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ABSTRACT. We work with binary relations R on an ambient 
space X. We first consider the set equations R[A] = A and 
R[A] = Ac, with known R and unknown A, for arbitrary R ⊆ X2. 
We give a necessary and sufficient condition for 
solvability of the first equation (requiring A ≠ ∅) and 
sufficient conditions for solvability of the second. We 
then focus on X = Q[0,1]k, where Q[0,1] = Q ∩ [0,1], with 
very concrete R. In particular, we assume R ⊆ Q[0,1]2k is 
order theoretic. We seek to determine the order theoretic 
R,S such that the set equations R[A] = A, S[A] = Ac have a 
common solution. By Gödel's completeness theorem, each such 
common solvability statement is provably equivalent to a 
universal arithmetic sentence, representing the lowest 
level of complexity of a mathematical statement involving 
infinitely many objects. We show that there are specific 
order theoretic R,S such that ZFC is insufficient to decide 
whether the equations R[A] = A, S[A] = Ac have a common 
solution. We conjecture that all such common solvability 
statements can be decided using some well studied standard 
large cardinal hypotheses. In fact, we use specific natural 
order theoretic equivalence relations EQRk ⊆ Q[0,1]2k for 
these independence results. In particular, we show that 
"R[A] = A, S[A] = Ac have a common solution if R = EQRk and 
S is a purely order theoretic graph" can be proved using 
standard large cardinal hypotheses but not in ZFC (Theorem 
7.6). We convert these results to maximal independent sets 
and maximal cliques as "in every purely order theoretic 
graph on Q[0,1]k, some union of cosets of EQRk is maximally 
independent (is a maximal clique)" (Propositions 8.1,8.2). 
We also convert these results to maximal squares as "in 
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every purely order theoretic subset of Q[0,1]2k, some union 
of cosets of EQR2k is a maximal square" (Proposition 8.3). 
Again, these are provable in SRP but not in ZFC (assuming 
ZFC is consistent). In this way, significant information 
about the common solvability of equations R[A] = A, S[A] = 
Ac for order theoretic R,S, maximal independent sets cliques 
in purely order theoretic graphs, and maximal squares in 
purely order theoretic sets can be obtained using standard 
large cardinal hypotheses but not in ZFC alone.  
 
1. R[A] = A.  
2. R[A] = Ac. 
3. (Purely) order theoretic sets. 
4. R[A] = A, R order theoretic. 
5. R[A] = Ac, R order theoretic. 
6. Order theoretic conjectures. 
7. Order theoretic conjectures and set theory.  
8. Maximal cliques and maximal squares. 
9. J replacing Q[0,1].  
10. Proofs.  
 
1. R[A] = A.  
 
DEFINITION 1.1. A binary relation is a pair (X,R), where R 
⊆ X2. R[A] = {y: (∃x ∈ A)(x R y)} is the forward image of A 
under R. Whenever we write R[A], it is understood that R is 
a binary relation coming with an ambient space X, with R ⊆ 
X2 and A ⊆ X.  
 
We consider fixed point equations R[A] = A, where R is 
known, and A is unknown. Solutions A are required to be 
subsets of the ambient space X.  
 
THEOREM 1.1. The solutions to R[A] = A are the unions of 
infinite backward chains ... R x-2 R x-1 R x0, where 
repetitions are allowed. The union of any set of solutions 
is a solution, and there is a largest solution. There is a 
nonempty solution if and only if there is an infinite 
backward chain (repetitions allowed).   
 
THEOREM 1.2. If R is an equivalence relation then the 
solutions to R[A] = A are the unions of cosets of R.  
 
DEFINITION 1.2. Let Ru, u ∈ I, be an indexed family of 
binary relations on X. An infinite backward tree is a 
function f from finite sequences of elements of I into X 
such that for all (x1,...,xr,u), 
Ru(f(x1,...,xr,u),f(x1,...,xr)), r ≥ 0.  
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THEOREM 1.3. The common solutions to Ru[A] = A, u ∈ I, Ru ⊆ 
X2, are the unions of ranges of the infinite backward trees. 
The union of any set of common solutions is a common 
solution, and there is a largest common solution. There is 
a nonempty common solution if and only if there is an 
infinite backward tree. 
 
THEOREM 1.4. Let R = {(0,2),(1,2)(0,0),(1,1)} with ambient 
space {0,1,2}. {0,2} and {1,2} are solutions to R[A] = A, 
but their intersection, {2}, is not a solution to R[A] = A.  
 
