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ABSTRACT 

Viruses are directly and indirectly involved in important animal, soil and oceanic 

ecosystem processes via their influence on microbial life (Krishnamurthy et al., 2016). Their 

astonishing abundance and genetic diversity have attracted various fields of research interests. 

Influence of marine viruses on their host and subsequent costs can be categorized into 

ecological, biological, geological and chemical effects (Fuhrman, 1999). 

We need more understanding of the factors and processes, which drive variation in viral 

traits across various taxonomic groups. There are trade-offs associated with central events 

(such as adsorption, host range, replication and persistence) of phage life histories, which deter 

synchronised enhancement of fitness traits. Several trade-off types between viral traits have 

been suggested. For example, reproduction and survival trade-offs, specificity and generality 

trade-off, virulence trade-off and further, virus trade-offs relating to host traits are also 

discussed. 

The aim of this study is to collect literature data on growth parameters (traits) for 

different viruses, to see if there is evidence of trade-offs between traits. To answer this research 

question, I gathered published data on viral traits as; latent period (LP), burst size (BS), genome 

size (GS), virion size (VS), host range and various other information about different virus 

(dsDNA, ssDNA, dsRNA and ssRNA) and phage groups (Siphoviridae, Myoviridae and 

Podoviridae) and categorized them.  Graphs between each trait pair were made using those 

data, for each virus category (for e.g. BS vs LP, BS vs GS, BS vs VS, LP vs GS, LP vs VS and 

GS vs VS etc). Knowledge of viral traits and trade-offs can be incorporated into models to 

better understand the role of viruses in processes of global significance. 

I could not find any strong general trends between any of the traits except weak positive 

relation between (BS vs LP), (VS vs GS) for dsDNA viruses of eukaryotes, weak negative 

relation between (BS vs LP) for ssRNA viruses of eukaryotes, weak to moderate positive 

relation between (BS vs LP), (BS vs host: virus genome ratio), (VS vs GS),  weak negative 

relation between (LP vs host growth rate)  for cyanophages  and for archaeal viruses; totally 6 

trait pairs were tested and four pairs displayed weak to moderate positive relation. 

It was not wise to pool marine, fresh water and other viruses from different 

environments, since those fundamentally exclusive environments force their inhabitants 

(including viruses) to choose unique trade-offs, independent of their phytogenic or systematic 

assemblage. It is reasonable to conclude that “the search for trade-offs should concentrate on 

species that co-occur” (Litchman and Klausmeier, 2008) 
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1. Introduction 

1.1  Viruses are everywhere 

Viruses have a distinctive and profound role  for diversity on a global scale (Suttle, 2007). They 

are present  in every habitat  such as ; soil (Kuzyakov and Mason-Jones, 2018, Williamson et 

al., 2007),  rhizosphere (Appunu and Dhar 2008), human gut phageome (Manrique et al., 2017) 

(Manrique et al., 2016), human body (Barr, 2017) ; even in extreme environments (polar 

aquatic (Yau and Seth-Pasricha, 2019), Antarctic soil (Zablocki et al., 2014), deep-sea 

hydrothermal vents (Ortmann and Suttle, 2005) high temperature environments (Jacob et al., 

2018),  terrestrial hot springs (Zablocki et al., 2018), (Rachel et al., 2002), deserts (Fancello et 

al., 2013) and  corals (Correa et al., 2013).    

They infect all organisms, from bacteria to whales (Munn 2006), even parasitizing viruses itself 

as virophage (Bernard La et al., 2008, Bekliz et al., 2016).  Being the most abundant and diverse  

“biological entities” (Breitbart et al., 2007) on the planet (Edwards and Rohwer, 2005), 

counting up to 10 million particles per millilitre ( 10 7) in the ocean (Breitbart et al., 2007), 

together with their extraordinary ability to  infect every lineage in the tree of life,  viruses  are  

in a unique position to influence biological, geological and ecological processes.   

Viruses, which infect bacterial hosts, are named bacteriophages or phages. They score the 

highest abundance among all the virus types , possess the highest proportion of global genetic 

diversity and are  referred to as “ biological dark matter” (Youle et al., 2012)  

Even though Bacteriophages were discovered approximately 100 years ago by Felix d’Herelle  

(Chibani-Chennoufi et al., 2004) ,  it took another half a century to first describe the  marine 

viruses (Spencer, 1955). It took yet another 3 decades until a Norwegian research group 

discovered the sheer numerical abundance of marine viruses (Bergh et al., 1989) . This 

discovery opened a door to a golden era of marine virus research.  Since then, virus research 

has become a crucial part in biotechnology and ecology. 

1.2 Abundance and diversity of marine viruses 

Much of the genetic diversity of phages has yet to be discovered (Angly et al., 2006). Between 

65-95% metagenomic sequences of marine viruses are idiosyncratic and shows no resemblance 

to known sequences (Mya et al., 2002). Wilhelm and Suttle, (1999) estimated that there are 

over 10 31 viruses in the ocean alone.  To better understand their numerical power, if we align  
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marine viruses ( roughly assuming 50 nm diameter each)  the line will be 400000 light years 

long , 16 times longer than our galaxy, which is calculated to be 25000 light years (Weinbauer 

and Rassoulzadegan, 2004). Apart from their abundance, it is estimated that there are 3000-

7000 types of viruses in 200 L of sea water (Mya et al., 2002). In addition, they exert an 

enormous selective pressure on rest of the living counterparts (Jaakkola et al., 2012). 

Over the last few decades our perspective on viruses has altered dramatically. We are passed 

the era of considering viruses as plain infectious, dangerous “fragments of life”. Multi-

disciplinary  evidence suggest that we must revise the position of viruses and they are essential 

members of  our planet (Le Romancer et al., 2007, Forterre, 2010). 

1.3 Ecological role of viruses in microbial mortality, abundance, diversity 

and community structure 

Lytic viruses can change the aquatic microbial and algal   species composition (diversity), 

community composition, population dynamics (Bratbak et al., 1993) and succession by viral 

induced mortality process (Suttle, 1994, Wommack and Colwell, 2000, Suttle, 2005, Hennes 

and Simon, 1995). At any given time, half of the marine microbial  population is  virus infected 

(Hurwitz et al., 2013). Due to these viral infection and lysis processes, marine ecosystems face 

continuous structural and functional changes (Weinbauer and Rassoulzadegan, 2004) . This 

manipulation begins at individual cell level affecting the cellular physiology and expand up to 

multiple population, community and ecosystem level processes  (Weitz and Wilhelm, 2012).  

In the oceans, 90% of the biological carbon derives from  bacterioplankton ( bacteria and 

archaea) (Wilhelm and Suttle, 1999). Bacteriophages can lyse approximately 50% of marine 

prokaryotes daily (Proctor and Fuhrman, 1990, Breitbart et al., 2007).  However, Suttle, (1994)   

has estimated the lysis percentage to be 10-20% of the bacterial community. Half of the global 

primary production comes from photosynthesis by phytoplankton (Brown et al., 2006). Two 

three percent of aquatic primary production can be lost by viral mediated lysis of 

phytoplankton. Algal bloom termination of Emiliania huxleyi caused by viral mortality is a 

classic example (Bratbak et al., 1993, Bratbak et al., 1996). 

According to the proposed “killing the winner” hypothesis, lytic phages exert density 

dependent regulation of numerically and competitively dominant bacterial species (Thingstad 

and Lignell, 1997, Thingstad, 2000). This provides space for competitively inferior species to 

evolve, facilitates coexistence of diverse species thus enhance the diversity and maintain the 
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species richness (Weinbauer and Rassoulzadegan, 2004). “r”  and K selection of viruses and 

their hosts is also an important factor in diversity maintenance in marine milieu (Suttle, 2007)   

Further, antagonistic coevolutionary “arms race” between viruses and their host is another  

“diversity-generating mechanism” driven by strain- specific viruses (Thingstad et al., 2014) 

and references therein, (Xue and Goldenfeld, 2017). In this way, virus- induced selective 

microbial mortality alter the abundance of individual species, which leads to modification of 

community structure and composition (Bouvier and Del Giorgio, 2007) 

1.4          Role of viruses in biogeochemical nutrient cycles 

Viruses are the nanoscale drivers of the global -scale processes (Brussaard et al., 2008).Viral 

lysis of phytoplankton affect the nutrient (Wilhelm and Suttle, 1999) and carbon cycles in the 

sea (Weitz and Wilhelm, 2012, Weitz et al., 2015),(Jover et al., 2014). It interrupts the 

conventional nutrient and carbon flow to the upper trophic levels (Zimmerman et al., 2019).  

This has been  discussed in  the  light of concepts like  “microbial loop” or “viral shant” in 

aquatic food webs (Azam et al., 1983, Suttle, 2007, Fuhrman, 1999, Wilhelm and Suttle, 1999, 

Fuhrma and Suttle, 1993, Bratbak et al., 1994, Thingstad et al., 1993), and “biological carbon 

pump” (Jiao et al., 2010, Suttle, 2007). 

Viral lysis of prokaryotes and eukaryotes releases the dissolve organic matter into the aquatic 

environment.  The amount of fixed carbon which enter into the microbial loop at various trophic 

levels, through viral lysis, is estimated to be 5-25%.  Dissolved organic carbon, phosphorus ,  

nitrogen, iron and selenium become bioavailable after   viral lysis of  phytoplankton  (Gobler 

et al., 1997). Then, those released components are taken up by bacteria. This can affect water 

chemistry.  

1.5 Ecological viewpoint of virus- host interactions 

Viruses facilitate diversity through horizontal (lateral) gene transfer (HGT) (Canchaya et al., 

2003). Bacteriophages  also promote bacterial evolution  by several ways (Penadés et al., 2015); 

HGT create divers microbial gene repertoires (Touchon et al., 2017), resistance and applies 

substantial selective pressure by altering the physical and genetic makeup of bacterial 

populations (Thingstad et al., 2014). Further, viruses can enhance their host by carrying “host 

genes (auxiliary metabolic genes)” for e.g. photosynthesis genes in cyanophages (Breitbart et 

al., 2007). The study of virus ecology has now  reached its “third age” (Mann, 2005) due to 

recognition of their potential as genetic reservoirs in aquatic habitats (Frost et al., 2005, Paul 
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and Sullivan, 2005), gene therapy vectors (Robbins and Ghivizzani, 1998), phage therapy 

(Karin et al., 2018) and phage mediated spread of virulence   and antibiotic resistance genes 

(Brown-Jaque et al., 2015). Further, viral lysis  can exert a short term stimulatory effect on 

ecosystems by increasing the productivity of non-targeted hosts (Weitz et al., 2015). Instead of 

classical pair-wise approach to study the virus-host interactions, network level approach of 

“virus-host interaction networks” has recently been successfully introduced (Weitz et al., 2013, 

Flores et al., 2011). 

After contemplating details of how viruses affect the global ecosystems in different ways, it is 

essential to understand what factors affect growth, survival, dynamics of the viruses and 

host-virus interactions in the environment. Viruses totally depend on their host for growth 

and replication, so all the factors affecting the host’s growth will affect viruses indirectly as 

well. Temperature, water, hydrostatic pressure, ultraviolet radiation (sunlight), photosynthetic 

active radiation, ionic environment, salinity or freshwater and seawater mixing , oxygen, pH, 

organic and inorganic particles and dissolve substances, nutrients, grazing by heterotrophic 

nanoflagellates (HNF), host morphology  and availability have been described as factors 

affecting the virus decay and infectivity (Fig. 1a and 1b)  (Mojica and Brussaard, 2014, 

Weinbauer, 2004, Heldal and Bratbak, 1991, Parada et al., 2007, Wei et al., 2019). The viral 

pool can be altered by several ways; by changing host dynamics (host morphology, 

susceptibility, environmental fluctuations), by altering life cycle strategies and reproductive 

traits (LP, BS) or by various impacts from the surrounding (pollution, grazing, sinking etc. 

(Fig.1b). All these factors and processes are interconnected, and they can alter every stage of 

the viral life cycle (Fig.2). 
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Fig. 1  Environmental factors affecting viral dynamics and virus–host interactions. (a) 

A variety of environmental factors contribute to inactivation or removal of free virus particles 

from the virus pool, which lower the host encounter and infection possibilities. For e.g. 

adsorption to inorganic or organic particles, aggregation, sinking and fed by grazers are among 

the removal factors, while ultraviolet radiation, temperature, pH, salinity fluctuations and 

marine pollutions cause inactivation of viruses. (b)  Graphical overview of impact of various 

factors and processes on viral pool. See text. (Figure obtained from (Mojica and Brussaard, 

2014, P.496). 
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Fig. 2   Illustration of various life cycle stages of the viruses and impact of environment 

on them. Horizontal bars show the quantity of information available on impact of each 

environmental parameter on virus life cycle steps. obtained directly from ((Mojica and 

Brussaard, 2014), P.509) .  

1.6 Morphological, structural and genetic diversity of viruses 

As in every other life form, viruses come in various shapes and sizes. Within an 

infectious virus particle or a “virion”, the viral nucleic acids are enclosed by a 

protein coat, in addition by some other layers too.  Archaeal viruses and bacteriophages 

together make the virus group named prokaryote viruses.  Their genetic material can be single 

-stranded (ss) or double- stranded (ds) deoxyribonucleic acid (DNA) or ribonucleic acid 

(RNA). Out of 6196 phages and 88 archaeal viruses, which have been described 

morphologically so far, are icosahedral tailed phages and belonged to 3 families; siphoviridae, 

myoviridae or podoviridae.  Only 3.7 % take other forms as polyhedral, pleomorphic or 

filamentous (Ackermann and Prangishvili, 2012). Members of pleomorphic virus families have 

dsDNA genomes and a range of forms; two-tailed (Bicaudaviridae), bacilliform, fusiform, 

spherical, bottle (Ampullaviridae), lemon shape (salterprovirus, Fuselloviridae) and droplet 

~ 96%  
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shape (Guttaviridae) and without capsid (Plasmaviridae) (Fig.3A). Many of pleomorphic 

viruses and some filamentous shape Lipothrixviridae members possess lipid envelops 

(Ackermann and Prangishvili, 2012). Bradley, (1967) introduced a virus classification based 

on nucleic acid type and gross morphology. Bradleys group A phages, correspond to the novel 

phage family Myoviridae, group B (=Siphoviridae), C (= Podoviridae), D (= Microviridae, 

ssDNA), E (=Leviviridae, ssRNA) and group F (= Inoviridae, ssDNA, long filamentous and 

short rods) (Ackermann and Prangishvili, 2012). (Bradley, 1967) 

 

  

Fig. 3A   
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  Fig. 3(B) 

Fig.3  Morphology of virus taxa infecting (A) bacteria and archaea. (B) algae, fungi and 

protozoa. (Obtained from the ICTV report on virus taxonomy (ICTV, 2019b) 

1.7 Virus Taxonomy  

Viruses can be differentiated based on their morphology, infection strategy, genome 

architecture or based on their host range (King et al., 2011, Hyman and Abedon, 2010, Abedon 

and Murray, 2013). 

True viruses (except viroids and virusoids) can be classified into Domain- Akamara (acellular 

infectious agents), Kindom- Euwiria (true viruses), Phylum- Deoxyribovira (DNA viruses) or 

Ribovira (RNA viruses), Class- dsDNA /ssDNA/dsRNA/ +ssRNA/-ssRNA. The international 
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Committee for the Taxonomy of Viruses  (ICTV, 2019a) , determines    taxonomic levels from 

order to species (Weinbauer, 2004). 

Here, I only give some description on the virus families and groups I encountered in the present 

literature study. Some of the family names given in the literature were out of date according to 

present taxonomy and hence could not fit in, e.g. Styloviridae  

dsDNA viruses   

The  (ICTV) 9th Report (King et al., 2011) has classified dsDNA viruses into 25 families. Out 

of those 25 families, I have gathered data on Siphoviridae, Myoviridae, Podoviridae, 

Mimiviridae, Tectiviridae, Rudiviridae and Phycodnaviridae families in the present study. 

1.7.1 Prokaryotic dsDNA virus families 

Order-Caudovirales, contains tailed prokaryotic dsDNA virus families including archaeal 

viruses. Icosahedral heads or prolate capsids are characteristic to this order. Pleomorphic, 

polyhedral and filamentous viruses are not yet classified into orders (Ackermann and 

Prangishvili, 2012). There are five families in Order-Caudovirales; Siphoviridae, Myoviridae 

and Podoviridae, Ackermannviridae and Herelleviridae. Family- Siphoviridae has long, 

noncontractile tails (Fig. 3 A). Tail length is usually twice as large than the head diameter, with 

some exceptions (Table.6.1-6.5). This is the largest prokaryote virus family (Ackermann and 

Prangishvili, 2012). Due to host specificity and narrow host range, siphoviruses tend to switch 

for lysogenic cycle under the low host availability (Šulčius et al., 2015).  Family-Myoviridae 

members has contractile tails. e.g. T4. Family-Podoviridae has short tails (Fig. 3 A). There are 

currently four genera in the family, namely N4-like, T7-like, P22-like and F 29-like. Narrow 

host range seems to be a common trait among many podoviruses while myoviruses generally 

show the broadest range (Sullivan et al., 2003, Suttle, 2005). 

1.7.2 Eukaryote dsDNA virus families 

Phycodnaviridae Family  

Characteristic features of this family can be listed as; infect wide range of eukaryotic 

microalgal hosts, both in marine and freshwater milieu, ubiquitous, large dsDNA  genome (160 

to >560kb) according to (Wilson et al., 2009).  However some literature states the genome size 

as 180- 560 kb (Van Etten et al., 2002). Typical virion size is > 100 nm diameter, cytoplasmic 

assembly site, and polyhedral symmetry (Fig.3B) without external membrane (Sandaa et al., 

2001 and references therein). Six genera are included in the family; Chlorovirus, 
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Coccolithovirus, Prymnesiovirus,  Prasinovirus,  Phaeovirus, and Raphidovirus (Wilson et al., 

2009, 2011). Within the species barrier, some genera demonstrate a broader host range (e.g. 

prymnesioviruses, raphidoviruses and coccolithoviruses). 

Out of the 7 families listed within ssDNA viruses, namely Anelloviridae, Circoviridae, 

Geminiviridae, Inoviridae, Microviridae, Nanoviridae, and Parvoviridae, I found only one 

example (family-Microviridae) in this thesis (Fig.3A), a phage, infecting marine 

photoheterotrophic alphaproteobacteria Citromicrobium bathyomarinum (Zheng et al., 2018). 

In the ICTV (King et al., 2011), there is a proposed new ssDNA virus Genus, 

Bacilladnavirus, (Family- unassigned). The colony forming diatom, Chaetoceros 

salsugineum, is the host for this new virus species (CsalDNAV01). 

1.7.3 RNA viruses and RNA bacteriophages 

To date,  there are only few RNA bacteriophages described in the literature (Krishnamurthy et 

al., 2016), compared to the vast amount of   information available on DNA phages. The same 

applies to the RNA viruses infecting algae and diatoms, particularly there is only one report of 

ds RNA virus (MpRNAV)  infecting phytoplankton host  (Micromonas pusilla)   in the 

literature (Brussaard et al., 2004).  However, Krishnamurthy et al., (2016) found high RNA 

bacteriophage diversity globally, across a range of habitats including the first ever report of 

RNA bacteriophages, which infects gram positive bacteria. There are only 2 RNA 

bacteriophage families that were identified, namely ; family- Leviviridae (ssRNA) with 4 

species so far and family Cystoviridae (dsRNA) with one described species (Krishnamurthy et 

al., 2016). The ICTV listed 8 families of dsRNA viruses and I found one family-Reoviridae 

in this study (Fig.3B), infecting marine algae, Micromonas pusilla LAC 38 (Brussaard et al., 

2004).  

The ICTV   9th report (King et al., 2011) has divided ssRNA viruses into 2 groups namely; 

negative sense and positive sense. None of the negative sense ssRNA viruses include in this 

literature survey. They are causative agents of important human diseases (King et al., 2011) 

and infect arthropods, vertebrates and plants  too (Jun-Hua et al., 2015). 

Positive sense ssRNA viruses have at least 30 families and some unassigned groups (King et 

al., 2011). Out of them, order: Picornavirales, family: Marnaviridae (Fig.3B),  Genus: 

Bacillarnavirus, comprise of eukaryote diatom viruses with linear ssRNA genomes such as; 

Rhizosolenia setigera RNA virus (RsetRNAV ( RsRNAV) (Nagasaki et al., 2004), 
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CtenRNAV01(Shirai et al., 2008), CtenRNAV type II (Kimura and Tomaru, 2015), 

Chaetoceros socialis f. radians RNA virus (CsfrRNAV) (Tomaru et al., 2009b), Guinardia 

delicatula RNA virus (GdelRNAV) (Arsenieff et al., 2019), Nitzschia reversa RNA virus 

(NitRevRNAV) (Toyoda et al., 2019),  

1.7.4 Cyanophages 

Cyanophages are the group of bacteriophages, that infect cyanobacterial hosts. Their 

characteristic features are; dsDNA genome, head tail morphology, found in both marine and 

freshwater habitats and categorized under the 3 bacteriophage families described earlier in this 

study; Siphoviridae, Myoviridae and Podoviridae. Most of the marine cyanophages belong to 

family- Myoviridae while majority of freshwater isolates belongs to the other two families (Xia 

et al., 2013). 

 

1.7.5 Archaeal viruses “ not archaeal phages” (Abedon and Murray, 2013) 

Viruses infecting the third domain of life (archaea), mostly have nothing in common with 

bacteriophages (Forterre, 2010). Even though, some studies have extensively discussed the 

similarities and contrast between the two groups (Pietila et al., 2014). Currently there are 17 

families of archaeal viruses (Krupovic et al., 2018). Same as bacteriophages and algal viruses, 

archaeal viruses also have prominent role in carbon and nitrogen cycling through lysis of their 

hosts (Danovaro et al., 2016, Danovaro et al., 2017). 

Compared to bacteriophages, archaeal viruses show astonishing morphological diversity and 

unique features, which are not observed in other viruses of eukaryotes or prokaryotes (Fig.3A) 

(Ackermann and Prangishvili, 2012,(Dellas et al., 2014).  They are mainly spindle-shaped, 

spherical or round, bottle-shaped, coil-shaped, droplet-shaped but some of them show 

characteristic head and tail morphology as well (Fig.3A) (Krupovic et al., 2018 and references 

therein).  Viruses of the two archaeal phyla; Euryarchaeota and Crenarchaeota have 

distinguishable features. Viruses of Euryarchaeota (methanogens and extreme halophile hosts) 

have head and tail morphology, resemble bacteriophages and assigned to Myoviridae, 

Podoviridae and Siphoviridae. In contrast, viruses of extreme thermophiles (Crenarchaeota) 

show above described uncommon morphotypes and display little similitude to eukaryote 

viruses or bacteriophages  (Bath and Dyall-Smith, 1998, Prangishvili and Garrett, 2005, Dellas 

et al., 2014). 
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Members of Euryarchaeota viruses can be either tailed viruses or polyhedral, pleomorphic or 

filamentous. Members of the Crenarchaeota viruses are classified into 8 families (Ackermann 

and Prangishvili, 2012). Thus far, the majority of all isolated viruses infecting archaea possess 

dsDNA genomes and only two families have ssDNA genomes (Prangishvili et al., 2017). Some 

archaeal viruses (except tailed viruses) have distinctive replication strategies and exclusive 

virus release mechanisms delineated  with their host phylum (Bize et al., 2009). The majority 

of Crenarchaeal viruses are nonlytic (Dellas et al., 2014 and references therein). They 

continuously produce progeny viruses while host cell remains viable and release them by 

budding mechanisms without lysis of the host (Ackermann and Prangishvili, 2012). This 

chronic infection form is clearly different from the lysogenic pathway. Virus of euryarchaea 

are lytic (Dellas et al., 2014 and references therein).   

 

1.8 Life cycle strategies of viruses  

The virus life cycle can be lytic, lysogenic, pseudolysogenic or chronic infections (Fig.4).  

 

Fig. 4.   Types of viral life cycles. (Obtained from (Weinbauer, 2004) p. 131.  

In the lysogenic cycle, also known as temperate cycle, the genome of the lysogenic phage 

usually continue to exist in the host as a dormant stage (prophage form) either by merge with 

host genome or as a plasmid and replicates together with the host for several generations until 
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the lytic cycle is activated by external factors (Weinbauer, 2004). (Fig. 4). Lysogenic cycle is 

more complex than lytic cycle (Sinha et al., 2018). 

Chronic infection can be described as continuous release of newly synthesized virions from 

the host cell without host cell lysis. This progeny release can occur via extrusion or  budding 

(Weinbauer, 2004). An example are archaeal viruses (Bath et al., 2006, Bath and Dyall-Smith, 

1998). Pseudolysogeny form of life cycle also called  persistent infections or carrier state 

(Fig.4), means that  phage multiplication only occurs  in a portion of the population 

(Weinbauer, 2004). An example is archaeal virus SIRV1, (Sulfolobus islandicus rod-shaped 

virus) (Prangishvili et al., 1999). Here, I have focused on lytic viruses and phages. Other than 

the effect of lytic viruses, the significance of lysogenic pathway is equally influential in marine 

environment as well as in every other environment.  Lytic and lysogenic lifestyle of phages can 

be interpreted as survival strategies. When host bacteria are abundant in the surrounding 

environment, phages can enter lytic cycle, where the host lysis results in completing the virus 

life cycle. On the other end, during low host density or low host growth rate (poor growth 

conditions), lysogeny might be advantageous over lysis. During low host abundance, increased 

prophage induction has been observed (Long et al., 2007). However, this hitherto accepted 

paradigm has challenged by the new idea of “piggyback the winner”,  where high host 

abundance favours lysogeny (Knowles, 2016). Single stranded DNA viruses and RNA viruses 

do not have the ability to choose a lysogenic path  (Stahl et al., 2015). 

