. (A.) occidentalis.

As it shares the palmate anisochelae of Asbestopluma, genus
Helophloeina Topsent, 1929 has been considered a synonym of
Asbestopluma (Hajdu and Vacelet, 2002). It has recently been resur-
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rected as a subgenus of Asbestopluma (Vacelet, 2006a) with other
Asbestopluma species placed in subgenus Asbestopluma (Asbesto-
pluma) by default. The vast majority of current Asbestopluma
species are placed within subgenus Asbestopluma, with only three
species currently recognized for subgenus Helophloeina (van
Soest et al., 2015). Subgenus Helophloeina is not a part of the
molecular dataset. As desmas and sigma(ncistra)s are found both
within Helophloeina and the clade containing Asbestopluma s.s. we
suggest to retain the current subgeneric classification for the
remaining species within genus Asbestopluma.

4.3. Genus Euchelipluma Topsent, 1909

Euchelipluma contains four species that, based on habit and
reports of partly digested crustacean debris (Vacelet, 2006b), are
all known to be carnivorous. The genus shares placochelae with
Guitarra, and is thus currently placed within Guitarridae. However,
both general morphology and the presence of sigmancistras sug-
gest a close affinity to other carnivorous sponges.

The combined analysis establishes genus Euchelipluma as
belonging to Cladorhizidae (Fig. 2). It is recovered as a sister group
to Abyssocladia with varying support (BS = 45; PP = 0.9) and the
shape of the sigmancistras as well as presence of arcuate isochelae
within Euchelipluma also suggests a close relationship between
these genera. However, placochelae are not found within Abysso-
cladia and given that its exact position is ambiguous it is our view
that Euchelipluma should be retained as an independent genus, but
moved to the Cladorhizidae.

4.4. The carnivorous Esperiopsis species

A few species currently assigned to Esperiopsis Carter, 1882
based on the presence of palmate isochelae have a carnivorous
habit, including E. desmophora Hooper & Lévi, 1989, E. flagrum
Lehnert, Stone & Heimler, 2006, E. koltuni Ereskovsky & Willenz,
2007 and E. symmetrica Ridley & Dendy, 1886 (Lopes et al., 2011;
Vacelet, 2006a, 2007). Given the presence of arcuate and palmate
isochelae within certain recently described species in Asbestopluma
and Abyssocladia (Lopes et al., 2011; Vacelet, 2006a) and the mono-
phyly of carnivorous sponges including E. koltuni as shown by the
molecular results (Fig. 2), these species should be reassigned to
family Cladorhizidae.

Some morphological support for this reassignment is evident
in the shape of the chelae themselves, as also noted by Lopes
et al. (2011): While the isochelae within Esperiopsis and
Amphilectus Vosmaer, 1880 are normally clearly palmate with
broad frontal teeth and straight shafts (Fig. 4A), the chelae of
the suspected carnivorous species are arcuate to palmate with
arched shafts (Fig. 4B–D). The chelae of E. symmetrica are less
developed than those of the other three species (Fig. 4B),
however the presence of sigmancistras in this species (also
found in E. koltuni) is an additional indicator for the inclusion
of this species within Cladorhizidae, as sigmancistras are
regarded as an apomorphic feature of carnivorous sponges
(Vacelet, 2007).

While arcuate isochelae have also been reported in the
Asbestopluma species A. (A.) inexpectata Lopes & Hajdu, 2014 this
is in combination with smaller anisochelae. A smaller type of

Fig. 3. Spicule complements of A. (A.) pennatula (left) and A. (A.) lycopodium (right) with chela of A. (A.) infundibulum (inset, right). Habit of A. (A.) pennatula (ZMBN 103468)
with detail (A), mycalostyle, subtylostyle and basal acanthotylostyle (B), large palmate/arcuate anisochelae (C), small palmate anisochelae (D), detail of blunt ends of
megascleres (E) and sigmancistra (F). Habit of A. (A.) lycopodium (ZMBN 103462) (G), style and tylostyle (H), palmate anisochelae with detail (I), with detail of blunt ends of
megascleres (J) and forceps spicule (K). Arcuate chela from A. (A.) infundibulum (ZMBN 103460) (K), showing variation of chela shape within Lycopodina/Cotylina.
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chela is present in all described s.s. type Asbestopluma, but is not
present in the carnivorous Esperiopsis species. Given the similarity
in spiculation and the molecular results for E. koltuni, we thus
propose to move E. desmophora, E. flagrum, E. koltuni and
E. symmetrica to Abyssocladia.

