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a b s t r a c t 

Heat and mass transfer in multilayer bodies occur commonly in a number of engineering problems, such 

as thermal management, manufacturing and reacting systems. Much of the past literature on theoret- 

ical analysis of multilayer diffusion-reaction problems is based on the assumption of one-dimensional 

transport. Given the geometrical complexity of practical engineering systems, two- or three-dimensional 

analysis may be needed for improved accuracy. This work presents theoretical analysis of coupled dif- 

fusion and reaction occurring in a general, two-dimensional multilayer body. The transient temperature 

distribution is written in the form of an infinite series, and the eigenequation for this problem is de- 

rived. Adiabatic or isothermal conditions along the side walls are accounted for by appropriate choice 

of eigenvalues in that direction. Results are shown to be in good agreement with numerical simulations. 

It is shown that the temperature distribution may converge or diverge, depending on the specific val- 

ues of various problem parameters, such as reaction coefficients and diffusivities in each layer, as well 

as the nature of the boundary conditions in both directions. An analysis for the existence of imaginary 

eigenvalues, which are related to divergence at large times is presented. The theoretical model is used 

to predict the limits of design parameters to prevent thermal runaway in a two-layer Li-ion cell. This 

work improves upon the limited past work on multi-dimensional multilayer transport by accounting for 

the reaction term, and by identifying the possibility of imaginary eigenvalues in such problems. Due to 

the close relationship between imaginary eigenvalues and thermal runaway, these results may contribute 

towards improved safety and reliability of practical engineering systems. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Thermal conduction in multilayer bodies is a well-researched 

roblem, with applications in a variety of engineering and biomed- 

cal disciplines, such as microelectronics thermal management [1] , 

tmospheric re-entry [2] and bioheat transfer [3] . Applications for 

quivalent mass transport problems exist in drug delivery [4] , con- 

aminant transport [5] and chemical reactors [6] . The simplest type 

f such problems comprises diffusion in a one-dimensional multi- 

ayer body, such as a multilayer microelectronic device [ 1 ]. In other 

ore complicated problems commonly referred to as Convection- 

iffusion-Reaction (CDR) problems [7] , convection and/or reaction 

lso occur in addition to diffusion. 

Pure-diffusion multilayer problems are solved most commonly 

sing the method of separation of variables [ 8 , 9 ], although other

ethods such as Laplace transforms [10] and Green’s functions 

11] have also been used. Other, more complicated multilayer prob- 
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ems have also been solved, including two- and three-dimensional 

ure-diffusion problems [12–14] , problems with advection and/or 

eaction in addition to diffusion [ 7 , 15 ] and problems with time- 

ependent [16] or spatially varying [ 17 , 18 ] boundary conditions. 

iterature pertaining to such problems is available in all three ma- 

or coordinate systems – Cartesian, cylindrical and spherical. 

In general, multilayer heat transfer problems are solved by ex- 

ressing the temperature field in each layer as an infinite se- 

ies, then using the boundary and interface conditions to develop 

elationships between coefficients of each layer and derive an 

igenequation to determine a single set of eigenvalues for all lay- 

rs in the problem. Quasi-orthogonality of eigenfunctions is then 

sed to determine the last remaining coefficient [9] . While quasi- 

rthogonality for simple, pure-diffusion problems is very similar 

o a single-layer problem [ 8 , 9 ], introduction of advection makes 

his much more complicated, in both Cartesian [7] and cylindrical 

4] coordinate systems. 

In the past, solutions for the diffusion-reaction [15] and 

onvection-diffusion-reaction [7] problems in a Cartesian one- 

imensional multilayer body have been presented. Similar prob- 

ems involving diffusion-reaction in a cylindrical/spherical body, 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123163
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

Bi Biot number, Bi = 

h x M 
k M 

h convective heat transfer coefficient (Wm 

−2 K 

−1 ) 

k thermal conductivity (Wm 

−1 K 

−1 ) 

k̄ non-dimensional thermal conductivity, k̄ m 

= 

k m 
k M 

M number of layers 

T temperature rise about ambient (K) 

t time (s) 

w width of the body in the y direction (m) 

w̄ non-dimensional width of the body in the y direc- 

tion, w̄ = 

w 

x M 
x , y spatial coordinates (m) 

α diffusivity (m 

2 s −1 ) 

ᾱ non-dimensional diffusivity, ᾱm 

= 

αm 
αM 

β reaction coefficient (s −1 ) 

β̄ non-dimensional reaction coefficient, β̄m 

= 

βm x 
2 
M 

αM 

η, ξ non-dimensional spatial coordinates, η = 

y 
x M 

; ξ = 

x 
x M 

ε non-dimensional eigenvalue in η direction 

γ non-dimensional interface location, γm 

= 

x m 
x M 

τ non-dimensional time, τ = 

αM t 

x 2 
M 

θ non-dimensional temperature, θm 

= 

T m 
T re f 

λ non-dimensional eigenvalue in ξ direction 

Subscripts 

A x = 0 boundary 

B x = x M 

boundary 

in initial temperature 

m layer number 

M total number of layers 

ref reference 

ith application in drug delivery from a capsule [19] or arte- 

ial balloon [4] have also been presented. Under certain condi- 

ions, these papers predict the occurrence of imaginary eigenval- 

es, which have been shown to be related to thermal runaway, or 

ivergence of the temperature field at large times. Most of such 

ast work, however, is limited to one-dimensional analysis, which, 

hile reasonable in many practical problems, is certainly not uni- 

ersally valid. Due to the geometries encountered in practical prob- 

ems, a two- or three-dimensional analysis may be necessitated. 

owever, only very limited work on multilayer multidimensional 

onduction [12–14] is available. Such work only considers diffu- 

ion, and does not account for the reaction term, which is integral 

o problems such as thermal runaway in Li-ion cells and reacting 

ystems. 