Lytic cycle and virus replication  

Replication of lytic phages takes place over several steps (Fig 4), (i) phage encounter a 

bacterium which is susceptible for adsorption, (ii) irreversible attachment/adsorb of virion, 

(iii) inject its nucleic acid into host cell followed by host uptake of virion nucleic acid, (iv) 

virus take control of the cell’s replication and protein synthesis mechanisms. Soon after the 

injection step, the eclipse phase of the virus life cycle begins. During the eclipse period, 

synthesis of new viral coat proteins, early enzymes and viral nucleic acid (by host machinery) 

takes place. (v) virions mature during the post-eclipse phase, where those newly synthesized 

viral genomes assemble with their capsids. As shown in Fig. 5, infectious virion units increased 

drastically within the host cell during this maturation period vi) release of virion at the end of 

maturation (Hyman and Abedon, 2009). During the rise period, cell lysis occurs , followed by 

mature phages being  release into the environment, where free phages or virions can be detected 
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(Weinbauer, 2004). (vii) diffusion-delimited time period, where virions look for a susceptible 

host cell in the surrounding milieu to adsorb. 

All these steps in the virus life cycle (adsorption period, virion attachment and nucleic acid 

injection, LP and  virion release of virions) (Hyman and Abedon, 2009) contribute to determine 

the generation time of virus. For many bacteriophages, the replication cycle can take 20-60 

minutes, while it is much longer in most animal viruses and algal viruses. There are several 

release mechanisms, which are dependent on the type of virus, namely; excretion (extrusion), 

budding and cell lysis. 

 At low multiplicity of infection or the number of viruses co-infecting one host cell (m.o.i.), a 

single phage may infect a single host cell, while at high m.o.i., superinfection (“re-infection 

with a homologous phage”) can happen (Parada et al., 2006 and references therein). 

Superinfection can lead to “lysis inhibition” (delayed cell lysis) and hence extension of LP 

which eventually increase BS as well (Abedon, 1999). The third type of infection pattern, “co-

infection” whereas, two or more viruses infect one host at the same time. 

1.9 Viral traits 

Trait based approach to study ecology, including marine viral ecology, has gain interest as an 

alternative to the species based approach (Litchman and Klausmeier, 2008, Record et al., 

2016). Traits can be defined as “characteristics of organisms that link processes at the 

individual level to population-, community-, or ecosystem-level processes” (Record et al., 

2016). There are traits, specific to every life event; reproduction, ontogeny, growth and 

defence. They  are usually taxon-transcending and finally regulate fitness (Record et al., 2016). 

Traits are typically interconnected and relationships between and among them frequently 

discernible  as trade-offs (Litchman and Klausmeier, 2008). Evolution of traits aims to optimize 

the viral fitness (Edwards and Steward, 2018).                                 

Primary traits (characteristics), which regulate the virus- host dynamics for lytic viruses are 

genome size of the virus, latent period and burst size. In addition, capsid size, structure, 

genome type, host range, virulence, transcription control ability, entry and release mechanisms, 

replication and assembly site are also contributing (Record et al., 2016). On the other hand 

morphology (structure), genome size, growth conditions and  growth rate (physiological status) 

of the host are the prime selective forces for  viral traits and their evolution  (Bratbak et al., 

1998, Edwards and Steward, 2018b). Trait plasticity mainly depend on environment and 

taxonomic division (Litchman and Klausmeier, 2008). 
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1.9.1 Latent period  

 

Fig. 5  “Schematic illustration of different phases of the one step growth curve of virus 

replication. Eclipse phase starts following adsorption of virions to the host cell. The eclipse and early 

maturation phases together make latent period of viral infection. Latent period calculated from the time 

point that the virion attaches to the host and/ or uptake of nucleic acid. Latent period extent through 

eclipse and post eclipse phases and end with host lysis, liberating the newly synthesise viral progeny. 

Virulent, lytic viruses show all those steps in their life cycle” (obtained from (Stahl et al., 2015).   

The latent period of the virus life cycle commences from the virus adsorption to the host cell and ends 

upon the host cell lysis. During this infection phase, extracellular  or free phages are not detectable 

(Weinbauer, 2004). One step growth curves can be used to calculate LP and BS for a given 

phage host system (Middelboe et al., 2010) (Fig. 5). The time duration between the infection 

(virus addition) and the first surge in viral titre represent the latent period (Fig.5). Triggering 

of cell lysis  involves physiological as well as environmental factors (Young, 1992). 

Growth rate, genotype and generation time of the host has an impact on latent period of the 

virus (Zhang and Jiao, 2009, (Edwards and Steward, 2018b, Proctor et al., 1993, Guixa-

Boixareu et al., 1996). Using phage T4 and Escherichia coli K- 12 as a model, Nabergoj et al., 

(2018) elucidated, a decline of latent period up to a limiting value with increasing host growth 

rate.  Nabergoj et al.,  

Some studies have pointed out that there is a connection between available phosphate and 

nitrate levels (environmental conditions)  and viral production and latent period (Zimmerman 

et al., 2019 and references therein, (Maat and Brussaard, 2016, Wilson et al., 1996, Bachy et 

al., 2018). However, it is not clear that this is an indirect impact by altered host growth rate or 

Burst size= pfu end / pfu initial 
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a direct impact (i.e., growth limiting factor, lack of phosphate to nucleic acid synthesis) 

(Zimmerman et al., 2019). However, after established the apparent dependence of  viral traits 

on host physiology, it should also note that the sensitivity of this dependence is variable with 

each virus-host system , underlying cell biology and the factors itself which cause the change 

in host growth rate  (Zimmerman et al., 2019, Bachy et al., 2018).  Some studies investigate 

irradiance effects on    latent period and viral production (Baudoux and Brussaard, 2008, 

Piedade et al., 2018). 

1.9.2  Burst size  

Burst size (BS) of viruses can be defined as the number of progeny viral particles released per 

host cell into the extracellular  environment  upon cell lysis (Weinbauer, 2004). This depends 

on the type of virus as well as the host cell (host genotype). It could vary from few to several 

thousand virions. It is a key parameter  in epidemics, population dynamics and viral ecology 

(Parada et al., 2006). BS calculation is important when evaluating the virus induced mortality 

of  hetero- and autotrophic, prokaryotic  and eukaryotic  micro-organisms and viral shunt 

process in aquatic food webs (Fuhrman, 1999). The ratio between, the increase in viral titre: 

the decrease in host cell concentration during a certain time interval is used to calculate the BS. 

        BS= (Vmax−Vmin) / (Hmax−Hmin) 

Where, Vmin and Vmax are the minimal and maximal viral concentrations, respectively, and Hmin 

and Hmax , the minimal and maximal host abundances (Arsenieff et al., 2019). 

Most of the literature investigated in this study has used one step growth curves (Ellis and 

Delbrück, 1939) to characterize virus life cycle ( Fig.5 ). One step means only a single infection 

cycle is permitted, without allowing re-infections.  

Methods commonly used to enumerate and estimate of burst size are transmission electron 

microscopy (TEM) using whole cells (Heldal and Bratbak, 1991) or thin sections, TEM 

together with streptomycin treatment, plaque forming assay using double layer agar method, 

one step growth curves, epifluorescence microscopy methods, most probable number assay and 

flow cytometry.  All approaches have their inherent advantages and disadvantages (Weinbauer, 

2004). Novel methods as phage FISH and gene ELISA (Dang et al., 2015) are also introduced 

recently. Studies based on phage host systems have used “one step growth curve experiments” 

(Weinbauer, 2004), while studies on environmental samples have mostly used TEM to count 

visibly virus infected cells since for natural communities one step growth curve  method cannot 
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be applied (Parada et al., 2006). Those studies with environmental samples and TEM approach, 

estimate minimum (average BS from all infected host cells in a sample) and maximum burst 

size values (use only the cells, which are fully packed with newly synthesized virions to 

estimate the BS) (Weinbauer, 2004).  In minimum BS scenario, there is a possibility that the 

number of virions within host cell might still increase before cell burst. On the other hand, in 

maximum BS situation there is a likelihood that some host cells will burst before they fully 

packed with progeny virions (Weinbauer, 2004). 

Host and virus species, m.o.i. (Van Etten et al., 1983, Bratbak et al., 1998), host’s abundance 

and metabolic activity (growth rate), cellular physiology, host cell size and age , bacterial 

production, host growth rate associated parameters (i.e. temperature, nitrate, phosphate), 

amount and activity of ribosomes, trophic status of the natural systems, various environmental 

parameters, e.g. salinity, temperature, availability and composition of the substrate and depth 

of the water (Weinbauer and Hoefle, 1998)  are among the factors identified to affect the BS 

(Middelboe, 2000, Parada et al., 2006, Mathias et al., 1995). Some studies have reported BS 

variation among different  host morphotypes (Weimbauer and Peduzzi, 1994).  Nabergoj et al., 

(2018) demonstrated a positive linear correlation between burst size and host growth rate using 

phage T4 and Escherichia coli K- 12 as a model. New virus progeny production needs protein, 

RNA and DNA synthesis by host, which is directly depend on host’s growth rate. Thus, higher 

host growth rate contributes to higher viral production rate as well (Edwards and Steward, 2018 

and references therein). Moreover, virus infection does not inactivate the metabolic activity of 

the host until lysis. This is a strategy helps to increase BS since it is essential to keep the host 

metabolically active for continuous production of the viral progeny until burst of the cell 

(Parada et al., 2006 and references therein). “Ratio of infectious virions per host cell (m.o.i.), 

plays an important role in infection kinetics by facilitating the encounter rate between virions 

and hosts” (Brown and Bidle, 2014). BS and m.o.i. has a negative correlation. This is related 

to “phage induced-lysis from without” phenomenon (Brown and Bidle, 2014). It is postulated 

that virus and host genome size ratio is an indicator of BS and capsid size is related to the viral 

genome size (Record et al., 2016 and references therein). Therefore, if given similar condition, 

smaller viruses can produce more copies (increased burst size) than larger viruses. BS together 

with latent period is an indication of metabolic efficiency of virus replication (Record et al., 

2016). 
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For a given virus-host system, optimizing latent period and burst size is a necessity for the most 

effective viral spread and life strategy (Parada et al., 2006). This balance between LP and BS 

is   controlled by various biotic, abiotic, intrinsic and extrinsic factors. 

1.9.3  Virion size and genome size of the viruses 

Even though, size is a first order factor  for organisms which determine their position within 

ecosystem function and structure, its importance as a  virus trait is still unclear (Record et al., 

2016). Virus size might be significant for host encounter (contact rate), virus production or 

survival, however, it has not been found evidence that larger viruses infect larger size host or 

vice versa (Record et al., 2016). Both virion size and host cell size influence the BS, because 

the number of newly assembled virions, which can be packed inside the host cell is depend on 

the above two traits. Moderate plasticity of virion size and morphology has been observed 

(Parada et al., 2006). 

  Virion head (capsid)  size can be as small as  22 nm ( Chaetoceros socialis f. radians- SssRNA 

viruses) (Tomaru et al., 2009a) ) to 310 nm ( Prymnesium kappa virus RF01 (PkV RF01) 

(Johannessen et al., 2015) or even up to  900nm (dsDNA Sulfolobus islandicus rod-shaped 

virus) (Prangishvili et al., 1999). Genome sizes of the viruses range from smallest reported of 

4.36 kb (vB_Cib_ssDNA_P1- (host-Citromicrobium bathyomarinum )(Zheng et al., 2018) to   

“giruses”  with genomes from  300 kb and up to 1259 kb.  These large viruses belong to the 

Mimiviruses, phycodnaviruses and Marseillevirus (Van Etten et al., 2010, Colson et al., 2012). 

1.10 Bacteriophage life history traits and associated trade-offs 

Biological trade-offs are basic principal of life history theory. This thesis focuses on trade -offs 

between viral traits. “A trade-off is a relationship between the magnitudes of two (or more) 

quantitative traits such that changes in the net benefits derived from one imply opposite 

changes in net benefits derived from the other(s)” (Saeki et al., 2014). In nature, evolutionary, 

ecological dynamics and life histories are moulded and challenged by trade-offs. Type of life 

cycle, burst  size ( fecundity), latent period, reproduction rate ( combination of burst size and 

latent period), adsorption rate, virion stability (survival outside the host), genome size, 

morphology and size of the capsid, host range have been identified as key traits in life history 

trade-offs (Zimmerman et al., 2019). 

There are trade-offs associated with central events (such as adsorption , host range, replication  

and persistence ) of phage life histories which deter synchronised enhancement of fitness traits 
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(Goldhill and Turner, 2014, Keen, 2014). These life history trade-offs of viruses have 

significant influence on bio-geo-chemical processes, dynamics in epidemiology, viral diversity 

and many more aspects including bio-engineering of viruses (Goldhill and Turner, 2014). 

Pleiotropic genes control more than one trait; therefore, they can influence multiple phenotypes 

(traits). Trade-offs between traits  can originate as a result of pleiotropy, since optimizing of 

one trait, can jeopardize another (McGee et al., 2014). Mutations regulate the fitness variation 

across variety of environments. Antagonistic trade-offs of such pleiotropic  mutations are the 

driving force survival under stressful or changing environmental conditions (Dessau et al., 

2012). 

 Due to their smaller genome size, overlapping genes and multifunctional proteins, viruses 

specially face this antagonistic pleiotropy (McGee et al., 2014). However, when selection 

pressure acts favourable for multiple traits at the same time, payoffs can have observed. For 

example increased growth rate together with increased stability for temperature and pH 

(McGee et al., 2014).  

1.10.1  Reproduction and survival trade-offs 

Several trade-off types between viral traits have been suggested. For example, reproduction 

and survival trade-offs;  when burst size increase , it will cost the virus through increased  

decay rate (reduce survival) and vice versa (De Paepe et al., 2006). When there is a selective 

pressure from the environment  in the form of stress factors, it has been shown that RNA virus 

select reproductive fitness trade-off for  enhanced “thermal and structural stability of a viral 

enzyme” (Dessau et al., 2012). It has been suggested that this reproduction, survival trade-off 

is interceded by another trade-off in viral lytic enzymes; stability vs activity (Goldhill and 

Turner, 2014).   Some studies however, did not find a trade-off between reproduction and 

survival (McGee et al., 2014). Still it is difficult to find mechanisms  to reason this particular 

virus trade-off, since the extracellular and intracellular environments are very  different for 

viruses (Goldhill and Turner, 2014).  

Furthermore, García-Villada and Drake, (2013) have found decreased viability (lifespan) of 

phage particles as a trade-off for increased fecundity in coliphage Qß, under the experimental 

selection. Here in this example, higher fecundity has attained by decreasing the resource 

(mainly time) expenditure per virion. So, in other words, reduced latent period, increased burst 

size and reduced survival are the interconnected traits here (García-Villada and Drake, 2013). 

De Paepe et al., (2006) found evidence for strong positive correlation between mortality and 
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multiplication rate in coliphages. Here they used average burst size: average latent period ratio 

as multiplication rate. Multiplication rate can be used as a proxy for fecundity (García-Villada 

and Drake, 2013). (De Paepe et al., 2006) 

Genome organization of viruses also suffer trade-offs. E.g.  packaging density of genome and 

capsid strength (Record et al., 2016).  There is a limited available space inside the capsid to 

package the viral genome.  When the genome become larger, there is not enough space in the 

capsid, in contrast, when there is too little genetic material inside the capsid, there is not enough 

pressure to eject the genome into host, thus infection initiation fails. So, there must be trade-

offs, counterweighing the advantages of possessing a larger genome.  

Record et al., (2016) have discussed the trade-offs with lysogeny to lysis switching (virulence 

trade-off) in detail, under the changing environmental factors as light, temperature and 

nutrients. Further, this trade-off can be governed by virus replication rate, burst, host-virus 

encounter and host and virus mortality (Record et al., 2016). 

1.10.2  Specificity and Generality trade-off (host range) or negative 

correlation between reproductive rate and host range 

Here I recap the hypothesis presented by Record et al., (2016). They have identified virus 

genome size, burst size and morphology as traits related to this host range trade-off.  There 

should be a trade-off cost for being a generalist and to have a broader host range. A virus must 

possess variety of tactics to defeat the defence mechanisms of multiple hosts, to be a generalist. 

To achieve this, a broad host range virus should equip with a larger genome with high 

functionality compared to a narrow host range virus (a specialist). To produce progeny with   a 

lager genome requires more resources from the host, which will impair the replication rate. 

Being a generalist within a highly diverse host community brings advantages, so the virus can 

infect diverse hosts and replicate. In this scenario, slow rate of viral population increase is the 

cost (trade-off) to bear in exchange of gaining access to larger group of hosts.  In contrast, 

when the host population diversity is low, there is not any added advantage in trade-off for 

broader host range, so it is reasonable to trade for rapid population increase rate in return with 

narrow host range. There is some data for positive correlation between host range size and 

genome size for lytic viruses and negative correlation for lysogenic viruses. However, 

sometimes none of the correlations were observed (Record et al., 2016).  
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Moreover, there is a strong negative correlation between multiplication rate and both host 

range, persistence (Keen, 2014). This is comparable to offspring production and offspring 

quality trade-off in larger organisms (Keen, 2014). 

Record et al., (2016 and references therein) has proposed affiliation between higher burst size 

and broader host range. Moreover, Wang, (2006) found that higher burst size relates to longer 

latent period. Then again, there is a connection between burst size, host range and burst size 

with genome size too (Record et al., 2016 and references therein). This indicates that several 

traits can be encompassed in a trade-off. Size related morphological traits (head, tail diameter 

and length) show positive relation with host range. Need of additional resources to make larger 

size viruses, may be the reason for this trade-off (Record et al., 2016). 

1.10.3  Trade-off between latent period and burst size 

Balance between the latent period and burst size  is a fine decision to make to attain the optimal 

life strategy (Parada et al., 2006).       

Best prolific lysis timing of the host (in other words duration of latent period) , or whether to 

select lytic pathway   or not  lyse the host at all (lysogenic pathway) is a trad-off,  which include  

factors as multiplicity of infection, host density and quality (Abedon et al., 2003), size of the 

host cell,, growth rate of the host (Dennehy and Wang, 2011) , amount of viral genome  inside 

the host, viral production rate (Wang et al., 1996) and  amount of susceptible host outside 

(Goldhill and Turner, 2014 and references therein). To reach this optimum lysis timing trade-

off, a ‘decision’ must be made, assessing what is the balance between minimum latent period 

and maximum burst size. Here, the underlying mechanism for this trade-off is simply the 

“time” (Goldhill and Turner, 2014).  Assuming linear increase of viral progeny inside the host 

with time, longer latent period favours the increased burst size (reproduction). In contrast, 

shorter  latent period,  lower the viral progeny release but at the same time      facilitate swift 

launch of new infection cycles (Wang, 2006, Wang et al., 1996) . Phages with intermediate 

burst times shows the highest fitness (Wang, 2006). Lysis timing has been observed to be an 

evolvable trait. Under experimental conditions, when there is a high abundance of susceptible 

hosts, latent period become shorter. In contrast, at low host density, latent period  tend to be 

longer (Abedon et al., 2003). In general terms, it is safe to state that the optimum lysis timing 

trade-off is applicable for all obligate lytic  viruses (Goldhill and Turner, 2014).  

The nature of the viral genome, environmental stress factors and host range deciding proteins 

can affect the virus trade- offs (Goldhill and Turner, 2014). How these environmental stress 
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factors affect trade-offs is an understudied question. There has been demonstrated lowered 

reproduction, fecundity (decreased burst size) and lesser thermo-stability as adaptation costs 

(= trade-offs) under experimental conditions with selective pressures such as; heat shock, low 

pH, prolonged transmission (Goldhill and Turner, 2014 and references therein). Nonetheless, 

some studies did not show trade-offs to environmental stress factors (McGee et al., 2014).  

Various mechanisms engaging  adaptive mutations contribute to theses survival  trade-offs 

under the environmental stress (Goldhill and Turner, 2014). 

1.10.4  Virus trade-offs relating to host traits (resistance to infection 

and virulence) 

Virus traits and host traits are closely connected (Record et al., 2016), since virus genome is 

produced by the host. For that reason, virus trade-offs and host traits are also closely linked, 

for e.g. “competitive and defensive traits in hosts” (Record et al., 2016). Further, it has been 

reported increase in viral BS with host cell size (volume) (Weinbauer and Hoefle, 1998, 

Weimbauer and Peduzzi, 1994). 

There are several other viral trade-offs have been presented in the literature; between stability 

and virulence, replication fidelity and immune escape, slower reproduction at cost of strong 

(stable) capsid (survival) and fecundity/longevity trade-off (Heineman et al., 2012). 

Nevertheless, viruses infecting eukaryotes can hold   both extreme stability and  high virulence 

which has given a name “curse of the pharaoh”   (Goldhill and Turner, 2014).  

1.11 Aim of the current study and Hypotheses  

A lot of data on burst size, latent period, host and viral properties are available but scattered in 

different fields of the literature and need to be assembled and systemized to draw generalized 

conclusions on traits and trade-offs across virus groups. Such collection and cataloguing will 

reveal any knowledge gaps and aid to identify future research needs in those areas. 

The objective of this study was to 

• Collect literature data on growth parameters (traits) for burst size, virion (capsid) size, 

latent period, genome size (of host and virus) for different virus groups. 

• Based on the literature study, corroborate whether metadata reveal trade-offs in 

different virus groups;  

o ds/ss DNA , ds/ss RNA viruses  
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o Siphoviridae, myoviridae and podoviridae bacteriophages 

o Between each pair of traits; BS vs LP, BS vs GS, BS vs VS, LP vs GS , LP vs 

VS and  GS vs VS 

• Research questions scrutinized in this study:  

o Are there any significant relationships between traits in various virus groups? 

o Are there any identifiable or distinguishable traits within virus groups? 

o Can we extract general knowledge from these data that can be used in models 

to understand the role of virus? For example, are there trade- offs (some models 

assume trade-offs, others don’t) 

Guided by previous work, here in this study, I am trying to combine published research data 

and available theories to comprehend viral trait diversity. As a first step. I compile published 

studies to search variation in BS, LP, GS and VS across diverse virus groups. Then I tried to 

find correlations between these traits. I have generated the following hypotheses based on the 

available knowledge on viral traits and trade-offs:  

a) There is a positive correlation between LP and BS 

b) There is a positive correlation between LP and GS 

c) There is a positive correlation between LP and VS 

d) There is a negative correlation between BS and GS 

e) There is a negative correlation between BS and VS 

f) There is a positive correlation between VS and GS 

g) There is a negative relationship between LP and host growth rate 

h) There is a positive relationship between BS and host: virus genome size ratio 

i) There is a positive relationship between BS and host cell volume 

j) There is a relationship between latent period and host: virus genome size ratio  

I tried to find any patterns of trait variation (is there any or not, and if there are trends, are they 

robust or weak?). Finally, I tried to connect trends with responsible mechanisms. 
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2.   Methods: Data synthesis 

Compilation of viral traits 

Here in this literature survey study, I searched for published literature from various databases 

connected to Oria UiB (library data base at university of Bergen), using key word combinations 

and sometimes through cited work from publications. Around 200 publications, containing 

both burst size and latent period data, were selected. By reviewing literature, I gathered 

information over 250 virus-host systems infecting unicellular hosts from both ecological and 

clinical studies. Results data are summarized in (Table 3-13 in Appendix). 

All selected literature was summarized in a descriptive pivot table, with raw data gathered on 

virus traits; burst size, latent period, genome size, nucleic acid type 

(dsDNA/ssDNA/dsRNA/ssRNA) , virion size (capsid and tail measurements) and host 

characteristics for various viruses and phages infecting both prokaryotic and eukaryotic hosts, 

across wide range of environments.  I also recorded the virus name, host species and taxon 

(cyanobacteria, diatom, chlorophyte, dinoflagellate etc) location and source of virus isolation, 

environment (freshwater, marine, soil etc.). I also include the method used for BS estimation 

(TEM, FCM, free virion count or count of plaque forming (infectious) units) together with 

temperature, m.o.i, and other special experimental conditions utilized for one step growth 

curves.  

 Then I categorized them into various groups, eukaryotic viruses into (dsDNA, ssDNA, dsRNA 

and ssRNA), bacteriophages into families (Siphoviridae, Myoviridae and Podoviridae and 

diverse other families). To test a variety of hypothesized correlations between viral traits, 

graphs were made using above data, between each trait pair for each virus category for e.g. BS 

vs LP, BS vs GS, BS vs VS, LP vs GS, LP vs VS and GS vs VS etc. 

When a paper gives a value range for a trait, the mean value was calculated and used in graphs. 

I looked for any prominent relationships between traits within various virus groups and 

compared virus groups for any identifiable or distinguishable traits among or specific to them. 

Why select those traits; BS, LP, GS and VS? The reason for focusing on the above traits is 

that, they are the key quantitative viral traits as well as there is abundance of data on those traits 

are available in literature, scattered and waiting to be collected and categorized. 

Prokaryote viruses categorized again into smaller groups, based on host characteristic. Such 

as; fresh water, marine, cyanobacterial, archaeal, phytopathogenic, halophilic, thermophilic, 
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psychrophilic, enteric, lactic acid producing, Roseobacter clade and phages of rhizosphere 

bacteria etc.(Ackermann and Prangishvili, 2012) has also used same system of grouping viruses 

after their host, since prokaryote viruses are basically “host-genus-specific”, and typically 

species-specific and even strain-specific. However, there are some polyvalent phages, which 

are capable of infecting hosts from unalike genera or species,  for e.g. phages of enterobacteria 

(Hamdi et al., 2017) and viruses of brown algae (Short, 2012). 