4.5. Genus Abyssocladia Lévi, 1964

Abyssocladia was erected by Lévi (1964) to account for the
presence of thaumatochelae, later renamed abyssochelae (van
Soest Rob and Hajdu, 2002) in the type species of the genus,
Abyssocladia bruuni Lévi, 1964. It was subsequently synonymized
with Phelloderma (van Soest Rob and Hajdu, 2002). While the
genus was resurrected within Cladorhizidae by Vacelet (2006a)
on the basis of its apparent carnivorous habit, its precise status
has been the subject of some debate (Lopes et al., 2011; Vacelet,
2007) before molecular results confirmed its affinity to the rest
of the Cladorhizidae apart from Phelloderma (Vargas et al., 2013).
The usage of the term abyssochelae was more stringently defined
by Lopes et al. (2011) (frontal teeth touching or nearly touching;
a height and width ratio close to one), recommending instead the
term arcuate cleistochelae for chelae with frontal teeth nearly
touching or touching, but with a larger height to width ratio.

Several of the species presently assigned to Abyssocladia do not
feature abyssochelae sensu Lopes et al. (2011), with some species
having neither abyssochelae nor cleistochelae, but rather only
arcuate isochelae (e.g. A. claviformis Koltun, 1970; A. faranauti
Hestetun et al., 2015), and which is reflected in the most current
diagnosis of the genus (Lopes et al., 2011). The arcuate chelae–
arcuate cleistochelae–abyssochelae transformation series proposed
by Lopes et al. (2011) stresses the close affinity between these spi-
cule types and provides a framework for understanding the genus.
However, arcuate isochelae are also present in Euchelipluma, and
given the inclusion of that genus into Cladorhizidae the presence
of arcuate chelae by itself cannot be used as a diagnostic character
for Abyssocladia. This means that Abyssocladia currently lacks a
clear synapomorphy, being instead defined by a negative charac-
ter: its lack of placochelae. While this could be solved by the inclu-
sion of Euchelipluma as a subgenus of Abyssocladia, this is not
unambiguously supported by our molecular results.

Confirming the results of Vargas et al. (2013) our analyses
recovered Abyssocladia within Cladorhizidae in both analyses
(Fig. 1; Fig. 2). Additionally Esperiopsis koltuni and Cercicladia aus-
tralis were recovered as sister taxa nested within the genus
(Fig. 2). Based on the molecular results we propose adding the car-
nivorous Esperiopsis species to Abyssocladia.

4.6. Genus Cercicladia Ríos, Kelly & Vacelet, 2011

Cercicladia australis was recovered as a sister species to Esperi-
opsis koltuni in the combined analyses (Fig. 2) suggesting the pos-
sible inclusion of the monotypic genus Cercicladia into
Abyssocladia. However, this result is based on the 580 bp Erpen-
beck COI marker only (Table 1), and Cercicladia lacks arcuate chelae
or abyssochelae, instead being defined by the presence of cerci-
chelae. At this point, given the lack of additional markers and con-
clusive support values, we have chosen to retain Cercicladia as an
independent genus until more molecular data or the discovery of
possible intermediate species can establish its position more
firmly.

4.7. Genus Chondrocladia Thomson, 1873

Chondrocladia is defined as Cladorhizidae with anchorate
(unguiferous) isochelae and typically retaining a remnant aquifer-
ous system used for inflating terminal or subterminal branch swel-
lings. The genus is currently divided into three subgenera:
Meliiderma Ridley and Dendy, 1887, Symmetrocladia Lee et al.,
2012 and Chondrocladia. Meliiderma, also featuring trochirhabds
or subtrochirhabds, has been considered a synonym of Chondrocla-
dia (Hajdu and Vacelet, 2002), but is now considered a valid sub-
genus to Chondrocladia (Vacelet et al., 2009). Recently, the
monotypic subgenus Symmetrocladia was erected on the basis of
the description of Chondrocladia (S.) lyra, understood as Chondro-
cladia with a radial symmetry of multiple harp-shaped structured
termed vanes, composed of basal horizontal stolons supporting
unilateral rows of vertical branches, but without a central stalk,
and with special rostriform subtylote spicules (Lee et al., 2012).
The subgenus Chondrocladia (Chondrocladia) contains the vast
majority of the species in the genus, and is defined as Chondrocla-
dia lacking the diagnostic characters of Meliiderma and
Symmetrocladia.

The species currently assigned to subgenus Chondrocladia were
historically divided into two separate subgenera: Chondrocladia
sensu strictu and Crinorhiza (Topsent, 1930). Also referred to more
informally as the ‘‘concrescens group” (e.g. Lévi, 1993; Tendal,
1973), Chondrocladia s.s. was understood by Topsent to contain
Chondrocladia with elongated morphology, branches arranged in
a spiral or a series of whorls with terminal swellings, and a coating
layer covering the stalk containing special (acantho)(sub)(tylo)
styles. In contrast, Crinorhiza was characterized by condensed
branching around a compact spherical or subspherical pedunculate
body, with no special coating spicules, and with no obvious branch
swellings. Crinorhiza was originally used as genus assignment
for Chondrocladia amphactis (Schmidt, 1880), and following the

Fig. 4. Comparative view of the chelae of (A) Amphilectus fucorum (ZMA POR 19817), (B) Esperiopsis symmetrica (holotype: BMNH 87.5.2.179, sigmancistra also shown), (C)
Esperiopsis koltuni (ZIN RAS 10774) and (D) Abyssocladia faranauti (MNHN.DJV.157).
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example set by Ridley and Dendy (1886, 1887), has also confus-
ingly been used as an informal habit description designating com-
pact, pedunculated species of both Cladorhiza and Chondrocladia.
Thus the current recommendation is to avoid the use of these sub-
genera, especially in a formal systematic context (Hajdu and
Vacelet, 2002). More recently Lee et al. (2012) presented another
informal arrangement grouping Chondrocladia (including all
subgenera) into six alphabetical categories according to general
body form (A–F), though these groups should be regarded as
practical rather than phylogenetically accurate.