It is, therefore, important to carry out theoretical analysis of 

hermal transport in a multidimensional multilayer problem that 

ccounts for both diffusion and reaction. A theoretical motivation 

or such problem stems from the possible existence of imaginary 

igenvalues in such problems. The existence of imaginary eigenval- 

es has been predicted for both 1D diffusion-reaction problems [5] , 

s well as multidimensional diffusion problems [12–14] . Therefore, 

t is of interest to analyze the existence of imaginary eigenvalues 

n multidimensional multilayer diffusion-reaction problems. In ad- 

ition to the theoretical novelty, there is also practical interest in 

maginary eigenvalues, since the appearance of imaginary eigenval- 

es can be used to predict thermal runaway in systems such as Li- 

on cells [20] . In general, imaginary eigenvalues occur in diffusion- 

eaction systems when heat removal from the multilayer body can 
2 
ot keep up with the rate at which heat generation increases with 

emperature. 

This work presents theoretical analysis of a diffusion-reaction 

roblem in a two-dimensional multilayer body. The analysis ac- 

ounts for general convective boundary conditions in the layered 

irection, whereas isothermal or adiabatic boundary conditions are 

onsidered in the other direction. An infinite series solution is 

erived, for which, the eigenequation is shown to be obtainable 

rom the boundary and interface conditions. It is shown that un- 

er specific conditions, this problem may admit imaginary eigen- 

alues. Analysis of such imaginary eigenvalues is presented, includ- 

ng derivation of conditions in which thermal runaway may occur. 

n addition to improving the theoretical understanding of multi- 

ayer thermal conduction, the results from this work may also find 

ractical application in improving the safety and reliability of en- 

ineering systems. 

. Mathematical modeling 

Fig. 1 presents a schematic of a two-dimensional M -layer ther- 

al transport problem with linear temperature-dependent heat 

eneration/consumption in each layer. The reaction coefficient of 

ach layer is denoted by βm 

. Thickness of each layer is x m 

− x m −1 

nd the width of the body in the y direction is w . Thermal con-

uctivity and diffusivity of each layer, assumed to be constant and 

niform, are denoted by k m 

and αm 

, respectively. The multilayer 

ody is exposed to general convective boundary conditions on ei- 

her ends along the x direction. A non-zero initial temperature dis- 

ribution is assumed in each layer. Under these assumptions, the 

ifferential equation governing the temperature field in each layer 

s given by 

m 

[
∂ 2 T m 

∂ x 2 
+ 

∂ 2 T m 

∂ y 2 

]
+ βm 

T m 

= 

∂ T m 

∂t 
( m = 1 , 2 , 3 . . . M ) (1) 

The boundary and interface conditions in the x direction and 

nitial conditions associated with Eq. (1) are given by 

k 1 
∂ T 1 
∂x 

+ h A T 1 = 0 ( x = 0 ) (2) 

 M 

∂ T M 

∂x 
+ h B T M 

= 0 ( x = x M 

) (3) 

 m 

= T m +1 ( x = x m 

) (4) 

 m 

∂ T m 

∂x 
= k m +1 

∂ T m +1 

∂x 
( x = x m 

) (5) 

 m 

= T in,m 

( x, y ) ( t = 0 ) (6) 

Note that equations (4) and (5) represent perfect thermal con- 

act and heat flux conservation, respectively, at interfaces between 

ayers. 

Non-dimensionalization is carried out based on the following: 

θm 

= 

T m 

T ref 

, ξ = 

x 

x M 

, η = 

y 

x M 

, τ = 

αM 

t 

x 2 
M 

, γm 

= 

x m 

x M 

, 

w = 

w 

x M 

, k m 

= 

k m 

k M 

, αm 

= 

αm 

αM 

, βm 

= 

βm 

x 2 M 

αM 

, θin ,m 

= 

T in ,m 

T ref 

, 

i A = 

h A x M 

k M 

, Bi B = 

h B x M 

k M 

(8) 

The non-dimensional set of equations is given by 

¯ m 

[
∂ 2 θm 

∂ x 2 
+ 

∂ 2 θm 

∂ y 2 

]
+ β̄m 

θm 

= 

∂ θm 

∂τ
( m = 1 , 2 , 3 . . . M ) (9) 
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Fig. 1. Schematic of the two-dimensional multilayer diffusion-reaction problem considered here. 
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⎢⎢⎣

 

 

 

 

 

 

⎡
⎣

z

k̄ 1 
∂ θ1 

∂ξ
+ B i A θ1 = 0 ( ξ = 0 ) (10) 

∂ θM 

∂ξ
+ B i B θM 

= 0 ( ξ = 1 ) (11) 

θm 

= θm +1 ( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (12) 

¯
 m 

∂ θm 

∂ξ
= k̄ m +1 

∂ θm +1 

∂ξ
( ξ = γm 

) ( m = 1 , 2 ..M − 1 ) (13) 

θm 

= θin,m 

( ξ , η) ( τ = 0 ) (14) 

Two separate cases corresponding to isothermal and adiabatic 

oundary conditions along the η boundaries are considered in the 

ollowing sub-sections. 