Out of the dimensions given by the references, head (capsid) diameter was taken to represent 

the virion size. When there are data for both capsid diameter and capsid length, the larger value 

was selected as virion size considering its impact on capsid volume which provide the room 

for viral genome. 

Psychrophilic bacterial phages were removed from the analysis, since their extremely 

prolonged latent periods (which might had affected by temperature) masks any other existing 

correlations within the particular groups. When there is first and second burst data from one 

step growth curve experiments for e.g. (López-Cuevas et al., 2011), only first burst values were 

taken into pivot table.  
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3.   Results and discussion of the results 

 

The literature compilation gathered data on ~50 eukaryote virus strains, out of that, 28 were 

dsDNA, 9- ssDNA, 1- dsRNA, 10- ssRNA and 4 unclassified viruses of eukaryotes. Apart from 

eukaryote viruses, there were ~ 140 bacteriophage varieties, including 51 Siphoviridae 

members, 52 Myoviridae, 29 Podoviridae, 2 unclassified phages, 3 Cystoviridae (dsRNA), one 

each from Tectiviridae (dsDNA) and Microviridae (ssDNA), see Table 3-13 in the appendix. 

In addition, there were 13 archaeal viruses and 43 cyanophages also included in the present 

study. Further, the host pool comprises of more than 30 unicellular eukaryotic species; 

including chlorophytes, diatoms, haptophytes, raphidophytes, dinoflagellates, ~35 strains of 

cyanobacteria and 6 archaeal species (Table 3-13). 

The genome size of the eukaryote viruses (collected in this study) ranges from 4.4-560 kb, 

where size range for dsDNA viruses are 77-560 kb, for ssDNA 5.5-7 kb and for ssRNA viruses 

4.4-11.2 kb (Table 1). All the size ranges for other traits are summarized in the Table.1. 

According to the obtained results through literature, there is a more than one order of magnitude 

variation in virion head (capsid) size across the virus families while the variation is more than 

two orders of magnitude when it comes to genome sizes of the different virus families. There 

are four orders of magnitude variation in burst sizes and latent periods (Table 1). There is a 

clear distinction between dsDNA virus and ssDNA/RNA eukaryote virus in relation to virion 

size, where the dsDNA viruses are larger in one order of magnitude than the single strand 

viruses.  Such clear differentiation is not apparent among three phage families. (Table 1). In 

his review, Weinbauer, (2004) reported an average head diameter of 55-64 nm for prokaryotic 

viruses in marine environments. In addition, a virion head size variation with different layers 

of the freshwater lake system, where phages in oxic surface layer shows the smallest average 

head size while it increases with the depth.  
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Table 1. Range of reported latent periods, burst sizes, genome sizes and virion sizes for different 

virus and phage categories. Summarized data from Table 3-13 in the appendix. 

 Latent 

period 

Burst size Genome size 

(kb) 

Virion size  

(nm) 

Host 

dsDNA 2-72 Hrs 25-4100 77-560  113-310  Pry, HNF,Ch,,Pra,Rh,Di 

ssDNA 12-96 Hrs 29-22000 5.5-7 32-38 Baci 

ssRNA <8- < 80 Hrs 66-93400 4.4-11.2 22-38 Baci, Thr 

Cyanophages 2-96 Hrs 15-400 28-196 50-97 cyanobacteria 

Siphoviridae 10-10800 min 5-794 13.4-180 40.92-140 B, Ar 

Myoviridae 8-240 min 5-750 8-250.4 10-164 B, Ar 

Podoviridae 10-300 min 10-9000 18-90 41-153 B 

Archaeal viruses 2-21 Hrs 20-470 14.4-35.8 44-900 Ar 

 

Bold and blue text- viruses of eukaryotes, B-Bacteria, Ar-Archaea, Pry-Prymnesiophyceae, 

Chl-Chlorophyceae (green algae), Pra-Prasinophyceae, HNF-heterotrophic nanoflagellate,  

Rh-Rhaphidophyceae, Di-Dinophyceae, Baci-Bacillariophyceae, Thr-Thraustochytriaceae 

 

 

The ICTV 9th report (King et al., 2011) also has indicated size ranges for Myoviridae members 

as; head 60-145 nm, elongated heads 80-110 nm, tail 16-20 X 40 455nm , genome size 31-317 

kb. According to above reference, size ranges for Podoviridae members are; head 60-70 nm, 

tail 10-20 nm, genome size 16-78 kb. For Siphoviridae; head 40-80 nm, tail 5-10 X 100- 210 

nm, genome size 21-134 kb. Approximately 100 new bacterial and archaeal viruses described 

per year (Ackermann and Prangishvili, 2012). Since the ICTV 9th report, there are possibly 

800 new viruses that have been described, and the variation between Table 1 and King et al., 

(2011) may be due to these new discoveries. I took into consideration only the references which 

indicated burst size and latent period data, and therefore I gathered only a fraction of references 

available on these families. 

3.1 Viruses of eukaryotes 

3.1.1 dsDNA viruses 

3.1.1.a  Relationship between burst size and latent period 

There is a weak   positive correlation between burst size and latent period (hrs) for dsDNA 

viruses, R² = 0.3118 (Fig.6 B). 
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Longest latent period for dsDNA viruses in eukaryotes 

The maximum latent period observed is 60 (48-72) hrs in virus (HcV03)- infecting 

Heterocapsa circularisquama HU9433-P (Tarutani et al., 2001) (Fig. 6A and 6B).  

Heterocapsa circularisquama is a dinoflagellate which can cause mortality in shellfish. HcV03 

virus  belongs to the  family- - Phycodnaviridae. (Nagasaki et al., 2003) has also reported 

lengthy latent periods for H. circularisquama, 40 hrs at 25o C and 56 hrs at 20 o C. HcV03 

demonstrate species specificity but is able to infect all 18 strains tested. The authors have 

suggested that the reason for this longer latent period and larger burst size (>1300) compared 

to other algal viruses is large host cell size (approximate dimensions -length 24.5x 17µm width).     

 

Fig. 6   Relationship between burst size and latent period (hrs) for dsDNA viruses infecting 

eukaryotes. (A) *including the extreme data point (burst size=16000). (B) *Excluding the extreme data 

point (burst size=16000).   Data are given in (Table 3.1-3.3). All the data are derived from the literature 

cited in (Table 3.1-3.3). 

     

Shortest latent period for dsDNA viruses in eukaryotes 

The shortest latent period of approximately 2 hrs belongs to the chloro-viruses; OSy-NE5 and 

PBCV-1, which infect two Chlorella variabilis strains (Fig. 6A and 6B).   The chlorovirus host, 

C. variabilis (synonym -zoochlorellae)  is an ex-endosymbiont of  Paramecium bursaria 

(Protozoan)   (Quispe et al., 2017). Even if the authors have not stated the latent period clearly, 

it was calculated from the given one step growth curve graph in the reference. There are some 

other literature,  which also show similar shorter latent periods, 2.5 to 3 hrs  and 3 hours in  

PBCV-1 (Paramecium bursaria chlorella virus-1) grown in light and dark conditions, 
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respectively (Van Etten et al., 1983). It has observed that continuous dark conditions have no 

influence on the latent period while reduce the burst size by 50%. Compared to its large size 

(190 nm), large genome size (327 kb for OSy-NE5  and 334 kb for PBCV-1) and complexity 

as an eukaryote infecting virus, such a short latent period and growth cycle is noteworthy  (Van 

Etten et al., 1983). 

Highest burst size for dsDNA viruses in eukaryotes 

Highest burst size among dsDNA virus is, 16000 for virus OIs1- (small morphotype) in 

Heterosigma akashiwo (Lawrence et al., 2006). Heterosigma akashiwo is a bloom forming 

toxic algal species (Rhaphidophyceae), which is harmful to fish. It is distributed in temperate 

coastal habitats. There are huge differences in burst size between two morphotypes of the virus 

OIs1. The large morphotype has burst size 1100 and latent period 11 hrs, while the smaller 

morphotype has burst size (BS) 16000 and latent period 17 hrs. It is sensible that the high burst 

size belongs to the smaller morphotype of the virus (particle size-30 nm and genome size-20 

kb) compared to the larger morphotype (particle size-80 nm and genome size-130 kb). There 

is more room inside the host cell for high number of smaller size virus particles. Besides that, 

when allocating the limited host resources to make viral progeny, there is a trade-off of high 

numbers of small morphotype against low number of larger morphotype.  The same study has 

also characterized another ssRNA virus (HaRNAV) infecting H. akashiwo. Its infection 

characteristics are totally differed from previously described dsDNA virus, OIs1. HaRNAV 

shows latent period 29 hrs and much higher BS of 21000.  This is a clear example that the 

infection characteristics are rather virus depended than host dependent. When the same host is 

infected by different viruses, distinguishable infection characteristics are observable. The 

authors of this study (Lawrence et al., 2006) have proposed that the intrinsic dynamics and 

biological variability of rapidly fluctuating phytoplankton blooms, allow two virus types to 

coexist in the same host, here in this example. The dsDNA virus OIs, which have the shorter 

LP and the shorter lytic cycle (rapid progeny release thus swift propagation), have the 

competitive advantage over RNA virus during the high host density. Anyhow, during bloom 

termination and thus low host density, HaRNAV with its longer latent period and higher BS, 

have the upper hand. However, in some other cases heterogeneity can better explained the 

paradox of the viruses (Lawrence et al., 2006). 
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Note that Fig.6A and 6B are both derived from the same data set. The extremely high data point 

of BS= 16000 has been removed from the graph in Fig.6B, which enables us to get a closer 

look on the other data points.  

The second largest burst size of dsDNA viruses is 3000 (1800-4100) for CeV- 01B infecting 

Chrysochromulina ericina (Sandaa et al., 2001). It has a genome size of 510kb and a virion 

size of 160nm. 

Lowest burst size for dsDNA viruses in eukaryotes 

Virus OtV5 (host-Ostreococcus tauri- OTH95), has the lowest reported burst size (=25) for 

eukaryote infecting dsDNA viruses (Derelle et al., 2008b). The second lowest burst size (=51) 

is observed in OlV7 (more virulent virus type and under limited light condition ) infecting 

Ostreococcus lucimarinus (Zimmerman et al., 2019) ( Fig 6 B).  Ostreococcus is a widely 

distributed pico-prasinophyte alga, smaller than Micromonas spp. OlV7 has capsid diameter of 

140nm and genome size approximately 200kb. However results should be interpreted carefully 

for OlV7, since the experimental setup adopted in this study differs from standard one-step 

growth curve type which has followed by majority of the other literature. Nevertheless, under 

higher irradiance, burst size of OlV7 increased approximately 50 times. Even though 

Ostreococcus are the smallest eukaryotes known to date, measuring ≈1-μm cell diameter, it is 

difficult to interpret the host cell volume as the limiting factor for low burst size. Since it has 

demonstrated that, under high irradiance (=higher host growth rate) Ostreococcus lucimarinus 

can harbour more than 1000 virions. Instead, the limiting factor here could be the host 

physiology (growth rate). 

3.1.1. b Burst size and latent period variation compared to genome size of the 

dsDNA viruses of eukaryote 

Genome size for dsDNA viruses of eukaryotes varies from 77-560 kb (Fig.7). There is no 

prominent correlation between burst size and genome size (kb). Neither   between latent period 

and genome size (Fig.7A and 7B). Largest genome size belongs to the virus, PoV-01B (host-

Pyramimonas orientalis) which is 560 kb, 14-19 hours latent period ,  burst size of 800- 1000 

and a capsid size of 220x180 nm (Sandaa et al., 2001). Next largest genome size is 530 kb, H. 

ericina virus RF02 (HeV RF02), which has a broad host range (hosts- Haptolina ericina strains 

and Prymnesium kappa UIO033). It has a latent period of 14-18 hrs, burst size of 775 and 

190±20×160±10 in size (Johannessen et al., 2015). The former is in the family, 

Phycodnaviridae and the latter is in the Mimiviridae family. The Mimiviridae family belongs 
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to the Nucleocytoplasmic large DNA viruses (NCLDV), together with certain 

prymnesioviruses and prasinoviruses and chloroviruses. (Cottrell and Suttle, 1991) report the 

dsDNA virus with the smallest genome 77-110 kb, MpV (host- Micromonas pusilla). It also 

has the smallest (113 nm) virion size.  The host, Micromonas pusilla is a 1.5-2 µm large 

photosynthetic marine flagellate (Prasinophyceae). 

This data point (with smallest genome and virion size), is not included in the fig 7A and 7B, 

since the study does not provide latent period or burst size. The next smallest genome 177 kb 

belongs to the PgV Group II A and PgV Group II B (host-Phaeocystis globosa). It has a latent 

period of 12  and  16 and a mean burst size of 345 and respectively (Baudoux and Brussaard, 

2005). The host is a member of harmful bloom forming marine Prymnesiophyceae.  

 

 

Fig. 7 (A) Relationship between burst size and genome size (kb) (B) Relationship between latent 

period (hrs) and genome size (kb) for dsDNA viruses of eukaryotes. Data are given in (Table 3.1-3.3). 

All the data are derived from the literature cited in (Table 3.1-3.3). 

Since several studies with large burst size values has not given the genome size or virion size, 

those were excluded from the plots above.  

3.1.1.c     Burst size and latent period vs virion size 

Virion (head) size for the dsDNA viruses of eukaryotes varies from 113-310 nm (Fig.8). The 

largest virion is Prymnesium kappa virus RF01 (PkV RF01) (hosts-H. ericina strains and P. 

kappa UIO033) This largest virion does not contain the largest genome for dsDNA virus group, 

instead it has a much smaller genome of ~ 310 kb. It is also include in the Mimiviridae 
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family (Johannessen et al., 2015). There is no correlation between burst size and virion size 

(nm). Neither   between latent period and virion size of dsDNA viruses (Fig 8A and 8 B). 

 

 

Fig. 8 (A) Relationship between burst size and virion size (nm) (B) latent period and virion size 

(nm) for dsDNA viruses of eukaryotes. Data are given in (Table 3.1-3.3). All the data are derived from 

the literature cited in (Table 3.1-3.3).  

3.1.1.d     Virion size and genome size 

When we compare the 77-110 kb genome and 560 kb largest genome, genome size increases 

approximately x5 times while virion size only has doubled (Fig.9). However, we can observe 

a general trend that, with increasing genome size, virion size increases as well (R2= 0.387) in 

dsDNA viruses (Fig.9). 
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Fig. 9   Relationship between virion size (nm) vs genome size (kb) for dsDNA viruses 

of eukaryotes. Data are given in (Table 3.1-3.3). All the data are derived from the literature 

cited in Table (3.1-3.3).  

 

3.1.2 ssDNA viruses 

3.1.2. a    Burst size vs latent period 

According to the R2 value (0.0653), it can be concluded that there is no apparent correlation 

between burst size and latent period (hrs) for ssDNA viruses (Fig.10). All the ssDNA viruses 

found in the literature have diatom hosts (Table.4). The longest latent period (96 hours) is  

displayed by CtenDNAV (host-C. tenuissimus ) (Tomaru et al., 2011a). Then there are several 

diatom infecting viruses, which show more or less similar latent periods, approximately  48 

hours, for e.g. ClorDNAV ( host-Chaetoceros lorenzianus Grunow (Tomaru et al., 2011b) and 

CsetDNAV  (host -Chaetoceros setoensis IT07-C11) (Tomaru et al., 2013). It seems like latent 

period around 48 h, gives the highest burst size, while both shorter (< 24 hrs) and longer latent 

periods do not yield high burst sizes. 
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Fig. 10  Relationship between burst size and latent period (hrs) for ssDNA viruses of 

eukaryotes. Data are given in Table 4. All the data are derived from the literature cited in Table 4. 

Shortest latent period for ssDNA viruses of eukaryotes 

Bacilladnavirus- Csp07DNAV, (host-Chaetoceros sp. Strain SS628-11)  has the shortest 

reported latent period ( <12 hours) among ssDNA viruses  (Kimura and Tomaru, 2013) 

(Fig.10). Next, there are two viruses that have approximately the same mean latent period of 

18 hours (12-24 hours),  CsalDNAV ( CsNIV) host -Chaetoceros salsugineum ((Nagasaki et 

al., 2005) and CdebDNAV (host-Chaetoceros debilis) (Tomaru et al., 2008) (Fig.10). All these 

three viruses have smaller burst sizes, 29, 59 and 325 respectively. 

Highest burst size for ssDNA viruses of eukaryotes 

Among the  ssDNA viruses, ClorDNAV (Bacilladnavirus), (host-Chaetoceros lorenzianus 

Grunow, bloom forming diatom belong to Bacillariophyceae) has the highest burst size of 

22000 (Tomaru et al., 2011b) (Fig.10). Chaetoceros setoensis ssDNA virus (CsetDNAV) 

comes next, with mean burst size of 12350 (4700-20000). 

Lowest burst size for ssDNA viruses of eukaryotes 

Csp07DNAV- (host-Chaetoceros sp. Strain SS628-11) shows the lowest burst size of 29 

(Kimura and Tomaru, 2013), followed by CdebDNAV (host-Chaetoceros debilis) with a burst 

size of 55 (Tomaru et al., 2008) (Fig.10). 
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3.1.2. b    Burst size and latent period vs genome size 

Unlike dsDNA viruses (77-560 kb), ssDNA viruses show notably smaller and limited genome 

size range from 5.5-7 kb (Fig.11A). There is no relationship between burst size and genome 

size (kb). Neither   between latent period and genome size (Fig.11 A and 11B).  

  

Fig. 11 (A) Relationship between burst size and genome size (kb) (B) Relationship between latent 

period (hrs) and genome size (kb) for ssDNA viruses of eukaryotes. Data are given in Table 4. All the 

data are derived from the literature cited in Table 4. 

3.1.2. c    Burst size and latent period vs virion size 

There is no relationship between burst size and virion size (nm). Neither   between latent period 

and virion size for ssDNA viruses of eukaryotes (Fig. 12 A and 12 B).  

 

Fig. 12 (A) Relationship between burst size and virion size (nm) (B) Relationship between latent 

period (hrs) and virion size (nm) for ssDNA viruses of eukaryotes. Data are given in Table 4. All the 

data are derived from the literature cited in Table 4. 
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When comparing the virion size range, dsDNA viruses have a virion size range 113-310 nm, 

while ssDNA viruses display a much smaller and limited range of 32-38 nm. The reason might 

be that there is a larger host variety from where the data has been collected on dsDNA virus. 

On the contrary, all the reported data on ssDNA viruses came from two host species, 

Thalassiosira nitzschioides and various Chaetoceros sp. However, within this very narrow 

virion size range and genome size range, there is a huge disperse of burst sizes (29-22000) as 

well as latent period values (12-96 hrs) (Fig. 12 A and 12 B).  

 

3.1.3 ssRNA viruses 

3.1.3. a    Burst size vs Latent period 

We can observe a weak negative correlation (R2= 0.41) between burst size and latent period 

for ssRNA viruses of eukaryotes (Fig.13). 

  

Fig. 13  Relationship between burst size and latent period (hrs) for ssRNA viruses infecting 

eukaryotes. Data are given in Table 5. All the data are derived from the literature cited in Table 5. 

Longest latent period for ssRNA viruses in eukaryotes 

RsRNAV, (host- bloom forming diatom, Rhizosolenia setigera) has the longest latent period 

of  48  hrs (Nagasaki et al., 2004). CsfrRNAV ( host- Chaetoceros socialis f. Radians) also has 

similar  latent period of  <48  hrs (Tomaru et al., 2009a).   
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However, SpalV (diatom host-Stephanopyxis palmeriana) has a latent period of < 80 hrs (Kim 

et al., 2015b). The reference has not characterized the genome type and size of the virus, SpalV. 

They report the particle size of the virus as ~ 20 nm. The authors suggested, a ssRNA genome 

for SpalV, based on the fact that phytoplankton virus which has diameter less than <40 nm 

usually contain ssRNA genomes (Culley et al., 2003). All the diatom infecting viruses 

described so far in the literature has either ssDNA genomes or ssRNA genomes. 

Shortest latent period for ssRNA viruses in eukaryotes 

SssRNAV, infecting Schizochytrium sp. has the shortest latent period (<8 hours) for ssRNA 

viruses in eukaryotes (Takao et al., 2005). Guinardia delicatula RNA virus (GdelRNAV) 

has a latent period of <12 hours (Arsenieff et al., 2019). The host, Guinardia delicatula is a 

bloom forming cosmopolitan marine diatom. 

Highest burst size for ssRNA viruses in eukaryotes 

Guinardia delicatula RNA virus (GdelRNAV) has the highest burst size of 93400 virions per 

host cell (Arsenieff et al., 2019). It’s small size (35-38 nm) and small genome ~9 kb, might be 

the reason for this highest burst size.  

 SssRNAV , infecting Schizochytrium sp. has the next highest mean burst  size 34900 (  5800-

64000)  (Takao et al., 2005). Schizochytrium is a cosmopolitan marine fungoid protist (class-

labyrinthulea, kindom-chromista) pathogenic to molluscs. They are important decomposers in 

coastal ecosystems and can be found in sediment, water, algae and plants. SssRNAV has a 

small genome of 10.2 kb and small capsid of 25nm.  The size of the host, Schizochytrium sp. 

can be  7–15 µm diameter (Honda et al., 1998). It is assumed based on geometric analysis, that 

the host can contain > 600000 virus particles and the burst size given above might be an 

underestimation (Takao et al., 2005). The second largest burst size (=21000) reported in ssRNA 

viruses HaRNA belongs to the family- Marnaviridae,  (host- toxic bloom forming 

phytoflagellate, Heterosigma akashiwo ) ( (Tai et al., 2003). HcRNAV infecting bivalve killing 

dinoflagellate, Heterocapsa circularisquama comes next with mean burst size 12200 ( 3400-

16000) (Tomaru et al., 2004). 

Lowest burst size for ssRNA viruses in eukaryotes 

According to gathered data in this study, CsfrRNAV ( diatom host- Chaetoceros socialis f. 

radians) has the lowest burst size of  66 (Tomaru et al., 2009a). CtenRNAV type II infecting 

C. tenuissimus Meunier shows also low burst size of 287 (Kimura and Tomaru, 2015). It is 
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interesting to point out that CtenRNAV01 with the same host (C. tenuissimus  Meunier) has 

much higher burst size of 10000 (Shirai et al., 2008). 

 3.1.3. b    Burst size and latent period vs genome size 

Within the members of the ssRNA viruses, there is no correlation between burst size and 

genome size. Neither between latent period and genome size (Fig.14A and 14B). Like ssDNA 

viruses, genome size variation within the ssRNA virus group is narrow (4.4-11.2kb). The same 

applies to the virion size variation, which occurs within a narrow limit of (22-38 nm) (Fig.15A). 

Similar again to the ssDNA viruses, there is a massive burst size variation (66-93400) and a 

latent period variation (<8- < 80Hrs) (Fig.15 A and B). 

  

 

Fig. 14 (A) Relationship between burst size and genome size (kb) (B) Relationship between latent 

period (hrs) and genome size (kb) for ssRNA viruses of eukaryotes. Data are given in Table 5. All the 

data are derived from the literature cited in Table 5. 

3.1.3 .c     Burst size and latent period vs virion size 

Within the members of the ssRNA viruses, there is no correlation between burst size and virion 

size (nm). Neither between latent period and virion size (Fig.15A and 15B). 

0

20000

40000

60000

80000

100000

0 5 10 15

B
u
rs

t 
si

ze

Genome size (kb)

Burst size vs genome size for ssRNA 

viruses of eukaryotes

R² = 0.001

0

10

20

30

40

50

60

0 5 10 15

L
at

en
t 

p
er

io
d

 (
h
rs

)

Genome size (kb)

Latent period vs genome size for ssRNA 

viruses of eukaryotes

B
A 



39 

 

B 

Fig. 15  Relationship between (A) burst size and virion size (nm) (B) latent period (hrs) and 

virion size (nm) for ssRNA viruses of eukaryotes. Data are given in Table 5. All the data are derived 

from the literature cited in Table 5. 

 

3.2 Viruses of prokaryotes- Bacteriophages 

3.2.1 Family Siphoviridae 

3.2.1. a    Burst size vs Latent period 

There is no apparent relationship between burst size and latent period for dsDNA 

bacteriophages- Family-Siphoviridae (Fig.16).  

There are several viruses of psychrophilic bacterial hosts that show extra-long latent periods 

compared to other members of the family- Siphoviridae. The mean latent period values range 

from 95, 165,240,270 360 and up to 10800 minutes.  Sipho phage 9A, (host- psychrophilic 

bacterium, Colwellia psychrerythraea Strain 34H) has the longest latent period of them all 

(7200-14400 min or 5-10 d, mean- 10800 min) (Wells and Deming, 2006). However, the one 

step growth experiment has carried out at –10 and –12°C. This latent period is 10-20% of the 

generation time of its host at this temperature. The phage 9A has isolated from seawater from 
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virus host system at three different temperature, (–10 and –12), -1 and 8°C, which expressed 

the latent periods, 7200-14400, 240-300 and 150-180 minutes respectively. 
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37°C (Machuca et al., 2010). Here, the temperature alone is not the decisive factor ruling latent 

period. All the above data points were not included in Fig.16.  

