
# Reefs of the Permo-Penn Caribbean





# The Horseshoe Atoll of the Midland Basin






Lowell Waite UT Dallas June 7, 2021

# Permian Basin Research Lab at UT Dallas

Dr. Robert J. Stern and Mr. Lowell Waite, Co-Directors

-- established January 2019 --





### Goals:

- Advance understanding of all geologic aspects of the Permian Basin through open applied research, linking academia and industry
- Educate and better prepare students for professional careers in the oil and gas industry
  - Graduate courses offered:
    - Geology of the Permian Basin



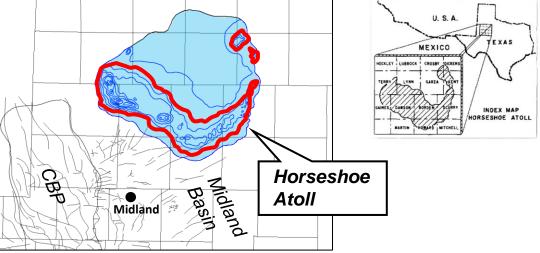
- Petroleum Geoscience
- Paleo Earth Systems: Global Themes
- Carbonate Sedimentology

https://labs.utdallas.edu/permianbasinresearch/



# Geology of the Permian Basin: Fall 2020 Syllabus




| August 27   | Class intro, grading policy                         | Nov 3       | Upper Permian                              |
|-------------|-----------------------------------------------------|-------------|--------------------------------------------|
| Sept 1 / 3  | Region & basin overview / Exploration history       | Nov 5       | Post-Permian units                         |
| Sept 8 / 10 | Tectonic history                                    | Nov 10      | Permian Basin Petroleum System             |
| Sept 15     | Stratigraphic overview                              | Nov 12      | Horseshoe Atoll                            |
| Sept 17     | Basement rocks                                      | Nov 17      | Unconv. shale plays of the Permian Basin   |
| Sept 22     | Cambrian – Lower Ord (Wilberns Ss., Ellenburger Gp) | Nov 19      | Course wrap-up/Review                      |
| Sept 24     | Mid – Upper Ord (Simpson – Montoya)                 |             |                                            |
| Sept 29     | Early Silurian (Fusselman)                          | Nov 24 / 26 | no class (Thanksgiving break)              |
| Oct 1       | Late Sil – Early Dev (Wristen Gp – Thirty One Fm)   | Dec 1       | Review (on-line; attendance not mandatory) |
| Oct 6       | Mississippian                                       |             | (No class on Dec 1)                        |
| Oct 8       | Review                                              | Dec 3       | No Class; Final exam mail-out              |
| Oct 13      | Mid-term exam (in-class)                            | Dec 10      | Final Exams due by 2pm                     |
| Oct 15      | no class                                            |             |                                            |
| Oct 20      | Exam results and review                             |             |                                            |
| Oct 22      | Pennsylvanian                                       |             |                                            |
| Oct 27      | Lower Permian                                       |             |                                            |
| Oct 29      | Middle Permian                                      |             |                                            |

# <u>Outline</u>

- What is the Horseshoe Atoll ?
- Geology of the Atoll
- Why it is important
  - Conventional reservoir perspective
  - Unconventional shale play perspective

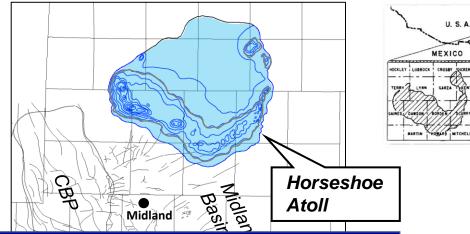
# Horseshoe Atoll – what is it?

- An enormous, isolated carbonate platform including an arcuate chain of reef-shoal complexes of Pennsylvanian and early Permian age, located within the northern portion of the Midland Basin, west Texas
- This organic feature encompasses portions or all of 14 counties (Terry, Lynn, Garza, Kent, Scurry, Mitchell, Howard, Borden, Dawson, Gaines, Martin, Lubbock, Crosby, and Dickens); an area of approximately 8,100 mi<sup>2</sup> (5.2 million acres) (for reference, New Jersey = 8,722 mi<sup>2</sup>)
- It contains 70 conventional oil fields stretched out over 175 miles along its outer rim, including a few giants (>100 MMBO) and one supergiant (Kelly-Snyder field, 1.3 BBO)
- It is so-named because the Cisco Canyon portion of the complex, outlined by the thick red lines on the index map, resembles this





# Horseshoe Atoll – what is it?


- An enormous, isolated carbonate platform including an arcuate chain of reef-shoal complexes of Pennsylvanian and early Permian age, located within the northern portion of the Midland Basin, west Texas
- This organic feature encompasses portions or all of 14 counties (Terry, Lynn, Garza, Kent, Scurry,

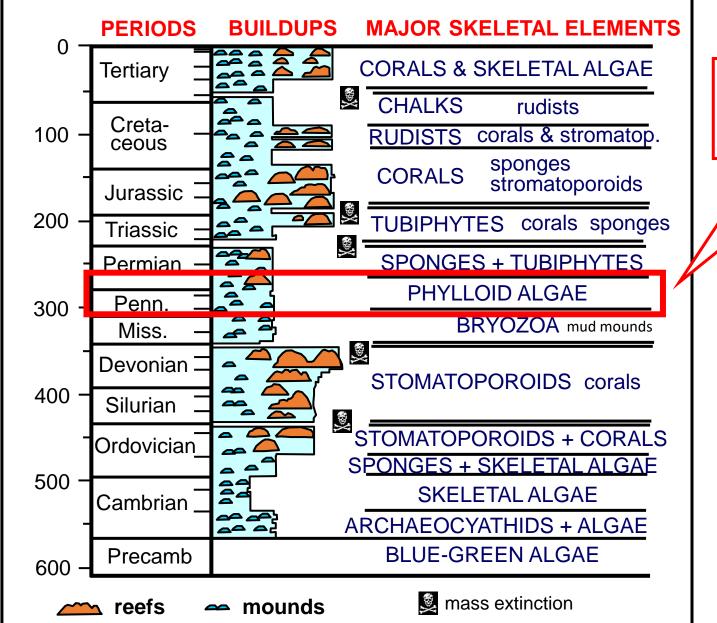
# Atoll

An atoll, sometimes called a coral atoll, is a ring-shaped coral reef including a coral rim that encircles a lagoon partially or completely. There may be coral islands/cays on the rim. The coral of the atoll often sits atop the rim of an extinct seamount or volcano which has eroded or subsided partially beneath the water.

