
Online Appendix for:

Expectations and Learning from Prices

Francesca Bastianello & Paul Fontanier

January 26, 2024

Contents

B Supplementary Derivations 2

B.1 Misinference from Assuming the World is Rational . . . . . . . . . . . . . . . 2

B.2 General Expressions when Z ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . . 4

C Endogenous Information Acquisition and Stability 5

C.1 Endogenous Information Acquisition by Informed Investors . . . . . . . . . . 5

C.1.1 Equilibrium Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C.1.2 Incentives and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C.2 Entry of Informed Traders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

D K-Level Thinking 13

D.1 Solving for K-Level Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . 13

D.2 Properties of K-level Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . 15

E Heterogenous Agents 20

E.1 Misspecified Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E.2 Equilibrium With Heterogeneous Agents . . . . . . . . . . . . . . . . . . . . 21

F Partially Revealing Prices 23

G Private signals 28

1



B Supplementary Derivations

B.1 Misinference from Assuming the World is Rational

In this section we illustrate a specific example where we consider the implications of misinfer-

ence in models of wrong Bayesian updating. As explained in Section 3, inferring the correct

information from prices when wrong Bayesian updating is pervasive implies that agents must

fully understand other agents’ mistakes, while failing to recognize those same mistakes in

themselves. For example, consider agents who have diagnostic expectations, as in Bordalo

et al. (2018). For these agents to correctly infer information from endogenous outcomes,

they must fully understand that all other agents are diagnostic. If instead agents fail to

recognize their same (to them unknown) mistake in others, then agents infer information as

if they lived in a rational world, and this leads to misinference. The same is true of setups

with overconfidence, as in Odean (1998), or if some agents are inattentive.

To study the implications of this type of misinference, consider a setup similar to our

benchmark framework, but assume instead that the misspecified and true price functions are

given by:

P Mis(s̃) = τs

τs + τ0
s̃ + τ0

τs + τ0

(
µ0 − AZτ−1

0

)
(B.1)

P T rue(s, s̃) = ϕτ̃s

τ̃s + τ0
s + (1 − ϕ)τ̃s

τ̃s + τ0
s̃ + τ0

τ̃s + τ0

(
µ0 − AZτ−1

0

)
(B.2)

where τ̃s ̸= τs. For example, when τ̃s > τs, this true price function corresponds to the case

where both I and U agents trade using a precision that is too high relative to the true

precision of the signal, as would arise if agents were diagnostic or if they were over-confident

about the precision of new information.

The dotted line in Figure 2 depicts this scenario. In this case α̂ + β̂ = τ̃s

τ̃s+τ0
, and

changes in α̂ + β̂ along the x−axis come from varying τ̃s. Here we provide an example of

how combining wrong Bayesian updating with misinference can be so detrimental so as to

give rise to instability, something which could not arise if we had wrong Bayesian updating

alone. Specifically, an immediate application of Proposition 3 tells us that the equilibrium
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is unstable if and only if:
τs

τs + τ0
<

(1 − ϕ)τ̃s

τ̃s + τ0
. (B.3)

When (1 − ϕ)τ0 − ϕτs > 0, this condition reduces to:

τ̃s

τs

>
τ0

(1 − ϕ)τ0 − ϕτs

(B.4)

Therefore, for a high enough τ̃s, misinference due to the fact that agents believe in a

rational world when it is not, can indeed lead to instability. This is shown on the part of the

light dotted line in Figure 2 which is in the shaded unstable region.

The intuition behind this example is as follows. Since uninformed agents fail to realize

that everyone is over-reacting in the form of τ̃s > τs, they extract information from prices

using a misspecified model of the world that is less responsive to new information than the

true model of the world. This leads them to extract a signal which is more extreme than in

reality. Having extracted this extreme signal, uninformed agents then over-react themselves,

leading to even further mispricing. Finally, notice that while informed agents are using the

correct signal so in a way their over-reaction contributes to stabilizing the equilibrium, their

over-reaction also worsens uninformed agents’ misinference.

Finally, notice that incorrect bayesian updating can occur along two dimensions: α̂ ̸= α

and β̂ ̸= β, so that there really are two degrees of freedom in determining α̂ + β̂. In Figure 2

we specified a particular way of varying α̂+β̂: in the example considered above, all agents are

over-confident and varying τ̃s changes both α̂ and β̂, so that α̂ + β̂ = ϕτ̃s

τ̃s+τ0
+ (1−ϕ)τ̃s

τ̃s+τ0
= τ̃s

τ̃s+τ0
.