.1. Isothermal conditions at the η boundaries 

The first case considered here assumes isothermal conditions at 

he η boundaries. This is thermally the most favorable boundary 

ondition for avoiding divergence of the temperature field due to 

he maximum capability of heat removal at these boundaries. In 

his case, the boundary conditions in the η direction may be writ- 

en as 

m 

= 0 at η = 0 ( m = 1 , 2 ..M ) (15a) 

m 

= 0 at η = w̄ ( m = 1 , 2 ..M ) (15b) 

In order to solve this problem, the following separable form of 

he temperature distribution may be written 

m 

( ξ , η, τ ) = f ( ξ ) u ( η) g ( τ ) (16) 

Substituting Eq. (16) into Eq. (9) , a general solution for Eqs. (9)- 

15) is expressed as follows 

m 

( ξ , η, τ ) 

= 

∞ ∑ 

n =1 

∞ ∑ 

p=1 

c n,p [ A m,n,p cos ( ω m,n,p ξ ) 

+ B m,n,p sin ( ω m,n,p ξ ) ] sin ( ε p η) exp 

(
−λ2 

n,p τ
)
( m = 1 , 2 ..M ) 

(17) 

In Eq. (17) , ε p = 

pπ
w̄ 

are the eigenvalues in the η-direction and 

 m,n,p are given by 

 m,n,p = 

√ 

λ2 
n,p + β̄m 

ᾱ
− ε 2 p ( m = 1 , 2 , 3 . . . M ) (18) 
m 

3

Note that the spatial eigenvalues λn,p in the ξ direction depend 

n the spatial eigenvalues ε p in the η direction – each ε p generates 

ne set of λn,p . 

The initial condition, along with the principle of orthogonality 

f eigenfunctions is used to determine the coefficients c n,p in Eq. 

17) as shown below 

 n,p = 

1 

N n,p 

M ∑ 

m =1 

k̄ m 

ᾱm 

∫ γm 

γm −1 

∫ w̄ 

0 

θin,m 

( ξ , η) [ A m,n,p cos ( ω m,n,p ξ ) 

+ B m,n,p sin ( ω m,n,p ξ ) ] sin ( ε p η) d ηd ξ (19a) 

here γ0 = 0. The norms N n,p are obtained as follows 

 n,p = 

M ∑ 

m =1 

k̄ m 

ᾱm 

∫ γm 

γm −1 

∫ w̄ 

0 

θin,m 

( ξ , η) 

{ [ A m,n,p cos ( ω m,n,p ξ ) 

+ B m,n,p sin ( ω m,n,p ξ ) ] sin ( ε p η) } 2 d ηd ξ (19b) 

or each p and n , The unknowns A m,n,p and B m,n,p appearing in 

q. (17) satisfy 2 M linear algebraic equations that may be obtained 

y inserting eq. (17) into the boundary and interfacial conditions 

iven by Eqs. (10)–(13) . In order to ensure a non-trivial solution of 

he problem, one must ensure that the determinant formed by the 

atrix of the coefficients of these equations must be zero, which 

esults in the eigenequation for the problem. Further, due to re- 

undancy, one may set A 1 ,n,p to one and determine all other un- 

nowns from the linear algebraic equations. 

This is illustrated for the specific case of a two-layer body. One 

ay obtain the following set of equations for the unknown coeffi- 

ients A 1 ,n,p , B 1 ,n,p , A 2 ,n,p and B 2 ,n,p 

 

 

 

 

B i A −k̄ 1 ω 1 ,n,p 

cos 
(
ω 1 ,n,p γ1 

)
sin 

(
ω 1 ,n,p γ1 

)
−k̄ 1 ω 1 ,n,p sin 

(
ω 1 ,n,p γ1 

)
k̄ 1 ω 1 ,n,p cos 

(
ω 1 ,n,p γ1 

)
0 0 
0 0 

−cos 
(
ω 2 ,n,p γ1 

)
−sin 

(
ω 2 ,n,p γ1 

)
ω 2 ,n,p sin 

(
ω 2 ,n,p γ1 

)
−ω 2 ,n,p cos 

(
ω 2 ,n,p γ1 

)
−B i B cos 

(
ω 2 ,n,p 

)
+ ω 2 ,n,p sin 

(
ω 2 ,n,p 

)
−B i B sin 

(
ω 2 ,n,p 

)
− ω 2 ,n,p cos 

(
ω 2 ,n,p 

)

⎤
⎥⎥⎥⎥⎦

 

 

A 1 ,n,p 

B 1 ,n,p 

A 2 ,n,p 

B 2 ,n,p 

⎤ 

⎦ = 

⎡ 

⎣ 

0 
0 
0 
0 

⎤ 

⎦ 

(20) 

By setting the determinant of the matrix shown in Eq. (20) to 

ero, the following transcendental eigenequation for λn,p may be 
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erived: 

f ( λn,p ) = k 1 ω 1 

−k 1 ω 1 ,n,p + Bi A cot ω 1 ,n,p γ1 

k 1 ω 1 ,n,p cot ω 1 ,n,p γ1 + Bi A 

+ ω 2 ,n,p 

−ω 2 ,n,p + Bi B cot ω 2 ,n,p ( 1 − γ1 ) 

ω 2 ,n,p cot ω 2 ,n,p ( 1 − γ1 ) + Bi B 
= 0 (21) 