#### en.wikipedia.org

Horseshoe Atoll is composed mainly of algae (not coral) and certainly does not have an extinct volcano at its center




See all images

INDEX MAP

# **Geology of the Horseshoe Atoll**

- Flora and Fauna
- Thickness / Age / Morphology
- Type logs, and Correlation
- Structure
- Seismic expression
- Depositional Facies

# Major reef builders throughout Phanerozoic time



Pennsylvanian – Lower Permian reef systems including the Horseshoe Atoll

# Phylloid Algae

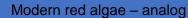
- An extinct group of algae of problematic taxonomy most likely a red algae
- Age range: Late Carboniferous (Pennsylvanian) to late Permian
- Dominant component of Penn early Permian reefs and shelf limestones (common in Permian Basin)
- Present in middle late Permian reefs, but much reduced; replaced by sponges and other algal forms
- Platy, "lettuce-like" morphology; mostly aragonitic forms (secondary porosity important in subsurface)
- Individual fronds have dark amber color in hand specimen and thin-section
- Major component of Horseshoe Atoll

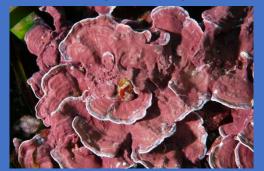


(N. King, University of Southern Indiana)

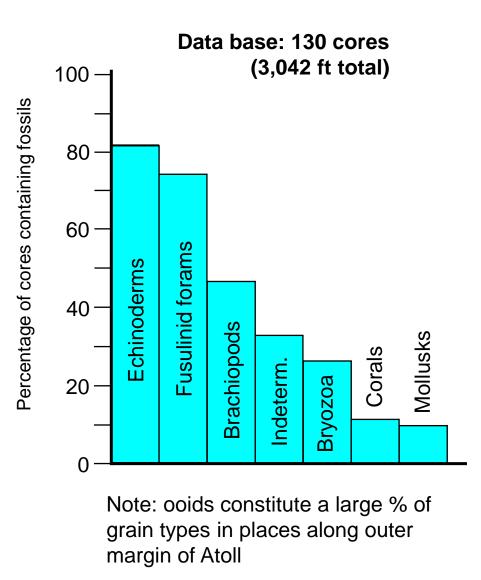


#### Reconstructions of complex phylloid algae


Left: Artist's reconstruction of complex, cuplike phylloid algae that formed biohermal buildups in the Lower Permian (Wolfcampian) of New Mexico. Other phylloid algae most likely had simpler, platy or leaf-like morphologies. Courtesy of Robert B. Halley.


**Right:** Reconstruction of a phylloid alga, *Eugonophyllum.* External shape of organism supplied by Cross and Klostermann (1981) based on serial slabbing of neomorphosed thalli. Internal morphology added by Kirkland et al. (1993), based on thin sections of broken, still aragonitic thalli.

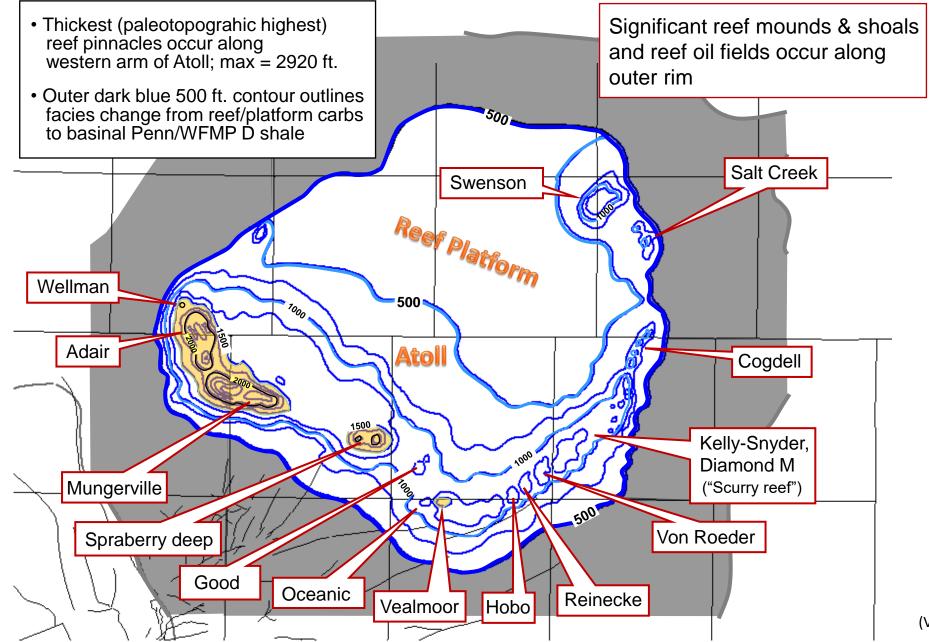
(Scholle and Ulmer-Scholle, 2003)