However, α̂ and β̂ need not be linked in this specific way. For example, in Figure 3 we

perform a similar exercise, with a different type of variation in α̂ + β̂: the left panel fixes α̂,

so that all variations in α̂ + β̂ come from changes in β̂, and the right panel fixes β̂, so that

all variations in α̂ + β̂ come from changes in α̂.1

1In general, α̂ and β̂ are likely to be linked. For example, if informed agents were rational and only
uninformed agents were over-confident, this would still lead to α̂ ̸= α, as both α̂ and β̂ are scaled by the
average precision across agents. Therefore, fixing α̂ and letting β̂ vary does not necessarily amount to fixing
the bias of I agents and letting the bias of U agents vary. We show these cases for completeness and for
intuition.
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Figure 3: Instability, Under- and Over-reaction regions with General Model Misspecification.
In the left panel we fix the parameter α̂ to its rational value α, and let β̂ vary. In the right panel β̂ is kept
fixed at β and α̂ varies.

B.2 General Expressions when Z ̸= 0

This section generalizes the expressions of Section 3 when Z ̸= 0. With a non-zero net supply

of the asset, expressions are slightly more complicated but do not bring any new intuition.

In the case of biases in learning from fundamentals, the equilibrium price becomes:

P = ϕg(τs + τ0)
τ0 + ϕτs + (1 − ϕ)τ̂s

s + (1 − ϕ)ĝ(τ̂s + τ0)
τ0 + ϕτs + (1 − ϕ)τ̂s

s̃

+ (ϕ(1 − g)(τs + τ0) + (1 − ϕ)(1 − ĝ)(τ̂s + τ0)) µ0

τ0 + ϕτs + (1 − ϕ)τ̂s

− AZ

τ0 + ϕτs + (1 − ϕ)τ̂s

(B.5)

which can be rewritten:

P = α̂s + β̂s̃ + (1 − α̂ − β̂)µ0 − δ̂Z (B.6)

where, typically, δ̂ < δREE when agents have over-reaction biases. The misspecified model

agents learn from must now be expressed as:

P = γ̃s̃ + (1 − γ̃)µ0 − δ̃Z (B.7)
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These slight changes have no impact on our propositions on aggregate demand elasticities

or stability. The equilibrium is now given by:

P = α̂

1 − β̂
γ̃

s +
1 − α̂

1 − β̂
γ̃

µ0 −

δ̂ − β̂

γ̃

δ̃ − δ̂

1 − β̂
γ̃

Z (B.8)

so that there is now a constant term changing the level of prices independently of information,

that depends on the sign of δ̂ − δ̃. All the comparative statics with respect to s are exactly

the same as with Z = 0.

C Endogenous Information Acquisition and Stability

In our main framework, we emphasized that the equilibrium can be unstable when there are

too few informed traders (Lemma 1). We also showed that even when the equilibrium is

stable, mispricing can become arbitrarily large as we vary ϕ or τs/τ0 to approach unstable

regions.2 The greater mispricing increases the profits of informed traders, therefore providing

an incentive for endogenous information acquisition. This section considers endogenous

information acquisition both on the intensive and on the extensive margin, and shows that

it can contribute to ensuring the equilibrium is stable. That said, even with endogenous

entry there are environments that lead the equilibrium to approach unstable regions, and

our insights about amplification are robust to these extensions.

C.1 Endogenous Information Acquisition by Informed Investors

We normalize µ0 = 0 and Z = 0 for simplicity. The rest of the setup is unchanged, other than

for the information structure. We still assume that there are ϕ informed traders and 1 − ϕ

uninformed traders, but now informed traders can decide the precision of the information

they receive. To model endogenous information acquisition on the intensive margin, assume

that there are an infinite number of infinitesimal signals in the background, denoted by si,
2We view this as a feature of our model: unstable regions in this case are just symptomatic of a very

strong feedback effect between prices and beliefs, and this can lead prices and beliefs to become decoupled
from fundamentals, as during the formation of bubbles. In Bastianello and Fontanier (2023) we exploit these
insights to develop a model of bubbles and crashes, and offer a unifying framework of both normal time
market dynamics (when shocks maintain the economy in a stable region) and of the formation of bubbles
and crashes (when displacement shocks temporarily shift the economy in unstable regions).
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such that if an investors acquires n signals, the precision of the information they receive is

nτs. Denote by C(n) the cost of purchasing n signals, with C ′(n) > 0. Informed investors

can choose how many infinitesimal signals to receive, n.