THEOREM 1.5. Not every family of subsets of Z, closed under 
arbitrary unions, is the set of solutions to some equation 
R[A] = A, R ⊆ Z2.  
 
Proof: There are 2c subsets of ℘(Z) closed under arbitrary 
unions, but only c binary relations on Z. Hence being 
closed under arbitrary unions is not sufficient for being 
the solution set to some equation R[A] = A, R ⊆ Z2. QED 
 
One should be able to obtain deeper information concerning 
the possible sets of solutions and sets of common solutions 
to these equations, for both infinite X and finite X. We 
will not pursue this here.  
 
2. R[A] = Ac. 
 
DEFINITION 2.1. A is R independent if and only if A ⊆ X, 
and for all x,y ∈ A, x ¬R y. A is maximally R independent 
if and only if A is R independent and not a proper subset 
of any R independent set. The reflexive part of R is {x: x 
R x}. The irreflexive part of R is {x ∈ X: x ¬R x}.  
 
DEFINITION 2.2. The solutions to R[A] = Ac are the A such 
that R[A] = X\A.  
 
Just like R[A] = A, we can view R[A] = Ac as a fixed point 
equation, as it is equivalent to X\R[A] = A. 
 
THEOREM 2.1. A is a solution to R[A] = Ac if and only if A 
∪. R[A] = X if and only if A is R independent and A ∪ R[A] 
= X. If A is a solution to R[A] = Ac then A is maximally R 
independent. No solution to R[A] = Ac is properly contained 
in a solution to R[A] = Ac. (Here ∪. indicates disjoint 
union). 
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Proof: Let R,A be as given. Suppose R[A] = Ac. Then R[A] = 
X\A and so A ∩ R[A] = ∅ and A ∪ R[A] = X. I.e., A ∪. R[A] 
= X.  
 
Suppose A ∪. R[A] = X. Then A ∩ R[A] = ∅, and so A is R 
independent.  
 
Suppose A is R independent and A ∪ R[A] = X. By the first, 
R[A] ⊆ X\A. By the second R[A] ⊇ X\A. Hence R[A] = X\A.  
 
For the second claim, suppose A ∪ {x} is R independent. 
Then x ∉ R[A], x ∈ X\A, x ∈ A. The third claim follows 
immediately from the second claim. QED 
 
From Theorem 2.1, we can view solutions to R[A] = Ac as a 
kind of basis for R. I.e., A is independent and generates X 
in the sense that X is A ∪ R[A]. We shall see that there 
may not be solutions. However, there is an important case 
where the solutions are exactly the maximal R independent 
sets. These always exist by Zorn's Lemma.  
 
DEFINITION 2.3. R is a graph if and only if R is 
irreflexive and symmetric. R is called the edge relation, 
and X is called the vertex set. 
 
THEOREM 2.2. Let R be a graph. The solutions to R[A] = Ac 
are exactly the maximally R independent sets. In 
particular, if R is a graph then R[A] = Ac has a solution. 
If the ambient space is nonempty then all solutions are 
nonempty.  
 
Proof: The first claim follows immediately from Theorem 2.3 
below. The second claim follows immediately from the first. 
For the third claim, let x ∈ A. Then {x} is R independent, 
and so can be extended to a maximally R independent set. 
QED 
 
THEOREM 2.3. Let R be symmetric. The solutions to R[A] = Ac 
are exactly the maximally R independent sets whose forward 
image under R includes the reflexive part of R. In 
particular, if R[A] = Ac has a solution then the forward 
image of the irreflexive part includes the reflexive part. 
However, this condition is not sufficient. 
 
Proof: Let R be as given. By Theorem 2.1, we have only to 
check the equivalence of  
 

A is maximally R independent and A ∪ R[A] = X 
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A is maximally R independent and R[A] includes {x: x R x} 
 
Suppose the former. Let x R x. If x ∈ A then x ∈ R[A], x ∉ 
A. Hence x ∉ A, x ∈ R[A]. Hence the latter. 
 
Suppose the latter. Let x ∈ X\A. Then A ∪ {x} is not R 
independent. Hence x R x ∨ (∃y ∈ A)(y R x) ∨ (∃y ∈ A)(x R 
y). By irreflexivity, the first is impossible. By symmetry, 
x ∈ R[A]. Hence X\A ⊆ R[A], and so the former holds.   
 