In our results, genus Chondrocladia was recovered as a mono-
phyletic clade in the combined analysis (Fig. 2). The subgenus
Chondrocladia was recovered as polyphyletic, with one clade of s.
s. species (C. (C.) robertballardi, C. (C.) gigantea as well as two un-
described species) and one clade of Crinorhiza type species (C. (C.)
fatimae, C. (C.) nani, C. (C.) antarctica, C.(C.) vaceleti as well as C. (C.)
n. sp. B). While the exact position of subgenus Meliiderma is unclear
(C. (M.) n. sp. A; BS = 54; PP = 0.92), Symmetrocladia is sister to the
clade corresponding to Crinorhiza-type species (C. (S.) lyra; BS = 97;
PP = 1).

The polyphyly of the subgenus Chondrocladia could be resolved
by excluding the group of species corresponding to Crinorhiza as a
fourth subgenus of Chondrocladia. However, while it is possible to
get a general idea of the differences between s.s. and Crinorhiza
forms of Chondrocladia, re-erecting the subgenus Crinorhiza with
consistent diagnostic characters is more challenging. The habit,
especially including more recently described species, is often more
complex than the elongated vs. stalked dichotomy would suggest
and is in any case not recommended as a formal diagnostic charac-
ter. The presence of a covering layer on the lower stem or peduncle
of the sponge is consistent in several s.s. species, but as many spe-
cies are described based on fragments missing the lower stem the
extent of this feature is not precisely known. Crinorhiza-type spe-
cies tend to have large type anchorate isochelae with three teeth
in each end (compared to 6–9 for other Chondrocladia), but excep-
tions exist. Thus solving the intra-genus polyphyly within Chondro-
cladia would require careful study of a wider range of
Chondrocladia species. As such we do not propose any changes to
the current systematics of the genus at this time, but would stress
that this is a topic that should be subject to further study.

4.8. Genus Cladorhiza Sars, 1872

Cladorhiza is defined by the presence of anchorate anisochelae.
The combined analysis recovers Cladorhiza as a monophyletic
genus within the Cladorhizidae and sister to genus Chondrocladia
(Fig. 2). It should be noted that the species included in the analysis,
with the exception of C. penniformis Göcke & Janussen, 2013, are all
branching Cladorhiza from the North Atlantic. Some Pacific, South
Atlantic and Southern Ocean species of Cladorhiza have a peduncu-
late habit with a body reminiscent of an umbrella or crown in com-
bination with tridentate anchorate anisochelae. Examples include
several of the Cladorhiza species from the ‘‘Challenger” Expedition
(Ridley and Dendy, 1886, 1887), C. flosabyssi Topsent, 1909,
C. ephyrula Lévi, 1964 and C. corona Lehnert, Watling & Stone,
2005. While these species probably belong in the same genus
based on other morphological similarities, this hypothesis needs
to be assessed using additional molecular data.

4.9. Genera Neocladia Koltun, 1970 and Lollipocladia Vacelet, 2008

Specimens from the monotypic genera Neocladia and Lollipocla-
dia were not available for this study. The genera are defined by the
presence of highly arched birotula-like isochelae and sigmancistras
for Neocladia (Koltun, 1970; Vacelet, 2008) and highly arched mul-
tidentate anchorate unguiferous isochelae together with palmate

isochelae and sigmancistras for Lollipocladia (Vacelet, 2008). Their
pedunculate disc-like habits are reminiscent of the common
Abyssocladia form (Vacelet, 2008) and molecular data is needed
to ascertain their exact affinities.

Neocladia Koltun, 1970 is a junior synonym of Neocladia Perkins,
1906, type species Neocladia howardi Perkins, 1906: 251 (Insecta:
Hymenoptera: Chacidoidea: Encyrtidae), and a replacement name
is needed. We propose the replacement name Koltunicladia (nom.
nov.). The new name is a combination derived from Professor V.
M. Koltuny and from Neocladia.

5. Conclusions

This study presents the first major molecular analysis of carniv-
orous sponges, adding 11 18S rDNA sequences, 78 partial 28S rDNA
sequences, 91 partial COI sequences and 60 partial ALG11
sequences to sequences already in GenBank. With the exception
of the monotypic genera Neocladia and Lollipocladia and the small
Asbestopluma subgenus Helophloeina, all taxa with known carnivo-
rous species at the subgenus level or higher were included, making
the study a comprehensive analysis of known carnivorous sponges.
Most importantly, this study provides strong support to the
hypothesis that carnivory within the sponges has appeared only
once. With the inclusion of Euchelipluma and the carnivorous Espe-
riopsis species, Cladorhizidae, encompassing all carnivorous
sponges, is retained as a clade inside order Poecilosclerida with
Guitarridae and Mycalidae as closest sister groups and non-
carnivorous Esperiopsidae more distantly related.