The expected utility of an individual informed investor i choosing n signals, on the other

hand, is:

Ei,n[U ] = Ei,n

[
1
2

(EI,n[v] − P )2

AVI,n[v]

]
(C.9)

where Ei,n[v] is the point estimate of the investor after she acquires n signals:

Ei,n[v] = nτs

nτs + τ0

1
n

∫ n

0
sidi (C.10)

and Vi,n[v] = (nτs + τ0)−1. We then want to understand how investor i optimally chooses n,

conditional on the rest of the market choosing precision N .

Specifically, let N be the quantity of signals acquired by every other informed investor,

such that the “precision chosen by the market” is Nτs. To keep this extension as close as

possible to our main framework, we assume that these information choices are public. As

such, PET investors realize that informed traders are trading with precision Nτs. Given this,

an individual informed investor understands that the price will be equal to the same PET

price function we derived in the main text. For each signals realizations, the equilibrium

price will thus be equal to:

P =
 Nτs

Nτs +
(

2ϕ−1
ϕ2

)
τ0

 1
N

∫ N

0
sidi = a(N) 1

N

∫ N

0
sidi (C.11)

where in the second equality we define a(N) ≡

 Nτs

Nτs+
(

2ϕ−1
ϕ2

)
τ0

 for simplicity.

To solve informed trader i’s information acquisition problem, we first need to expand the

expression for the expected square value of (Ein,[v] − P ) for any (n, N) pair chosen by the

individual investor and the market:

E(Ei,n[v] − P )2 = E
(

nτs

nτs + τ0

1
n

∫ n

0
sidi − a(N) 1

N

∫ N

0
sidi

)2

= E
(

nτs

nτs + τ0
s̄n − a(N)s̄N

)2

(C.12)
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where in the second equality we simply define s̄n ≡ 1
n

∫ n
0 sidi and s̄N ≡ 1

N

∫N
0 sidi for con-

ciseness. Simplifying further, we get:3

E(EI,n[v] − P )2 =
(

nτs

nτs + τ0

)2 (nτs + τ0

nτsτ0

)
+ a(N)2

(
Nτs + τ0

Nτsτ0

)
− 2 nτs

nτs + τ0
a(N)

(
1
τ0

+ 1
max(n, N)τs

)
(C.13)

Dividing this expression by Vari,n[v] = (nτs + τ0)−1, and assuming that n ≥ N without

loss of generality, we have that agent i’s expected utility is proportional to the following:

2AEi,n[U ] = nτs

τ0
+ a(N)2(nτs + τ0)

(
Nτs + τ0

Nτsτ0

)
− 2nτsa(N)

( 1
τ0

+ 1
nτs

)
(C.14)

Taking the derivative of this expression, setting the marginal benefit of acquiring more

information equal to the marginal cost, and notcingin that in equilibrium n = N , we find

that the optimal amount of information N is pinned down by the following expression:

τs

τ0
+ a(N)2τs

(
Nτs + τ0

Nτsτ0

)
− 2τsa(N)

( 1
τ0

)
= 2AC ′(N) (C.15)

so that equation (C.15) implicitly defines the equilibrium N .

C.1.1 Equilibrium Solution

We numerically solve for the equilibrium N by solving equation C.15, using a constant

marginal cost for additional information, i.e. a linear cost function C. Figure 4 shows that

with no endogenous information acquisition (red line) the equilibrium becomes unstable

when the fraction of informed traders is too low; instead, with endogenous information

acquisition (blue line) the strength of the feedback effect always stays below 1 when agents
3Specifically, we use the fact that:

V ar(s̄n) = 1
τ0

+ 1
nτs

= nτs + τ0

nτsτ0

Cov (s̄N , s̄n) = 1
nN

Cov

(∫ N

0
(v + ϵi)di,

∫ n

0
(v + ϵi)di

)
= 1

nN
Cov

(
Nv +

∫ N

0
ϵidi, nv +

∫ n

0
ϵidi

)

= 1
τ0

+ Cov

(∫ min(n,N)

0
ϵidi,

∫ min(n,N)

0
ϵidi

)
= 1

τ0
+ min(n, N)

nNτs
= 1

τ0
+ 1

max(n, N)τs

7



choose optimally how many signals to purchase, so that the equilibrium is always stable.