The second claim is now immediate. For the final claim, let 
R = {(1,2),(2,1),(1,3),(3,1),(2,4),(4,2),(3,3),(4,4)} with 
ambient space {1,2,3,4}. The maximally R independent sets 
are {1} and {2}. The irreflexive part is {1,2}. The 
reflexive part is {3,4}. Thus the forward image of the 
irreflexive part includes the reflexive part. On the other 
hand, R[{1}] and R[{2}] do not include {3,4}. Thus R[A] = Ac 
has no solution. QED 
 
THEOREM 2.4. Let R be a graph. R[A] = Ac has a unique 
solution if and only if R = ∅.  
 
Proof: Let R be a graph, and nonempty. Let x R y. Let B be 
a maximally R independent set containing x, and C be a 
maximally R independent set containing y. Then A ≠ B, and 
according to Theorem 2.2, B,C are solutions to R[A] = Ac. 
QED 
 
THEOREM 2.5. Let R,S be graphs. Suppose R[A] = Ac and S[A] = 
Ac have the same solutions. Then R = S.  
 
Proof:  Let R,S be as given, and let x R y but x ¬S y. Then 
{x,y} is R independent, and so extends to a solution of 
S[A] = Ac. But no solution to R[A] = Ac contains {x,y}. QED 
 
What can we say about common solutions to R[A] = Ac and S[A] 
= Ac? This appears to be an involved topic even for graphs 
R,S. We do not pursue this important topic here.  
 
DEFINITION 2.4. R is a partial ordering if and only if R is 
irreflexive and transitive. x is R minimal if and only if 
(∀y)(y ¬R x).  
 
THEOREM 2.6. Let R be a partial ordering. Every solution to 
R[A] = Ac is the set of R minimal elements. There is a 
solution to R[A] = Ac if and only if (∀y)(∃x)(y is R minimal 
∨ (x R y ∧ x is R minimal)).  
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Proof: Let R be a partial ordering. Suppose R[A] = X\A. 
Suppose x R y, y ∈ A. Then x ∉ A, x ∈ R[A]. By 
transitivity, y ∈ R[A], which is impossible. Hence every y 
∈ A is R minimal.  
 
Suppose x is R minimal, x ∉ A. Then x ∈ R[A], which is 
impossible. Hence every R minimal x lies in A.  
 
The second claim follows from the first and Theorem 2.1. 
QED 
 
THEOREM 2.7. Let R be reflexive. There is a solution to 
R[A] = Ac if and only if X = ∅.  
 
Proof: Let R be reflexive. Suppose R[A] = Ac. Then A is R 
independent, and so A = ∅, R[A] = X, X = ∅. QED 
 
3. (PURELY) ORDER THEORETIC SETS. 
 
DEFINITION 3.1. Q is the set of rationals with its usual 
ordering <. Q[0,1] = Q ∩ [0,1].  
 
Henceforth, we use only the ambient spaces X = Q[0,1]k, k ≥ 
1. The presence of endpoints is significant for the proofs 
of our main results. It is open whether some of our claims 
hold if we instead use the Qk, k ≥ 1. See section 9.  
 
DEFINITION 3.2. The purely order theoretic subsets are the 
finite Boolean combinations of inequalities vi < vj, 1 ≤ i,j 
≤ n, on Q[0,1]k. More formally, they are the subsets of 
Q[0,1]k that are defined in terms of variables v1,...,vk 
over Q[0,1], inequalities vi < vj, and connectives not, and, 
or (¬,∧,∨). Thus the purely order theoretic subsets of 
Q[0,1]k form a finite Boolean algebra of subsets of Q[0,1]k.  
 
DEFINITION 3.3. The order theoretic subsets of Q[0,1]k are 
the finite Boolean combinations of inequalities vi < vj, p < 
vi, vi < p, 1 ≤ i,j ≤ n, where the p ∈ Q[0,1] act as 
constants. More formally, they are the subsets of Q[0,1]k 
that are defined in terms of variables v1,...,vk over 
Q[0,1], inequalities vi < vj, vi < p, p < vi, and connectives 
¬,∧,∨, where the p's lie in Q[0,1]. Thus the order 
theoretic subsets of Q[0,1]k form an infinite Boolean 
algebra of Q[0,1]k.  
 