Except for the revisions proposed in this article, current carni-
vorous genera were found to be monophyletic, meaning that spicule
characters in most cases are diagnostic at the genus level. How-
ever, the differences in spiculation between genera represents evo-
lution within family Cladorhizidae rather than evolution of
carnivory in separate lineages, and in the case of the carnivorous
genus Euchelipluma and the species formerly assigned to Esperiop-
sis, conflicting spicule characters can be reinterpreted to fit an
inclusion into Cladorhizidae.

For future taxonomic studies, this result means that a carnivo-
rous feeding habit should be regarded as the main diagnostic char-
acter for incorporation of new species into Cladorhizidae, and that
conflicting spicule characters can usually be reinterpreted to sup-
port such an inclusion. This result is in accordance with other
molecular studies showing that spicule characters are often more
plastic than previously accounted for in general, and more specifi-
cally within the chela morphologies of order Poecilosclerida.

6. Diagnoses

Based on the results and discussion above we propose the fol-
lowing revised systematics for Cladorhizidae, containing all cur-
rent cladorhizid genera and species, with the additional inclusion
of Esperiopsis spp. and Euchelipluma, encompassing all presently
known carnivorous sponges. A list of changes to the current sys-
tematic classification is given in Table 3. Diagnostic characters
and a key to the genera and subgenera of Cladorhizidae are given
in Tables 4 and 5.

6.1. Family Cladorhizidae Dendy, 1922

Synonymy. Cladorhizeae Dendy, 1922:58; Cladorhizidae de
Laubenfels, 1936:122.

Diagnosis. Carnivorous sponges adapted to feeding on small,
typically crustacean, prey. Adaptations to carnivory include partial
or complete reduction of the aquiferous system, erect habit with
radiating processes with either a basal disc or root (rhizoid)
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processes for anchoring in soft sediment. Axial or abaxial skeleton
composed of monactinal or diactinal megascleres, from which
extend extra-axial branches. Microscleres include palmate, arcuate
and anchorate (an)isochelae and their derivatives, including pla-
cochelae and cercichelae; sigmas, forceps or micro(subtylo)styles
(microspined, and also spear-shaped in a few cases), and trochir-
habds (modified from Lee et al., 2012).

Type species. Cladorhiza abyssicola Sars, 1872:65.

6.2. Genus Abyssocladia Lévi, 1964

Diagnosis. Cladorhizidae most often pedunculate, carrying a
disciform or flabelliform body with a radial architecture, in other
cases pinnate or branching. Microscleres are a combination of
abyssochelae, cleistochelae, arcuate chelae and/or sigmancistras,
but not placochelae (modified from Lopes et al., 2011).

Type species. Abyssocladia bruuni Lévi, 1964 (by original
designation).

Species. A. atlantica Lopes and Hajdu, 2014; A. bruuni Lévi,
1964; A. carcharias Kelly and Vacelet, 2011; A. claviformis Koltun,
1970; A. desmophora (Hooper and Lévi, 1989); A. diegoramirezensis
Lopes, Bravo & Hajdu, 2011; A. dominalba Vacelet, 2006; A. fara-
nauti Hestetun, Fourt, Vacelet, Boury-Esnault & Rapp, 2015; A. fla-
grum (Lehnert, Stone & Heimler); A. huitzilopochtli Vacelet, 2006; A.
inflata Vacelet, 2006; A. koltuni (Ereskovsky and Willenz, 2007); A.
lakwollii Vacelet and Kelly, 2014; A. myojinensis Ise and Vacelet,
2010; A. natushimae Ise and Vacelet, 2010; A. naudur Vacelet,
2006; A. oxeata Koltun, 1970; A. symmetrica (Ridley and Dendy,

1886); A. tecta Hestetun, Fourt, Vacelet, Boury-Esnault & Rapp,
2015; A. umbellata Lopes, Bravo & Hajdu, 2011.

6.3. Genus Asbestopluma Topsent, 1901

Synonymy. [Cometella] Schmidt, 1870:49 (nomen oblitum);
[Asbestopluma] Lankester, 1882:478 (nomen nudum); Asbesto-
pluma Topsent, 1901:23; Helophloeina Topsent, 1929:8; not
Lycopodina Lundbeck, 1905:58; Cotylina Lundbeck, 1905:68.

Diagnosis. Cladorhizidae with at least one type of palmate, or in
one case anchorate unguiferate, anisochela. Usually with a second
larger type of palmate to arcuate anisochela that may in some
cases be modified to isochela, anisoplacochela or tridentate
anchorate chela. Sigmancistras and basal acantho(sub)(tylo)styles
are also present with a few exceptions. Never forceps spicules
(modified from Lopes and Hajdu, 2014).