Figure 4: Intensive Margin in Information Choice and Stability. This figure shows the influence
of endogenous information acquisition on stability. The left panel plots the number of signals acquired by
informed investors when they face a constant marginal cost of acquiring supplementary signals (blue line):
as the fraction of informed traders decreases, their benefits from acquiring information increase, leading
them to acquire more signals. The red line keeps N constant, at the level chosen optimally by agents when
ϕ = 0.5. The right panel plots the equilibrium strength of the feedback effect with and without endogenous
information acquisition. The dotted line shows when the feedback effect is above or below one, which is
the threshold that determines whether the equilibrium is stable or unstable. With endogenous information
acquisition, the equilibrium is always stable, even though it can still approach unstable regions.
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Notice that, while the instability region disappears, the feedback effect still approaches

1 in the limit. This means that the insights we uncovered in the main framework about

having an arbitrary amount of amplification are still present, albeit for lower levels of ϕ. In

this sense, endogenous information acquisition on the intensive margin gives our equilibrium

discipline by avoiding unstable equilibria, while retaining the validity of our results.

C.1.2 Incentives and Stability

What is the intuition for whether information choices prevent instability? From the previous

derivation we know that expected utility with respect to n can be expressed as:

d

dn
2AEi.n[U ] = τs

τ0
+ a(N)2τs

(
Nτs + τ0

Nτsτ0

)
− 2τsa(N)

( 1
τ0

)
(C.16)

When this expression is larger than C ′(n), individual informed investors have an incentive to

purchase more signals. This expression is quadratic in a(N), the price sensitivity coefficient

expected by informed investors. It is then clear that, all else being equal, this expression goes
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to infinity when a(N) goes to infinity: dEi,n[U ]
dn

−−−−−−→
a(N)→+∞

+∞. Furthermore, we showed in

our baseline framework that the price sensitivity coefficient was growing unboundedly large

precisely when we approach the instability region. Intuitively, this means that when the

coefficients of the model are such that we are close to being in an unstable region, informed

investors have an incentive to purchase more information. This in itself creates a corrective

force that pushes towards a stable equilibrium (as in Lemma 1).

This corrective force can also be understood by simply looking at the expected utility

expression:

EI

[
1
2

(Ei,n[v] − P )2

AVarI

]
(C.17)

We know that when approaching the unstable region, the equilibrium price goes towards +∞

or −∞ almost surely.4 Informed agents thus expect to reap large profits on average, which

increase their incentives to invest in higher precision, in order to trade more aggressively and

take advantage of this predictable mispricing.

C.2 Entry of Informed Traders

We normalize µ0 = 0 and Z = 0 for simplicity. The rest of the setup is unchanged, other

than for the information structure. We assume that there is a measure φ of uninformed (mis-

specified) traders, and N informed traders, where we are going to endogenize N . Informed

traders receive a common signal s|v ∼ N(v, τ−1
s ). Uninformed traders do not observe the

signal, but use the following misspecified mapping to extract information from prices:

P mis = γ̃s̃ (C.18)

Price Function for a given N . The market clearing price function conditional on having

N informed agents trading on s and φ uninformed agents trading on s̃ can be expressed as:

P = Nτs

(N + φ)(τs + τ0)
s + φτs

(N + φ)(τs + τ0)
s̃ (C.19)

4It only stays constant for the risk-adjusted neutral signal, a zero-probability event.
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Substituting the signal inferred from (C.18) into (C.19), we find the following equilibrium

price function:

P = Nτs

(N + φ)(τs + τ0) − φτs

γ̃

s (C.20)

where the equilibrium is stable if the denominator of this expression is positive. Before going

any further, notice that for the equilibrium to be stable, the denominator must be positive,

and the number of informed traders must be high enough such that:5

N > φ

(
τs

τs + τ0

1
γ̃

− 1
)

(C.21)

In what follows we want to understand whether endogenous entry ensure that this condition

is satisfied.