THEOREM 3.1. The purely order theoretic subsets of Q[0,1] 
are just ∅,Q[0,1]. The order theoretic subsets of Q[0,1] 
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are the finite unions of subintervals of Q[0,1] with 
rational endpoints.  
 
THEOREM 3.2. Let E ⊆ Q[0,1]k be order theoretic. There is an 
inclusion least set C such that E can be defined as in 
Definition 3.3 using only constants from C.  
 
DEFINITION 3.3. Let E ⊆ Q[0,1]k be order theoretic. The 
constants of E are the elements of the least set C such 
that E can be defined as in Definition 3.2 using only 
constants from C.  
 
Obviously E ⊆ Q[0,1]k is purely order theoretic if and only 
if it is order theoretic with constant set C = ∅.   
 
THEOREM 3.3. Fix k and finite C ⊆ Q[0,1]. There are only 
finitely many order theoretic subsets of Q[0,1]k whose 
constants lie in C. They form a finite Boolean algebra of 
subsets of Q[0,1]k.  
 
DEFINITION 3.4. x,y ∈ Q[0,1]k are order equivalent if and 
only if for all 1 ≤ i,j ≤ k, xi < xj ↔ yi < yj.  
 
Note that order equivalence on Q[0,1]k is an equivalence 
relation with finitely many cosets. 
 
THEOREM 3.4. The purely order theoretic subsets of Q[0,1]k 
are the finite unions of cosets of order equivalence on 
Q[0,1]k.   
 
THEOREM 3.5. The purely order theoretic subsets of Q[0,1] 
are ∅ and Q[0,1]. The order theoretic subsets of Q[0,1] are 
the finite unions of subintervals of Q[0,1] with rational 
endpoints. The purely order theoretic subsets of Q[0,1]k are 
the subsets of Q[0,1]k first order definable over (Q[0,1],<) 
without parameters. The order theoretic subsets of Q[0,1]k 
are the subsets of Q[0,1]k first order definable over 
(Q[0,1],<).  
 
Several computational complexity issues arise that may be 
of some interest. E.g., see can algorithmically compare two 
order theoretic subsets under ⊆, and also algorithmically 
compute their sets of constants C, in addition to computing 
unions as in Theorem 3.4.  
 
4. R[A] = A, R ORDER THEORETIC. 
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THEOREM 4.1. Let R ⊆ Q[0,1]2k be order theoretic with r 
constants. The following are equivalent.  
i. R[A] = A has a nonempty solution. 
ii. There exists x1 R x2 R ... R xt, where t = (8kr)!!.  
In particular, there is an algorithm for determining 
whether R[A] = A has a nonempty solution for a given order 
theoretic R.  
 
Here (8kr)!! is a safe expression that will be reduced in 
due course.  
 
THEOREM 4.2. The largest solution of R[A] = A, where R is 
order theoretic, is itself order theoretic with constants 
among the constants for R, and is algorithmically 
computable from R.  
 
We can go further with algorithmic procedures here. 
 
THEOREM 4.3. There is an algorithm for determining the 
largest common solution of R1[A] = A,...,Rn[A] = A, for 
given order theoretic R1,...,Rn ⊆ Q[0,1]2k, n ≥ 1, s ≥ 0. The 
largest common solution is order theoretic with constants 
among the constants for the R's and 0,1, and is computable 
from the R's.  
 
THEOREM 4.4. There is an algorithm for determining whether 
every common solution of R1[A] = A,...,Rn[A] = A is a common 
solution of S1[A] = A,...,Sm[A] = A, for given order 
theoretic R1,...,Rn,S1,...,Sm.  
 
Again, computational complexity issues arise that may be of 
some interest.  
 
5. R[A] = Ac, R ORDER THEORETIC. 
 
The study of R[A] = Ac, R order theoretic, looks to be much 
more difficult than that of R[A] = A, R order theoretic.  
 
THEOREM 5.1. There is an algorithm for determining whether 
a given order theoretic R is reflexive, irreflexive, 
symmetric, transitive.  
 
Proof: By the well known quantifier elimination for the 
first order theory of (Q[0,1],<). QED 
 
THEOREM 5.2. If R is irreflexive, symmetric, and order 
theoretic, then R[A] = Ac has a recursive solution of low 
computational complexity.  
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Prima facie, the existence of solutions or common solutions 
to our equations, with order theoretic R's, is an 
infinitary statement, since the solution or common solution 
A is generally a complicated infinite subset of Q[0,1]k. 
This is despite the fact that R's are given in finitary 
terms by the definition of order theoretic.  
 