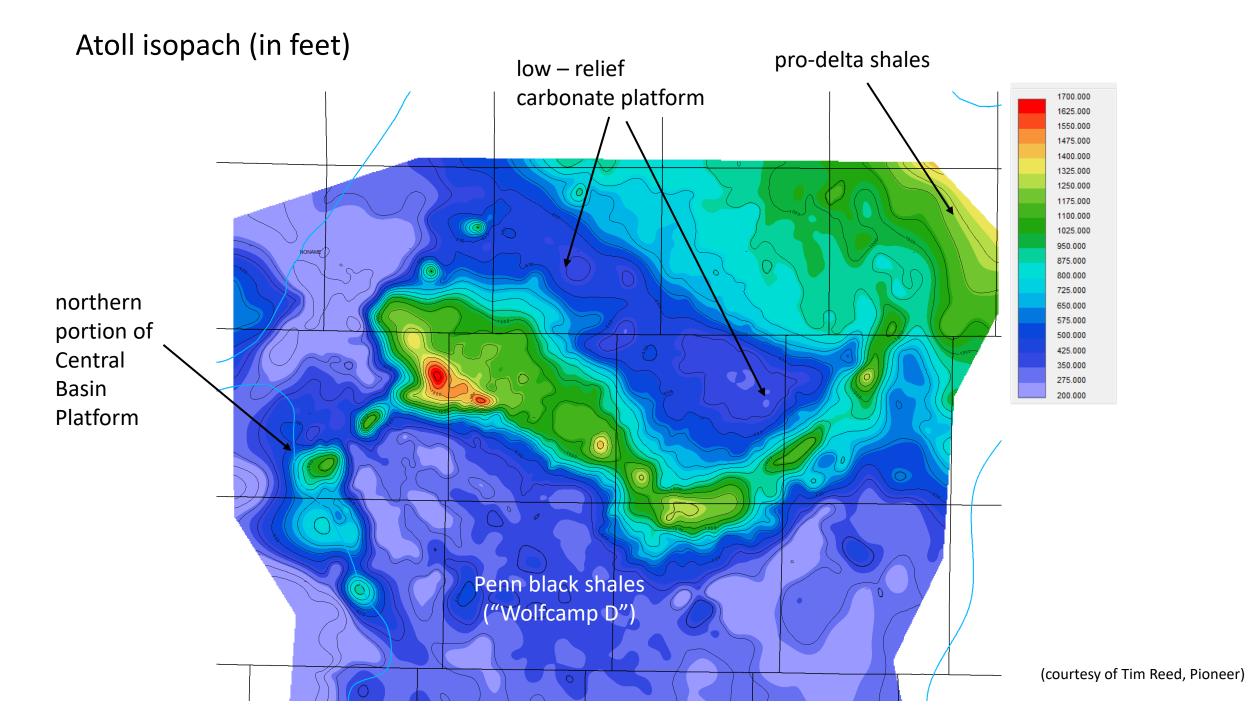



*Calcipatera*, a phylloid algae from the Wolfcamp of Kansas (Sawin and Wood, 2005)






(www.thefossilforum.com)

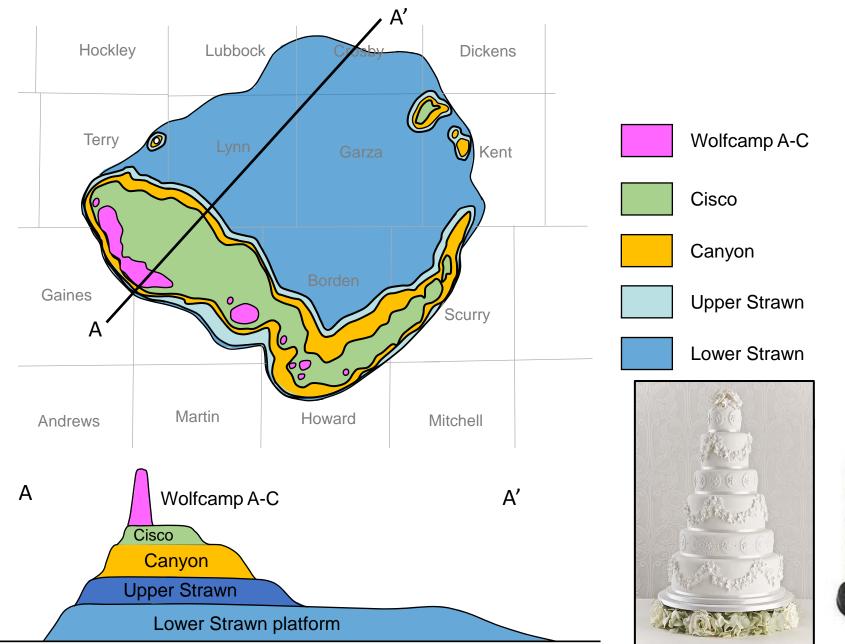



| Carbonate rock types                                          |                                                            |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Grainstone:                                                   | 46.3%                                                      |  |  |  |
| <ul> <li>Packstone/<br/>Wackestone/<br/>Mudstone</li> </ul>   | 35.2%                                                      |  |  |  |
| Rudstone     (debris flows)                                   | 15.9%                                                      |  |  |  |
|                                                               | 97.4% CaCO <sub>3</sub>                                    |  |  |  |
| Shale                                                         | 2.6%                                                       |  |  |  |
| Main deposition                                               | al facies                                                  |  |  |  |
| Phylloid algal m                                              | Phylloid algal mounds                                      |  |  |  |
| Sponge-bryozoa                                                | <ul> <li>Sponge-bryozoan mounds</li> </ul>                 |  |  |  |
| Ooid shoals                                                   |                                                            |  |  |  |
| -                                                             | <ul> <li>Shallow open shelf (crinoid-fusulinid)</li> </ul> |  |  |  |
| <ul> <li>Tidal flat</li> <li>Slumps / Debris flows</li> </ul> |                                                            |  |  |  |
|                                                               | <i>(</i> 1                                                 |  |  |  |

(data from Myers et al., 1956; Bergenback and Terriere, 1953; Schatzinger, 1983)

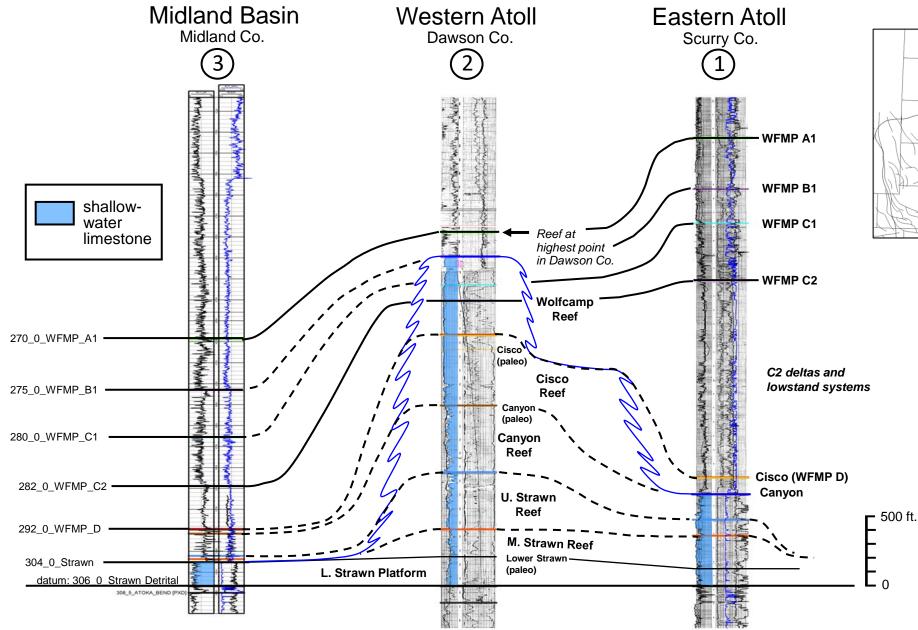
# Atoll Isopach (in feet)