Type species. Cladorhiza pennatula Schmidt, 1875 (by subse-
quent designation; Topsent, 1901).

6.4. Subgenus Asbestopluma Topsent, 1901

Diagnosis. Asbestopluma without spear-shaped microtylostyles
(from Lopes et al., 2011).

Type species. Cladorhiza pennatula Schmidt, 1875 (by subse-
quent designation; Topsent, 1901).

Species. A. (A.) agglutinans Vacelet, 2006; A. (A.) anisoplacochela
Kelly and Vacelet, 2011; A. (A.) belgicae (Topsent, 1901); A. (A.)
bihamatifera (Carter, 1876); A. (A.) biserialis (Ridley and Dendy,
1886); A. (A.) biserialis californiana de Laubenfels, 1935; A. (A.) bitri-

Table 3
List of species systematic reassignments in Cladorhizidae.

Species name Reassignment

Cladorhizidae Cladorhizidae
Asbestopluma (A.) bilamellata Lévi, 1993 Lycopodina bilamellata (Lévi, 1993)
Asbestopluma (A.) callithrix Hentschel, 1914 Lycopodina callithrix (Hentschel, 1914)
Asbestopluma (A.) calyx Hentschel, 1914 Lycopodina calyx (Hentschel, 1914)
Asbestopluma (A.) comata Lundbeck, 1905 Lycopodina comata (Lundbeck, 1905)
Asbestopluma (A.) communis Lopes & Hajdu, 2014 Lycopodina communis (Lopes and Hajdu, 2014)
Asbestopluma (A.) cupressiformis (Carter, 1874) Lycopodina cupressiformis (Carter, 1874)
Asbestopluma (A.) ecoprof Lopes & Hajdu, 2014 Lycopodina ecoprof (Lopes and Hajdu, 2014)
Asbestopluma (A.) globularis Lévi, 1964 Lycopodina globularis (Lévi, 1964)
Asbestopluma (A.) gracilis Koltun, 1955 Lycopodina gracilis (Koltun, 1955)
Asbestopluma (A.) hydra Lundbeck, 1905 Lycopodina hydra (Lundbeck, 1905)
Asbestopluma (A.) hypogea Vacelet & Boury-Esnault, 1996 Lycopodina hypogea (Vacelet and Boury-Esnault, 1996)
Asbestopluma (A.) lebedi Koltun, 1962 Lycopodina lebedi (Koltun, 1962)
Asbestopluma (A.) lycopodium (Levinsen, 1887) Lycopodina lycopodium (Levinsen, 1887)
Asbestopluma (A.) occidentalis (Lambe, 1893) Lycopodina occidentalis (Lambe, 1893)
Asbestopluma (A.) hadalis Lévi, 1964 Lycopodina hadalis (Lévi, 1964)
Asbestopluma (A.) infundibulum (Levinsen, 1887) Lycopodina infundibulum (Levinsen, 1887)
Asbestopluma (A.) infundibulum orientalis Koltun, 1970 Lycopodina infundibulum orientalis (Koltun, 1970)
Asbestopluma (A.) microstrongyla Lopes, Bravo & Hajdu, 2011 Lycopodina microstrongyla (Lopes et al., 2011)
Asbestopluma (A.) minuta (Lambe, 1900) Lycopodina minuta (Lambe, 1900)
Asbestopluma (A.) parvula Hestetun et al., 2015 Lycopodina parvula (Hestetun et al., 2015)
Asbestopluma (A.) rastrichela Hestetun et al., 2015 Lycopodina rastrichela (Hestetun et al., 2015)
Asbestopluma (A.) vaceleti van Soest & Baker, 2011 Lycopodina vaceleti (van Soest and Baker, 2011)
Asbestopluma (A.) versatilis (Topsent, 1890) Lycopodina versatilis (Topsent, 1890)
Neocladia flabelliformis Koltun, 1970 Koltunicladia flabelliformis (Koltun, 1970)

Esperiopsidae
Esperiopsis desmophora Hooper & Lévi, 1989 Abyssocladia desmophora (Hooper and Lévi, 1989)
Esperiopsis flagrum Lehnert, Stone & Heimler, 2006 Abyssocladia flagrum (Lehnert et al., 2006)
Esperiopsis koltuni Ereskovsky & Willenz, 2007 Abyssocladia koltuni (Ereskovsky and Willenz, 2007)
Esperiopsis symmetrica Ridley & Dendy, 1886 Abyssocladia symmetrica (Ridley and Dendy, 1886)