NOTE: This raises the interesting question of 
algorithmically determining the order theoretic R for which 
R[A] = Ac has an order theoretic solution. This question can 
also be raised for R[A] = A, and for common solutions to 
systems of equations. We guess that these questions have 
relatively straightforward but interesting answers. As 
usual, there are computational complexity issues to be 
raised.  
 
It is important to note that there is a general procedure 
for converting our solvability statements into purely 
universal combinatorial statements (Π0

1 sentences). This is 
the lowest level of logical complexity for a mathematical 
statement involving infinitely many objects. E.g., FLT is 
normally stated as a Π0

1 sentence, but Goldbach's Conjecture 
is normally stated as a Π0

2 sentence.  
 
DEFINITION 5.1. A Π0

1 sentence is a sentence that asserts 
that a particular Turing machine does not halt at the empty 
input tape. A Π0

2 sentence is a sentence that asserts that a 
particular Turing machine halts at every finite input tape.   
 
These conversions do lose mathematical naturalness and 
simplicity. We are developing explicitly Π0

1 sentences of 
mathematical naturalness and simplicity that are related to 
such equations. We will present this research elsewhere.  
 
THEOREM 5.3. There is an algorithm which, given order 
theoretic R ⊆ Q[0,1]2k, produces a sentence ϕ(R) in first 
order predicate calculus with equality, a binary relation 
symbol <, a k-ary relation symbol, and finitely many 
constant symbols, such that R[A] = Ac has a solution if and 
only if ϕ(R) has a countable model.  
 
COROLLARY 5.4. There is an algorithm which, given order 
theoretic R, produces a Π0

1 sentence ϕ(R) such that R[A] = 
Ac has a solution if and only if ϕ(R).  
 
Proof: This follows immediately from Theorem 5.3 via 
Gödel's completeness theorem. The latter tells us that 
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"having a countable model" is the same as "being consistent 
with the usual axioms and rules of first order predicate 
calculus with equality".  
 
In fact, there is no difficulty in generalizing Theorem 5.3 
and Corollary 5.4 to common solutions for finite sets of 
our equations.  
 
THEOREM 5.5. There is an algorithm which, given order 
theoretic R1,...,Rn,S1,...,Sm ⊆ Q[0,1]2k, produces a sentence 
ϕ(R1,...,Rn,S1,...,Sm) in first order predicate calculus with 
equality, a binary relation symbol <, n+m k-ary relation 
symbols, and finitely many constant symbols, such that 
R1[A]= A,...,Rn[A] = A,S1[A] = Ac,...,Sm[A] = Ac have a 
common solution if and only if ϕ(R1,...,Rn,S1,...,Sm) has a 
countable model.  
 
COROLLARY 5.6. There is an algorithm which, given order 
theoretic R1,...,Rn,S1,...,Sm, produces a Π0

1 sentence 
ϕ(R1,...,Rn,S1,...,Sm) such that R1[A] = A,...,Rn[A] = A,S1[A] 
= Ac,...,Sm[A] = Ac have a common solution if and only if 
ϕ(R1,...,Rn,S1,...,Sm).  
 
Once again, computational complexity issues arise that may 
be of some interest.  
 
6. ORDER THEOREITC CONJECTURES. 
 
In this section, we formulate a number of conjectures that 
do not refer to systems of set theory. In the next section, 
we refine the conjectures using systems based on ZFC and 
ZFC extended with large cardinal hypotheses.  
 
We start with the least ambitious of our conjectures.  
 
CONJECTURE 1. There is an algorithm for determining whether 
there is a solution to R[A] = Ac, for any given order 
theoretic R.  
 
We now move to yet more difficult challenges.  
 
CONJECTURE 2. There is an algorithm for determining whether 
there is a common solution to R1[A] = A,...,Rn[A] = A,S1[A] 
= Ac,...,Sm[A] = Ac, for any given order theoretic 
R1,...,Rn,S1,...,Sm. 
 
We have seen that the most natural R for R[A] = A are 
arguably the equivalence relations, and the most natural S 
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for S[A] = Ac are arguably the graphs. In both cases, we 
have a good understanding of the solutions. In the former 
case, the unions of cosets of R. In the latter case, the 
independent sets in S.  
 