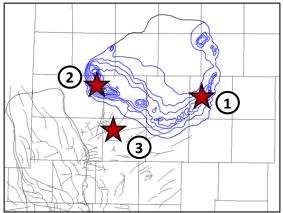




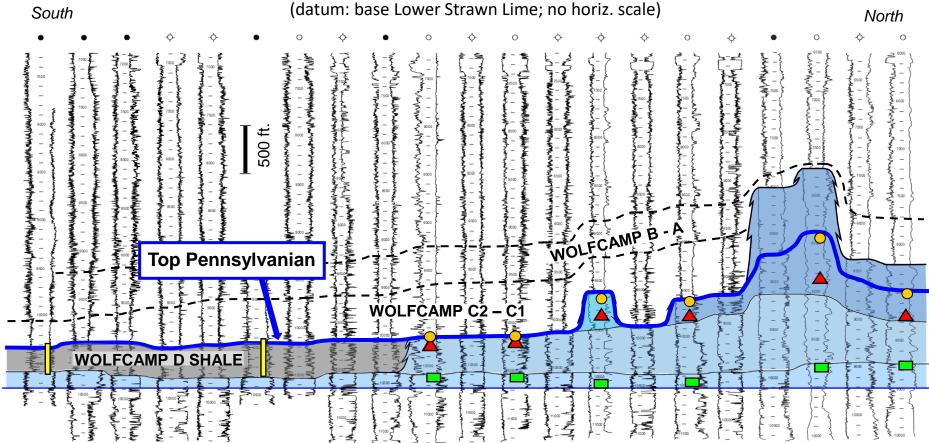

# Age and Morphology of the Horseshoe Atoll

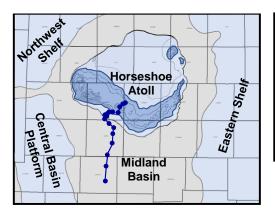
# Geologic Age of the Atoll


| Geologic Age of the Atoll                     |                            |                                                                        |                                         | Fusulinid foraminifera: main biostratigraphic control |                 |                       |                                                 |
|-----------------------------------------------|----------------------------|------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------|-----------------------|-------------------------------------------------|
| Midland Basin Stratigraphic Correlation Chart |                            |                                                                        |                                         |                                                       | ALANANA ANTINA  | ACCORD NO.            | A CONTRACT OF                                   |
| System                                        | Series                     | Midland Basin<br>Formations                                            | Lithology                               |                                                       | COLORS DO LOANS |                       | AND ALL AND |
|                                               | Ochoan                     | Dewey Lake<br>Rustler<br>Salado                                        |                                         |                                                       |                 |                       | C. C        |
| Permian                                       | Guadalupian                | Tansill<br>Yates<br>Seven Rivers<br>Queen<br>Grayburg                  |                                         |                                                       | NO WINTER AND   | 1 KOUNALE             | A CONTRACTOR                                    |
|                                               |                            | San Andres                                                             |                                         |                                                       | 0.5 mm          |                       | (Myers et al., 1956)                            |
|                                               | Leonardian                 | Spraberry Mid                                                          |                                         |                                                       |                 |                       |                                                 |
|                                               |                            | Dean<br>Wolfcamp A                                                     |                                         |                                                       |                 | Clear- Holt / Un      | oper Leonard                                    |
|                                               | Wolfcampian                | Wolfcamp B<br>Wolfcamp C1<br>Wolfcamp C2                               |                                         |                                                       |                 | fork INTE / OF        |                                                 |
|                                               | Virgilian                  | Cisco Wolfcamp D                                                       |                                         | Forder                                                | Lessentien      | Spraberry             | Mid Mid                                         |
| Bannovlyanian                                 | Missourian<br>Desmoinesian | Canyon<br>Strawn Lime<br>Detrital                                      |                                         | Early                                                 | Leonardian      | Lower Jo Mill         |                                                 |
| Pennsylvanian                                 | Atokan                     | Atoka Bend Lm<br>Sh & Detrital                                         |                                         | Permian                                               |                 | De                    | an rinning                                      |
|                                               | Morrowan                   | Morrow                                                                 |                                         |                                                       |                 |                       | Wolfcamp A                                      |
|                                               | Chesterian                 | U. Miss Lm U. Barnett<br>L. Barnett                                    |                                         |                                                       |                 | Wolfcamp              | Wolfcamp B<br>Wolfcamp C1                       |
| Mississippian                                 | Meramecian –<br>Osagean    | L. Miss Lm                                                             |                                         |                                                       | Wolfcampian     |                       | Wolfcamp C2                                     |
|                                               | Kinderhookian              | Woodford                                                               |                                         |                                                       | Virgilian       | Cisco                 | Wolfcamp D                                      |
| Devonian                                      | Middle                     |                                                                        | 1                                       |                                                       | Missourian      | Canyon                | es es                                           |
|                                               | Lower                      | Devonian (Thirtyone)                                                   |                                         | <b>D</b>                                              | Deemsinesien    | Character             | Lime S U                                        |
| Silurian                                      | U. Niagaran<br>L. Niagaran | Upper Silurian (Wristen)                                               |                                         | Pennsylvanian Desmoinesian<br>Atokan                  | Desmoinesian    | Strawn                | Detrital                                        |
|                                               | Alexandrian                | - Fusselman                                                            | 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |                                                       | Atokan          | Atoka                 | Bend Lm                                         |
|                                               | Cincinnatian<br>Mohawkian  | Montova Esyncarish<br>Bromide                                          |                                         |                                                       |                 |                       | Sh & Detrital                                   |
| Ordovician                                    | Chazyan                    | Tulip Crk. McKee Sd.<br>Mclish Waddell Sd.<br>Oil Creek Olio Alexandre | McKee Sd                                | Morrowan                                              | Morrow          |                       |                                                 |
|                                               |                            | Joins                                                                  |                                         |                                                       | Chesterian      | U. Miss Lm U. Barnett |                                                 |
|                                               | Canadian<br>Ozarkian       | Ellenburger                                                            |                                         |                                                       | Meramecian –    | L. De                 |                                                 |
| Cambrian                                      | Upper                      | Wilberns<br>Bliss / Hickory / Riley                                    |                                         | Mississippian                                         | Osagean         | L. Miss Lm            |                                                 |
| Precam                                        | brian                      | Precambrian<br>Basement                                                |                                         |                                                       | Kinderhookian   | Woo                   | dford                                           |