 

Fig. 16  Relationship between burst size and latent period (min) for dsDNA bacteriophages- 

Family-Siphoviridae. Data are given in (Table 6.1-6.5). All the data are derived from the literature cited 

in Table 6.1-6.5. 

 

The next longest latent periods (300min) belongs to ΦRP1, ΦRP2 and ΦRP3 (host-Robinia 

pseudoacacia rhizobia, legume microsymbiont). Virus were isolated from  soil, rhizosphere of 

legumes (Małek et al., 2009). Sipho phage SR2, (host-Bradyrhizobium japonicum  CB1809, 

endosymbiont of soy bean) has the same  300 min latent period (Fig.16) (Appunu and Dhar, 

2008) , and both are rhizobiophages. 

The shortest observed latent period for Siphoviridae is 10 min. Several phages have the 

same value, namely; LPST10 (host- Salmonella Typhimurium) (Huang et al., 2018),  P-16 

(O111) (host- Non-O157 Shiga toxigenic Escherichia coli (STEC) (Litt et al., 2018), Av-05 
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explanation for this shortest latent period may not be the high experimental temperature alone, 
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highest number is 409  from  phage AB1, (host-Acinetobacter baumannii   KD311)  (Yang et 

al., 2010).  

Phage 9A (host- Colwellia psychrerythraea Strain 34H, psychrophilic bacteria) has the lowest 

burst sizes of 5 (Wells and Deming, 2006), followed by the burst size of 7, also belonging to 

a psychrophilic bacteria infecting phage FpV-7 (host- Flavobacterium psychrophilum 950106-

1/1 (Stenholm et al., 2008). If we set aside the phages of psychrophilic bacteria, based on 

the temperature factor, phage φC6, (host-Clostridium difficile) has a low burst size of 19 (Goh 

et al., 2005a)  and the  phage Cp1 (host- Xanthomonas axonopodis pv. citri ( syn., Xanthomonas 

campestris pv. citri or Xanthomonas citri ) has more or less similar low burst size of 20 (Ahmad 

et al., 2014). 

3.2.1. b    Burst size and latent period vs genome size -Siphoviridae 

Within the members of Siphoviridae phages, there is no correlation between burst size and 

genome size. There is only a weak positive correlation between genome size and latent period 

(Fig.17A and 17B). Genome size variation within siphoviridae members is 13.4-180 kb.  

  

Fig. 17 (A) Relationship between burst size and genome size (kb) (B) latent period (min) and 

genome size (kb)for dsDNA bacteriophages- Family-Siphoviridae. Data are given in Table (6.1-6.5). 

All the data are derived from the literature cited in Table (6.1-6.5). 

The largest genome within Siphoviridae members is 180 kb, belonging to phage XTP1 (host-

Xanthomonas campestris pv. campestris  (Weiss et al., 1994) . It has a burst size of 35 and a 

latent period of 120 min) (Fig.17A and 17B). The next largest genome is 80-90 kb, phage 9A 

(host-cold active bacterium, Colwellia psychrerythraea Strain 34H- from Arctic). This 
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particular phage also has the longest latent period among siphoviridae members. This phage 

host system demonstrates negative correlation between decreasing temperature and increasing 

latent period, but no such effect is clear with temperature and burst size. With decreasing 

experimental temperatures, 8, -1 and (-10 to -12), the latent period increases from (150-180), 

(240-300) to (7200-14400) min, while burst size varies from 5, 55 and 5 respectively (Wells 

and Deming, 2006). However, this data point is not included in Fig. 17 A and 17B, since phages 

of psychrophilic /cold active bacterial host were excluded from the graph. Phage Φps05 (host- 

Pediococcus sp. LA0281, a gram positive lactic acid bacterium) contains the smallest genome 

of 24.1 kb (Yoon et al., 2007). It also has a latent period of 34 min and a low burst size of 12.  

It is normally the fact that smaller genome size phages may produce higher burst size. Because 

normally host’s nucleotide pool and break down of host genome is used to make new viral 

progeny rather than producing de novo nucleotides.  

According to the gathered data from the literature, phages with the largest genome did not 

always produce lesser progeny and vice versa.  Here we can observe that phages with smallest 

genomes have much low burst sizes even than the largest genome group. 

There are several phages which have smaller genome sizes next to Φps05 such as, 30, 31,31 

and 32 kbs (Fig.17 A and 17B). Phage P8D, P3K and P9C (host- Vibrio strain B8D ( closely 

related to) Vibrio owensii)  (Yu et al., 2013b). Phage EV3 (host- Lactobacillus sanfranciscensis 

H2A) has the 32 kb genome (Foschino et al., 2005). However, phage CG33 (host-

Corynebacterium glutumicum) could be the member with the smallest genome of 13.4 kb ( 

burst size 16 and latent period 18 min) among siphoviridae (Trautwetter et al., 1987). The 

authors have classified the phage only according to Bradley's classification (Bradley, 1967) ,  

as group B, but according to (Ackermann and Prangishvili, 2012) Bradley’s group B 

correspond to Siphoviridae family. If we try to make inferences among genome size and 

corresponding burst sizes of the above mentioned smallest phages (13.4 kb-16 burst), (24 kb-

12 burst), (30 kb-29 burst), (31 kb-60 burst), (31 kb-331 burst) and (32kb-30 burst) still we 

cannot see any pattern. Because phages with nearly similar genome size of ~30 kb, shows BS 

variation of one order magnitude; 29-331. 

3.2.1. c     Burst size and latent period vs virion size - Siphoviridae 

Within the members of phages, there is no correlation between burst size and virion   size, 

neither between latent period and virion size (Fig. 18A and18 B). Virion size variation within 

siphoviridae members is 40.92-140 nm. The largest virion is ΦRP1,virion size of 60x140 nm,  
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(host-Robinia pseudoacacia rhizobia) , it has a quite long latent period (300min) and a large 

burst size of 200 (Małek et al., 2009). It is difficult to relate the larger virion size with host or 

with environment type of factors. Since some of the largest sipho-phages infect vibrio stains, 

while some infect marine roseobacter clade or phytopathogenic bacteria. The smallest 

siphoviridae phage is 39.97x40.92nm size ΦCP6-2 (host- Serratia liquefaciens CP7) with a 

latent period of 104.8 min and a burst size of 174. However it does not have  one of the smallest 

genomes, or a higher burst size either (Ashelford et al., 1999). Both the largest and the smallest 

siphoviridae phages are isolated from phytosphere.  

 

 

Fig. 18 (A) Relationship between burst size and virion size (nm) (B) Relationship between latent 

period (hrs) and virion size (nm) for family Siphoviridae. Data are given in (Table 6.1-6.5). All the data 

are derived from the literature cited in (Table 6.1-6.5). 

3.2.2 Family Myoviridae 

3.2.2. a     Burst size vs latent period 

It is outstanding that as a general observation, all the phages in the Myoviridae family show a 

latent period =< 100 minutes, except a phage with psychrophilic host and halophilic host 

(Fig.19). In contrast, Siphoviridae phages display much longer latent periods up to 10800 min 

(Table 6.1-6.5). If we remove the psychrophilic hosts from the Siphoviridae group, still latent 

periods extend up to 300 min, which is much higher than that of Myoviridae phages. 

The longest latent period for Myoviridae is 240 min for phage  FpV-19 (host- Flavobacterium 

psychrophilum 950106-1/1, a psychrophilic bacterium) (Stenholm et al., 2008) (Fig.19).. 
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Outside the psychrophilic  group,  phage ΦCP6-6 ( host-phytosphere bacterium, Serratia 

liquefaciens CP11) has the longest latent period of ~99.5 min (Ashelford et al., 1999). Even 

though (Daniels and Wais, 1990) describe a phage S5100, with halophilic host,  Halobacterium 

cutirubrum shows a latent period of 660 and 540 minutes at 38 o C, under different NaCl levels 

4.5 M and 3.5 M respectively. They only classify it according to Bradley Group A, which 

corresponds to present myoviridae family. Authors have not indicated its nucleic acid type or 

genome size, so those data were excluded from Fig.19.  

 

Fig. 19  Relationship between burst size and latent period (min) for dsDNA bacteriophages- 

Family-Myoviridae. Data are given in (Table 7.1-7.5). All the data are derived from the literature cited 

in Table (Table 7.1-7.5). 

Shortest latent period for Myoviridae 

There are several phages  of Non-O157 Shiga toxigenic Escherichia coli (STEC) that  have 

nearly equally  short latent periods of  8 , 10, 13 minutes  (Litt et al., 2018). Besides them, 

phage ZZ1 (host-Acinetobacter baumannii) has a 9 minutes short latent period (Jin et al., 2012) 

(Fig. 19). Above phages replicate at 37 oC. 

Highest burst size for Myoviridae 

The highest burst size of 750 belongs to T-even-like , type A2 myovirus , nt-1, (host-  Beneckea 

natriegens, a halophilic species) under the experimental conditions of  0.16 M NaCl +4SN 

media (Zachary, 1976) (Fig. 19). Here in that study we can observe a range of burst sizes (12 -

750) for the same phage-host system under the various NaCl concentrations. Phage  IHQ1( 
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host- Aeromonas punctata) also shows a high burst size of 626 (Haq et al., 2012). The lowest 

burst size of 5 and 7  belongs to phages φC2 and φC5,  respectively (Fig. 19) (host- Clostridium 

difficile) (Goh et al., 2005a). Phage Y5, (host-Lactobacillus plantarum LA 280) has also a 

low burst size of 11 (Yoon et al., 2002), and phages  vB_KpnM_KP15 and vB_KpnM_KP27 

(host- Klebsiella pneumoniae) has a value 10-15 (Kasik-Szeloch et al., 2013). There are no 

apparent common traits among the 3 host or their phages with respect to habitat or latent 

periods. 

3.2.2. b    Burst size and latent period vs genome size- Myoviridae 

Within the members of Myoviridae phages, there is no statistically significant correlation 

between burst size and genome   size, neither between latent period and genome   size (Fig 20 

A and B). Genome size variation within Myoviridae members is (8-250.4) kb. 

  

Fig. 20 (A) Relationship between burst size and genome size (kb) (B) latent period (min) and 

genome size (kb) for dsDNA bacteriophages- Family-Myoviridae. Data are given in (Table 7.1-7.5). 

All the data are derived from the literature cited in (Table 7.1-7.5). 

Largest genomes of Myoviridae 

Phage φSMA5 (host-  Stenotrophomonas maltophilia T39 syn. Xanthomonas maltophilia and  

Pseudomonas maltophilia)  has one of the largest (250 kb) genomes within the Myoviridae 

family (Chang et al., 2005) (Fig.20A and 20B). Its host is a widespread opportunistic bacterium 

causing nosocomial infections. The host has a wide habitat range too for e.g. water, sediment, 

sewage, soil, rhizospheres of plants, and frozen foods. Though it is not documented, we can 

assume that the phage also must have a wide habitat range to infect its host. This large genome 
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size (means more genes) could facilitate its survival. Despite of this large genome size, phage 

φSMA5 has a burst size of 95. Phage φSt2 (host- Vibrio alginolyticus V1) also has a large 

genome of 250 .4 kb  (Kalatzis et al., 2016). The same study describes another phage, φGrn1 

with the same host and  nearly equal genome size of 248.6 kb. Then there is a third phage with 

231.9 kb genome named  pVa-21with same host but different strain (Kim et al., 2019) 

Nonetheless, there is no visible pattern either in burst sizes ( 95, 97, 44 and  58) or in latent 

periods ( 80,30,30 and 70) of these phages  φSMA5, φSt2, φGrn1 and pVa-21 respectively 

(table 7.1 and 7.5) All these phages share one trait, they display broad host range, not only 

multiple strain but also different sub species level. This observation raises the question; is there 

a relationship between genome size and host range? 

Smallest genomes of Myoviridae  

Phage FpV-19 (host- Flavobacterium psychrophilum 950106-1/1) has the smallest genome of 

8 kb (Stenholm et al., 2008) . Next comes phage  IHQ1 (host-  Aeromonas punctata) with a 

genome of  25–28 kb (Haq et al., 2012). (Fig.20A and 20B).  FpV-19 is a fish pathogen and 

IHQ1is an opportunistic pathogen of human with burst sizes 51 and 626 respectively. None of 

the literature on   phages with smallest burst size (5, 7, 11 and 10-15) have mentioned their 

genome sizes, so it is difficult to make a connection between the two traits. However, all the 

three phages with highest burst sizes have a genome size < 50 kb.   

We can’t make any conclusions on the relationship between latent period and genome size of 

myoviridae members either. For e.g., if we consider latent periods less than 50 min, there is a 

huge genome size variation from 24- 250 kb within that group (Fig. 20B). 

3.2.2 .c     Burst size and latent period vs virion size - Myoviridae 

Within the members of Myoviridae phages, there is no correlation between burst size and virion   

size, neither between latent period and virion   size (Fig. 21A and 21B). Virion size variation 

within myoviridae phages is 10-164 nm. Burst size, latent period data of myoviridae phages 

with the halophilic host Beneckea natriegens were excluded from the graph since the variation 

of the parameters were related to the changes in NaCl concentrations in the experimental setup. 
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Fig. 21(A) Relationship between burst size and virion size (nm) (B) latent period (hrs) and virion 

size (nm) for family Myoviridae. Data are given in (Table 7.1-7.5). All the data are derived from the 

literature cited in (Table 7.1-7.5). 

The largest virion size 164 nm, belongs to the VP01, (host- Vibrio alginolyticus) with a shorter 

latent period of 25 min and a quite large burst size of 415 (Sasikala and Srinivasan, 2016). The 

smallest virion (10 nm capsid) is WZ1, infecting Shigella dysenteriae with a latent period of 

24 min and a burst size of 430 (Fig. 21A and 21B). Compared to its smaller size, it has a 

considerably large genome of 38kb (Jamal et al., 2015). 
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3.2.3 Family Podoviridae 

3.2.3. a     Burst size vs Latent period 

Within the members of Podoviridae phages, there is no robust correlation between burst size 

and latent period (Fig. 22). 

  

Fig. 22  Relationship between burst size and latent period (min) for dsDNA bacteriophages- 

Family-Podoviridae. Data are given in (Table 8.1-8.4). All the data are derived from the literature cited 

in (Table 8.1-8.4). 

 

The highest burst size of 9000 infectious particles per cell was reported in phiAxp-3, an N4-

like bacteriophage ( host-Achromobacter xylosoxidans (Yanyan et al., 2016). This data point 

was excluded from the graph, allowing more visibility to inspect the other data points. A. 

xylosoxidans is a medically significant opportunistic bacterium regularly linked with 

nosocomial infections. It has quite large genome of 72,8 kb compared to the genome size range 

found within other members of the family- Podoviridae (18-90 kb). Virion size of the phage 

phiAxp-3 is 67 nm (head diameter), while the size of the other members of the podoviridae 

family varies between 41-153nm (Table 8.1-8.4). Therefore, neither genome size nor the virion 

size can explain the extremely high burst size compared to that of other members of the family 

which is (27-341). However, this high burst size together with its species specificity of phiAxp-

3, make it very attractive biocontrol agent of its host, Achromobacter xylosoxidans (Yanyan et 

al., 2016). The second highest burst size(>1000) was found in  roseophage EE36ϕ1 (host-

Sulfitobacter  sp. EE-36) (Zhao et al., 2009). This data point also has not included into the 

graph above (Fig.22). 

The third  highest burst size of 341, belongs to the podophage (RD-1410Ws-07) ( host-

Roseobacter denitrificans OCh114) (Li et al., 2016a) (Fig.22). Roseobacter lineage comprises 

R² = 0.0126

0

100

200

300

400

0 100 200 300

B
u
rs

t 
si

ze

Latent period (min) 

Burst size vs Latent period for  

Family- Podoviridae



49 

 

a group of marine α-proteobacteria. It is outstanding that significantly high (341) and low (27) 

burst size within podoviridae, comes from the same host - Roseobacter denitrificans OCh114 

but two different phages, RD-1410Ws-07 and RD-1410W1-01 respectively (Li et al., 2016). 

The two phages have similar G+C content, approximately similar genome sizes (76.3 and 72.7 

kb), genome structures, capsid diameters (70.8 and 63.2 nm), latent periods (< 60 min and 60 

min), and similar host range.  Moreover, one step growth curve experiment performed with 

similar conditions (m.o.i = 0.1, incubated at 28o C). But there is low nucleotide sequence 

similarity between them (~ 40%) (Li et al., 2016). 

The lowest burst size of 10  also belongs to a Roseophage, (vB_RsvN_RPP1) (RPP1, 

Roseovarius Plymouth Podovirus) (host- Roseovarius nubinhibens) (Chan et al., 2014) 

(Table 8.3). 

The same virus above, (vB_RsvN_RPP1) with lowest burst size, also display the longest latent 

period for podovirus, which is 300 minutes. The same study describes another virus 

(vB_Rsv217_RLP1) (RLP1, Roseovarius Langstone Podovirus) with similar long latent period 

of 300 min. (Table 8.3). However, note that this particular study has used modified one step 

growth curve experiment (Chan et al., 2014). (Sinha et al., 2018) has discussed in detail that 

phage-host interactions in low viscosity (for e.g. liquid broth) and high viscosity (agar) media 

can be quite variable. Therefore, it is not included into the graph above (Fig.22) to avoid 

variation.  

Then comes next, FpV-2 (host-Flavobacterium psychrophilum 950106-1/1) with a latent 

period of 270 min (Stenholm et al., 2008). The host is a psychrophilic bacterium and the study 

was performed at 15oC, which explain the longer latent period associated with low temperature.   

Podophage SR3, isolated from rhizosphere of  (host-Bradyrhizobium japonicum- 

endosymbiont of soy bean) also  has a long latent period of 185 min (Appunu and Dhar, 2008) 

(Fig.22) . 

There are 3 podophages, all displaying shortest latent period of 10 min (Fig.22). 1) ΦSPB (host- 

Salmonella enterica serovar Paratyphi B) (Ahiwale et al. 2013), 2) ϕAB2 (host- Acinetobacter 

baumannii   ATCC17978) <10 min  (Lin et al., 2010b) and 3) vB_PmuP_PHB01 (host-

Pasteurella multocida) (Chen et al. 2019). S. enterica serovar Paratyphi B is an enteric 

pathogen while A. baumannii and P. multocida are opportunistic nosocomial pathogens. The 

explanation for short latent periods could be, all three experiments were performed at 37oC. 
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Other than the similar experimental temperature, the viruses were isolated from fresh water (1) 

and sewage water (2 and 3), they have different genome sizes 59, 40 and 37.2 kb respectively. 

Despite the short latent period, they have quite high burst sizes 100, 200 and 190 (burst size 

range for podo phages is 10- 341 except the extreme point of 9000 (data from table 8.1-8.4). 

   

3.2.3. b    Burst size and latent period vs genome size- Podoviridae 

Within the members of Podoviridae phages, there is no correlation between burst size and 

genome size (Fig. 23A). Anyhow, we can predict for very weak positive correlation between 

genome size and latent period for Podoviridae members R² = 0.2921. (Fig.23B).   Shortest 

latent periods correspond with medium size genomes (Fig.23B). 

Compared to Sipho- and Myoviridae phages, Podoviridae phages display a smaller range of 

genome size, from 18 kb only up to 90 kb. Where, sipho and myoviridae phages have a range 

of 13.4-180 and 8-250.4 respectively (Fig.23 A and Table 2).  

The largest genome of Podoviridae (90 kb)  belongs to the phage, FpV-2 (host- 

Flavobacterium psychrophilum 950106-1/1 (Stenholm et al., 2008). It has a burst size of 38 ± 

6 and the longest latent period of 270 minutes too (Fig.23 A and 23B). Next in the line of 

largest genome sizes, there are several phages of marine Roseobacter clade that have genome 

sizes ranging between 72.7-76.5 kb. Their burst sizes range from 10-1000< and latent period 

varies from 60-360 min. Some of them show broad host range, while others have narrow host 

range (Zhao et al., 2009), (Li et al., 2016a), (Chan et al., 2014).  One of the smallest genome 

of  is 18.7 kb, belongs to the phage asccφ28 (host- Lactococcus lactis, a lactic acid producing 

bacterium) (Kotsonis et al., 2008). The other is phage VMY22 with  18 - 20 kb genome (host- 

cold-active Bacillus cereus MYB41-22) (Ji et al., 2015). Their burst sizes are 121, 78 and latent 

periods are 44 and 70 minutes respectively (Fig.23 A and 23B). 
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Fig. 23  (A) Relationship between burst size and genome size (kb) (B) latent period (min) and 

genome size (kb) for dsDNA bacteriophages- Family-Podoviridae. Data are given in (Table 8.1-8.4). 

All the data are derived from the literature cited in (Table 8.1-8.4). 

3.2.3 .c     Burst size and latent period vs virion size    

There is no relationship between burst size and virion size of podophages (Fig. 24A).  

 

Fig. 24  Relationship between (A)burst size and virion size (nm) (B) latent period (min) and 

virion size (nm) for dsDNA bacteriophages- Family-Podoviridae. Data are given in (Table 8.1-8.4). All 

the data are derived from the literature cited in (Table 8.1-8.4). 

The largest virion (head/ capsid) size is 153 × 57nm belongs to the phage φSPB, (host-

Salmonella enterica serovar Paratyphi B). It has a latent period of 10 min and a burst size of 

100. This phage has a 59 kb genome and a very long, cigar-shaped head  (Ahiwale et al., 2013). 

The next largest virion is 135.2 nm head diameter, Kpn12 (host- Klebsiella pneumoniae B5055) 
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(Kumari et al., 2010). It has a much smaller genome of 23.6 kb, latent period of 25 min and 

burst size of 140 (Fig. 24A and 24B).   

The smallest virion size is 41.03 nm ΦCP6-4, with a latent period of 35.4 and burst size of 40 

(host- Serratia liquefaciens CP9) (Ashelford et al., 1999). Most of the podophages have a head 

diameter size range of 55-75 nm, but their burst sizes vary to a great extent within the limit, 

27-350 virions per cell (Fig. 24A). 

We cannot see a pattern between changes in latent period and virion size (Fig. 24B).  Anyhow, 

largest virions have shorter latent periods than that of medium size virions. It should also be 

pointed out that, between 55-75 nm virion size, there is a huge variation in latent period from 

10-270 min (Fig. 24B).  

 3.2.3. d     Virion size vs genome size 

There is no strong relationship between the virion size (nm) and genome size (kb) either (Fig.25 

A, B and C). Though, for Siphoviridae and Myoviridae members, the R2 value is 0.2 (Fig.25 A 

and C), thus we can predict a weak positive relationship. 

 

 

Fig. 25  Relationship between virion size (nm) and genome size (kb) for dsDNA bacteriophages 

(A) Family- Siphoviridae (B) Family-Myoviridae. (C) Family-Podoviridae. 
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3.2.4 Cyanophages 

The reasons for analysing cyanophages separately from other prokaryote phages and using host 

traits into the comparison and graphs are discussed in section 4.5.7. Several virus traits, host 

traits and combination of both virus-host traits were used to discover any trends within 

cyanophages. Weak trends were observed between BS vs LP, BS vs host; virus genome ratio 

and LP vs host growth rate (R2=0.3) (Fig.26B, 26C and 27D respectively). Virus capsid size 

and virus genome size showed moderate positive relationship with R2= 0.56 (Fig.27E). No 

trends were observed between other trait pair combinations (Fig. 26A, 26D, 26E, 26F, 27A, 

27B and 27C).  
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Fig.26.  Relationship between (A) burst size and host: virus genome size ratio for 

freshwater cyanophages (B) burst size and host: virus genome size ratio for marine 

cyanophages (C) burst size and latent period for cyanophages (D) burst size and viral genome 

size  (E) burst size and host cell volume (µ3)  (F) burst size and virus capsid size (nm) for  

cyanophages. In graphs C, D, E and F both marine and freshwater species taken together in the 

analysis      
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Fig.27.  Relationship between (A) latent period and virus genome size (B) latent period 

and host: virus genome size ratio (C)  latent period (hrs) and virus capsid size (nm) (D) latent 

period (hrs) and host growth rate (day -1)  (E) virus capsid size (nm) and virus genome size 

(kb) for cyanophages. 
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3.2.5 Archaeal viruses 

There is a weak trend (R2= 0.3-0.4) between BS and LP, VS and GS, LP and GS for archaeal 

viruses, while the relationship is moderately strong for LP and VS (R2= 0.53). However, no 

relationship observed for BS vs GS and BS vs VS (Fig. 28 A-F). 

 

 

 

Fig.28  Relationship between (A) burst size and latent period (hrs) (B) virion size (nm) and 

virus genome size (kb)  (C) burst size and genome size (nm) (D) latent period (hrs) and genome size 

(kb)  (E) burst size and virion size (nm) (F) latent period (hrs) and virion size (nm) for archaeal 

viruses.  
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4. General discussion  

4.1 Limitations, reasons for caution, methodological errors 

The majority of burst size and latent period data have been obtained using isolated phage-host 

systems, under experimental conditions using one step growth curves.  But in natural field 

conditions both viruses and hosts face different challenges, than in experimental setup. The 

host’s metabolic and nutritional status has an impact on virus growth parameters and in nature, 

we can thus expect nutrient and other growth limitation factors for host, as well as 

environmental stress factors for viruses. It has been reported that in natural environments ( in 

situ conditions), the burst sizes tend to be smaller and the latent periods tend to be longer 

(Zhang and Jiao, 2009, Børsheim, 1993). Some of the trait variation found  within members of 

a group can arise due to physiological plasticity (Brown et al., 2006).  