So a particularly natural weakened form of Conjecture 2 is  
 
CONJECTURE 3. There is an algorithm for determining whether 
there is a common solution to R1[A] = A,...,Rn[A] = A,S1[A] 
= Ac,...,Sm[A] = Ac, for any given order theoretic 
equivalence relations R1,...,Rn and order theoretic graphs 
S1,...,Sm. 
 
There are a number of additional weakened forms of 
Conjectures 2,3. Obviously, these will assume special 
importance if Conjectures 2 or 3 are refuted.  
 
1. Fix the dimension of the R's and S's. We expect the case 
k = 1 (R's and S's of dimension 2) to be reasonably 
straightforward. The case k = 2 should be seriously 
challenging but within reach. Already k = 3 may pose 
monumental difficulties. These are just guesses, as we have 
not seriously investigated these cases.  
 
2. Fix n,m. Already fixing n = m = 1 even in Conjecture 3, 
runs into issues of a totally unexpected nature - see 
section 7. The case n = 0 and m = 2, even for Conjecture 3, 
is probably much more difficult than Conjecture 1.  
 
3. Restrict the number of constants of (some of) the 
relations. Of particular interest is the case where some or 
all of R1,...,Rn,S1,...,Sm are required to have no constants 
(purely order theoretic). For a more refined study, specify 
the set of constants for each of the relations. 
 
These restrictions 1-3 are independent of each other. They 
can and should be combined. In particular, the very 
preliminary work that we have done has focused on combining 
restrictions 2,3 on Conjecture 3, with some initial 
consideration of using all three restrictions 1,2,3 on 
Conjecture 3. In particular, we have looked at  
 
CONJECTURE 4. There is an algorithm for determining whether 
there is a common solution to R[A] = A and S[A] = Ac, for 
any given order theoretic equivalence relation R and purely 
order theoretic graph S.  
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We have some simple examples of relevant R that work for 
ALL relevant S (provided, of course, that R,S are of the 
same dimension). This suggests the following conjecture.  
 
CONJECTURE 5. There is an algorithm for determining, for 
any given order theoretic equivalence relation R, whether 
for every purely order theoretic graph S of the same 
dimension, R[A] = A and S[A] = Ac have a common solution.  
 
Conjecture 5 is also subject to natural restrictions like 
1,3 above.  
 
There is an interesting graph theoretic formulation of 
Conjecture 5.  
 
CONJECTURE 6. There is an algorithm for determining, for 
any given order theoretic equivalence relation, whether in 
every purely ordered theoretic graph with the same ambient 
space, some union of cosets of R is maximally independent.  
 
7. ORDER THEORETIC CONJECTURES AND SET THEORY. 
 
It is natural to expect that the following ZFC form of 
Conjecture 1 holds.  
 
CONJECTURE 1/ZFC. For any given order theoretic R, it is 
provable or refutable in ZFC that there is a solution to 
R[A] = Ac. 
 
Note that if Conjecture 1/ZFC holds then we obtain the 
algorithm called for by Conjecture 1 by declaring the 
existence of a solution if we find a proof, and declaring 
the nonexistence of a solution if we find a refutation. 
There is a subtlety in this argument, as it requires that 
ZFC be "sound" in the following sense.  
 
DEFINITION 7.1. A formal system is 1-consistent if and only 
if for any given TM, if it proves that TM halts at the 
empty input tape, then TM actually halts at the empty input 
tape.  
 
THEOREM 7.1. If ZFC is 1-consistent and Conjecture 1/ZFC 
holds, then Conjecture 1 holds.  
 
Now consider these ZFC forms of other Conjectures from 
section 6: 
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A. For any given order theoretic R1,...,Rn,S1,...,Sm, it is 
provable or refutable in ZFC that there is a common 
solution to R1[A] = A,...,Rn[A] = A,S1[A] = Ac,...,Sm[A] = 
Ac. 
 
B. For any given order theoretic equivalence relation R and 
graph S, it is provable or refutable in ZFC that there is a 
common solution to R[A] = A and S[A] = Ac. 
 
C. For any given order theoretic equivalence relation R, it 
is provable or refutable in ZFC that for all purely order 
theoretic graphs S of the same dimension, R[A] = A and S[A] 
= Ac have a common solution.  
 