Distribution of sediments show a classic backstepping to aggradational pattern







#### Horseshoe Atoll type logs and correlation





# Wire-line log correlation from Midland Basin to Horseshoe Atoll

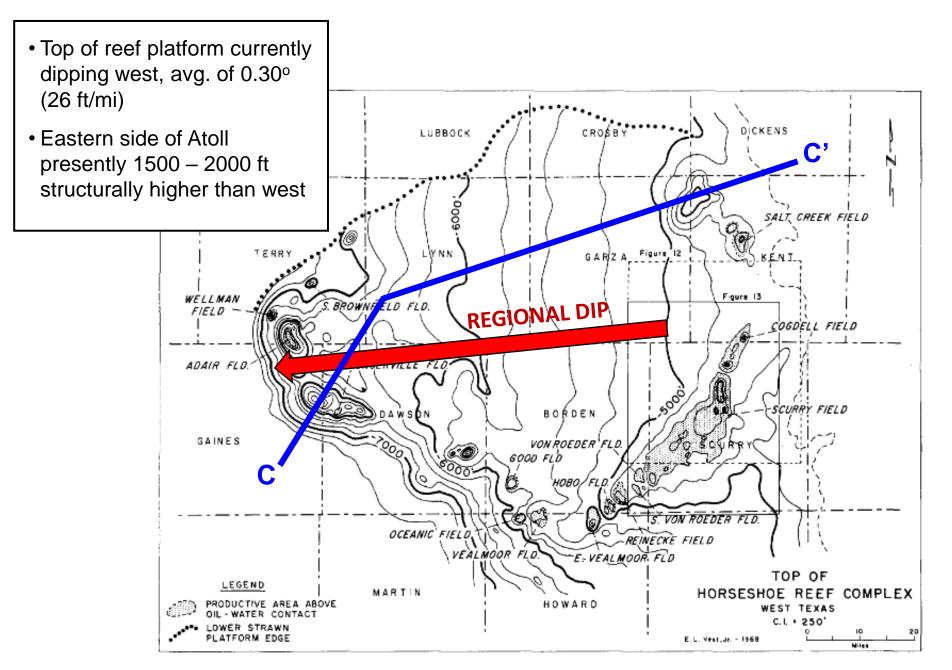




#### Paleo control

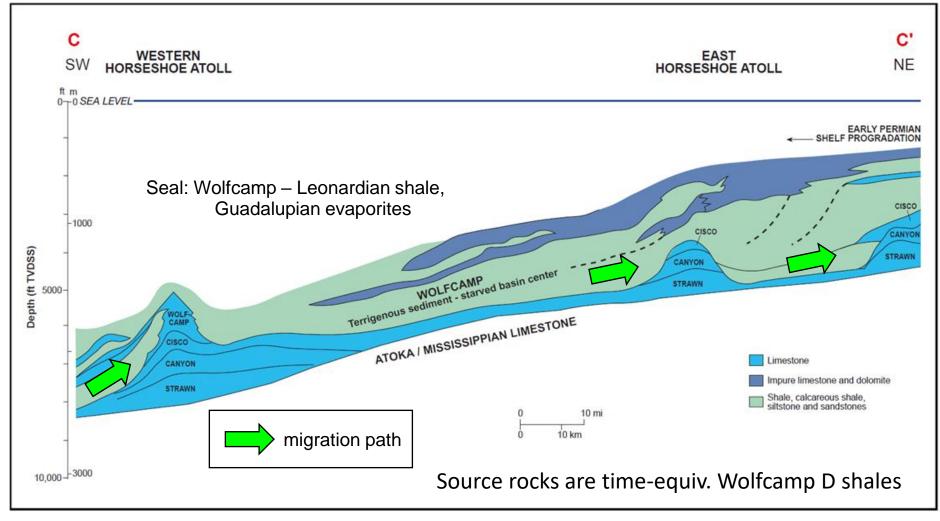
- Cisco fusulinids
- Canyon fusulinids
- Lower Strawn fusulinids

cored interval


#### **Observations:**

- Shale facies (basin) transition abruptly into carbonate reef facies (Atoll)
- Wolfcamp D shale is Penn. age (correlation to fusulinid-bearing LS)

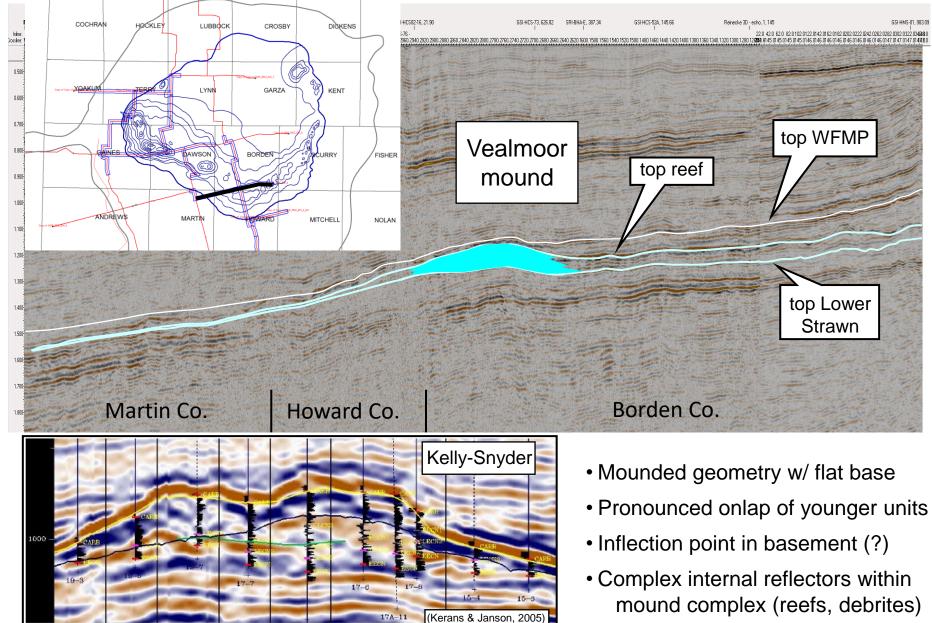
# **Geology of the Horseshoe Atoll**


- Flora and Fauna
- Thickness / Age / Morphology
- Type logs, and Correlation
- Structure
- Seismic expression
- Depositional Facies

# Atoll Top Carbonate Structure



# Westward dip of Atoll


- Greater subsidence in western portion during upper Wolfcamp time; east side drowns during lower Wolfcamp with clastic influx
- Westward structural tilting took place during Late Permian time
- Largest conventional oil accumulations occur in reefal highs along eastern flank (regional migration apex)