(Zimmerman et al., 2019) has highlighted that comparison between studies does not always 

give an accurate picture of the viral traits because of the variances in other experimental 

parameters, which have a direct control over the virus host dynamics. Such parameters, which 

are identified and studied are; host physiological state, virus-host contact rates (Murray and 

Jackson, 1992), temporal resolution, multiplicity of infection (m.o.i.) (Brown and Bidle, 2014) 

and percentage of infectious virions (Zimmerman et al., 2019) and references therein), 

temperature, level of irradiance and host density (Mojica and Brussaard, 2014, Murray and 

Jackson, 1992). In addition, differences could arrive due to the method used to estimate the BS. 

For example, indirect BS estimation  by “dilution to extinction assay of infectivity” can 

underestimate the virus numbers compared to direct counts using TEM or flow cytometry (Van 

Etten et al., 1983, Cottrell and Suttle, 1995).  There might be a connection between burst size 

variation within a virus group ( for e.g. ssDNA diatom viruses)  and the ecological strategies 

adapted by the  individual viruses (Toyoda et al., 2012). Further, the studies, which reported 

strong or moderate correlations between traits have used relatively fewer data points than I 

have used in the present study (sometimes only 4 data points) (Parada et al., 2006).  

Further, studies which compare viral traits have been restricted to use aquatic viral types. 

However, in the present study I used viruses isolated from various habitats other than 

freshwater or marine environments, for e.g. rhizospheres of plants, soil, cheese, sausages and 

other fermented food, curd, vegetables, compost, gut, wounds of animals, straw, seeds and 

human body. Sinha et al., (2018) has described the effect of the viscosity of the media on virus 

host interactions. Where, low viscosity liquid media such as natural aquatic or liquid broth in 
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an experimental setup allows for well mixed homogenous viral, host populations while in high 

viscosity solid media (agar, soil etc) interactions between viral and host populations are 

constrained spatially. Once again it was not wise to group together aquatic viruses with other 

types. 

Constraints in latent period determination 

Most of the studies on diatom infecting viruses and cyanophages give the latent period as a 

time range or indicated as “less than 12 hours” (Kimura and Tomaru, 2013), <24 hrs (Bettarel 

et al., 2005), < 48 hrs (Kim et al., 2015a).  Sometimes the given time range is so wide as; 24-

48 hrs (Tarutani et al., 2001), 48-72 hrs (Kimura and Tomaru, 2015, Gao et al., 2009) (24 hours 

difference) (table. 4,11). There is huge uncertainty in such readings and difficult to incorporate 

such data into graphs for comparative tasks.  

 

4.2 Pool or not to pool the data  

There are both advantages and disadvantages with pooling viruses into larger groups, intending 

to search for traits and trade-offs. Pooling of data allows to find universal or common trends, 

which can be incorporated into models to better understand the role of virus in processes of 

global significance. 

But at the same time, it is easy to miss trends because of too much noise from high level of 

case specific exceptions. When we pool data from a very wide group of viruses, into broader 

categories (such as siphovirus, podovirus and myovirus) it could mask the relationships within 

smaller groups. Within each of the above groups, we can see that there are smaller groups 

adapted for specific environments or with distinct physiological properties differentiated from 

the rest. For e.g. bacteriophages of halophilic, thermophilic, psychrophilic, phytopathogenic, 

enteric, lactic acid, nosocomial/ opportunistic, roseobacter clade, etc. Bacteriophages and their 

hosts within those niche segregated groups apparently have specific adaptive, survival, 

ecological and evolutionary strategies to cope with the explicit challenges offered by their    

surroundings.  

It was not wise to pool marine, fresh water and other viruses from different environments, since 

those fundamentally exclusive environments force their inhabitants (including viruses) to 

choose unique trade-offs independent of their phytogenic or systematic assemblage. It is 
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reasonable to conclude that “the search for trade-offs should concentrate on species that co-

occur” (Litchman and Klausmeier, 2008). 

4.3 Certain virus groups are understudied 

Characterizing the viruses is an essential part of exploring and understanding their enormous 

diversity. There are at least several folds more literature published on bacteriophages than algal 

viruses. There are only a handful of reports on characterization of dsRNA viruses infecting 

algae or bacterial host. I could find only one study on eukaryote dsRNA virus characterization 

(Brussaard et al., 2004), two on  dsRNA phage,  φ6 ( host- Pseudomonas phaseolicola) 

(Vidaver et al., 1973) and phiYY ( host-Pseudomonas aeruginosa ) (Yang et al., 2016).  Out 

of the algal viruses, there is an abundance of literature on dsDNA viruses, but few on 

ssDNA/RNA viruses. There are nearly 1900 genome sequences available in NCBI database 

(NCBI, 2019) on bacteriophages, anyhow, out of them there are only 6 dsRNA sequences ( 10 

isolations by 2016) and 12 ssRNA  sequences  of phages available (Yang et al., 2016).     

An interesting question is, does this unevenness represent the actual viral species abundance in 

nature or is this a consequence of “great plate count anomaly” and lack of suitable methods to 

isolate other virus-host systems than dsDNA types? Because recent advances in metagenomic 

studies has revealed the existence of previously unknown, diverse and genetically distinct 

viruses in environments worldwide (Labont and Suttle, 2013, Angly et al., 2006, Breitbart and 

Rohwer, 2005, Breitbart et al., 2002).  When we investigate bacteriophages, there is an obvious 

bias towards, phages of medically (pathogenic enteric hosts) and industrially (lactic acid 

producing, pathogenic to aquaculture species) important hosts, compared to other types. 

Here in the present study, I only focus on viruses infecting unicellular algae species, but there 

are ssRNA viruses which infect multicellular algae species, for e.g. virus CAV, (host-Chara 

australis -green alga) (Gibbs et al., 2011). Anyhow, it was out of the scope of the present study.  

4.4 General trends 

Because of their vast diversity, it was difficult to find generalized traits and trade-offs among 

different virus and phage groups. If we possess the knowledge of the driving forces behind the 

viral traits and underlying mechanisms together with their discernible patterns, this information 

is valuable in predicting viral-host interactions, dynamics and ecological impact of viruses at 

various levels (from population to ecosystems) (Gudelj et al., 2010). 
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4.4.1 Burst size 

Life history traits are highly variable across the virus groups. Therefore, Edwards and Steward, 

(2018) pointed out the importance of bringing eco-evolutionary dynamics (Fussmann et al., 

2007) onto the table when reasoning the viral traits, since some traits (e.g. LP and BS) might 

employ feedback mechanisms. Brown et al., (2006) has assumed that most of the time, larger 

burst size represents the greater viral success in natural environments. Burst size is a result of 

1) molecular and other resources of the host and 2) the ability of the virus to utilize these 

resources effectively for its own reproductive success. So it is a well-accepted fact that genome 

size of the host, has an impact on burst size (Edwards and Steward, 2018b). Hosts with larger 

genomes have more resources available for virus replication, thus produce larger burst size 

(positive correlation) (Brown et al., 2006), while it is expected negative relation between virus 

genome size and burst size. Viruses with larger genome size need more resources per progeny, 

so the trade-off is to produce less progeny (= lower burst size) (Edwards and Steward, 2018b). 

 In general, virus of eukaryotes possesses higher BS than bacteriophages and BS varies over 4 

orders of magnitude across virus categories (Table.1). Out of all gathered information on burst 

size of viruses and phages, Heterosigma akashiwo nuclear inclusion virus (HaNIV) has the 

largest ever burst size of 100000. However, the authors (Lawrence et al., 2001)  have not 

determined  its nucleic acid type (whether DNA or RNA or single stranded or double stranded). 

Therefore, it could not be incorporated into any of the graphs in the result section.  

A question arising during this study was, why some viruses show extreme burst size and latent 

period values compared to other members in the same group? Are those extreme traits 

controlled by the virus itself or is there an involvement of host traits as well? To understand 

this further, I investigated host traits corresponding to those viruses displaying extreme BS and 

LP values.  

 Host of the highest burst size producing dsDNA virus, H.akashiwo has a genome size of 1945 

Mb, a cell volume of 1103 µ3 and a host: virus genome size ratio of 97250 (Table 2A). The 

host Chrysochromulina ericina of the second largest BS producing virus, has a   genome size 

of 1070 Mb, a cell volume of 113 µ3 and a genome ratio of 2098. The host of lowest BS 

producing virus, Ostreococcus tauri, has a genome size of 12.6 Mb, a cell volume of 0.52 µ3 

(Edwards and Steward, 2018a) and a genome ratio of 67. Sometimes cell volume becomes a 

limiting factor for burst size (Brussaard et al., 2004). For ssDNA viruses, highest BS producing 

hosts are Chaetoceros lorenzianus and Chaetoceros setoensis whereas lowest BS producing 
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host is Chaetoceros sp. strain SS628-11. In contrast to the lowest BS producing host, the largest 

BS producing host has one order of magnitude higher cell volume and a host genome (Table 

2A). Their host traits are shown in Table 2A. 

Table 2A Eukaryotic host traits correspondent to highest and lowest burst sizes. Host trait values 

were extracted from (Edwards and Steward, 2018a) 

Virus  

Catergory 

Host Host 

genome 

Size 

(Mb) 

Virus 

genome 

size (Kb) 

Host: virus 

genome 

Ratio 

Burst 

size 

Host cell 

volume 

(µ3) 

Host 

growth 

rate (per 

day) 

dsDNA H.akashiwo 1945 20 97250 16000 1103 0.43 

dsDNA C.ericina 1070 510 2098 1800-

4100 

113 - 

dsDNA O. tauri 12.6 186.2 67 25 0.52 1.23 

ssDNA C. lorenzianus 1000 5.8 172413 22000 8000 1.12 

ssDNA C. setoensis 239 5.8 41206 4700-

20000 

800 1.78 

ssDNA Chaetoceros sp. 

strain SS628-11 

239 5.5 43454 29 424 0.94 

ssRNA H.circularisquama 20500 4.4 4659090 3400-

16000 

2200 - 

ssRNA C.socialis f. 

radians 

239 9.4 25425 66 350 1.17 

 

Table 2B  Eukaryotic host traits correspondent to highest and lowest latent periods. Host 

trait values were extracted from (Edwards and Steward, 2018a) 

Host Host 

genome 

size 

(Mbp) 

Virus 

genome 

size (Kb) 

Host: virus 

genome 

Ratio 

Latent 

period 

(hrs) 

Host cell 

volume (µ3) 

Host growth 

rate (per 

day) 

Chlorella 

variabilis NC64A 46 327 140 2 40 1.39 

       

Rhizosolenia 

setigera 100000 11.2  48 63000 1.02 

Chaetoceros sp. 

strain SS628-11 

239 5.5 43454 <12 424 0.94 

Heterocapsa 

circularisquama 20500 356 57584 56 2200 0.265 
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   Edwards and Steward, (2018b), have used genome size ratio to compare with viral traits BS 

and LP. They found a strong positive relation between genome ratio and BS, but BS and host 

growth rate are not related (Table. 2A). Half of the variation in BS can describe by genome 

ratio (Edwards and Steward, 2018b). There higher BS correlated with higher genome ratio.  In 

the present study, this trend is clear with dsDNA and ssRNA viruses but not so obvious for 

ssDNA viruses (Table 2). The study aforesaid has found the similar results. In addition, they 

have demonstrated that the total viral nucleotide output upon cell lysis is alike to the number 

of nucleotides in the host genome. 

Primary traits of the host such as; growth rate, genome size, reasons for burst size and latent 

period variation up to  40-50% (Edwards and Steward, 2018b). Therefore, it is a necessity to 

include host traits when searching for trade-offs. Host: virus genome size ratio (hereafter 

abbreviated as “genome ratio”) demonstrate a saturating correlation with both BS and LP. At 

low “genome ratio” there is a positive correlation between BS, LP and “genome ratio” whereas, 

at high “genome ratio” there is no relationship observable (Edwards and Steward, 2018). 

Further, there is an inverse relationship between host growth rate and latent period (Edwards 

and Steward, 2018).  This highlight the need of information on host traits, when investigating 

trends in viral traits. However, most of the literature studied for this study, on viral traits, have 

not indicate the corresponding host traits, other than merely indicating the growth rate as 

“exponentially growing culture”. So, lack of quantitative information on host growth rate and 

genome size is an inadequacy in this study. To find genome sizes of the host, I had to look 

elsewhere. Some data were obtained from Edwards and Steward, (2018a).  Lack of published 

data on host genome size (specially diatom hosts) is also pointed out by Edwards and Steward, 

(2018).   Their model identified the host’s genetic resources allocated to viral replication as the 

decisive factor for BS setting. Further, LP is a progressive trait (regulated by the host metabolic 

rate) facilitating this “prescribed” BS. Therefore, viral traits alone are not adequate to explain 

the trade-offs and I should have incorporated host traits into all virus categories of the present 

study (for Siphoviridae, Myoviridae and Podoviridae families) as well, then I would be able to 

present   more accurate interpretations. 

(Parada et al., 2006) pooled and summarized burst sizes of phages infecting heterotrophic 

prokaryotes in various environments such as coastal shelf, offshore, deep sea, fresh water 

oligotrophic, oligo- mesotrophic, mesotrophic, meso-eutrophic, eutrophic, solar saltern. 

Further the reported BS range for freshwater phage category is 4-140, while for marine 

systems, upper range is twice larger than freshwater habitats, 6-300 (Parada et al., 2006).  The 
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reported mean burst sizes are, marine -oligotrophic ~20, marine eutrophic ~25, fresh water 

oligotrophic ~28 and freshwater eutrophic ~ 40.   According to that, viruses from marine -

oligotrophic environments show lowest values of burst size, while viruses in freshwater 

eutrophic environments have the highest burst size values. These results support the intuitive 

theory of host nutrient status and BS relationship (Wilson et al., 1996). However, this BS 

correlation with trophic level of the habitat not always adhere. Because some phages isolated 

from eutrophic habitats  show much lower  BS e.g. Roseophages (Li et al., 2016a, Chan et al., 

2014). Besides two Roseophages  isolated from the same host, Dinoroseobacter shibae, grew 

in similar nutrient conditions display one order difference in BS ( Li et al., 2016a, (Yang et al., 

2017). Since I did not classify my data according to the trophic status of the habitat or as 

freshwater and marine, it is difficult to compare my results with Parada et al., (2006). In 

addition, bacteriophage group in the present study does not limit to the freshwater, marine 

aquatic division, but consists of much extensive categories.  

Van Etten et al., (1983) reported that burst size is altered by m.o.i. With increasing m.o.i. from 

0.1 to 50, there is a consistent decrease in burst size. They assumed that the underlying cause 

might be the “lysis from without” phenomenon or some sort of interference. The same article 

also mentioned that the growth of host in continuous dark conditions reduce the burst size by 

50% compared to continuous light conditions. However, the burst size is not depending on 

photosynthesis (Van Etten et al., 1983).  There is wide variation in m.o.i., among the studies 

included in this literature survey. For viruses of eukaryotes it varies from 0.1-20, while for 

diatom viruses, higher m.o.i. values such as; 66 and 270 have been used. For archaeal viruses 

have also been used higher m.o.i. values. For prokaryotic viruses applied m.o.i. values vary 

from 0.001- 10, data not shown in the tables in the appendix, but reported in the pivot table. 

Therefore, once again it has to be noted that experimental conditions are highly variable among 

studies.  

There are several hypotheses that have been presented in the literature to explain the BS 

variation, namely; size and morphology of the host and the virus, host physiological control, 

habitat control, latent period control, superinfection and lysis inhibition, phage control, control 

by different environments (Parada et al., 2006 and references therein).  Out of them I have 

discussed most of them in the present study under different sections.  
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4.4.2 Latent period 

LP is correlated with both, host growth rate and host: virus genome size ratio (Edwards and 

Steward, 2018b). Those two host traits combined,  can explain  38% of LP variation in 

eukaryote viruses  and  the correlation  is much stronger in dsDNA viruses, explaining  57% 

of the variation (Edwards and Steward, 2018b). LP increases with genome size ratio, but the 

correlation is not strong as for BS. (Edwards and Steward, 2018b). Their study reports negative 

relationship between LP and host growth rate, but no relationship between BS and host growth 

rate for dsDNA viruses. In addition, LP is approximately similar to demi- host doubling time 

(Edwards and Steward, 2018b).  According to Fig.7B, we can see a weak trend that LP increase 

with the virus genome size for dsDNA viruses. Even though host traits were not focused on the 

present study, I gathered some data on host traits for the viruses showing latent period extremes 

(Table 2B). At least for the examples in Table 2B, we can see a pattern; when host growth rate 

increases, latent period tend to decrease. I found weak positive relation between LP and BS for 

dsDNA viruses (Fig.6B), weak positive trend between LP and GS (Fig.7B) and no relation 

between LP and VS (Fig. 8B) for dsDNA viruses. For ssDNA viruses I could not find any 

relation between LP and any of the viral traits compared (Fig.10, 11B,12B). For ssRNA viruses 

there is a moderate negative correlation between LP and BS (Fig.13), but no relation with GS 

and VS (Fig. 14B and 15B). For prokaryote viruses I could not find any relation between LP 

and other traits, except a weak positive trend between LP and GS for family Podoviridae (Fig 

23B). However, several studies has been claimed  a correlation between LP and BS, where 

prolonged LP provide the time needed to assemble more virions, so identified as a stratagem 

for optimizing  BS (Abedon et al., 2001, Wang et al., 2004). However, this trade-off is only 

useful in slow growing host populations, where it is advantageous to wait for more favourable 

circumstances to arrive before lysis.  This guarantees virus spread and next generation 

continuance (Wommack and Colwell, 2000). In additions, (Lawrence et al., 2006) have 

demonstrated that latent period and BS  variation or  “biological variability” among different 

virus types, which infect the same host population at the same time (e.g. harmful algal bloom 

of H. akashiwo, “red tide”) makes room for coexistence of viral types during fluctuating host 

densities. 

Further, longer latent periods are observed when the genome ratio is high, since much time is 

needed to exploit all host resources (Table 2B). However, latent period evolution is a combined 

result of many factors. When latent period is determined using one step growth curve under 

experimental conditions, the host density is high. It is documented that under very high host 
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density, latent period can shift by genetic adaptation.  Such as short LP mutants in the 

population can out-compete the longer LP and higher BS types. Since under high host density, 

host encounter time become less, compared to the lytic cycle, which is an advantage (Abedon 

et al., 2003). Similar prediction has also done by models; high host density leads the virus 

population to select short LP and short BS (Mann, 2003).  

 

 

 4.4.2.a   Latent period, burst size and host physiology 

Effect of host metabolic rate (physiological status) on burst size and latent period 

Some studies have extensively discussed the influence of factors connected to host growth rate 

on viral traits (You et al., 2002). Physiological state of the host, (whether if it is actively 

growing or in stationary phase) has clear influence on both latent period and burst size. 

RsRNAV, (host- bloom forming diatom, Rhizosolenia setigera) shows two distinct burst size 

values of 1010 and 3100,  when they infect their host growing at stationary phase and 

exponential phase respectively (Nagasaki et al., 2004). This can be taken as an example 

demonstrating the influence of host metabolic rate (physiological status) on burst size  (Van 

Etten et al., 1983, Bratbak et al., 1998).  Host’s growth phase (physiological status) not only 

affects the burst size , but it also affects  the host’s susceptibility to the virus infection (Nagasaki 

et al., 2003). They have observed that during the stationary phase host, H. circularisquama, is 

less susceptible to the virus, HcV 03. While during the log phage growth, the host is more 

sensitive to viral infection. However, a study by (Bratbak et al., 1998) showed otherwise, that 

all growth stages of Phaeocystis pouchetii is susceptible to viral infection. Host’s increased 

biosynthesis activity, which is favourable for viral replication is an eminent fact (Nagasaki et 

al., 2004). Actively growing cells may supply more resources for virus production, so it can 

increase the BS and  shorten the LP (Proctor et al., 1993, Middelboe, 2000, Young et al., 2000). 

Effect of nutrient and light depletion of algal host on burst size and latent period 

Some studies have concluded that, in comparison to nutrient replete conditions,  nutrient (such 

as phosphorus) depletion cause prolongation of latent period (Wilson et al., 1996). While others 

found no prolongation of latent period  due to nutrient limitation (Bratbak et al., 1998). When 

discussing light limitation and burst size, there are studies to support both theories. Some 
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conclude that there is no effect of light on burst size (Bratbak et al.,1998), while others observed 

burst size reduction of 50%  due to light limitation (Van Etten et al., 1983, Piedade et al., 2018). 

Effect of temperature on burst size and latent period 

When some algal hosts grow at high temperature, the latent period of the infected virus gets 

shortened and the burst size increases. In contrast, when some algal hosts grow at low 

temperature, the latent period of the infected virus get longer  and the burst size decreases 

(Nagasaki et al., 2003, Demory et al., 2017).  

4.4.3 Virus genome size 

Upon infection, when virus take control over the host metabolism, genome size of the virus is 

the trait mainly influencing this control. Since it decides how many proteins encoded by the 

virus and thus the complexity of the infection process. Besides that this trait contribute to the 

outcome of other traits such as, metabolic cost of virion production process and virion size as 

well (Edwards and Steward, 2018b). Genome of progeny virions are made from host nucleotide 

pool and disintegration of the host genome. However, de novo nucleotide synthesis has also 

been discussed in some literature (Wikner et al., 1993, Van Etten et al., 1984, Brown et al., 

2007). It is suggested that larger viral genome contribute to better control over the host 

metabolism, which leads to higher viral production rate (=BS divided by LP) and de novo 

nucleotide synthesis (Hurwitz et al., 2013), Edwards and Steward, 2018b and references 

therein). 

Edwards and Steward, (2018) have used host: virus genome size ratio (instead I use virus 

genome size alone, in the present study) to compare with BS and LP. However, Edwards and 

Steward, (2018b), concluded that “virus genome size alone is a poor predictor of viral traits”. 

I found similar conclusion in this study for ssDNA, ssRNA, Siphoviridae and Myoviridae 

members since   virus genome size alone did not correlate with other tested traits. Yet, there 

are weak trends observable for GS vs BS, GS vs LP and VS vs GS for dsDNA viruses (Fig. 

7A, 7B, 9), VS vs GS for Siphoviridae and Myoviridae members (Fig. 25 A and 25 C), LP vs 

GS for Podoviridae (fig.23 B). Edwards and Steward, (2018b), suggests that there is a tendency 

for larger viruses having smaller BS, thus my results do not support such tendency. The same 

study states that “latent period is unrelated to viral genome size”, but I found weak correlations 

between those two traits for some virus groups; namely within dsDNA and Podoviridae. There 

is no correlation between eukaryote host genome size and viral genome size, but as pointed out 

by Edwards and Steward, (2018b), smallest viruses (both having smaller genomes and capsids), 
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which are single stranded DNA and RNA viruses,  only have been isolated  from larger 

eukaryotes such as diatoms dinoflagellates. 

4.4.4 Virion size 

Edwards and Steward, (2018) have found strong correlation between genome size and virion 

size in eukaryote viruses. However, I only found moderate or weak relationship between these 

two traits for dsDNA (Fig.9), Siphoviridae and Myoviridae (Fig. 25 A and 25C), while no 

relationship for other groups. Similar trend has also been reported by Ashelford et al., (1999), 

in phages of Serratia liquefaciens , isolated from the sugar beet phytosphere. Nevertheless, 

virion head size can increase separately from genome size (Kumari et al., 2010). This can 

happen as a result of errors in DNA replication followed by erroneous synthesis of viral capsid 

proteins (Kumari et al., 2010 and references therein). I have not included tail length of the 

phages into comparison of traits, yet some studies have detected a robust correlation between 

tail length and LP (Ashelford et al., 1999). These authors also raise the question; are these size 

differences (even for the members of a same family), reflect an explicit evolutionary change? 

or a random consequence of mutation? 

dsDNA virus of eukaryotes, which were included in this study, possess wide size range (113-

310 nm), but ssDNA and ssRNA viruses show limited variation, 32-38nm and 22-38nm 

respectively. The reason for this great size variation observed in dsDNA viruses and prokaryote 

viruses is yet to be answered (Edwards and Steward, (2018). Larger virions need longer LP to 

produce the progeny and need more resources. Usually under limited host resources, we can 

assume that low BS and longer LP for larger virions. But my results do not support this theory, 

as none of the traits (neither BS nor LP) had a relationship with virion size for any of the virus 

groups. (Fig. 8A.8B, 12A,12B, 15A,15B,18A,18B,21 A, 21B, 24A and 24B). when calculating 

the energetic cost for building a virus particle (Mahmoudabadi et al., 2017),virion size is a 

critical parameter.  it has been calculated that for viruses with head size over 80 nm, genome 

replication cost overweighs the translation cost of energy (Mahmoudabadi et al., 2017). 

4.5 Specific traits for different groups 

4.5.1   DNA versus RNA viruses 

When comparing the double strand and single strand viruses, ssDNA and ssRNA viruses have 

the smallest genome sizes and comparably smaller capsid sizes than dsDNA viruses and phages 

(Table.1). Since single stranded viruses have one nucleic acid strand compared to the double 
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strand, a smaller capsid is sufficient to accommodate the smaller single strand genome.  To 

date it has not been reported any RNA viruses infecting cyanobacteria or archaea (Prangishvili, 

2013, Pietila et al., 2014). If we could find out the reason why those two groups are resistance 

for RNA viruses it would be an enlightening addition to our understanding of the virosphere. 