We have refuted A,B,C, assuming the 1-consistency of SRP 
(see below). For unprovability in ZFC, consistency of ZFC 
suffices. For unrefutability in ZFC, the 1-consistency of 
SRP suffices, and almost certainly, the 1-consistency of 
ZFC suffices.  
 
We now reinstate these conjectures using the system SRP. 
 
DEFINITION 7.2. Let λ be a limit ordinal. E ⊆ λ is 
stationary if and only if E meets every closed unbounded 
subset of λ. For k ≥ 1, λ has the k-SRP if and only if every 
partition of the unordered k tuples from λ into two pieces 
has a homogenous set which is stationary in λ.  
 
Here SRP abbreviates "stationary Ramsey property".  
 
DEFINITION 7.3. SRP is the formal system ZFC + {(∃λ)(λ is k-
SRP)}k. SRP+ is ZFC + (∀k)(∃λ)(λ is k-SRP). SRPk is ZFC + 
(∃λ)(λ is k-SRP). WKL0 is the second system of Reverse 
Mathematics. See [WIKI].  
 
CONJECTURE 2/SRP. For any given order theoretic 
R1,...,Rn,S1,...,Sm, it is provable or refutable in SRP that 
there is a common solution to R1[A] = A,...,Rn[A] = A,S1[A] 
= Ac,...,Sm[A] = Ac. 
 
CONJECTURE 3/SRP. For any given order theoretic equivalence 
relation R and graph S, it is provable or refutable in SRP 
that there is a common solution to R[A] = A and S[A] = Ac. 
 
CONJECTURE 4/SRP. For any given order theoretic equivalence 
relation R, it is provable or refutable in SRP that for all 
purely order theoretic graphs S of the same dimension, R[A] 
= A and S[A] = Ac have a common solution.  
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THEOREM 7.2. Conjectures 2-4/SRP are false if we replace 
SRP by any SRPk (assuming SRP is 1-consistent). 
 
We now provide more specifics about our refutations of 
A,B,C. Note that B is a specialization of A.  
 
THEOREM 7.3. There is an order theoretic equivalence 
relation R and a purely order theoretic graph S such that 
SRP proves that there is a common solution to R[A] = A and 
S[A] = Ac, but ZFC does not (assuming ZFC is consistent). 
The dimension of R,S and the number of constants for R can 
be taken to be small.  
 
How small? This requires very careful study. We have set 
the following target: R,S ⊆ Q[0,1]8, R with 4 constants. 
Thus solutions A are 4 dimensional.  
 
We can be specific about the R's that we use for Theorem 
7.2 and the refutation of C.   
 
DEFINITION 7.3. EQRk ⊆ Q[0,1]2k is the equivalence relation 
that relates x,y ∈ Q[0,1]k if and only if x = y ∨ (x,y are 
strictly increasing and after their initial common part, 
stay within {1,1/2,...,1/k}).  
 
THEROEM 7.4. There exists k and a purely order theoretic 
graph S ⊆ Q[0,1]2k such that SRP proves that there is a 
common solution to EQRk[A] = A and S[A] = Ac, but ZFC does 
not (assuming ZFC is consistent). There exists k such that 
"for all purely order theoretic graphs S ⊆ Q[0,1]k, there is 
a common solution to EQRk[A] = A and S[A] = Ac" is provable 
in SRP but not in ZFC. 
 
Once again, k can be taken to be small, with a target of k 
= 4.  
 
Here is a single statement concerning common solutions to 
the two equations. 
 
PROPOSITION 7.5. For all purely order theoretic graphs S ⊆ 
Q[0,1]2k, there is a common solution to EQRk[A] = A and S[A] 
= Ac.  
 
THEOREM 7.6. Proposition 7.3 is provable in SRP+ but not in 
SRP. For each k, Proposition 7.5 is provable in SRP. For 
any k greater than some small number, Proposition 7.5 is 
not provable in ZFC (assuming ZFC is consistent). 
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Proposition 7.6 is provably equivalent, over WKL0, to the 
consistency of SRP. 
 
8. MAXIMAL CLIQUES AND MAXIMAL SQUARES. 
 
Theorem 7.5 has the following clear graph theoretic 
formulation (dual forms). 
 
PROPOSITION 8.1. In every purely order theoretic graph on 
Q[0,1]k, some union of cosets of EQRk is maximally 
independent. 
 
PROPOSITION 8.2. In every purely order theoretic graph on 
Q[0,1]k, some union of cosets of EQRk is a maximal clique.  
 