Guitarridae
Euchelipluma pristina Topsent, 1909 Euchelipluma pristina Topsent, 1909
Euchelipluma arbuscula (Topsent, 1928) Euchelipluma arbuscula (Topsent, 1928)
Euchelipluma congeri de Laubenfels, 1936 Euchelipluma congeri de Laubenfels, 1936
Euchelipluma elongata Lehnert, Stone & Heimler, 2006 Euchelipluma elongata Lehnert et al., 2006
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chela Lopes, Bravo & Hajdu, 2011; A. (A.) desmophora Kelly and
Vacelet, 2011; A. (A.) flabellum Koltun, 1970; A. (A.) furcata
Lundbeck, 1905; A. (A.) gracilior (Schmidt, 1870); A. (A.) inexpectata
Lopes and Hajdu, 2014; A. (A.) magnifica Lopes, Bravo & Hajdu,
2011; A. (A.) monticola Lundsten, Reiswig & Austin, 2014; A. (A.)
obae Koltun, 1964; A. (A.) pennatula (Schmidt, 1875); A. (A.)
quadriserialis Tendal, 1973; A. (A.) ramosa Koltun, 1958; A. (A.) rick-
ettsi Lundsten, Reiswig & Austin, 2014; A. (A.) voyager Lopes and
Hajdu, 2014; A. (A.) wolffi Lévi, 1964.

6.5. Subgenus Helophloeina Topsent, 1929

Diagnosis. Asbestopluma with a basal sheath of spear-shaped
microtylostyles and microstrongyles (from Lopes et al., 2011).

Type species. Helophloeina stylivarians Topsent, 1929 (by
monotypy).

Species. A. (H.) delicata Lopes, Bravo & Hajdu, 2011: A. (H.)
formosa Vacelet, 2006: A. (H.) stylivarians (Topsent, 1929).

6.6. Genus Chondrocladia Thomson, 1873

Synonymy. Chondrocladia Thomson, 1873:188; Crinorhiza
Schmidt, 1880:83; Meliiderma Ridley and Dendy 1887:102; not
Neocladia Koltun, 1970:193; Vacelet et al., 2009:59.

Diagnosis. Cladorhizidae with anchorate isochelae (from Lee
et al., 2012).

Type species. Chondrocladia virgata Thomson, 1873 (by
monotypy).

6.7. Subgenus Chondrocladia Thomson, 1873

Diagnosis. Chondrocladia without a layer of special spicules
(subtrochirhabds or trochirhabds), lacking special rostriform
(snoutlike) subtylostyles in filaments or terminal balls, and with-
out planar vanes formed of evenly spaced upright branches (from
Lee et al., 2012).

Type species. Chondrocladia virgata Thomson, 1873 (by
monotypy).

Species. C. (C.) albatrossi Tendal, 1973; C. (C.) amphactis
(Schmidt, 1880); C. (C.) antarctica Hentschel, 1914; C. (C.) arenifera
Brøndsted, 1929; C. (C.) asigmata Lévi, 1964; C. (C.) burtoni Tendal,
1973; C. (C.) clavata Ridley and Dendy, 1886; C. (C.) concrescens
(Schmidt, 1880); C. (C.) crinita Ridley and Dendy, 1886; C. (C.)
dichotoma Lévi, 1964; C. (C.) fatimae Boury-Esnault and van
Beveren, 1982; C. (C.) gigantea (Hansen, 1885); C. (C.) grandis
(Verrill, 1879); C. (C.) gracilis Lévi, 1964; C. (C.) guiteli Topsent,
1904; C. (C.) koltuni Vacelet, 2006; C. (C.) lampadiglobus Vacelet,
2006; C. (C.) levii Cristobo, Urgorri & Rios, 2005; C. (C.) magna
Tanita, 1965; C. (C.) michaelsarsi Arnesen, 1920; C. (C.) multichela
Lévi, 1964; C. (C.) nani Boury-Esnault and van Beveren, 1982; C.
(C.) nicolae Cristobo, Urgorri & Rios, 2005; C. (C.) pulvinata Lévi,
1993; C. (C.) robertballardi Cristobo, Rios, Pomponi & Xavier,
2014; C. (C.) schlatteri Lopes, Bravo & Hajdu, 2011; C. (C.) scol-
ionema Lévi, 1993; C. (C.) vaceleti Cristobo, Urgorri & Rios, 2005;
C. (C.) verticillata Topsent, 1920; C. (C.) virgata Thomson, 1873; C.
(C.) yatsui Topsent, 1930.

6.8. Subgenus Meliiderma Ridley and Dendy, 1887

Diagnosis. Chondrocladia bearing a dense encrustation of spe-
cial spicules (subtrochirhabds or trochirhabds) packed in a single
layer around the stalk and projecting vertically outward, lacking
special rostriform (snoutlike) subtylostyles in filaments or terminal
balls, and without planar vanes formed of evenly spaced upright
branches (from Lee et al., 2012).

Type species. Meliiderma stipitata Ridley and Dendy, 1887 (by
monotypy).

Species. C. (M.) latrunculioides Lopes, Bravo & Hajdu, 2011; C.
(M.) occulta (Lehnert, Stone & Heimler, 2006); C. (M.) stipitata
(Ridley and Dendy, 1886); C. (M.) tasmaniensis Vacelet, Kelly,
Schlacher-Hoenlinger, 2009; C. (M.) turbiformis Vacelet, Kelly,
Schlacher-Hoenlinger, 2009.