Further, without loss of generality, A 1 ,n,p is chosen to be equal 

o 1, based on which, all other coefficients are determined as fol- 

ows: 

 1 ,n,p = 

B i A 

k̄ 1 ω 1 ,n,p 

(22) 

 2 ,n,p = 

cos ω 1 ,n,p γ1 + 

B i A 
k̄ 1 ω 1 ,n,p 

sin ω 1 ,n,p γ1 

cos ω 2 ,n,p γ1 + sin ω 2 ,n,p γ1 
ω 2 ,n,p sin ω 2 ,n,p −B i B cos ω 2 ,n,p 

ω 2 ,n,p cos ω 2 ,n,p + B i B sin ω 2 ,n,p 

(23) 

 2 ,n,p = A 2 ,n,p 

ω 2 ,n,p sin ω 2 ,n,p − B i B cos ω 2 ,n,p 

ω 2 ,n,p cos ω 2 ,n,p + B i B sin ω 2 ,n,p 

(24) 

.2. Adiabatic conditions at the η boundaries 

In contrast with isothermal conditions at the η boundaries con- 

idered in section 2.1 , an adiabatic condition is thermally the most 

nfavorable scenario, as it represents the least heat removal at the 

oundary, and therefore, the greatest likelihood of divergence in 

he temperature field. The problem statement for this problem is 

dentical to the one in section 2.1 , except for the following bound- 

ry conditions on the y boundaries instead of Eqs. (15a) and (15b) 

∂θm 

∂η
= 0 ( η = 0 ) ( m = 1 , 2 ..M ) (25a) 

∂θm 

∂η
= 0 ( η = w ) ( m = 1 , 2 ..M ) (25b) 

Using a similar approach as the previous section, a general so- 

ution for this case is presented as shown below 

m 

( ξ , τ ) = 

∞ ∑ 

n =1 

∞ ∑ 

p=0 

c n,p [ A m,n,p cos ( ω m,n,p ξ ) + B m,n,p sin ( ω m,n,p ξ ) ] 

cos ( ε p η) exp 

(
−λ2 

n,p τ
)

( m = 1 , 2 ..M ) (26) 

here the eigenvalues λn,p and ε p are the same as the isother- 

al problem in Section 2.1 . Also note that unlike the solution for 

he isothermal problem, the summation in the η direction for this 

roblem begins with p = 0 instead of p = 1, as was the case with

he isothermal problem. The requirement to include the p = 0 

igenvalue for the adiabatic case arises because when both bound- 

ries are adiabatic, then λ = 0 also satisfies the eigenequation, and, 

herefore, must be explicitly included [8] . 

The coefficients c n,p are obtained in a similar fashion as follows 

 n,p = 

1 

N n,p 

M ∑ 

m =1 

k̄ m 

ᾱm 

∫ γm 

γm −1 

∫ w̄ 

0 

θin,m 

( ξ , η) [ A m,n,p cos ( ω m,n,p ξ ) 

+ B m,n,p sin ( ω m,n,p ξ ) ] cos ( ε p η) d ηd ξ (27a) 

In Eq. (27a) , the norms N n,p are given by 

 n,p = 

M ∑ 

m =1 

k̄ m 

ᾱm 

∫ γm 

γm −1 

∫ w̄ 

0 

θin,m 

( ξ , η) 
{

[ A m,n,p cos ( ω m,n,p ξ ) 

+ B m,n,p sin ( ω m,n,p ξ ) ] cos ( ε p η) 
}2 

d ηd ξ (27b) 

v

4 
Note that despite the identical eigenvalues for the isothermal 

nd adiabatic cases, these cases are expected to behave very dif- 

erently. This is because the adiabatic case includes one additional 

erm corresponding to p = 0. This has a profound impact on the 

ppearance of imaginary eigenvalues and thermal runaway, as dis- 

ussed in Sections 3 and 4.5 . 

Due to the presence of the linear heat generation term, some 

f the eigenvalues of the problems described above may be imag- 

nary, due to which, divergence in the temperature distribution at 

arge times may be expected [15] . An imaginary eigenvalue analy- 

is is presented in the next section. Results related to the impact 

f relevant problem parameters on temperature evolution and dis- 

ribution are examined in the following section. 

. Imaginary eigenvalue analysis 

In addition to the usual real eigenvalues, the analytical model 

erived in this work is also expected to result in multiple imag- 

nary eigenvalues, similar to prior work on one-dimensional mul- 

ilayer diffusion-reaction problems [15] . These imaginary eigenval- 

es have been shown to result in divergence of the temperature 

eld at large times. In the present problem, two-dimensional case, 

here may be multiple imaginary eigenvalues in the ξ direction for 

ach eigenvalue in the η direction. The number of imaginary eigen- 

alues corresponding to an eigenvalue in the η direction largely 

epends on the magnitude of the η eigenvalue, as well as reaction 

erm coefficients, diffusivities and Biot numbers. 