We also give the following version without graphs. 
 
DEFINITION 8.1. In R ⊆ X2, a square is a set E2 ⊆ R. A 
maximal square is a square which is not a proper subset of 
a square.  
 
PROPOSITION 8.3. In every purely order theoretic subset of 
Q[0,1]2k, some union of cosets of EQR2k is a maximal square. 
 
THEOREM 8.4. Propositions 8.1 - 8.3 are provable in SRP+ but 
not in SRP. For each k, Propositions 8.1 - 8.3 are provable 
in SRP. For any k greater than some small number, none of 
Propositions 8.1 - 8.3 are provable in ZFC (assuming ZFC is 
consistent). Propositions 8.1 - 8.3 are provably 
equivalent, over WKL0, to the consistency of SRP.  
 
CONJECTURE 5/SRP. For any given order theoretic equivalence 
relation R ⊆ Q[0,1]2k, it is provable or refutable in SRP 
that for all purely order theoretic graphs S on Q[0,1]k, 
some union of cosets of R is maximally independent. 
 
CONJECTURE 6/SRP. For any given order theoretic equivalence 
relation R ⊆ Q[0,1]2k, it is provable or refutable in SRP 
that for all purely order theoretic graphs S on Q[0,1]k, 
some union of cosets of R is a maximal clique. 
 
CONJECTURE 7/SRP. For any given order theoretic equivalence 
relation R ⊆ Q[0,1]4k, it is provable or refutable in SRP 
that for all purely order theoretic S ⊆ Q[0,1]2k, some union 
of cosets of R is a maximal square. 
 
Obviously Conjectures 5/SRP and 6/SRP are equivalent by 
duality.  
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THEOREM 8.5. Conjectures 5-7/SRP are false if we replace 
SRP by any SRPk (assuming SRP is 1-consistent). 
 
These conjectures are within reach.  
 
9. J REPLACING Q[0,1]. 
 
DEFINITION 9.1. A rational interval is a J ⊆ Q such that a 
< b < c ∧ a,c ∈ J → b ∈ J. The endpoints of nonempty 
rational intervals J are inf(J) and sup(J), which are 
allowed to be -∞,∞.  
 
Sections 3-7 are based on the ambient spaces Q[0,1]k. What 
if we use the ambient spaces Jk, where J is a rational 
interval? Naturally, constants for order theoretic subsets 
of Jk are elements of J.  
 
Theorems 3.1 - 3.5, 4.1 - 4.4, 5.1 - 5.6 still hold, and 
Conjectures 1-6 still stand. Conjecture 1/ZFC still stands.  
 
Conjectures 2-4/ZFC have still been refuted using the Jk, 
provided J contains at least one of its two distinct 
endpoints. Conjectures 2-4/SRP still stand. Theorems 7.2, 
7.3, 7.4, 7.6, 8.4, 8.5 still hold if J contains at least 
one of its two distinct endpoints (and EQRk is adjusted in 
an obvious way). Conjectures 5-7/SRP still stand.  
 
Thus the only open issue concerns the effect of replacing 
Q[0,1] by Q. None of our unprovability results work, as 
they all rely on J containing at least one of its two 
endpoints. 
 
10. PROOFS. 
 
All missing proofs are reasonably straightforward except 
the refutations of Conjectures 2-4/ZFC and Theorems 7.2, 
7.3, 8.4. The provability in SRP is done almost exactly as 
in section 9 of [Fr14] (and earlier in section 4 of 
[Fr11]). The unprovability is essentially done in a rather 
ponderous way in section 5 of [Fr11]. The section 5 
unprovability from [Fr11] has to be substantially upgraded 
in order to get reasonably sized k for Theorems 7.2, 7.3, 
8.4, let alone the target of k = 4 which we are presently 
attempting. 
 

 



 17 

REFERENCES 
 
[Fr11] H. Friedman, Invariant Maximal Cliques and 
Incompleteness, Downloadable Manuscripts, #71, October 7, 
2011, 132 pages.  
 
[Fr14] H. Friedman, Invariant Maximality and 
Incompleteness, Downloadable Manuscripts, #77, 
https://u.osu.edu/friedman.8/foundational-
adventures/downloadable-manuscripts/, to appear, 2014. 
 
[WIKI] Reverse Mathematics, 
http://en.wikipedia.org/wiki/Reverse_mathematics, 
Wikipedia.  