(C&C Reservoirs, 2013)

# Seismic expression of Atoll

#### 2D seismic line



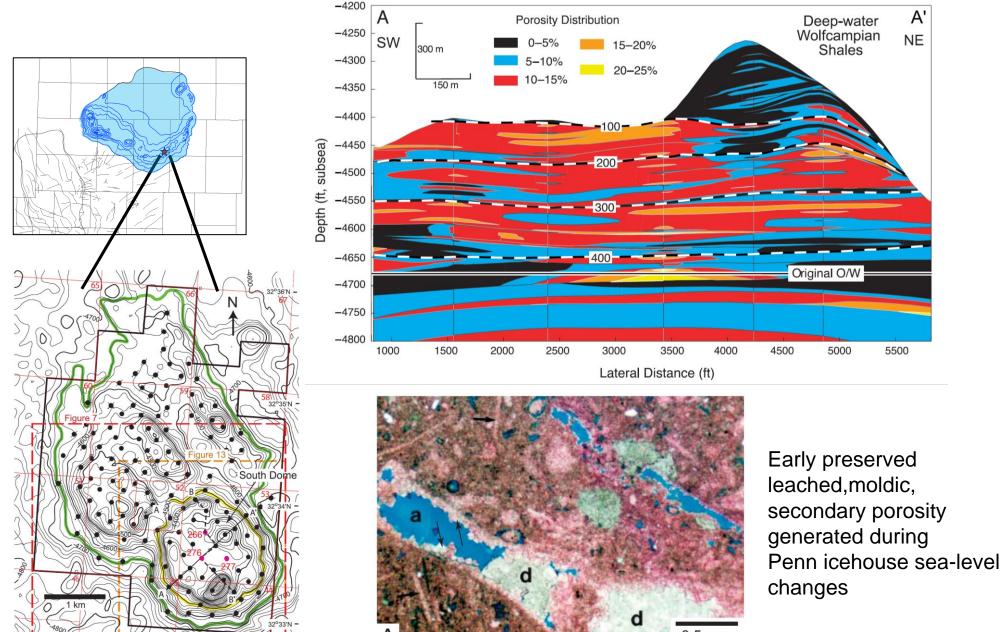
3D seismic

#### Yucca mound (Cisco reef) complex, Sacramento Mtns., New Mexico





<sup>(</sup>photo by Matt Cannady, Pioneer Field Trip, May 2015)

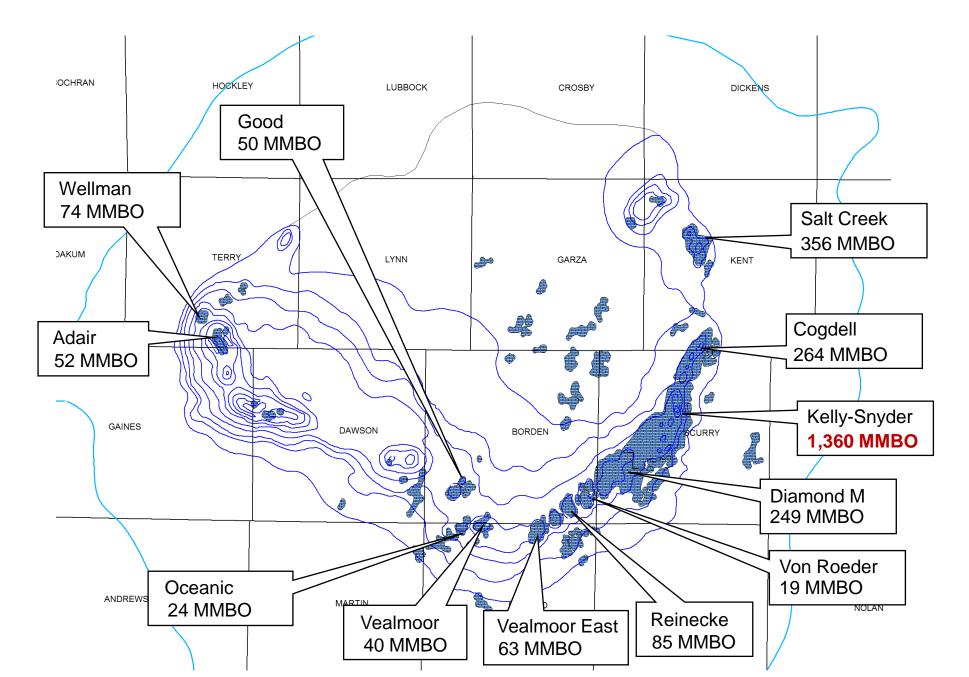

Depositional Facies, Kelly-Snyder Field, Scurry Co.

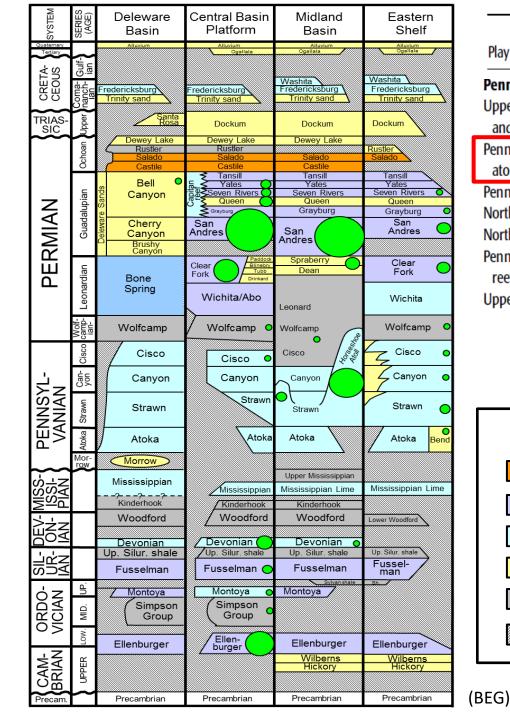
(Pennsylvanian shelf margin cyclothems) Idealized Facies Tract Sonic SE NW Sea level 0 Allochthonous Conglomera MC<sub>3</sub> PS 100 ft -WS Exposure Surface PS . . . ٠ middle Early late Early Canyon WS PS **Proximal shelf Fenestral** Sponge-alg.-bryoz. Exposure Surface PS 4 mudstone wackestone boundstone WS WS Phylloid-algal **Distal shelf** Talus bafflestone wackestone WS MC<sub>3</sub> MSAWS Exposure Surface MC. WS **Depositional Model** early Early Canyon WS GSIP DS6-7 Late Phylloid mound complex **Tidal Flat complex** 5 Shoreface Proximal shelf muds & MS sands intermound lows Peritidal muds Alga PS **Ooid & skeletal shoals** WS RAWN Middle Sponge mound complex Exposur BUNN Surface **Debris flow** WS **Distal shelf mud** Basinal PS 2 mud & 100 ft. shale DS<sub>4</sub> DS<sub>3</sub> Early 10 m/ Mississippian (Schatzinger, 1983) Lower Ordovician Ellenburger MS Mudstone Erosional unconformity WS Wackestone (3rd order sequence boundary) PS Packstone MC3, DS4 etc. GS Grainstone Fusulinid biostratigraphic control