Since imaginary eigenvalues are associated with the thermal 

unaway phenomenon, which is of much practical interest, it is 

mportant to fully understand the nature of imaginary eigenval- 

es in the present 2D problem. Specifically, it is of much prac- 

ical interest to derive expressions for the limiting conditions at 

hich the temperature distribution does not diverge. This is pre- 

ented here for a two-layer body. In order to do so, one may sub- 

titute ˆ λ2 
n,p = −λ2 

n,p in equation (21), which results in the following 

igenequation along the imaginary axis 

f 

(
ˆ λn,p 

)
= k 1 ̂  ω 1 ,n,p 

k 1 ̂  ω 1 ,n,p + Bi A coth ˆ ω 1 ,n,p γ1 

k 1 ̂  ω 1 ,n,p coth ˆ ω 1 ,n,p γ1 + Bi A 

+ ˆ ω 2 ,n,p 

ˆ ω 2 ,n,p + Bi B coth ˆ ω 2 ,n,p ( 1 − γ1 ) 

ˆ ω 2 ,n,p coth ˆ ω 1 ,n,p ( 1 − γ1 ) + Bi B 
= 0 (28) 

here ˆ ω m,n,p = 

√ 

ˆ λ2 
n,p −β̄m 

ᾱm 
+ ε 2 p . 

Due to the monotonically increasing nature of the eigenfunc- 

ion, at least one imaginary eigenvalue exists if f ( ̂ λ = 0 ) < 0 . Fur-

her, additional imaginary eigenvalue may exist if the eigenfunc- 

ion attains an infinite value at one or more locations along the ˆ λ
xis. It can be shown that this occurs if either of the following two 

quations are satisfied: 

¯
 1 ̂  ω 1 ,n,p coth ˆ ω 1 ,n,p γ1 + B i A = 0 (29) 

ˆ  2 ,n,p coth ˆ ω 2 ,n,p ( 1 − γ1 ) + B i B = 0 (30) 

Similar to recently presented analysis for a one-dimensional 

roblem [21] , the total number of imaginary eigenvalues expected 

or a given set of problem parameters of the two-dimensional 

roblem may be shown to be given by n 1 + n 2 + δ, where n 1 is the

mallest non-negative integer for which β̄1 − ᾱ1 μ
2 
1 , n 1 +1 

− ε 2 p < 0 , 

 2 is the smallest non-negative integer for which β̄2 − μ2 
2 , n 2 +1 

−
 

2 
p < 0 , and δ = 1 if f (0) < 0 and δ = 0 otherwise. Further, the con-

ition for convergence, i.e., no imaginary eigenvalues at all, may be 

ritten simply as n 1 + n 2 + δ = 0 . Note that since there are multi- 

le sets of eigenvalues λn,p for different values of p , therefore, the 

ondition for convergence must consider the most thermally unfa- 

orable conditions, i.e., one must use p = 1 for the isothermal case. 
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Fig. 2. Eigenfunction plot in imaginary space for β̄2 = 2, 10, 30, 100 and p = 1. 

Problem parameters are β̄1 = 0, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, w̄ = 5, B i A = 10 

and B i B = 0. 
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Fig. 3. Eigenfunction plot along the imaginary axis for p = 1,2,3,4. Problem param- 

eters are β̄1 = 0, β̄2 = 100, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, w̄ = 5, B i A = 10 and 

B i B = 0. 
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n contrast, for the adiabatic case, the summation in the η direc- 

ion begins at p = 0 , and therefore, one must consider p = 0 in the

onditions listed above. It can be easily seen that, because ε p are 

n increasingly series of numbers, therefore, if the condition for 

onvergence holds for the smallest possible value of p , it will also 

old for all subsequent values as well. 

For a representative set of parameters ( ̄β1 = 0, ᾱ1 = 1.14, 
¯
 1 = 0.95, γ1 = 0.25, w̄ = 5, B i A = 10 and B i B = 0), the eigen-

unction plot along the imaginary axis is presented in Fig. 2 for 

ultiple values of β̄2 . These plots correspond to the p = 1 eigen- 

alue in the η direction, i.e., ε 1 = 

π
w̄ 

. As the value of β̄2 goes up, 

he curves in Fig. 2 show, as expected, that the number and mag- 

itude of imaginary eigenvalues increases. The physical interpreta- 

ion of this observation is that divergence of the temperature field 

nd the thermal runaway phenomena become more and more se- 

ere as the value of the reaction coefficient increases. This is also 

onsistent with the analysis of number of imaginary eigenvalues 

resented above, where it can be seen that as β̄2 increases, both n 1 
nd n 2 increase, resulting in a greater number of imaginary eigen- 

alues. Plots such as Fig. 2 can be of practical use by predicting the

ccurrence and severity of thermal runaway for a given set of con- 

itions. Despite the inherent simplification in the linearized mod- 

ling of the reaction term here, imaginary eigenvalue analysis is of 

uch practical use, since the value of β̄2 can be correlated to prac- 

ical parameters, such as reaction rates and Arrhenius parameters 

or the decomposition reactions responsible for thermal runaway 

n a Li-ion cell [22] . 

Figure 3 illustrates the impact of the η direction eigenvalue on 

he number of imaginary eigenvalues encountered. With the same 

et of problem parameters as prior, Fig. 3 plots the eigenfunction 

long the imaginary axis for different values of p , with ε p = 

nπ
w̄ 

. 

hese plots clearly show that the number of imaginary eigenvalues 

ecrease as the magnitude of ε p increases. For p = 20, no imag- 

nary eigenvalues are encountered at all. These observations are 

onsistent with the discussion above, since increasing the value of 

 increases ε p , which reduces the values of n 1 and n 2 by making 

he criteria for convergence easier to achieve. 