(Prangishvili et al., 2006) has suggested the idea that since archaea flourish in hyperthermal 

environment and RNA is less stable to high temperatures might partially explain the lack of 

RNA viruses infecting archaea, or could it be due to methodological problem?  DNA viruses 

have less complex   replication cycles than a RNA viruses (Sinha et al., 2018). Further, the 

energetic cost of building a DNA virus is different than that of a RNA virus (Mahmoudabadi 

et al., 2017), however the overall cost of infection depend on the BS. Could it be that the more 

advance and complicate eukaryote species support that complex replication cycle of RNA 

viruses, but comparatively simpler prokaryotes could not support it?           

4.5.2   Viruses of eukaryotes vs phages of prokaryotes 

The burst size for viruses infecting eukaryotes ranges from 25- 93400 while for phages it varies 

between 5-9000 (Table. 1). Though, (Børsheim, 1993) has reported the BS variation of phages 

in aquatic system as 5-300. This huge BS variation is mainly due to larger host cell volume and 

host genome size in eukaryotes compared to that of prokaryotes. Average bacterial cell volume 

in lake aquatic environment estimated to be <0.15μm3 with a range of (0.01- 0.4 <) (Weinbauer 

and Hoefle, 1998 and references therein) while eukaryote host cell volume can be as high as 5 

orders of magnitude. With the reported positive relationship between BS and host cell volume 

(Weimbauer and Peduzzi, 1994, Weinbauer and Hoefle, 1998), the differences in BS between 

eukaryote versus prokaryote viruses can be explained.   Further, there is a huge latent period 

difference between the two groups as, LP of eukaryote viruses is measured in hours, while for 

phages it is measured with minutes (except for cyanophages, who have very long LP values). 

This is directly coinciding with differences in host generation times. In addition, there is a 

virion size difference between eukaryote and prokaryote dsDNA viruses and phages. 

Prokaryote phages show virion size variation 10-164nm, while eukaryote viruses are much 

larger 113-310nm. 

4.5.2.a     Viruses infecting eukaryotes 

So far, around 20 diatom viruses have been documented (Arsenieff et al., 2019). All the diatom 

infecting viruses described so far in the literature has either ssDNA genomes or ssRNA 

genomes. It would be interesting to find a reason for such trait. Do diatom hosts show any 
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resistance to dsDNA virus infection? Perhaps the silica in the diatom wall has some kind of 

resistance mechanism against dsDNA viruses.  

4.5.2.b  ssDNA viruses 

It is noteworthy to mention that, all the diatom- infecting ssDNA viruses characterized so far, 

share a common trait. ssDNA virus particles aggregate in the nucleus of the host while dsDNA 

and ssRNA viruses accumulate in the cytoplasm of the host cell. Most of the ssDNA viruses 

belong to the genus- basilladnavirus. In contrast, most of the dsDNA viruses belong to the 

family-- Phycodnaviridae and some also in Mimiviridae family.  

There are 6 single stranded RNA viruses with marine microalgal hosts that have been  included 

in the present study, for e.g. HaRNA virus (host- toxic bloom forming phytoflagellate, 

Heterosigma akashiwo ) (Tai et al., 2003),  HcRNAV (host-bivalve killing dinoflagellate, 

Heterocapsa circularisquama  ) (Tomaru et al., 2004).  In contrast to dsDNA viruses, lack of 

correlations between traits of ssDNA and ssRNA  viruses leads to the explanation,  due to their 

smaller capsid size together with smaller genome size make them vulnerable for different types 

of selective pressures and specific viral-host interaction mechanisms than the dsDNA viruses 

(Edwards and Steward, 2018b.)        

When assessing host range, diatom infecting viruses are highly species specific and some are 

confined as strain specific (narrow host range) (Tomaru et al., 2011b), (Arsenieff et al., 2019) 

and references therein). At the same time, they possess the smallest genomes among all the 

other groups, even smaller than bacteriophages genomes. This might be a specificity and 

generality trade-off (host range). As described in section 1.10.2, to infect several hosts, a virus 

needs to have a larger genome encoding more genes to defeat various host defence tactics and 

enhance their adsorption mechanisms. A tiny genome may not support a strategy like this. All 

those single stranded diatom infecting viruses have longer LPs, which lower the reproductive 

rate. However, the trade-off here is not between reproduction rate and host range, instead 

between genome size and host range. All the reported diatom infecting ssDNA viruses have 

smaller virion size, approximately 35nm and smaller genome size around 5.5-6 kb. But there 

is a huge variation in burst sizes (29-22000) and latent periods (<12-96 hors) see table 1. 

Therefore, virion size or genome size of the virus cannot explain the reported huge variation of 

the traits.  The host diatom species were collected from surface water. 

Despite the fact that usually phages are exhibiting narrow host ranges, even specific to 

serovars/biovars/ subspecies  (Grose and Casjens, 2014), there are phages infecting Vibrio 
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alginolyticus, which show broader host range. Interestingly they have the largest genomes 

within Myoviridae members too (Kim, et al. 2019, Kalatzis et al., 2016). 

 

4.5.3     Cyanophages 

Since cyanophages are a distinct group among phages, they were analysed separately. 

Searching for trade-offs, considering only viral traits was unsuccessful. Therefore, here I 

combined host and viral traits together   to reveal any trade-offs among cyanophages, even 

though, host traits were not used in analysing eukaryote viruses or other bacteriophages in the 

previous sections 3.1 and 3.2.  Since viruses must always depend on their host for resources, it 

is natural that host resources may become limiting factors for virus replication. Amino acids,  

nucleotides, cell volume, energy, ribosomes, enzymes and co factors  can be named as such 

resources need for virus replication and among them nucleotide content (basically represent by 

the host genome  size) has been chose in many studies and models as a predictor to maximum 

burst size (Brown et al., 2006, Edwards and Steward, 2018b). It has been  reported a robust 

correlation between cyanophage burst size and their marine host’s genome size (Paul et al., 

2002). Guided by Edwards and Steward, (2018b), I used, host: virus genome ratio to compare 

with burst size. To check whether there is a difference between freshwater isolated and marine 

isolates, the two categories were separately plotted (Fig. 26A and 26B). However, for the rest 

of the plots both freshwater and marine data were grouped together since pooling did not 

substantially change the R2 value for the trend line in the graphs. Edwards and Steward, (2018b) 

have found correlation with R2=0.49, (half of the observed burst size variation is explained by 

the genome size ratio). In addition, they have found positive correlation between LP and 

genome size ratio (R2=0.30). They have not specified cyanophages but included all ds/ss/DNA 

and RNA viruses together into the   graph. However, in my analysis I could not find such robust 

correlation between BS and genome size ratio for freshwater species (Fig. 26A). But there is a 

weak relationship between two traits for the marine species (Fig.26 B). There is a weak positive 

relationship between BS and LP (R² = 0,3134), but there is no relationship between BS and 

host cell volume (R² = 0,1169) (fig. 26 E) or BS and virus capsid size (Fig. 26F). However, 

virus capsid size and virus genome size have a correlation of R² = 0,5604 (Fig.27E).  

One obvious trait among cyanophages in contrast to other bacteriophages, is their extremely 

long latent periods (Table.12). If we look into the latent period and other traits; latent period 

and   host: virus genome ratio shows no correlation (Fig. 27B),  but, Edwards and Steward,( 
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2018b) reported a weak ( R2= 0.3) correlation for those two traits for viruses infecting 

phytoplankton ( including cyanophages).  All the other traits compared with LP showed no 

relationship except there is a negative correlation between LP and host growth rate (Fig. 27D). 

Correlation values and compared traits are summarized in the Table 2C.  

 

 

 

Table 2C.  Summarization of compared trait pairs and correlation values (R2) for cyanophages. 

Compared trait pairs R2 values (correlation) Figure 

Burst size and host: virus genome size ratio -Fresh water              0.02 26A 

Burst size and host: virus genome size ratio -marine                  0.37 26B 

BS and LP                  0.31 26C 

 Burst size and virus genome size                    0.07 26D 

 Burst size and host cell volume                    0.11 26E 

Burst size and virus capsid size                    0.00 26F 

 Latent period and virus genome size                    0.00  27A 

Latent period and host: virus genome size ratio                   0.01 27B 

 Latent period and virus capsid size                    0.07 27C 

Latent period and host growth rate                    0.33 27D 

 Virus capsid size and virus genome size                    0.56 27E 

 

Brown et al., (2006), converted host and virus genomes into nucleotides and then compared 

with BS. In that study also they have not restricted to cyanophages but used other viruses of 

phytoplankton as well. They have reported strong correlation between Log Burst and Log host 

genome nucleotides. This trade-off in burst size with host’s genome size is also reported earlier 

for cyanophages (Sullivan et al., 2003). Because of cyanobacteria are carrying multiple genome 

copies, Brown et al., (2006) has highlighted the need of incorporating this when dealing with 

host genome size. 

 

4.5.4     Phages of halophilic bacterial hosts 

Overall, viruses of hypersaline habitats are dominated by archaeal viruses, very few eukaryote 

viruses and some bacteriophages have also been reported (Atanasova et al., 2015).  When 

investigating trade-offs and fitness costs, bacteriophages infecting halophilic bacteria is useful, 
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because their environment provides them the selective pressure, which is the starting point of 

natural selection. Further viruses are the sole  predators in this unique  habitat (Jaakkola et al., 

2012). One of the hypotheses presented by Parada et al., (2006), on burst size variation is that, 

hosts inhabiting in favourable environment conditions may produce higher BS than that of 

challenging environments. In parallel, unfavourable environment conditions lead to low host 

quality, reduced BS and prolonged LP (Zachary, 1976, (Proctor et al., 1993, Middelboe, 2000, 

Young et al., 2000, Kokjohn et al., 1991). 

Phage UTAK, infecting moderate halophilic host, Vibrio B1 shows range of LP and burst size 

values under varying NaCl concentration (Goel et al., 1996). At 1M NaCl concentration (which 

is the most favourable and least stress) the phage has the optimum values for BS and LP, which 

is shortest LP and highest BS (higher reproductive success). Towards the lower and higher 

NaCl concentrations, host growth rate decrease and doubling time increases. It is clear in this 

example; latent period evolution occurs parallel to host doubling time (Table. 9). This fitness 

trade-off can be observed in all the other phages infecting halophilic bacterial hosts in the 

present study as well (Zachary, 1976, Torsvik and Dundas, 1980, Daniels and Wais, 1990). In 

addition to the impact on LP, adsorption  and BS, salinity level of the hypersaline environments 

involve in determining the lifecycle mode of the viruses ( lytic to carrier state switching) 

(Torsvik and Dundas, 1980). Further, phages nt-1 and nt-6 of Beneckea natriegens, show 

narrow host range, with only one host (Zachary, 1976). Will it be a trade-off between narrow 

host range and stability over wide salinity range?  It is safe to state that both halophilic and 

psychrophilic phages possess considerably larger genomes above average for other members. 

It is interesting to investigate whether phages isolated from extreme habitats have larger 

genomes. Since larger genomes can encode for plethora of functional traits which is necessarily 

for the survival in those stressful habitats. 

Siphoviridae phage of cold-active host -Colwellia psychrerythraea shows a similar fitness 

trade-off with temperature as changing factor. It was reported that, latent period shortened 

together with increasing temperature (Wells and Deming, 2006) and both low and high 

temperature yields low BS, while at optimum temperature , maximum BS value can be 

observed.  

4.5.5  Archaeal viruses 

Most of the archaeal viruses documented so far has hyperthermophile or hyperhalophile hosts. 

In the present study also, I found mostly viruses infecting hyperhalophile hosts and some 
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methanogen hosts. Genome size range for archaeal specific viruses is 5.3- 143.8 kb with an 

average of 23.9 kb. Normally it has been calculated that the average genome size for other 

cosmopolitan archaeal viruses to be 67 kb (Krupovic et al., 2018 and references therein). 

However, I could only find handful of literature, which reported burst size values of the 

archaeal viruses. Instead of cell lysis, they continuously release the viral progeny hence, 

traditional one step growth curve method can’t apply. It has been suggested that this viral 

release mode seems to optimize the viral production as well as transmission to new hosts. 

Natural hypersaline environments in spite of their harsh conditions, harbour dense microbial  

populations  dominated by haloarchaea (Porter et al., 2007). So, once released to the outside, 

finding a host is not a problem to archaeal viruses. However, host growth rates are slower in 

hypersaline habitats, which influence BS. In addition, once release to the environment, there is 

a higher probability of reduced survival of virions due to specifics laid by the surrounding. So, 

collectively it is a fitness trade-off to gradual release of viruses keeping the host live for an 

extended period (Porter et al., 2013). 

The small collection of archaeal viruses in the present study has a genome size range of 14-35 

kb (Table. 13) however, genome size range for the ~117 reported archaeal viruses to date is        

5.2-230 kb (Dellas et al., 2014). This indicates that the sample in the present study only 

represents a very small portion of the current knowledge on archaeal viruses. These halophilic 

archaeal viruses often show remarkably broad host ranges infecting various species as well as 

genera (Atanasova et al., 2015). Most of the trait pairs plotted in archaea virus displayed weak 

to moderate trends between them. This might be due to less sample size of archaeal viruses in 

the present study (Table 13.1and 13.2). Some studies, which characterized archaeal viruses 

have not provided data on GS and VS. So, the data set became even smaller for some of the 

plots (Fig. 28 E and F). 

Multiplicity of infection 

According to the observed data in the present study, it seems like there is a characteristic m.o.i. 

range for each virus group, where, diatom viruses need the highest m.o.i. values compared to 

other groups. Summarized ranges are mentioned in the Table. 2D. I could not find any specific 

explanation in the literature reasoning that bacteriophages can infect bacteria successfully with 

such a low m.o.i. values while archaeal and diatom viruses need to have up to seven orders of 

magnitude higher m.o.i. levels. It might relate to host, virus morphological differences, 

percentage of defective virus particles, attachment and entry mechanisms, adsorption 

efficiency etc. Generally, reported adsorption rates for bacteriophages are faster (30% of viral 
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inoculum adsorb within 15 seconds) compared to that of some archaeal viruses (needs 60 sec-

3 hours for 30% adsorption) (Dellas et al., 2014), which explains part of the differences in 

m.o.i. Nevertheless, fast adsorption rates were reported for hyperthermophillic crenarchaeal 

hosts, which assumed to be an evolutional strategy to decrease the time spend outside in high 

temperature, acidic environment (Dellas et al., 2014 and references therein). It was found that 

some  viruses are less tolerant to environmental fluctuations than their hosts, while the opposite 

has been reported as well (Mei et al., 2015). Anyhow, optimum parameters for virus production 

do not necessarily parallel to those for optimum host  growth (Wells and Deming, 2006). 

 Table 2D.  Multiplicity of infection ranges observed for each virus group in the present study (data not 

shown).  

Virus group m.o.i. range 

Algal virus 1-20 

Diatom virus 66-270 

Bacteriophages 10-1 - 10-4 

Cyanophages 1> mostly 10-1 

Archaeal virus  3-50 

 

It is proposed that low initial m.o.i. could leads to overestimation of BS, since uninfected hosts 

can proliferate continuously during the experiment (Bratbak et al., 1998). However, several 

other studies reported contradictory observations on impact of m.o.i. on other viral traits 

(Brussaard et al., 2004, Yoshida et al., 2006). Therefore, it is safe to assume that influence of 

m.o.i. on process of viral infection  is variable across different virus-host pair (Šulčius et al., 

2015). 

4.6   Fitness trade-offs 

Identification of possible trade-offs and testing them is a main step when parameterizing 

models in ecology (Zimmerman et al., 2019).   It is difficult to generalize the trade-offs for 

broad virus families or for larger groups, because there is a huge variation and a diversity within 

these larger groups in relation to traits as, genome size, virion size, burst size and latent period. 

Not to mention that they are adapted to specialized and unique habitats which presented them 

unique challenges. Consequently, each smaller group (e.g. halophilic, thermophilic or 

psychrophilic) must evolve according to their own environments, which needs specialize trade-

offs which differ among those smaller groups. Pooling those different exclusive groups into 

one large group might mask away those individual trade-offs. Such has also been  proposed by 

(Goldhill and Turner, 2014), where trade-offs are not generalizable to whole family.  
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Zimmerman et al., (2019) proposed a fitness trade-off for two phycodnaviruses; OlV I and 

OlV7, which infect Ostreococcus lucimarinus. Increased infection efficacy (= burst size) 

against reduced plasticity (resilience to changes in host physiology (=growth rate)) has been 

observed in this virus-host system. Ostreococcus lucimarinus virus 7 ( OlV7) shows higher 

virulence ( swift host cell lysis, early  interference of  cell cycle)  than OlV1, however virion 

production (virus replication) in OlV1  is more resilient ( robust) to diminished host growth 

rate than that of OlV7 (Zimmerman et al., 2019). Further, OlV7 bear the cost for higher burst 

size under favourable host growth condition by reducing its ability to withstand fluctuating 

host growth. While less virulent OlV1’s lower burst size under favourable host growth 

condition traded off by increased ability to withstand changes in host physiology (Zimmerman 

et al., 2019) .  Under limited irradiance, latent time has increase compared to that of higher 

irradiance. Under limited irradiance, host growth rate reduced. In parallel, burst size reduction 

observed from 435 ± 251 to 237 ± 47 in OlV1, while in the same limited irradiation, there is a 

drastic reduction in burst size observed, from 682 ± 408 to 51 ± 20. This is a good example 

showing the functional diversity of closely related marine viruses. 

All phages (both Podoviridae and Siphoviridae members) of Roceobacter clade listed in this 

study has similar genome sizes (72-77 kb), comparatively longer latent periods1-6 hours (mean 

146 minutes) thus their burst sizes are highly variable (10-1000<) (Table.6.5 and 8.2).  If we 

investigate the reason for these prolonged latent periods in phages of Roceobacter clade 

compared to other Podoviridae members, we can use the two phages infecting Silicibacter 

pomeroyi DSS‐3 and Sulfitobacter sp. EE‐36 as examples (Zhao et al., 2009). These two 

Roceobacter bacteria have four times slower growth rates compared to E. coli. So, the two N4 

like phages, which have Roceobacter hosts show longer latent periods parallel to their host in 

contrast to other N4 phages infecting E. coli (Zhao et al., 2009). Therefore, in this example 

viral trait directly depend on host trait rather than following its own taxonomic features.   

 

4.7 Hypotheses- Accept, reject, inconclusive, need more information or 

methodological errors?  

Here I repeat the hypotheses made earlier followed by answering it according to the results 

obtained. 

a) There is a positive trend between LP and BS-  
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Inconclusive, weak positive relation for dsDNA viruses (Fig. 6B), cyanophages (Fig.26C) 

and archaeal viruses (fig.28A), weak negative relation for ssRNA viruses of eukaryotes 

(Fig.13). For other categories, no trend observed. Edwards and Steward, (2018) have the same 

conclusion on dsDNA viruses. 

b) There is a positive trend between LP and GS- 

Rejected according to the present study results for all groups 

(Fig.7B,11B,14B,17B,20B,23B). But weak trend observed for archaeal viruses (R2=0.38) 

(fig.28D). 

c) There is a positive trend between LP and VS- 

Rejected according to the present study results (Fig. 8B,12B,15B,18B,21B and 24B). 

However, observed moderate trend for archaeal viruses (R2=0.53) (fig. 28F). 

d) There is a positive trend between VS and GS-  

Only weak relation for dsDNA viruses (Fig.9) and for archaeal viruses (fig.28B). Accepted, 

moderate for cyanophages (R2=0.56). rejected for other categories. 

e) There is a negative trend between BS and GS- 

need to incorporate more information as; host: virus genome ratio, instead of merely 

virus GS (Fig. 7A,11A, 14A, 17A,20A and 23A). 

f) There is a negative trend between BS and VS- 

 Rejected, need more information (Fig.8A,12A,15A,18A, 21A and 24A). 

g) There is a negative relationship between LP and host growth rate –  

Accepted, but it is weak (R2=0.3) and tested only for cyanophages. 

h) There is a positive relationship between BS and host: virus genome size ratio-  

Tested only for cyanophages. Accepted only for marine cyanophages but weak 

(R2=0.37). 

i) There is a positive relationship between BS and host cell volume-  

Tested only for cyanophages. Rejected. 

j) There is a relationship between latent period and host: virus genome size ratio-  

Tested only for cyanophages. Rejected. 

 

I could not find any distinct trends between compared trait pairs, however there is a weak 

positive trend between (BS vs LP), (VS vs GS) for dsDNA viruses of eukaryotes and weak 

negative relation between (BS vs LP) for ssRNA viruses of eukaryotes. There are mainly two 

environment categories observed for viruses of eukaryotes; marine and freshwater. However, 

bacteriophages mentioned in this study have been isolated from much larger environmental 
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range; for e.g.  human or animal body, soil, aquatic, food etc. This could be the main reason 

for disappearance of any existing trends among the wide background variation (explained in 

detail in section 4.2. 

 

4.8   Concluding remarks 

When we describe variations observed in viral traits, it should be kept in mind that these 

expressed viral trait variances are a combined product of both viral and host genotypes 

(Edwards and Steward, 2018 and references therein). The reason for this is, viruses are using 

the molecular machinery of the host for their replication. This highlight the necessity of 

including information on host traits, when investigating trends in viral traits and searching for 

trade-offs. Overall, I could not find evidence for any strong correlations, but moderate or weak 

correlations suggesting that while one trait in the compared pair might in certain cases limit the 

other trait, however other variables are probably more important. Most of the time, traits were 

uncorrelated.  

To adequately explain the observed variations in viral traits, we need to consider both viral and 

host traits together. It is interesting to find out why the same trait pair (for e.g. BS and LP) 

shows a correlation for one virus group but shows no correlation for another virus group. There 

are viral trait evolution models in the literature to understand the patterns of trait covariation 

(Edwards and Steward, 2018b).  It explains that when a small genome size virus infects a large 

genome size host ( for e.g. ssDNA virus and its diatom host), there is a potential for producing 

very large burst size, but there is a fitness cost for having a long latent period, which is 

necessary to produce such a large burst size. In theory, it is assumed that there is a positive 

correlation between BS and LP, anyhow there is a huge variation observed in the data. The 

reason might be, latent period is highly influenced by the host growth rate, but it does not affect 

the burst size (Edwards and Steward, 2018). Nevertheless, as also assumed by Parada et al., 

(2006), most of the time the trends between traits are shaped by the domination and diversity 

of virus-host systems. 

Here in the present study I use pairwise comparison of traits. However, it is a well-known fact 

that many factors are interconnected and involved in determination of trait variations and trade-

offs. Therefore, instead of a pairwise approach, I would in the future involve more traits when 

identifying trade-offs, even though it is complicated.  
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4.9   Knowledge gaps and suggestions for future work;  

Record et al., (2016) have pointed out the utility of trait base approach in virus ecology, as in 

many other fields in ecology. Litchman and Klausmeier, (2008) has suggested the “need for a 

global database of phytoplankton traits, both marine and freshwater, with guidelines for 

standardized measurements of various traits”  (Carroll et al., 2018)  has discussed “Building a 

global atlas of zoonotic viruses”  in connection to Global Virome Project. Such data bases exist 

for medically important viruses of humans, and for genomic information of other viruses 

(NCBI, 2019),  but I could not find any such database for functional and morphological traits 

of  algal viruses or ecologically important virus. Following that idea, I would like to suggest;  

• There is a need for a global database of viral traits, both marine, freshwater and other 

environments including medically important viruses, “with guidelines for standardized 

measurements of various traits” (idea extracted from Litchman and Klausmeier, 2008). 

• Viral “trade-offs need to be characterized, including the shapes and interaction of 

multiple traits” (idea extracted from Litchman and Klausmeier, 2008).  

• Need more attempts and approaches to isolate and characterized dsRNA, ssRNA and 

ssDNA viruses of unicellular eukaryote species. 

• Expand the knowledge of viruses infecting freshwater algae. 

• In the recent years more and more studies have focused on genetic characterization of 

viral genomes using molecular biological tools. If there is growth characterization at 

the same time the knowledge will be more complete. 

• Search for novel approaches such as phage FISH and gene ELISA (Dang et al., 2015)   

to characterize virus’s growth parameters and traits outside the conventional methods, 

especially when the virus -host system unculturable in the laboratory. 

• Search for novel laboratory approaches or model base methods to estimate the BS 

values for archaeal viruses (for e.g. using the proposed model for calculate for energetic 

cost of building a virus) (Mahmoudabadi et al., 2017),  Since traditional one-step 

growth curve method cannot utilize for most of the archaeal species. 

• Recommend to use the recently proposed nomenclature system (Kropinski et al., 2009) 

when naming the new virus isolates for better consistency.    

• Submit the assembled data in the present study to the DRYAD research database 

(DRYAD, 2019) for citable easy access, discoverability,  and reuse in future research.  
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6. Appendix  

6.1  Viruses of eukaryotes 

Table 3.1 (continued) Eukaryotic host, latent period, burst size, genome size, dimensions of the virion for dsDNA viruses. Family- Phycodnaviridae 

 Name of the virus Eukaryotic host  Latent 
period 
(hours) 

Burst size  Genome 
size (kb) 

Virion size 
(Head 
diameter*) 
(nm) 

Host 
Genome 
size (KB) 

Reference 

1 AaV(NCLDVs)# Aureococcus anophagefferens 24 164 - 191 371   (Brown and Bidle, 2014) 
 

2 LVLPs /E. 

huxleyi virus 

Emiliania huxleyi NG 350-700   180 & 140**   (Bratbak et al., 1996) 

3 EhV Emiliania huxleyi 12-14 400-1000  415 160-180  (Castberg et al., 2002) 

4 ChlV Chlorella sp. 3-4 200-350 330 190   (Van Etten et al., 1991) 

5 PBCV-1(dark 

cond.) 