6.9. Subgenus Symmetrocladia Lee et al., 2012

Diagnosis. Chondrocladia with biradial, triradial, tetraradial, or
pentaradial symmetry of right triangles (vanes) formed of verti-
cally aligned branches arising unilaterally from basal stolons.
Without a stalk. Spicules are styles, rostriform (snoutlike)
subtylostyles in the filaments and on the terminal balls, and
unguiferous anchorate isochelae and sigmas. Trochirhabds and
forceps are absent (from Lee et al., 2012).

Type species. Chondrocladia (Symmetrocladia) lyra Lee et al.,
2012 (by original designation).

Species. C. (S.) lyra Lee, Reiswig, Austin & Lundsten, 2012.

6.10. Genus Cercicladia Ríos, Kelly & Vacelet, 2011

Diagnosis. Cladorhizidae with cercichelae, microxeas, and rare
toxas, in addition to the usual mycalostyles and sigmancistras.

Table 5
Key to genera and subgenera of Cladorhizidae.

1. a. Anchorate chelae are present (2)
b. No anchorate chelae present (7)

2. a. Anchorate chelae are strongly arched or found together with strongly
arched birotula-like chelae or palmate/arcuate isochelae (3)
b. Chelae are anchorate only (4)

3. a. Chelae are a combination of arched birotula-like chelae and anchorate
chelae. Pedunculate, disc-shaped body. One known species (genus
Koltunicladia)
b. Chelae are a combination of palmate/arcuate isochelae and strongly
arched anchorate chelae. Pedunculate, disc-shaped body. One known
species (genus Lollipocladia)

4. a. Chelae are anchorate anisochelae (genus Cladorhiza)
b. Chelae are anchorate isochelae (5, genus Chondrocladia)

5. a. Subtrochirhabds or trochirhabds are present, pedunculate body
typically a few centimeters in length (subgenus Meliiderma)
b. Meliiderm spicules or trochirhabds are absent (6)

6. a. Rostriform subtylostyles, body composed of stolons radiating from
the center of the sponge supporting numerous long vertical branches.
One known species (subgenus Symmetrocladia)
b. No rostriform subtylostyles. Body typically either pedunculate with
projections in all directions or elongated with projections in whorls but
other forms exist. Projections may be reduced to knob-like structures
(subgenus Chondrocladia)

7. a. Chelae are palmate or arcuate (8)
b. Chelae are cercichelae. One known species (genus Cercicladia)

8. a. Chelae are of a single type of palmate or arcuate anisochela. Sigmas or
sigmancistras are absent; forceps spicules may be present (genus
Lycopodina)
b. Sigmas or sigmancistras are present (9)

9. a. Chelae are larger palmate/arcuate anisochelae and smaller palmate
anisochelae. The larger type may be absent or modified into isochelae,
more arcuate forms or anisoplacochelae (10, genus Asbestopluma)
b. Chelae include arcuate isochelae, cleistochelae and/or abyssochelae
(11)

10. a. Spear-shaped microtylostyles and microstrongyles present, habit
typically branching (subgenus Helophloeina)
b. No spear-shaped microtylostyles or microstrongyles. Habit often
pinnate with filaments in rows, or branching (subgenus Asbestopluma)

11. a. Isoplacochelae present (genus Euchelipluma)
b. Chelae a combination of arcuate isochelae, cleistochelae and/or
abyssochelae with no placochelae (genus Abyssocladia)
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Acanthosubtylostyles may be present. Body feather-shaped (pin-
nate), with a long, thick fleshy pedicle, and a long flattened blade
at the apex. Long fine filaments extend on either side of the blade
forming an incurved feather-like structure (from Ríos, Kelly and
Vacelet, 2011).

Type species. Cercicladia australis Ríos, Kelly and Vacelet, 2011
(by original designation).

Species. C. australis Ríos, Kelly & Vacelet, 2011.

6.11. Genus Cladorhiza Sars, 1872

Synonymy. Cladorhiza Sars, 1872:65; [Trochoderma] Ridley and
Dendy, 1886:344 (preoccupied); Axoniderma Ridley and Dendy,
1886:493; Exaxinata de Laubenfels, 1936:122; Raoa de
Laubenfels, 1936:123.

Diagnosis. Cladorhizidae with only anchorate/unguiferate ani-
sochelae (from Lopes and Hajdu, 2014).