Finally, the effect of Biot number on the number of imaginary 

igenvalues is presented in Fig. 4 , which plots the eigenfunction 

n the imaginary space for two different values of the Biot num- 

er, assumed to be the same at both ends. Two different cases 

ith β̄2 = 100 and β̄2 = 10 are presented in Figs. 4 (a) and 4(b),

espectively. For a large reaction coefficient, such as in Fig. 4 (a), in- 
5 
reasing the value of the Biot number results in a reduction in the 

umber of imaginary eigenvalues, but does not completely elimi- 

ate it. This is because even an isothermal boundary that removes 

he most possible heat is not able to overcome the large heat gen- 

ration due to large β̄2 . In this case, therefore, divergence occurs 

egardless of the value of the Biot number. On the other hand, 

hen the reaction coefficient is not as large, such as in Fig. 4 (b),

ncreasing the value of the Biot number results in elimination of 

he imaginary eigenvalue, and, at a value of 50, the eigenfunction 

urve monotonically increases and never crosses the x axis. Note 

hat further increasing the value of the Biot number does not pro- 

uce significant change in the curves in either plot, indicating that 

 value of Biot number of 50 is already quite close to the limiting 

ondition of isothermal boundary condition. 

. Results and discussion 

.1. Model verification by comparison with numerical simulations 

The analytical models presented in sections 2.1 and 2.2 are ver- 

fied by comparison with finite-element based numerical simula- 

ions carried out in ANSYS-CFX. For the specific case of adiabatic 

onditions at the η boundaries, Fig. 5 presents this comparison 

n the context of a two-layer body, where temperature is plotted 

cross the layers at η = 2.5 and at multiple times in Fig. 5 (a) and

t ξ = 0.625 as a function of η in Fig. 5 (b). In addition, temper- 

ture at the center of both layers is plotted as a function of time 

n Fig. 5 (c). Problem parameters are β̄1 = 0, β̄2 = 30 , ᾱ1 = 1.14,
¯
 1 = 0.95, γ1 = 0.25, w̄ = 5, B i A = 10 and B i B = 0. The values of

hermal properties are based on a Li-ion cell covered by a Poly- 

etrafluoroethylene (PTFE) insulating material. While the proper- 

ies of these materials vary in a wide range, representative values 

or a Li-ion cell are taken based on past work [23] , whereas val-

es for PTFE are chosen from available databases. In the case of 

 cell covered by insulation material on both sides, consideration 

f only half the geometry by symmetry results in adiabatic condi- 

ions on one end. The initial condition is a temperature of 1 be- 

ween η = 0 . 4 ̄w and η = 0 . 6 ̄w in layer 2, and zero elsewhere. This

nitial condition is assumed throughout this work, unless specified 

therwise. Due to the relatively large value of β̄2 , the temperature 

eld in this problem diverges at large times. Nevertheless, there is 

xcellent agreement between the analytical model and numerical 

imulations, as shown in Figs. 5 (a)-(c). 
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Fig. 4. Eigenfunction plot in imaginary space for Bi = 0.1, 50 and ε 1 = 

π
w̄ 

. (a) β̄2 = 100, (b) β̄2 = 10. Other problem parameters are β̄1 = 0, β̄2 = 100, ᾱ1 = 1.14, k̄ 1 = 0.95, 

γ1 = 0.25, w̄ = 5. Conditions at the η boundaries are adiabatic. 

Fig. 5. Comparison of present work with numerical simulations for a case where the temperature field diverges at large times: (a) θ vs ξ at η = w̄ / 2 and multiple times, 

(b) θ vs η at ξ = 0.625 and at multiple times, (c) θ vs τ at the center of layers 1 and 2. Problem parameters are β̄1 = 0, β̄2 = 30, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, w̄ = 5, 

B i A = 10 and B i B = 0, with adiabatic boundaries in the η direction. 

Fig. 6. Comparison of present work with numerical simulations for a case where the temperature field converges at large times: (a) θ vs ξ at η = w̄ / 2 and multiple times, 

(b) θ vs η at ξ = 0.625 and at multiple times, (c) θ vs τ at the center of layers 1 and 2. Problem parameters are β̄1 = 0, β̄2 = 2, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, w̄ = 5, 

B i A = 10 and B i B = 0, with adiabatic boundaries in the η direction. 
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a  
A similar comparison with numerical simulations is presented 

n Fig. 6 for a case where the reaction coefficient in the second 

ayer is much lower, β̄2 = 2 . Other parameters are identical to 

ig. 5 . Similar to Fig. 5 , there is excellent agreement in this con-

erging case, with a reasonably low worst-case deviation of 7%. 

Note that the accuracy of infinite series solutions such as those 

erived in this work depends critically on the number of eigen- 

alues considered. In this work, a maximum value of 50 is used 

or n and p in the summations in equations (17) and (26). It is 

erified through a convergence analysis that consideration of addi- 
6 
ional eigenvalues does not significantly alter the computed tem- 

erature distribution. Whenever appropriate, a set of one or more 

maginary eigenvalues are also computed and included in the so- 

ution. 