Chlorella-like alga, NC64A 3 70- 150  

(50 % less) 

   (Van Etten et al., 1983) 

6 PBCV-1(light 

cond.) 

Chlorella-like alga, NC64A 2,5-3  200-350    (Van Etten et al., 1983) 

7 prototype 

chlorovirus 

PBCV-1 

Chlorella variabilis strains, 

NC64A and Syngen 2–3 

~2 250 327 190  (Quispe et al., 2017) 

8 OSy-NE5 -Only 

Syngen (OSy) 

viruses 

Chlorella variabilis Syngen 2–3 ~2 250 327 190  (Quispe et al. 2017) 

9 MpV  Micromonas pusilla NG NG 77-110 113  (Cottrell and Suttle, 1991) 

10 M. pusilla virus 

(MPV) 

Micromonas pusilla 7 72 190-210    (Waters and Chan, 1982) 

         

* Head-diameter X length   
** to size groups described in the literature 
# Nucleocytoplasmic large DNA viruses (NCLDV). A group of highly complex ds DNA viruses, infecting variety of eukaryotes (Gallot-Lavallée and Blanc, 2017) 
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Table 3.2 (continued) Eukaryotic host, latent period, burst size, genome size, dimensions of the virion for dsDNA viruses. Family- Phycodnaviridae 

 Name of the 
virus 

Eukaryotic host  Latent period 
(hours) 

Burst size  Genome 
size (kb) 

Virion size 
Head 
diameter* 
(nm) 

Reference 

11 Cafeteria 
roenbergensis 
virus (CroV) + 

Cafeteria roenbergensis    moi=1 5.5 ± 0.5 − 10.5 ± 1.5  470 ± 100   (Taylor et al., 2018) 
 

12 Cafeteria 
roenbergensis 
virus (CroV) + 

Cafeteria roenbergensis     moi=10 5.5 ± 0.5 − 10.5 ± 1.5  310 ± 70   (Taylor et al. 2018) 

13 PpV01 Phaeocystis pouchetii 12-18 350-600 485 120 (Jacobsen et al., 1996) 

14 PgV Group I Phaeocystis globosa 10 248 (77-356)  466 150 (Baudoux and Brussaard, 2005) 

15 PgV Group II A Phaeocystis globosa 12 or 16 345 (274-415) 177 100 (Baudoux and Brussaard 2005) 

16 PgV Group II B Phaeocystis globosa 16 381 177 100 (Baudoux and Brussaard 2005) 

17 CeV- 01B Chrysochromulina ericina  14-19  1800-4100 510 150-160 (Sandaa et al., 2001) 

18 PoV-01B Pyramimonas orientalis  14-19  800- 1000 560 220x180 (Sandaa  et al. 2001) 

19 CbV-PW1 Chrysochromulina brevifilum NG >320 NG 145-170 (Suttle and Chan, 1995) 

20 CpV-BQ1 Ж Chrysochromulina parva  63-96  485 145 (Mirza et al., 2015) 

21 OIs1- large 
morphotypes 

Heterosigma akashiwo 11 1100   (Lawrence et al., 2006) 

22 OIs1- small 
morphotypes 

Heterosigma akashiwo 17 16000   (Lawrence et al., 2006) 

        

        

* Head-diameter X length , NG- not given in the reference,  + giant viruses , Ж - Phycodnaviridae or Mimiviridae  
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Table 3.3 (continued) Eukaryotic host, latent period, burst size, genome size, dimensions of the virion for dsDNA viruses. Family- Phycodnaviridae 

 Name of the 
virus 

Eukaryotic host  Latent period 
(hours) 

Burst size  Genome 
size (kb) 

Virion size 
Head 
diameter* 
(nm) 

Reference 

23 HcV03 Heterocapsa circularisquama HU9433-P 48-72 1300<  180-210 (Tarutani et al., 2001) 
 

24 (HcV) Heterocapsa circularisquama  at 20o C 56  1800   (Nagasaki et al., 2003) 

25 (HcV) Heterocapsa circularisquama  at 25 o C 40  2440   (Nagasaki et al., 2003) 

26 OtV5 Ostreococcus tauri- OTH95  8-9 25 186.2 122 (Derelle et al., 2008a) 

27 OlV1- standard Ostreococcus lucimarinus 4.5*–8.5 435 ± 251 200 140 (Zimmerman et al., 2019) 
 

28 OlV1- under 
limited light 

Ostreococcus lucimarinus 6.5–8.5 237 ± 47 200 140 (Zimmerman et al., 2019) 

29 OlV7-more 
virulent -standard 

Ostreococcus lucimarinus 6.5–8.5 682 ± 408 200 140 (Zimmerman et al., 2019) 

30 OlV7-more 
virulent -- under 
limited light 

Ostreococcus lucimarinus 8.5–10.5 51 ± 20 200 140 (Zimmerman et al., 2019) 

31 H. ericina virus 
RF02 (HeV RF02) 
# 

Haptolina ericina (all tested strains), P. 
kappa UIO033 

14-18 775 (683–933) 530 190±20×160±10 (Johannessen et al., 2015) 

32 Prymnesium 
kappa virus RF01 
(PkV RF01)# 

H. ericina (all tested strains), P. kappa 
UIO033 

24-32 80 (34–253) NG 310±30 (Johannessen et al., 2015) 

33 P. kappa virus 
RF02 (PkV RF02)# 

Prymnesium kappa UIO034 and UIO032 12-16 400 (305–471) 507 160±30 (Johannessen et al., 2015) 

  Range 2-72 Hrs 25-4100 77-560 
kb 

113-310 nm  

        

        

# Mimiviridae family- NCLDV, Extreme values for each trait within the group, are marked in red 
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Table 4.  Eukaryotic host, latent period, burst size, genome size, dimensions of the virion for ssDNA viruses.  

Genus - Bacilladnavirus- tailless, rod shape 

 

 

 Name of the 
virus 

Eukaryotic host  Latent 
period 
(hours) 

Burst size  Genome 
size (kb) 

Virion size/ 
Head 
diameter 
(nm) 

Reference 

1 TnitDNAV Thalassiosira nitzschioides NG NG 5.5 35 (Tomaru et al., 2012) 
 

2 Csp05DNAV C. sp. strain TG07- C28 <24 430 5.7 33 (Toyoda et al., 2012) 

3 Csp07DNAV- 
surface water 

Chaetoceros sp. Strain SS628-11 <12 29 5.5 34 (Kimura and Tomaru, 2013) 

4 ClorDNAV Chaetoceros lorenzianus Grunow <48 22000 5.8 ∼34 (Tomaru et al., 2011b) 

5 CtenDNAV C. tenuissimus  96 320 5.6 37 (Tomaru et al., 2011a) 

6 CsetDNAV Chaetoceros setoensis IT07-C11 48 4700-20000 5.8 33 (Tomaru et al., 2013) 

7 CtenDNAV 
type II 

C. tenuissimus  Meunier <24 1737 5.5 37 (Kimura and Tomaru, 2015) 

8 CsalDNAV ( 
CsNIV) 

Chaetoceros salsugineum 12-24 325 6 38 (Nagasaki et al., 2005) 

9 CdebDNAV Chaetoceros debilis 12-24 55 7 32 (Tomaru et al., 2008) 

  Range 12-96 29-22000 5.5-7 32-38  

Extreme values for each trait within the group, are marked in red  
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Table 5.  Eukaryotic host, latent period, burst size, genome size, dimensions of the virion for ssRNA viruses.  

 Name of the 
virus 

Eukaryotic host  Latent 
period 
(hours) 

Burst size  Genome 
size (kb) 

Virion size 
* (nm) 

Virus Family Reference 

1 SssRNAV  Schizochytrium sp.  <8  5800-
64000 

10.2  25 superfamily- 
picornavirus like 

(Takao et al., 2005) 
 

2 HaRNAV Heterosigma akashiwo 23-29  21000 9.1  25 Marnaviridae (Lawrence et al., 
2006) 

3 HaRNAV Heterosigma akashiwo 
(Hada) Hada ex Hada et 
Chihara 

35 NG 9.1 25  (Tai et al., 2003) 

4  HcRNAV Heterocapsa 
circularisquama 

24-48 3400-
21000 

4.4  30 NG (Tomaru et al., 2004) 

5 SpalV ** Stephanopyxis palmeriana < 80  92 - 25-30  (Kim et al., 2015b) 

6 CsfrRNAV Chaetoceros socialis f. 
radians 

<48  66 9.4  22  Bacillariornaviridae (Tomaru et al., 2009a) 

7 CtenRNAV01 C. tenuissimus  Meunier < 24  10000 9.4 31  (Shirai et al., 2008) 

8 CtenRNAV 
type II 

C. tenuissimus  Meunier 24-48  287 9.5 35 Bacillarnavirus (Kimura and Tomaru, 
2015) 

9 RsetRNAV ( 
RsRNAV) 

Rhizosolenia setigera 48  3100- 
exponential 
and 1010- 
stationary 
growth 
phase 

 11.2 
+smaller 
RNA 
molecules 

32  (Nagasaki et al., 2004) 

10 GdelRNAV Guinardia delicatula <12  93400 9  35-38 Bacillarnavirus (Arsenieff et al., 2019) 

   <8- < 80 66-93400 4.4-11.2 22-38   

** round shape virus while all the other viruses listed below, have icosahedral shape, tailless 
Extreme values for each trait within the group, are marked in red. 
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6.2 Viruses of prokaryotes 

6.2.1 Family- Siphoviridae 

Table 6.1 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Siphoviridae. 

Extreme values for each trait are marked in red.    

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

1 QHHSV-1 
(halovirus) 

Halomonas ventosae -Halophilic  30 73 NG  (Fu et al., 2016) 

2 TSP4  Thermus strain TC4     - 
Thermophilic 

60 200 80 H- 73, T -785 x 10  (Lin et al., 2010b) 

  psychrophilic bacteria      

3 9A- cold-active ¤ Colwellia psychrerythraea Strain 
34H- from Arctic 

270 55 80-90 H- 90 , T-200 (Wells and Deming, 2006) 

 9A- cold-active ¤ Colwellia psychrerythraea Strain 
34H 

165 5 80-90 H- 90, T-201 (Wells et al., 2006) 

 9A- cold-active ¤ Colwellia psychrerythraea Strain 
34H 

10800 5 80-90 H- 90, T-202 (Wells et al., 2006) 

4 MYSP06  Janthinobacterium sp. 95 16 65–70  H-74, T-210x 10  (Li et al., 2016b) 

5 FpV-7  ¤ Flavobacterium psychrophilum 
950106-1/1 

360 7 48 H- 67.2 x 68, T -239.6 x13.1  (Stenholm et al., 2008) 

 FpV-9  ¤ Flavobacterium psychrophilum 
950106-1/1 

240 37 48 H- 60.1 x 63.1, T-172.6x 10.8  (Stenholm et al., 2008) 

 FpV-9  ¤ Flavobacterium psychrophilum 
010418-2/3 

240 162 48 H- 60.1 x 63.1, T-172.6x 10.8  (Stenholm et al., 2008) 

  phytopathogenic bacteria      

6 Cp1 Xanthomonas axonopodis pv. citri ( 
syn., Xanthomonas campestris pv. 
citri or Xanthomonas citri ) 

60 20 43.8 H-60, T- 135 x 12  (Ahmad et al., 2014) 

* Head-diameter X length, Tail- Length X width, Extreme values for each trait within the group, are marked in red,¤ different experimental temperature 
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Table 6.2 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- 

Siphoviridae  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

7 XTP1 Xanthomonas campestris pv. 
campestris 

120 35 180 H- 102.4 x 121.6  (Weiss et al., 1994) 

 rhizobiophages       

8 ΦRP1 Robinia pseudoacacia rhizobia 300 200 NG H- 60 × 140, T- 260  (Małek et al., 2009) 

9 ΦRP2 Robinia pseudoacacia rhizobia 300 200 NG H- 60 × 140, T- 260  (Małek  et al. 2009) 

10 ΦRP3 Robinia pseudoacacia rhizobia 300 100 NG H- 60 × 140, T 260 L (Małek et al. 2009) 

11 SR1 - Bradyrhizobium japonicum 
USDA123 

150 110 NG H-79, T-115 (Appunu and Dhar, 2008) 

12 SR2 Bradyrhizobium japonicum CB1809 300 140 NG H-55, T-165 (Appunu and Dhar 2008) 

13 ΦCP6-1 
(temperate phage) 

Serratia liquefaciens CP6 99 224 43.6  H -46.11x42.21, T-129.7 (Ashelford et al., 1999) 

14 ΦCP6-2 Serratia liquefaciens CP7 104.8 174 40.4 H- 39.97x40.92, T- 135.04 (Ashelford et al. 1999) 

15 ΦCP6-5 Serratia liquefaciens CP10 108.5  41 41.8  H-55,13x50.99, T- 138.62 (Ashelford et al. 1999) 

       (Ashelford et al. 1999) 

 φC6 Clostridium difficile 118 19 36.3 H -69.6, T -337.4  (Goh et al., 2005b) 

16 P3K Vibrio strain B8D (closely related to) 
Vibrio owensii 

30 60 31 H -90, T- 150  (Yu et al., 2013a) 

17 P4A Vibrio strain B8D (closely related to) 
Vibrio owensii 

70 23 48 H- 110, T -180  (Yu et al. 2013) 

18 P7A Vibrio strain B8D (closely related to) 
Vibrio owensii 

60 33 41 H -110, T- 180  (Yu et al. 2013) 

19 P8D Vibrio strain B8D (closely related to) 
Vibrio owensii 

60 29 30 H- 70, T- 160  (Yu et al. 2013) 

20 P9C Vibrio strain B8D (closely related to) 
Vibrio owensii 

10 331 31 H- 100, T -160 (Yu et al. 2013) 

* Head-diameter X length, Tail- Length X width 
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Table 6.3 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Siphoviridae

  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

21  SSP002 Vibrio vulnificus 65 23 NG H - 80.5, T- 161 (Lee et al., 2014) 

22 DCEIV-9 Exiguobacterium indicum 20 51 NG H- 56 , T -163 (Zhang et al., 2019) 

23 AZ 1 Pseudomonas aeruginosa-2995 33 326 50 H- 61x 49, T- 128x 10-15  (Jamal et al., 2017) 

24 vB_EliS-R6L Erythrobacter litoralis DSM 8509 180 86 65.7 H- 75.9, T- 165.6 (Lu et al., 2017) 

25 Sano # Xylella fastidiosa strain Temecula 1 NG 100 56.1 H- 64, T- 204 (Ahern et al., 2014) 

26 Salvo# Xanthomonas strain EC-12 52 112 55.6 H- 64, T-207 (Ahern et al. 2014) 

27 phiC119 E. coli O157 EC-48 20 210 47 H- 44, T-168–172 x 8 (Amarillas et al., 2016) 

28 P-11 (O26) Non-O157 Shiga toxigenic 
Escherichia coli (STEC) 

15 794 NG  (Litt et al., 2018) 

29 P-12 (O26) non-O157 STEC O26 19 48 NG  (Litt et al. 2018) 

30 P-14 (O111) non-O157 STEC O111 21 288 NG  (Litt et al. 2018) 

31 P-16 (O111) non-O157 STEC O111 10 49 NG  (Litt et al. 2018) 

32 P-17 (O111) non-O157 STEC O111 15 257 NG  (Litt et al. 2018) 

33 NG Corynebacterium 
(Propionibacterium) acnes 

60 25 NG  H -42 x 46, T- 130 (Zierdt, 1974) 

34 FnpΦ02 Fusobacterium nucleatum 900 100 59 H- 83, T- 211 (Machuca et al., 2010) 

35 iEPS5 -
flagellatropic 
phage 

Salmonella enterica serovar 
Typhimurium 

30 100 59.2 H- 59,T- 217 (Choi et al., 2013) 

36 LPST10 Salmonella Typhimurium 10 101 47.6 H- 83.2, T- 144.8 x10.9 (Huang et al., 2018) 

37 FGCSSa2 Salmonella typhimurium PT 160 
strains 

NG NG NG H 66, T -112x 9 (Carey-Smith et al., 2006) 

* Head-diameter X length, Tail- Length X width, Extreme values for each trait within the group, are marked in red, # sano and Salvo >80% nucleotide identity 
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Table 6.4 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- 

Siphoviridae  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

38 PW2 Vibrio harveyi 30 78 46 H- 50, T-136 x 11  (Phumkhachorn and 
Rattanachaikunsopon, 
2010) 

39 CG33 Corynebacterium glutumicum 18 16 13.4 H -40 , T-78 (Trautwetter et al., 1987) 

        

        

        

        

        

  Range values 10-10800 5-794 13.4-180 40.92-140  

        

        

        

        

Extreme values for each trait within the group, are marked in red 
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Table 6.5 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Siphoviridae

  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

 Lactic acid 
bacteria 

      

40 Φps05 Pediococcus sp. LA0281 34 12 24.1 H -51.2 , T- 129.6 x 11.6 (Yoon et al., 2007) 

41 phiLdb Lactobacillus delbrueckii subsp. 
bulgaricus ATCC11842 

45 56 41 H-47.7, T- 129.8 (Wang et al., 2010) 

42 Φ iLp84 Lactobacillus paracasei 85  38  (Mercanti et al., 2015) 

43 FRC 1 Streptococcus cremoris-Lactic 
streptococci 

40 70- 90 NG H- 50-53 x 34-47, T- (74-100) x 
7-10 

(Bhimani and Freitas, 1991) 

44 FRC 2 Streptococcus cremoris-Lactic 
streptococci 

40 90-110 NG H- 56-63, T- (100-120) x 7-10 (Bhimani and Freitas 1991) 

45 FRC 3 Streptococcus cremoris-Lactic 
streptococci 

40 80-100 NG H- 66x 47-50, T- (100-110) x 6-
10 

(Bhimani and Freitas 1991) 

46 FRC 4 Streptococcus lactis ssp. diacetylactis 45 100-150 NG H- 56-70, T- (92- 100) x 7-10 (Bhimani and Freitas 1991) 

47 EV3 Lactobacillus sanfranciscensis H2A NG 30 32 H -48, T -180x 8.4 (Foschino et al., 2005) 

 Nosocomial / 
Oppurtunistic 

   NG   

48 vB_KpnS_KP16 
and 
vB_KpnS_KP36 

Klebsiella pneumoniae 15 55 NG  (Kasik-Szeloch et al., 2013) 

49 AB1 Acinetobacter baumannii KD311 18 409 45.2- 
46.9 

 (Yang et al. 2010) 

50 RDJLΦ1 Roseobacter denitrificans OCh114 80 203 NG H -69, T- 170 (Zhang and Jiao, 2009) 

51 vB_DshS-R5C Dinoroseobacter shibae named 
DFL12T 

105 65 77.8 H -114 x70, T-142 (Yang et al., 2017) 

  Range values 10-
10800 

5-794 13.4-

180 
40.92-140  

* Head-diameter X length, Tail- Length X width 
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6.2.2 Family- Myoviridae  

Table 7.1 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Myoviridae

  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

1 MMP17 - 
(Meiothermus 
Myoviridae phage 17)- 

Meiothermus TG17- 
Thermophilic 

60 15 33.5–39.5 H- 42 , T -120 x 17 (Lin et al., 2011) 

2 PAS-1 Aeromonas salmonicida subsp. 
salmonicida 

40 116.7 48 H- 53, T- 123x16 (Kim et al., 2012) 

3 IHQ1 Aeromonas punctata 24 626 25–28 H- 128, T-108 (Haq et al., 2012) 

4 Aeh1 Aeromonas hydrophila strain A3 39 17 NG H-134.4x 89, T- 122.8 x21.7 (Chow and Rouf, 1983) 

5 Aeh2 Aeromonas hydrophila ATCC 7966 52 92 NG  (Chow and Rouf 1983) 

 Psychrophilic       

6 VNPH-1 (cold-
active) 

Aeromonas sobria NPH-1 20 80 110 - 120 H-116.7, T - 166.7x10 (Ji et al. 2015) 

7 FpV-19 Flavobacterium psychrophilum 
950106-1/1 

240 51 ± 7 8 H- 127.2 x 128.7, T - 102.9 
x28.7 

(Stenholm et al. 2008) 

 phytopathogenic 
      

8 ΦCP6-3 Serratia liquefaciens CP8 93.5  65 49.5  H- 51.08 x 45.18, T- 67.82 (Ashelford et al. 1999) 

9 ΦCP6-6 Serratia liquefaciens CP11 99.5 18 82.8 ± 4.72 H- 61.3x52.73 ,T- 121.69 (Ashelford et al. 1999) 

 
       

10 φC2 Clostridium difficile 32 5 43.3 ± 3.6 H- 64.8 ± 3.4, T- 147.7 ± 46.9 (Goh et al., 2005b) 

11 φC5 Clostridium difficile 36 7 45.9 ± 3.8 H- 57.9 ± 6.9, T- 118.3 ± 9.6 (Goh et al., 2005b) 

12 φC8 Clostridium difficile 90 33 54.5 ± 3.8 H- 59.8 ± 3.7, T- 139.6 ± 22.3 (Goh et al., 2005b) 

13 VPUSM 4, 7, 8 Vibrio cholerae O1 El Tor Inaba NG NG 33.5 H 50– 60 , T 90–100  (Al‐Fendi et al., 2014) 

14 VP01 Vibrio alginolyticus 25 415 
 

H-164x85 ,  T -121 x13  (Sasikala and Srinivasan, 
2016) 

* Head-diameter X length, Tail- Length X width, Extreme values for each trait within the group, are marked in red 
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Table 7.2 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Myoviridae

  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

15 pVa-21 Vibrio alginolyticus rm-8402 70 58 231.9 H- 87 ± 3, T- 240 ± 9  (Kim et al. 2019) 
 

16 φSt2 Vibrio alginolyticus V1 30 97 250.4 H-81x151, T- 132 x20 (Kalatzis et al., 2016) 

17 φGrn1 Vibrio alginolyticus V 1 30 44 248.6 H- 74x138, T- 134x20 (Kalatzis et al., 2016) 

18 øZCW1 Pseudoalteromonas sp. strain 
SP48 

90 91 NG H- 123, T- 235 (Cai et al., 2011) 

19 PH101 Pseudoalteromonas marina 
BH101 

20 31.6 131.9 H- 60, T-40  (Wang et al., 2015) 

20 vB_PaeM_LS1 Pseudomonas aeruginosa 30 98 66 H- 70, T-120 (Yuan et al., 2019) 
 

 Enteric       

21 WZ1 Shigella dysenteriae 24 430 38  H-10x10, T-128 ± 25 x 21  (Jamal et al. 2015) 

22 Bo-21 Escherichia coli O157:H7 (ATCC 
4076) 

15 426 1 & 
195 2 

 H- 80, T-100x18, neck 18 (López-Cuevas et al. 
2011) 

23 Av-05 Escherichia coli O157:H7 (ATCC 
4076) 

10 275 1 & 
112 2 

 H- 62x93, T- 100 x 12  (López-Cuevas et al. 
2011) 

24 Av-06 Escherichia coli O157:H7 (ATCC 
4076) 

15 288 1 & 
173 2 

 H -75x 106, T- 93x18 (López-Cuevas et al. 
2011) 

25 Av-08 Escherichia coli O157:H7 (ATCC 
4076) 

15 154 1 & 
147 2 

 H- 93 x 118, T-106 x 18 (López-Cuevas et al. 
2011) 

26 P-13 (O26) non-O157 STEC O26 35 12  H -89, T- 115  (Litt et al. 2018) 

27 P-19 (O103) non-O157 STEC 0103 13 102  H -89, T- 115  (Litt et al. 2018) 

28 P-21 (O103) non-O157 STEC 0103 32 68  H -89, T- 115  (Litt et al. 2018) 

29 P-22 (O103) non-O157 STEC 0103 8 13  H -89, T- 115  (Litt et al. 2018) 
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* Head-diameter X length, Tail- Length X width, 1= 1st burst,  2= 2nd burst, Extreme values for each trait within the group, are marked in red 

 

Table 7.3 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Myoviridae

  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

30 P-8 (O121) non-O157 STEC 0121 21 110  H -89, T- 115  (Litt et al. 2018) 
 

31 J-4 (O121) non-O157 STEC 0121 29 257  H -89, T- 115  (Litt et al. 2018) 

32 J-7 (O121) non-O157 STEC 0121 37 132  H -89, T- 115  (Litt et al. 2018) 

33 J-14 (O45) non-O157 STEC 045 33 13  H -89, T- 115  (Litt et al. 2018) 

34 J-15 (O45) non-O157 STEC 045 13 155  H -89, T- 115  (Litt et al. 2018) 

35 J-18 (O145) non-O157 STEC 145 22 74  H -89, T- 115  (Litt et al. 2018) 

36 J-19 (O145) non-O157 STEC 145 14 195  H -89, T- 115  (Litt et al. 2018) 

37 J-25 (O145) non-O157 STEC 145 28 23  H -89, T- 115  (Litt et al. 2018) 

38 J-30 (O145) non-O157 STEC 145 25 132  H -89, T- 115  (Litt et al. 2018) 

39 Salmonella phage 
phi PVP-SE1 
(multivalent) 

Escherichia coli Bl21 19 28  H-84, T- 120x18 (Santos et al., 2010) 

40 MSA6- Twort 
like phages 

Staphylococcus aureus strains 15 23 143 H- 66, T-173 (Kwiatek et al., 2012) 

41 φ4D Enterococcus faecalis 25 36 145 H-74, T-164 (Kwiatek et al., 2012) 