(modified from Waite, 1993)

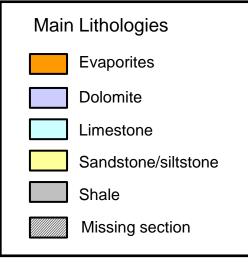
Multiple subtidal cycles capped by exposure surfaces

#### Reineke Field, Borden Co. (from Saller and Dickson, 2011)





0.5 mm

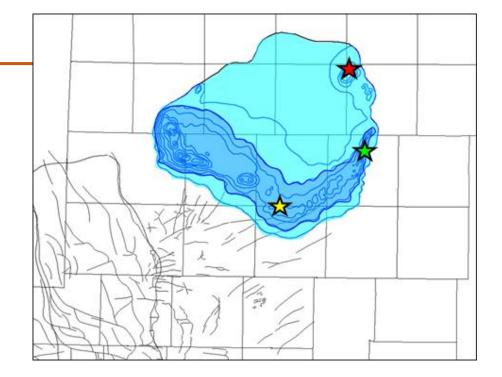
- Flora and Fauna
- Thickness / Age / Morphology
- Type logs, and Correlation
- Structure
- Seismic expression
- Depositional Facies


Why it matters: Conventional reservoirs of the Horseshoe Atoll

#### Major oil fields of the Horseshoe Atoll (BEG)






| Play                                                                  | State      | 2000 Production<br>(bbl) | Cumulative Production<br>(bbl) |
|-----------------------------------------------------------------------|------------|--------------------------|--------------------------------|
| Pennsylvanian                                                         |            |                          |                                |
| Upper Pennsylvanian and Lower Permian slope<br>and basinal sandstone* | Texas      | 1,802,373                | 271,448,389                    |
| Pennsylvanian and Lower Permian Horseshoe<br>atoll carbonate          | Texas      | 13,686,639               | 2,699,242,936                  |
| Pennsylvanian platform carbonate                                      | Texas      | 2,076,281                | 340,469,274                    |
| Northwest shelf upper Pennsylvanian carbonate                         | New Mexico | 4,883,971                | 353,848,173                    |
| Northwest shelf Strawn patch reef                                     | New Mexico | 1,539,376                | 70,337,831                     |
| Pennsylvanian and Lower Permian<br>reef and bank**                    | Texas      | 315,183                  | 92,104,283                     |
| Upper Pennsylvanian shelf sandstone#                                  | Texas      | 426,556                  | 7,264,141                      |
|                                                                       |            | 24,730,379               | 3,834,715,027                  |
|                                                                       |            | (Dut                     | tton et al. <i>,</i> 2005)     |

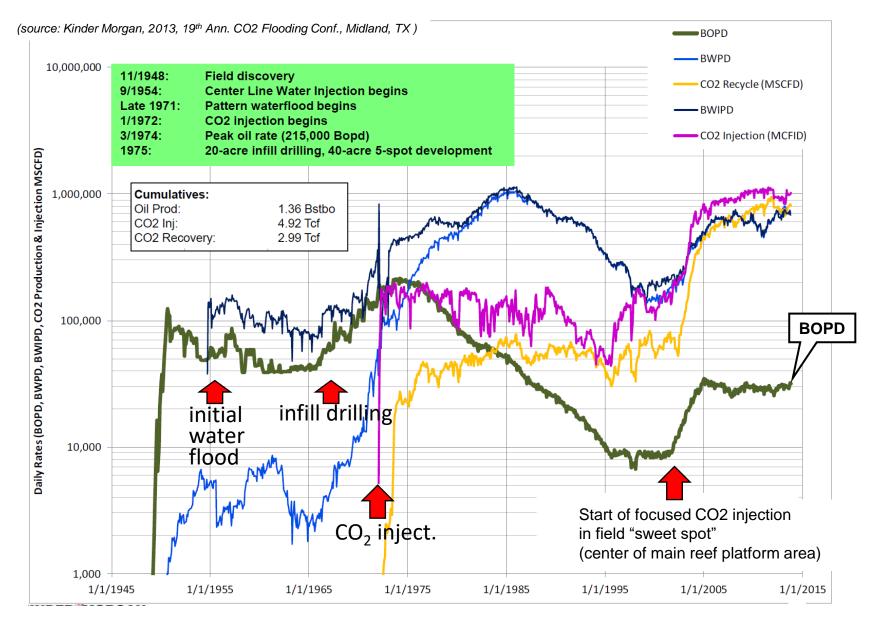


(size of green bubble proportional to amount of conventional oil reserves)

# Horseshoe Atoll Exploration History

- First well drilled into feature: Gulf Oil #1-B Swenson Land & Cattle Co., Garza Co. (42-169-00916-0000)
  - Spud: 2/21/1938; Compl. (P&A) 3/8/1939 ★
  - TD 8104 ft, in Precambrian basement
  - Encountered large reef pinnacle; as fate would have it, only non-commercial reef structure in entire complex
- Discovery well: Seaboard #1-B J.C Caldwell, Howard Co. (42-227-00265-0001)
  - Spud: 10/21/1944; Recompl. (oil) 1/13/1948 🔀
  - Discovery well for Vealmoor Field (39 MMBO)
- Reef "boom" begins: Standard of Texas #1 J. Brown 2, (SACROC Unit TR 17A), Scurry Co. (42-415-03097-0000)
  - Spud: 8/10/1948; Compl. (oil) 11/29/1949; IPF 532 BO + 0BW ★
  - Discovery well for Kelly-Snyder field
- By 1953, all major/giant fields had been discovered; by 1959, the geology & paleontology of the entire reef complex was well-known, described and published