.2. Typical temperature maps 

Figures 7 and 8 present two-dimensional temperature distri- 

utions for a two-layer body with the same problem parameters 

s Figs. 5 and 6 , respectively. In the first case, the large value of
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Fig. 7. Temperature colormaps in the entire geometry at (a) τ = 0.1, (b) τ = 0.15, (c) τ = 0.24 for a case in which the temperature field diverges at large times. Problem 

parameters are identical to Figure 5 . 
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he reaction coefficient results in divergence due to excessive heat 

enerated compared to dissipation at the boundaries. Temperature 

olormaps at multiple times for this case plotted in Fig. 7 clearly 

how that divergence first occurs in the middle region of the two- 

ayer body closer to ξ = 1, which is consistent with the adiabatic 

ature of that boundary and the nature of the initial temperature 

istribution. On the other hand, in Fig. 8 , which corresponds to 
¯
2 = 2 , the convective boundary condition is strong enough to dis- 

ipate heat generated in layer 2, and therefore, the temperature 

eld converges at large times, despite the positive value of β̄2 . As 

iscussed in section 3 , the divergence in Fig. 7 is mathematically 

xplained on the basis of the presence of imaginary eigenvalues in 

he solution. In contrast, all eigenvalues for the problem shown in 

ig. 8 are real, and therefore, the temperature field converges at 

arge times. 

.3. Impact of width 

The impact of width w̄ on the temperature field is investigated 

n Fig. 9 . Temperature at the midpoint of layer 2 ( ξ = 

1+ γ1 
2 , η =

¯  / 2) is plotted as a function of time for isothermal and adiabatic 

onditions at the η boundaries in Fig. 9 (a) and 9(b), respectively. 

n each case, curves corresponding to two different widths are pre- 

ented. All parameters are identical to ones used in preceding fig- 

res, except β̄2 = 5 . Fig. 9 (a) shows that while divergence occurs 

or w̄ = 5 , bringing the isothermal walls closer to each case in the 

¯  = 1 case results in sufficiently enhanced heat removal, so that 

here is no divergence in temperature for this case. Mathemati- 

ally, as w̄ is reduced, the total number of imaginary eigenvalues 

ncountered also reduces. In general, the regions surrounding the 
7 
entral region with high initial temperature act as a heat sink at 

mall times, which is why there is a dip in the curves in Fig. 9 (b)

t small times. However, as the temperature of these regions be- 

in to rise due to heat generation, the impact of insufficient heat 

emoval begins to dominate, resulting in increase in temperature 

t the midpoint after an initial decline. Only in the case of isother- 

al walls with w̄ = 1 does the close presence of a heat-dissipating 

oundary overcome heat generation, and causes the temperature 

o go down monotonically. 

Mathematically, divergence is caused by the appearance of 

maginary eigenvalues in the solution of these problems. In Fig. 9 , 

he isothermal problem with w̄ = 1 is the only case with no imag- 

nary eigenvalues. Note that even though the eigenvalues λn,p and 

 p are identical for the isothermal and adiabatic problems, the adi- 

batic problem contains an additional series of λn,p , corresponding 

o p = 0, which leaves open the possibility of appearance of imag- 

nary eigenvalues and divergence, even when, for the same set of 

arameters, the isothermal problem converges. 

.4. Effect of the reaction coefficient and ξ boundary conditions 

Figs. 10 (a) and 10(b) plot temperature at the midpoint in layer 2 

s a function of time for multiple values of β̄2 . Figs. 10 (a) and 10(b)

lots the temperature curves for relatively low and high values of 

 i A = 0 . 1 and B i A = 10 , respectively. Adiabatic boundaries are as-

umed in the η direction. Other problem parameters are the same 

s Fig. 5 . As expected, in Fig. 10 (b), the temperature field converges

or small values of β̄2 and diverges as the value of β̄2 increases. 

n contrast, the curves in Fig. 10 (a) diverge for even small values 

f β̄ , which may be attributed to insufficient heat removal from 
2 
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Fig. 8. Temperature colormaps in the entire geometry at (a) τ = 0.3, (b) τ = 0.5, (c) τ = 0.8 for a case in which the temperature field converges at large times. Problem 

parameters are identical to Figure 6 . 

Fig. 9. Impact of w̄ on temperature: θ vs τ in the middle of layer 2 for (a) isothermal, and (b) adiabatic conditions at the η boundaries. Problem parameters are β̄1 = 0, 

β̄2 = 5, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, B i A = 10 and B i B = 0. 
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he boundaries due to the small value of B i A . On the other hand,

he Biot number in Fig. 10 (b) is sufficiently large enough to en- 

ure convergence for small values of β̄2 . These plots allude to the 

xistence of a threshold values of the reaction coefficient and Biot 

umbers that separates convergence and divergence of the temper- 

ture field. 

A similar analysis of the impact of the ξ boundary conditions 

s presented in Fig. 11 . Temperature as a function of time at the
8

idpoint of layer 2 is plotted in Figs. 11 (a) and 11(b), respectively, 

or four different values of B i A . Fig. 11 (a) is used to analyze this

roblem for a small value of β̄2 = 3 , whereas Fig. 11 (b) presents

imilar plots for relatively higher value of β̄2 = 5 . All other param- 

ters are the same as Fig. 10 . A large value of B i A corresponds to

reater heat dissipation capability at ξ = 0. In Fig. 11 (b), as B i A 
s increased, it can be clearly seen that the rate of divergence re- 

uces significantly, but divergence is not prevented altogether. On 
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Fig. 10. Impact of β̄2 on temperature: θ vs τ in the middle of layer 2 for (a) B i A = 0.1, (b) B i A = 10. Problem parameters are β̄1 = 0, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, w̄ = 5 

and B i B = 0. Adiabatic boundaries are assumed in the η direction. 