42 φEF24C Enterococcus faecalis 30 110-
120 

143 H- 93, T -204 (Uchiyama et al., 2008) 

43 FGCSSa1 Salmonella Typhimurium PT 160 
strains 

50 139 ±13  H- 107, T- 123x20 (Carey-Smith et al. 2006) 

* Head-diameter X length, Tail- Length X width, Extreme values for each trait within the group, are marked in red 
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Table 7.4 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Myoviridae

  

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

 Lactic acid 
bacteria 

      
 

44 Y 4 Leuconostoc mesenteroides 
LA112 

NG 200<   (Yoon et al. 2002) 

45 Y 5 Lactobacillus plantarum LA 280 46 11  H- 89, T- 166x20 (Yoon et al. 2002) 

46 Y 20 Lactobacillus sp. LA296 19 74 ±10  H- 94, T- 118x28 (Yoon et al. 2002) 

        

        

 Nosocomial / 
Oppurtunistic 

      

47 ZZ1 Acinetobacter baumannii 9 200 166.6 H-100, T- 120 (Jin et al., 2012) 

48 vB_KpnM_KP15 
and 
vB_KpnM_KP27 

Klebsiella pneumoniae 25 10–15   (Kasik-Szeloch et al. 
2013) 

49 φSMA5 Stenotrophomonas 
maltophilia T39 (=Xanthomonas 
maltophilia & Pseudomonas 
maltophilia) 

80 95 250 H-90 , T-90 (Chang et al. 2005) 

50 Phage ST79 Burkholderia pseudomallei 30 304 31.7 H-54, T-148x17 (Yordpratum et al., 2011) 
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Table 7.5 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Myoviridae- 

Halophilic Host  

 Name of 
the virus 

Bacterial host  NaCl (mol) Latent 
period (min) 

Burst size  Genome 
size (kb) 

Virion size * (nm) Reference 

51 nt-1  Beneckea natriegens 0.06 90 12 NG H- 120x70, T- 110 (Zachary, 1976) 
 

 nt-1  Beneckea natriegens 0.08 90 112 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.16 60 321 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.20 53 413 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.25 45 520 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.33 50 522 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.41 50 511 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.16 M +4SN 
media 

45 750 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.08 M 80 40 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.08 M+ 
mannose 

85 95 NG H- 120x70, T- 110 (Zachary, 1976) 

 nt-1  Beneckea natriegens 0.08 M + KCl 60 430 NG H- 120x70, T- 110 (Zachary, 1976) 

52 S5100  Halobacterium cutirubrum  3 M  540 125 NG 
 

NG (Daniels and Wais, 1990) 

 S5100 Halobacterium cutirubrum  3.5  M  540 60-65 NG NG Daniels and Wais, 1990) 

 S5100 Halobacterium cutirubrum  4.5  M  660 60-65 NG NG Daniels and Wais, 1990) 

         

  Range  8-240 5-750 (8-250.4) 10-164  
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6.2.3  Family- Podoviridae 

Table 8.1 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Podoviridae 

 Name of the virus Bacterial host  Latent 
period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

 
 Psychrophilic 

      

1 VMY22- cold-
active 

Bacillus cereus MYB41-22 70 78 18 - 20  H- 31.9x 59.2 , T -43.2 (Ji et al. 2015) 

2 FpV-2 Flavobacterium psychrophilum 
950106-1/1 

270 38 90 H- 50.1 x57.5  (Stenholm et al. 2008) 

  
Phytopathogenic 

      

3 Prado and Paz ( 
phiKMV-like ) 

Xylella fastidiosa strain Temecula 1 
 

99 43.9 H- 69 (Ahern et al. 2014) 

4 Paz Xylella fastidiosa strain Temecula 2 
 

104 43.8 H-68 (Ahern et al. 2014) 

5 Φ RSB1-(T7-Like) Ralstonia solanacearum 165 30-60 43 H-60, T-20 (Kawasaki et al., 2009) 

6 Cp2 Xanthomonas axonopodis pv. citri 
(syn., Xanthomonas campestris pv. 
citri or Xanthomonas citri) 

90 100 42.9 H- 60  , T 15  (Ahmad et al. 2014) 

        

7 ΦCP6-4 Serratia liquefaciens CP9 35.4  40 44.2  H- 40.91x41.03, T-12.35 (Ashelford et al. 1999) 

8 ϕIBB-PF7A Pseudomonas fluorescens 15 153 42 H- 63, T- 13x8 (Neubauer et al., 2008) 

9 phiAxp-3 ( N4-
like) 

Achromobacter xylosoxidans 80 9000 72,8 H 67, T-20 (Yanyan et al. 2016) 

10 φSPB Salmonella enterica serovar 
Paratyphi B 

10 100 59 H- 153 × 57, T-12 × 7 (Ahiwale et al. 2013) 

  
Lactic acid producing 

      

11 asccφ28 (P034 
phage species) 

Lactococcus lactis 44 121 18.7 H- 59 x42, T 21x9 (Kotsonis et al., 2008) 

12 Φ 22 Weissella cibaria N 22 110 55 29 H- 92x50, T-27 (Pringsulaka et al., 2011) 

* Head-diameter X length, Tail- Length X width, Extreme values for each trait within the group, are marked in red 
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Table 8.2 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- Podoviridae

  

 

* Head-diameter X length, Tail- Length X width 

 

 Name of the virus Bacterial host  Latent 
period (min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

 
       

 

  
Nosocomial / Oppurtunistic 

     

13 ϕAB2 Acinetobacter baumannii 
ATCC17978 

<10  200 40 H -60, T- 11x9 (Lin et al., 2010b) 

14 vB_KpnP_KP32 
and 
vB_KpnP_KP34 

Klebsiella pneumoniae 15 ~50-60 
  

(Kasik-Szeloch et al. 2013) 

15 Kpn5 Klebsiella pneumoniae B5055 20 ± 10.0 130 23.1 H- 85 , T- 17.2 x 18.3 (Kumari et al. 2010) 

16 Kpn12 Klebsiella pneumoniae B5055 25 ± 5.0 140 23.6 H-135.2, T- 40.1x 28.4  (Kumari et al. 2010) 

17 Kpn13 Klebsiella pneumoniae B5055 25 ± 8.7 120 24 H- 116.6, T- 17.4 x15.8 (Kumari et al. 2010) 

18 Kpn17 Klebsiella pneumoniae B5055 35 ± 10.0 100 23.1 H -73.3, T- 18 x 16.1 (Kumari et al. 2010) 

19 Kpn22 Klebsiella pneumoniae B5055 30 ± 5.0 110 23.1 H- 133.3, T- 26.6 x 33.3 (Kumari et al. 2010) 

20 vB_PmuP_PHB01 Pasteurella multocida 10 190 37.2 H-55, t- 13 (Chen et al., 2019) 

21 SR3 Bradyrhizobium japonicum 185 200 
 

H 65 , T-25 (Appunu and Dhar 2008)   
Roseobacter clade 

     

22 RD-1410W1-01 Roseobacter denitrificans OCh114 60 27 72.7 H- 63.2, T-40 (Li et al., 2016a) 

23 RD-1410Ws-07 Roseobacter denitrificans OCh115 <60 341 76.3 H-69.6, T-41.4 (Li et al., 2016a) 

24 DS-1410Ws-06 Dinoroseobacter shibae DFL12 120 298 76.5 H-70.8, T-41.6 (Li et al., 2016a) 

25 vB_Rsv217_RLP1  Roseovarius (Rsv.) 217 240-360 100 74.6 H-72.4 (Chan et al., 2014) 

26 vB_RsvN_RPP1  Roseovarius nubinhibens 240-360 10 74.7 H-77.4 (Chan et al., 2014) 

  Range values (10-300) 10-9000 18-90 H-41-153  
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Table 8.3 (continued.) Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages similar to coliphage 

N4, (a large, short-tailed phage infecting Escherichia coli K12), in terms of genomic structure and morphology -podovirus-like roseophages 

 

* Head-diameter X length, Tail- Length X width 

 

 

 

 Name of the virus Bacterial host  Latent 
period (min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

  Roseobacter clade      
 

27 DSS3ϕ2 Silicibacter pomeroyi DSS-3 180  74.6 H- 70 , T -26 (Zhao et al., 2009) 

28 EE36ϕ1 Sulfitobacter sp. EE-36 120 >1000 73.3 H -70, T- 27 (Zhao et al., 2009) 

        

        

        

        

        

        

        

          
 

     

        

        

        

        

        

  Range values (10-300) 10-9000 18-90 H-41-153  
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Table 8.4 (continued.) Halophilic Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- 

Podoviridae (Type C1)  

 

 Name of  
the virus 

Bacterial host  NaCl (mol) in experiment Latent period 
(min) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

  
Halophilic  

     

29 nt-6 Beneckea natriegens 0.06 90 300 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.08         67-75 605 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.13      60 609 NG H- 60, T -40 (Zachary, 1976) 
 

 nt-6 Beneckea natriegens 0.16        55 610 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.20        57 552 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.25       60 499 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.33 60 311 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.41 60 311 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens  0.16 M +4SN media 60 1655 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens  0.06 M  90-95 520 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.06 M + mannose 70 712 NG H- 60, T -40 (Zachary, 1976) 

 nt-6 Beneckea natriegens 0.06 M + KCl 60 1000 NG H- 60, T -40 (Zachary, 1976) 

         
 

         

         

* Head-diameter X length, Tail- Length X width 
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Table 9 Halophilic Bacterial host, latent period, burst size, genome size, dimensions of the virion for dsDNA -Bacteriophages - Family- unknown 

 

 Name of  
the virus 

Bacterial host  NaCl (M) in 
experiment 

Latent period 
(min) (HDT) 

Burst 
size  

Genome 
size (kb) 

Virion size * (nm) Reference 

  
Moderately Halophilic  

     

1 UTAK  Vibrio B1 0.25 60 ( 68 ) 1.52 80 H- 86x 44, T-100 (Goel et al., 1996) 

 UTAK  Vibrio B1 0.5 30 ( 40 ) 12.5 80 H- 86x 44, T-101 (Goel et al., 1996) 

 UTAK  Vibrio B1 1 28 ( 37 ) 105 80 H- 86x 44, T-102 (Goel et al., 1996) 

 UTAK  Vibrio B1 2 64 ( 62) 80.3 80 H- 86x 44, T-103 (Goel et al., 1996) 

 UTAK Vibrio B1 2.5 88 ( 131) 3.83 80 H- 86x 44, T-104 (Goel et al., 1996) 

         

         

         

         

         

         

         

         

         

         

* Head-diameter X length, Tail- Length X width, (HDT) host doubling time 
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Table 10. Eukaryotic Host, latent period, burst size, genome size, dimensions of the virion for dsRNA viruses of eukaryotic algae and diverse other 

unclassified virus types  

Nucleic 
acid 
type 

Name of the 
virus 

Host  Latent 
period 
(hours) 

Burst size  Genome 
size (kb) 

Virion size * 
(nm) 

Virus Family Morphology Reference 

dsRNA MpRNAV-01B Micromonas pusilla LAC 
38 

36 h 460–520 25.5 kb 65–80 Reoviridae 
 

nearly 
spherical 

(Brussaard et al., 2004) 
 

NG Heterosigma 
akashiwo Virus 
clone 01 
(HaV01) 

Heterosigma akashiwo  30-33h 770 NG 200   (Nagasaki et al., 1999) 

NG HaNIV Heterosigma akashiwo  42h 100000 NG 30   Lawrence et al. 2001 

NG Chaetoceros 
nuclear 
inclusion virus: 
CspNIV 

Chaetoceros cf. gracilis <24  NG 25  icosahedral (Bettarel et al., 2005) 

NG ScosV Skeletonema costatum <48 h 90-250 NG 45-50   polyhedral (Kim et al., 2015a) 
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Table 11 Prokaryotic Host, latent period, burst size, genome size, dimensions of the phage for diverse groups and other unclassified phage types  

Nucleic 
acid 
type 

Name of the 
virus 

Host  Latent 
period 
(min) 

Burst size  Genome size 
(kb) 

Virion size * 
(nm) 

Virus Family Morphology Reference 

dsDNA P-9 (O45) non-O157 STEC 045 30 302   Tectiviridae- 
Tailless 
phages 

 (Litt et al. 2018) 
 

          

ssDNA vB_Cib_ssDNA
_P1 

Citromicrobium 
bathyomarinum 
RCC1878 

 180 4.3  26 Microviridae -
Amoyvirinae 

polyhedral (Zheng et al., 2018) 

          

ds RNA φ6 Pseudomonas 
phaseolicola 

80-115 250-400 2.9 (S), 4 
(M), 6.3(L) 
3 segments 

60 Cystoviridae polyhedral 
head 
surrounded by 
a 
membranous, 
compressible 
lipid envelope 

(Vidaver et al., 1973) 

ds RNA φ6 Pseudomonas 
phaseolicola 

120-
160 

125-150   Cystoviridae  (Vidaver et al. 1973) 

dsRNA phiYY Pseudomonas 
aeruginosa ¤ 

10 10-14 3 (S), 3,8 
(M), 6,6 (L)  
3 segments 

50 Cystoviridae Spherical, 
tailless 

(Yang et al., 2016) 

NG φμ-4 Bacillus 
stearothermophilus NU 
strain 10 

35  175  10  spherical (Shafia and Thompson, 
1964) 

          

          

          

¤ opportunistic pathogen 
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6.2.4 Cyanophages 

Table 12.1 (continued)   Cyanobacterial Host, latent period, burst size, genome size, dimensions of the virion for cyanophages  

Name of 
the virus 

Cyanobacterial 
Host  

Latent 
period 
(hours) 

Burst 
size  

Genome 
size (kb) 

Host 
Genome 
size (Mbp) 

Host cell  
Volume 
 (cubic 
microns) 

Growth 
rate 
 (per 
day) 

Virion size 
(nm) 

Virus 
Family 

Morphology Reference 

AS-1 Anacystis nidulans 

& Synechococcus 

cedrorum 

8.5 50 -  5.3 - H-90,  

T-243 x22 
CM? polyhedral, 

contractile 

tail 

(Safferman et 

al., 1972) 

PaV-LD  Planktothrix 

agardhii 

48 - 72 340 95.3 5 62.5 0.207 70 - 85   icosahedral, 

no tail 

(Gao, Yuan et 

al. 2009) 

No name 

given 
Plectonema 

boryanum 

2 100 - 7.26 15 - H- 54.5  

T -116x16 
CM?  polyhedral  (Singh, 1974) 

N(S)1-

temperate  
Anabaena 77S15 = 

Nostoc muscorum 

sp. (previous) 

20 70 28    H- 50, T- 10 CP hexagonal, 

rarely visible 

tail 

(Franche, 

1987) 

Ma-

LMM01 
Microcystis 

aeruginosa 

6-12 50- 

120 

160    H- 86, T- 209 

x24 
CM Anisometric, 

tail helical 

symmetry 

(Yoshida et 

al., 2006) 

Ma-

LMM02 
Microcystis 

aeruginosa 

8-12 82 160 4.3 60 0.6 H- 86, T- 209 

x25 
CM Anisometric, 

tail helical 

symmetry 

(Yoshida et al. 

2006) 

Vb-

AphaS-

CL131 

Aphanizomenon 

flos-aquae Ralfs ex 

Bornet et Flahault 

36 218 120 4.5 12 0.48 H -97, T - 361 

x 11 
CS isometric (Šulčius et al., 

2015) 

Cynopha

ge clones  
S-BBS1 

S-BBP1  

S-PWP 1  

S-PWP 2 

S-PWP 3  

S-PWP 4 

Synechococcus spp. 

strains (DC2, SYN 

48 

9 250 - 2.4 1.15 - H- 50-65, T-

230 
CM, 

CP, 

CS 

 (Suttle and 

Chan, 1993) 

SN1 Sphaerotilus 

natans 

1.5 320      H- 68x72, T-

145 

bradley 

Gr 

b,CS 

hexagonal 

+plate and 

appendages 

(Winston and 

Thompson, 

1979) 
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Table 12.2 Cyanobacterial Host, latent period, burst size, genome size, dimensions of the virion for cyanophages  

 

 

 

 

 

 

 

 

 

 

*for Synechococcus , genome size should multiply by two, since it contains usually 2 genome copies per cell (Binder and Chisholm, 1995) 

Bold letters- Fresh water isolates 

CM-Cyanomyovirus, , CP-Cyanopodoviris, CS- Cyanosiphovirus 

 

 

 

 

 

 

Name of 
the virus 

Cyanobacterial 
Host  

Latent 
period 
(hours) 

Burst 
size  

Genome 
size (kb) 

Host 
Genome 
size (Mbp) 

Host cell  
Volume 
 (cubic 
microns) 

Growth 
rate 
 (per 
day) 

Virion size  
(nm) 

Virus 
Family 

Reference 

S-LBS1 Synechococcus 
st.TCC793 

96 400 34.6* 2.37 1.2 0.3 max H-75-80 CS-FW (Zhong et al., 
2018) 
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Table 12.3 Cyanobacterial Host, latent period, burst size, genome size, dimensions of the virion for cyanophages (Freshwater). Modified after 

Obtained from (Edwards and Steward, 2018a) 

Name 
of the 
virus 

Cyanobacterial 
Host  

Latent 
period 
(hours) 

Burst size  Genome 
size (kb) 

Host 
Genome 
size (Mbp) 

Host cell  
Volume 
 (cubic 
microns) 

Growth 
rate 
 (per 
day) 

Virion 
size * 
(nm) 

Reference  

N-1 Nostoc muscorum-

Anabaena PCC 7120 
7 100 65 7.21 11  55 (Adolph and Haselkorn, 1972)  

LPP-1 Plectonema boryanum-

Leptolyngbya boryana 
7 350 41.5 7.26 15 

 
59 (Padan et al., 1970)  

LPP-1 P.boryanum-L.boryana 7 100 41.5 7.26 15 
 

59 (Goldstein et al., 1967)  

AS-1M Synechococcus 

cedrorum UI 1911 
8 40 99 3.5 5.3 

 
90 (Sherman et al., 1976)  

S-5(L) S.elongatus CALU 698 18 125 
    

80 **  

SM-2 S.elongatum UTEX 563 16 250 
 

2.7 0.32 
 

52.5 **  

S-4(L) S.elongatus CALU 698 12 225 
    

75 **  

MaM
V-DC 

Microcystis aeruginosa 

FACHB-524 
24 80 160 4.3 60 0.133 70 **  

SM-1 M. aeruginosa NRC-1, 

PCC 7941 
20 300 98 4.3 60 

 
67 **  

A-1(L) Anabaena variabilis Myers 

strain, PCC 7118 
5 72.5 68 5.87 11 

 
60 **  

A-4(L) A. variabilis  Myers strain, 

PCC 7118 
2.5 110 41.8 5.87 11 

 
60 **  

Pf-
WMP
4 

Phormidium foveolarum 4 145 40.9 4.65 6.3 
 

55 **  

Pf-
WMP
3 

Phormidium foveolarum 5 113 43.2 4.65 6.3 
 

55 **  

** (Edwards and Steward, 2018a and references therein) 
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Table 12.4 Cyanobacterial Host, latent period, burst size, genome size, dimensions of the virion for cyanophages (Marine). Modified after Obtained 

from (Edwards and Steward, 2018a) 

Name 
of the 
virus 

Cyanobacterial 
Host  

Latent 
period 
(hours) 

Burst size  Genome 
size (kb) 

Host 
Genome 
size (Mbp) 

Host cell  
Volume 
 (cubic 
microns) 

Growth 
rate 
 (per 
day) 

Virion 
size * 
(nm) 

Reference 

S-PM2 Synechococcus WH7803 9 45 196 2.37* 1.1 0.33 85 (Wilson et al., 1996) 
S-RIM1 Synechococcus WH7803 7 63 

 
2.37 1.1 

  
** 

S-RIM8 Synechococcus WH7803 7 86 
 

2.37 1.1 
  

** 
S-PM2 Synechococcus WH7803 

       
** 

S-CBM2 Synechococcus CB0101 15 28 180 2.37 1.1 
 

90 ** 
S-CBP1 Synechococcus CB0102 6 86 48 2.37 1.1 

 
52 ** 

S-CBP2 Synechococcus CB0208 8 92 48 2.37 1.1 
 

55 ** 
S-CBP3 Synechococcus CB0101 8 75 48 2.37 1.1 

 
55 ** 

S-CBS2 Synechococcus CB0204 24 65 70 2.37 1.1 
 

90 ** 
S-CBS3 Synechococcus CB0202 24 175 30 2.37 1.1 

 
56 ** 

S-CBS4 Synechococcus CB0101 24 57 65 2.37 1.1 
 

72 ** 

P60 Synechococcus WH7803  81 47.8 2.37 1.8   Brown et al., 2006 and ref. therein 

Syn5 Synechococcus WH8109 1 24 46.2 2.37 1.1 1.11 60 ** 

S-TIM5 Synechococcus WH8102 6 35 161 2.37 1.1 
 

86 ** 
P-SSP7 Prochlorococcus MED4 5.5 40 45 1.66 0.113 0.6 

 
** 

P-GSP1 Prochlorococcus MED4 5 65 45 1.66 0.113 0.55 
 

** 

P-HM1 Prochlorococcus MED4 6.5 15 181 1.66 0.113 0.6 
 

** 

P-HM2 Prochlorococcus MED4 5 30 184 1.66 0.113 0.6 
 

** 

P-HS2 Prochlorococcus MED4 6.5 160 38.3 1.66 0.113 0.6 
 

** 

P-HS3 Prochlorococcus MED4 8 25 37.8 1.66 0.113 0.6 
 

** 

 Range 2-96 15-400 28-196    50-97  

Blue-Cyanomyovirus, red-cyanopodo,    ** (Edwards and Steward, 2018a and references therein) 
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6.3 Viruses of archaea 

Table 13.1 Halophilic archaeal host, latent period, burst size, genome size, dimensions of the virion for dsDNA -archaeal viruses -  

 

 Name of  
the virus 

Archaeal host  NaCl (M) in 
experiment 

Latent period 
(hours)  

Burst 
size  

Genome 
size (kb) 

Taxonomy Reference 

1 S5100   Halobacterium cutirubrum 3 9 125 - Myoviridae (Daniels and Wais, 1990) 
 

S5100   Halobacterium cutirubrum 3.5 9 60-65 - Myoviridae (Daniels and Wais, 1990) 

 S5100   Halobacterium cutirubrum 4.5 11 60-65 - Myoviridae (Daniels and Wais, 1990) 

2 Halophage 

Ja.l 

Halobacterium cutirubrum  6 140   (Wais et al., 1975) 

  extremely halophilic       

3 Hs1  Halobacterium salinarium str. 1 17.5% 17 300 NG  (Torsvik and Dundas, 1980)) 

 Hs1  Halobacterium salinarium str. 1 17.5% 21 150 NG  (Torsvik and Dundas, 1980) 

 Hs1  Halobacterium salinarium str. 1 20%  w/v 15 310 NG  (Torsvik and Dundas, 1980) 

 Hs1  Halobacterium salinarium str. 1 20%  w/v 17 470 NG  (Torsvik and Dundas, 1980) 

 Hs1  Halobacterium salinarium str. 1 25 %  w/v 15 300 NG  (Torsvik and Dundas, 1980) 

 Hs1  Halobacterium salinarium str. 1 25 %  w/v 18 210 NG  (Torsvik and Dundas, 1980) 

 Hs1  Halobacterium salinarium str. 1 25 %  w/v 18 530 NG  (Torsvik and Dundas, 1980) 
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Table 13.2 Halophilic archaeal host, latent period, burst size, genome size, dimensions of the virion for dsDNA -archaeal viruses  

 
 

 Name of  
the virus 

Archaeal host  NaCl % 
experiment 

Latent 
period 
(hours)  

Burst size  Genome 
size (kb) 

Virion 
size * 
(nm) 

Taxonomy Morphology Reference 

           

4 SNJ1  Natrinema sp.J7-2 18 6 20-50 16.4 -  spherical (Mei et al., 2015) 

 SNJ1  Natrinema sp.J7-2 25 4 100-150     (Mei et al., 2015) 

 SNJ1  Natrinema sp.J7-2 30 5 40-70     (Mei et al., 2015) 

5 øH Halobacterium 

halobium 

 7 170     Schnabel et al., 1982  ) 

6 SH1 Haloarcula hispanica   5-6 200 30 70 halosphaerovirus- 

proposed  

spherical (Porter et al., 2005) 

7 PH1 Haloarcula hispanica  4-6  50–100 28 51 halosphaerovirus- 

proposed  

round  (Porter et al., 2013) 

8 His1 Haloarcula hispanica  4 continuous 14.4 44 × 77 Salterprovirus- 

Fuselloviridae 

spindle (Bath and Dyall-Smith, 

1998) 

9 His2 Haloarcula hispanica  2 315 16 44 × 67 Salterprovirus spindle (Bath et al., 2006) 

10 His2 Haloarcula hispanica  4 10 16 45 × 67 Salterprovirus spindle (Bath et al., 2006) 

11 HHIV-2  Haloarcula hispanica   4-5 180 30.5 80  icosahedral 

tailless  

(Jaakkola et al., 2012) 

12 SIRV1 Sulfolobus islandicus  8 continuous 32.3 830 Rudiviridae- 

crenarchaeotal 

viruses 

unenveloped 

rod 

(Prangishvili et al., 1999) 

13  SIRV2 Sulfolobus islandicus  6 continuous 35.8 900 Rudiviridae unenveloped 

rod 

(Prangishvili et al., 1999) 

  Range  2-21 20-470 14.4-

35.8 

44-900    
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