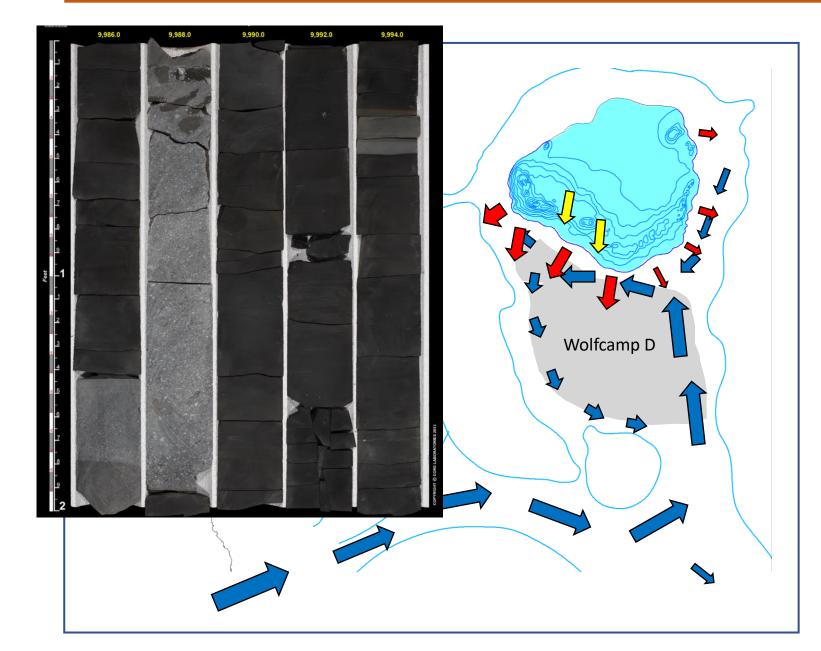



Oil from the Atoll helped fuel the post-WWII expansion of the U.S. economy "A National Treasure"

# Horseshoe Atoll Reservoir and hydrocarbon properties

| Trap type                  | Combination structural - stratigraphic<br>Depth: 4,000 – 6,000 ft TVD ss                                |
|----------------------------|---------------------------------------------------------------------------------------------------------|
| Reservoir thickness        | 800 ft. (gross, max); 270 ft. (avg. net)                                                                |
| Reservoir spacing          | 160 ac. (orig.); 20 – 80 ac. (current)                                                                  |
| Porosity types             | Moldic, vuggy, intercrystalline                                                                         |
| Matrix porosity            | 2.5 – 20+% (avg. 7.6%)                                                                                  |
| Permeability (air)         | 0.1 – 51mD (avg. 19.4 mD)                                                                               |
| Hydrocarbon type           | Light oil (41º API)                                                                                     |
| Initial GOR                | 1010 SCF/STB                                                                                            |
| Gas composition            | 28.7% C <sub>1</sub> ; 11.3 % C <sub>2</sub> ; 58.9 % C <sub>3</sub> +; 0.18% S                         |
| Reservoir pressure (orig.) | 3122 psi @ 4500 ft TVD ss (0.69 psi/ft)                                                                 |
| Water saturation (orig.)   | <mark>21.9 %</mark>                                                                                     |
| Production methods         | Primary (1948); Secondary - water injection (1954);<br>Enhanced – CO <sub>2</sub> miscible flood (1972) |

(C&C Reservoirs, 2013)


#### Kelly-Snyder (SACROC Unit) reservoir performance (1949 – 2015)

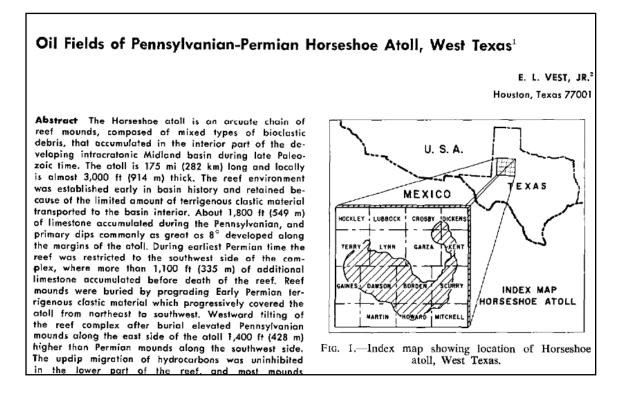


Now testing horizontal well concept, particularly in flank areas

Why the Horseshoe Atoll matters: Unconventional play perspective

# Horseshoe Atoll: Consequences for shale plays




#### Some impacts of the platform & reef complex:

- Redirection of oceanic circulation patterns within central Midland Basin (Mesoscale estuarine circulation, enhancing organic productivity and development of anoxic bottom waters)
- Limit of Wolfcamp D shale "playground"
- Prolific factory for carbonate mud, grains, and reef fragments for transport into the basin (density, grain, and debris flows); further limits shale play
- Modification of local heat flow patterns / thermal history (insulation effect of thick carbonates)
- Pinnacles on western arm represent conduit for younger Spraberry clastics (sands contain enhanced perm, yielding better vertical and horizontal wells)

# Horseshoe Atoll of the Midland Basin: Summary

- The Horseshoe Atoll of the Midland Basin is a large, isolated carbonate reef shoal complex of Pennsylvanian – early Permian age, composed largely of phylloid algae, together with crinoids, fusulinid forams, sponges, and ooids
  - The Atoll, essentially a giant structural-stratigraphic trap has produced over 2.6 BBO, containing several significant oil fields (some >100 MMBO) and one supergiant (1.3 BBO)
    - Light, sweet crude oils from 4,000 6,000 ft TVD ss
    - Internal stratigraphy and development of early secondary porosity in reservoirs controlled by multiple high-frequency, high-amplitude glacio-eustatic sea-level cycles/exposure events during Pennsylvanian early Permian icehouse
    - Abundance of data makes it a good reservoir analog for other Penn early Penn buildups (e.g., Carboniferous early Permian reef fields of N. Caspian Basin)
    - Importance of Atoll has "resurfaced" during shale revolution because it limits the distribution of organicrich facies within the Penn-Wolfcamp section in the northern Midland Basin (reef platform and slope to basinal debris flows)

#### Wish to drill a little deeper on this topic ?



UTD PBRL has a comprehensive library of published papers on the Atoll

# **QUESTIONS?**

Vest, E.L., Jr., 1970, AAPG Memoir 14 (Geology of Giant Petroleum Fields). p. 185 – 200.

Available on AAPG Datapages