Fig. 11. Impact of B i A on temperature: θ vs τ in the middle of layer 2 for (a) β̄2 = 3, (b) β̄2 = 5. Problem parameters are β̄1 = 0, ᾱ1 = 1.14, k̄ 1 = 0.95, γ1 = 0.25, w̄ = 5 

and B i B = 0. 
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he other hand, in Fig. 11 (a), the temperature starts to converge as 

 i A is increased, as expected, due to greater heat dissipation rate. 

.5. Practical application: Thermal Runaway prediction in a Li-ion 

ell 

The analytical models presented in section 2 are used to ana- 

yze thermal runaway in a practical problem. A prismatic Li-ion cell 

overed by Polytetrafluoroethylene (PTFE), a commonly used insu- 

ating material is considered. Based on previously reported thermal 

roperties of the Li-ion cell [23] , ᾱ1 = 1 . 21 and k̄ 1 = 0 . 80 are as-

umed. In addition, the cell and PTFE are assumed to be of equal 

hickness ( γ1 = 0 . 5 ). There is no heat generation in the passive

TFE layer. By symmetry, the boundary at the cell end is taken 

o be adiabatic, i.e., B i A = 0 . The two remaining problem param- 

ters are the reaction coefficient in the cell, β̄1 and Biot num- 

er on the PTFE end, B i B . It is of interest to determine the re-

ions in the B i B − β̄1 parameter space where thermal runaway may 

ot occur. In order to do so, the number of imaginary eigenvalues 

re computed in this space, and the region with zero imaginary 

igenvalues is identified as the converging region. Fig. 12 (a) shows 
9 
he curve that separates the converging and diverging regions for 

sothermal and adiabatic conditions in the η direction for w̄ = 1 . 

imilar curves for a much wider geometry, w = 10 are presented 

n Fig. 12 (b). In these plots, regions below and above each curve 

orrespond to convergence and divergence, respectively. These Fig- 

res show that, in general, the greater the value of B i B , the greater

s the value of β̄1 that may be tolerated without divergence. As 

 i B increases, the maximum value of β̄1 increases slowly at first, 

ue to poor heat dissipation at the PTFE end, and then increases 

ore rapidly, as heat dissipation improves. Eventually, as B i B be- 

omes very large, approaching isothermal conditions, the curves 

lateaus out, because further increase in B i B does not significantly 

mprove heat removal since B i B is already quite large. The isother- 

al curve in Fig. 12 (a) is much higher than the adiabatic curve, 

.e., the converging region is much greater, because isothermal con- 

itions result in much greater heat removal than adiabatic condi- 

ions. In contrast, these curves are much closer to each other for 

he case of w̄ = 10 case. This is because when the geometry is 

ery wide, the influence of the η boundaries is relatively weaker, 

hich is why the nature of η does not significantly impact conver- 

ence/divergence of the system. 
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Fig. 12. Practical application of the theoretical model: Converging and diverging regions in the B i B − β̄1 space for a prismatic Li-ion cell covered by a PTFE layer for (a) w̄ = 1, 

and (b) w̄ = 10 . Curves are shown for adiabatic and isothermal conditions on the η boundaries. Based on material properties and symmetry considerations, other problem 

parameters are β̄2 = 0, B i B = 0, k̄ 1 = 0.8, ᾱ1 = 1.21, γ1 = 0.5. 
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The curves presented in Fig. 12 (a) and 12 (b) may be used to

dentify safe and unsafe regions in the design of a practical Li-ion 

attery pack with the effect of the commonly used insulation plate 

ccounted for. 

. Conclusions 

The key novelty of the analysis presented in this work is in ac- 

ounting for the reaction term in multilayer multidimensional heat 

nd mass transfer problems that may occur in practical engineer- 

ng systems, such as Li-ion cells. This is an improvement over the 

xisting literature, where most such analysis is presented in the 

ontext of a one-dimensional body. While the consideration of the 

econd dimension is clearly more complicated, it is also more real- 

stic and accurate for practical engineering systems. The accounting 

f the reaction term in this work is shown to result in the possibil-

ty of imaginary eigenvalues. In addition to the theoretical interest 

n imaginary eigenvalues, these are also of much practical impor- 

ance, due to the divergence in temperature field at large times 

aused by an imaginary eigenvalue. This corresponds to the ther- 

al runaway phenomenon, the prediction and prevention of which 

s of much interest in the context of Li-ion cells and electrochemi- 

al energy storage. 

While this work is presented in the context of a two- 

imensional body, extension to three dimensions is straightfor- 

ard, as it simply introduces an additional series of eigenfunctions 

o account for. A key limitation of the present work is that the 

oundary conditions in the y direction are assumed to be either 

sothermal or adiabatic. While these may be used to model spe- 

ific heat/mass transfer scenarios, a more general treatment in the 

orm of a convective boundary condition would be desirable. Un- 

ortunately, however, the derivation of an eigenequation common 

o all layers in the x direction is possible only for isothermal or 

diabatic boundaries. 

While most of the plots presented here pertain to a two-layer 

ody, the results are general enough that the thermal behavior of 

odies with more than two layers can be easily computed as well. 

inally, it is important to note that while this work is presented in 

he context of heat transfer, similar results apply for mass trans- 

er problems as well. Such problems may occur, for example, in 

orous media mass transfer, reacting systems and electrochemistry. 

he generalized analysis of diffusion-reaction problems in a mul- 
10 
ilayer two-dimensional body presented here may be of practical 

mportance in a variety of such engineering systems. 
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