Type species. Cladorhiza abyssicola Sars, 1872 (by monotypy).
Species. C. abyssicola Sars, 1872; C. acanthoxea Hestetun, Fourt,

Vacelet, Boury-Esnault & Rapp, 2015; C. arctica Koltun, 1959;
C. bathycrinoides Koltun, 1955; C. caillieti Lundsten, Reiswig &
Austin, 2014;C. corona Lehnert,Watling&Stone, 2005;C. corticocan-
cellataCarter, 1876;C. depressaKieschnick, 1896 (nomennudum);C.
diminuta Lopes and Hajdu, 2014; C. ephyrula Lévi, 1964; C. evae
Lundsten, Reiswig&Austin, 2014;C. flosabyssiTopsent, 1909;C. frist-
edti (Lambe, 1900); C. gelida Lundbeck, 1905; C. grimaldii Topsent,
1909; C. iniquidentata Lundbeck, 1905; C. inversa Ridley and
Dendy, 1886; C. linearis Ridley and Dendy, 1886; C. longipinna
Ridley and Dendy, 1886; C. mani Koltun, 1964; C. methanophila
Vacelet and Boury-Esnault, 2002; C. microchela Lévi, 1964; C. mir-
abilis (Ridley and Dendy, 1886); C. moruliformis Ridley and Dendy,
1886; C. nematophora Lévi, 1964; C. oxeata Lundbeck, 1905; C. penni-
formis Göcke and Janussen, 2013; C. pentacrinus Dendy, 1887; C.
pteron Reiswig and Lee, 2007; C. rectangularis Ridley and Dendy,
1886; C. schistochela Lévi, 1993; C. segonzaci Vacelet, 2006; C.
septemdentalis Koltun, 1970; C. similis Ridley and Dendy, 1886; C.
tenuisigma Lundbeck, 1905; C. thomsoni Topsent, 1909; C. tridentata
Ridley and Dendy, 1886.

6.12. Genus Euchelipluma Topsent, 1909

Synonymy. Euchelipluma Topsent, 1909:18; Desmatiderma
Topsent, 1928:308.

Diagnosis: Cladorhizidae pinnate or branching, with pla-
cochelae, smooth arcuate/palmate isochelae and sigmancistras
(modified from Hajdu and Lerner, 2002).

Type species. Euchelipluma pristina Topsent, 1909 (by
monotypy).

Species. E. pristina Topsent, 1909; E. arbuscula (Topsent, 1928);
E. congeri de Laubenfels, 1936; E. elongata Lehnert, Stone &
Heimler, 2006.

6.13. Genus Koltunicladia nom. nov.

Synonymy. [Neocladia] Koltun, 1970:193 (preoccupied).
Diagnosis. Body pedunculate, with a flattened disciform body.

Main skeleton is of the axial type. The microscleres are character-
istic birotula-like chelae with numerous teeth and a strongly
curved shaft lacking fimbriae, and sigmancistras (modified from
Koltun, 1970; English translation 1972 and Vacelet, 2008).

Type species. Neocladia flabelliformis Koltun, 1970 (by
monotypy).

Species. K. flabelliformis (Koltun, 1970).

6.14. Genus Lollipocladia Vacelet, 2008

Diagnosis. Cladorhizidae devoid of aquiferous system, with
anchorate isochelae and palmate isochelae (from Vacelet, 2008).

Type species. Lollipocladia tiburoni Vacelet, 2008 (by original
designation).

Species. L. tiburoni Vacelet, 2008.

6.15. Genus Lycopodina Lundbeck, 1905

Synonymy. Lycopodina Lundbeck, 1905:58; de Laubenfels,
1936:122; Cotylina Lundbeck, 1905:68.

Diagnosis. Cladorhizidae pedunculate with body either in the
form of an erect stem or sphere with filaments in all directions,
or cup-shaped. Megascleres are mycalostyles and commonly
shorter (tylo)styles. Microscleres are one type of arcuate or pal-
mate anisochela where the smaller end is in the shape of a central
plate and two rudimentary, flat, lateral teeth, all with serrated
edges toward the middle. To this forceps spicules are often added,
but may be rare or absent in particular species or specimens of a
single species. Never sigmas or sigmancistras.

Type species. Esperella cupressiformis var. lycopodium Levinsen,
1887 (by subsequent designation de Laubenfels, 1936).

Species. L. bilamellata (Lévi, 1993); L. callithrix (Hentschel,
1914); L. calyx (Hentschel, 1914); L. comata (Lundbeck, 1905); L.
communis (Lopes and Hajdu, 2014); L. cupressiformis (Carter,
1874); L. ecoprof (Lopes and Hajdu, 2014); L. globularis (Lévi,
1964); L. gracilis (Koltun, 1955); L. hydra (Lundbeck, 1905); L. hypo-
gea (Vacelet & Boury-Esnault, 1996); L. lebedi (Koltun, 1962); L.
lycopodium (Levinsen, 1887); L. occidentalis (Lambe, 1893); L. hada-
lis (Lévi, 1964); L. infundibulum (Levinsen, 1887); L. infundibulum
orientalis (Koltun, 1970); L. microstrongyla (Lopes, Bravo & Hajdu,
2011); L. minuta (Lambe, 1900); L. parvula (Hestetun, Fourt,
Vacelet, Boury-Esnault & Rapp, 2015); L. rastrichela (Hestetun,
Fourt, Vacelet, Boury-Esnault & Rapp, 2015); L. vaceleti (van Soest
and Baker, 2011); L. versatilis (Topsent, 1890).
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