Endogenizing N . The ex-ante expected utility of entering for a trader who thinks there

are N informed traders and φ uninformed traders is given by the following expression:

EI

[
1
2

(EI [v] − P )2

AVarI

]
= τs + τ0

2Aτ0

 τs

τs + τ0
− Nτs

(N + φ)(τs + τ0) − φτs

γ̃

2

(C.22)

Moreover, assume that it costs C for a trader to enter. Traders will enter(exit) as long as the

expected benefit from entering is greater(lower) than the cost of entering. In equilibrium, it

must be that the expected benefit of entering is equal to the cost of entering. Setting (C.22)

equal to C, and rearranging yields:

τs + τ0

2Aτ0

(
φτs

τs + τ0

)2
 τs + τ0 − τs

γ̃

(N + φ)(τs + τ0) − φτs

γ̃

2

= C (C.23)

The expression that appears in the denominator in the last fraction on the left hand side

is exactly what determines stability. Denote the denominator of that fraction by D ≡

(N + φ)(τs + τ0) − φτs

γ̃
, such that we can re-write the equilibrium condition as:

5Notice that the condition for stability is the same as the one we obtained in the baseline model:
∂P Mis(s̃)

∂s̃ > ∂P T rue(s̃;s)
∂s̃ ⇐⇒ γ̃ > φτs

(N+φ)(τs+τ0) ⇐⇒ (N + φ)(τs + τ0) − φτs

γ̃ > 0.
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τs + τ0

2Aτ0

(
φτs

τs + τ0

)2
(

τs + τ0 − τs

γ̃

D

)2

= C

=⇒ D = ±
√

τs + τ0

2Aτ0C

(
φτs

τs + τ0

)(
τs + τ0 − τs

γ̃

)
(C.24)

This formulation makes clear that, for any set of parameters, this equilibrium condition

has two solutions for D: one positive and one negative. This means that there are two

entry equilibria: one where the resulting equilibrium is stable, and one where the resulting

equilibrium is unstable. However, the constraint that N > 0 means that some of these

solutions are ruled out. In what follows, we show this explicitly by solving for N .

Using the definition of D in (C.24), and rearranging gives the following solution for N :

N = φ

(
τs

τs + τ0

1
γ̃

− 1
)1 ± τs√

2Aτ0(τs + τ0)C

 > 0 (C.25)

where the last inequality just highlights that we need the number of informed traders in

the market to be positive.6 We can then consider two different cases in turn, which we also

discuss in Figure 5.

Case 1. φ
(

τs

τs+τ0
1
γ̃

− 1
)

< 0. When this is the case, the constraint that N > 0 implies

that a solution only exists when C < τ2
s

2Aτ0(τs+τ0) , and that as long as the entry cost is low

enough that this condition is satisfied, then the equilibrium is unique and stable:

Neq = φ

(
τs

τs + τ0

1
γ̃

− 1
)1 − τs√

2Aτ0(τs + τ0)C

 > 0 > φ

(
τs

τs + τ0

1
γ̃

− 1
)

(C.26)

where the last inequality highlights that the condition for stability in (C.21) is indeed sat-

isfied. This is illustrated in the left panel of Figure 5. Finally, notice how as C increases

towards τ2
s

2Aτ0(τs+τ0) , the denominator D approaches 1, meaning that we can still approach

unstable regions, even if the equilibrium is stable. Intuitively, as entry costs increase, it

becomes more costly for informed agents to earn profits, and the lack of their corrective

force contributes to a stronger feedback effect.

Case 2. φ
(

τs

τs+τ0
1
γ̃

− 1
)

> 0. When this is the case, there can be multiple equilibria for
6Remember that the number of informed traders is common knowledge. If there were no informed

traders, then there would be no information in prices, and the inference problem would be meaningless.
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N > 0, depending on the value of C, as shown in the right panel of Figure 5. If C < τ2
s

2Aτ0(τs+τ0)

is low enough, then there is a unique equilibrium that is stable:

N1 = φ

(
τs

τs + τ0

1
γ̃

− 1
)1 + τs√

2Aτ0(τs + τ0)C

 > φ

(
τs

τs + τ0

1
γ̃

− 1
)

> 0 (C.27)

If instead C > τ2
s

2Aτ0(τs+τ0) then there is also a second equilibrium, which instead is unstable:

0 < N2 = φ

(
τs

τs + τ0

1
γ̃

− 1
)1 − τs√

2Aτ0(τs + τ0)C

 < φ

(
τs

τs + τ0

1
γ̃

− 1
)

(C.28)

Notice however, that this unstable equilibrium is also unstable on the entry margin, meaning

that if N deviates from N1, then further entry/exit will not converge to back to N1. To see

why this is the case, Figure 5 shows that if we perturb the number of informed traders to

be just above N1, then the expected payoff of entering is greater than the cost, meaning

that more informed traders would enter (moving away from N1, and towards the stable

equilibrium N2); when instead the number of informed traders is perturbed to be just below

N1, then the expected payoff of entering is lower than the cost, meaning that informed

traders would exit (again moving away from N1). Therefore unless we start from the case

with N1 informed traders, endogenous entry would never return this equilibrium, making

the stable equilibrium much more appealing.

We can summarize our results as follows: as long as the cost of entering is low enough

C < τ2
s

2Aτ0(τs+τ0) , the equilibrium is always unique and stable. If the cost of entering is too high

C > τ2
s

2Aτ0(τs+τ0) , then there is either no equilibrium, or there are multiple equilibria, where

the second equilibrium is unstable both on the entry margin, and in terms of outcomes.

Interestingly, even when the equilibrium is stable, we can still approach unstable regions,

meaning that our results of increasing and arbitrarily large deviations from rationality as we

approach unstable regions still hold.
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Figure 5: Equilibrium Entry and Stability. This figure shows the equilibrium determination of N

for a given cost parameter C. The left panel corresponds to Case 1: when φ
(

τs

τs+τ0
1
γ̃ − 1

)
< 0, there is a

unique and stable solution in N as long as C <
τ2

s

2Aτ0(τs+τ0) . The right panel corresponds to our Case 2:

when φ
(

τs

τs+τ0
1
γ̃ − 1

)
> 0 there is a unique stable equilibrium if C <

τ2
s

2Aτ0(τs+τ0) , while there is an additional

unstable equilibrium if C >
τ2

s

2Aτ0(τs+τ0) . The arrows on the x-axis also illustrates how Neq and N2 are always
stable on the entry margin, while N1 is unstable on the entry margin when it exists.

D K-Level Thinking

PET can be understood as 2− level thinking, while the fully cursed equilibrium (CE) is

1− level thinking. In the CE, agents do not infer information and trade on their private

information alone, while in PET everyone believes that others are 1− level thinkers. The

natural next step is to consider what happens as we allow for rationality of higher order

beliefs, whereby a K−level thinker believes that all other agents are (K −1)−level thinkers.7

For example, a 3−level thinker believes that all other agents think they are the only ones

extracting information from prices.

D.1 Solving for K-Level Thinking

We solve for K−level thinking recursively by following the same steps outlined in Section

2.2. First, in extracting information from prices, all U agents believe that all other U agents

are (K −1)−level thinkers, and that the price they observe is generated by the (K −1)−level

7Many papers have tested K−level thinking and estimated low levels of K, between 0 and 3 (Costa-
Gomes et al. (2001), Costa-Gomes and Crawford (2006), Crawford et al. (2013))
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thinking equilibrium price function:

P Mis(s̃) = γ̃K−1s̃ + (1 − γ̃K−1)(µ0 − AZτ−1
0 ) (D.29)

where γ̃K−1 is the sensitivity of the price to the true signal in the (K − 1)−level thinking

equilibrium, and s̃ here denotes a K−level thinker’s belief about s. Let 1−level thinking to

be the cursed equilibrium (CE), where all traders trade on their private information. This

leads to γ̃1 ≡ ϕτs

ϕτs+τ0
.

Second, in reality, all I agents trade on the true signal s, and all U agents are K−level

thinkers and trade on the signal s̃, which they extract from prices using the mapping in

(D.29). Given these beliefs, the true market clearing condition leads to:

P T rue(s, s̃) = αs + βs̃ + (1 − α − β)(µ0 − AZτ−1
0 ) (D.30)

where α ≡ ϕτs

τs+τ0
, β ≡ (1−ϕ)τs

τs+τ0
, and are constant and independent of K.

Finally, in equilibrium, agents’ (misspecified) beliefs must be consistent with the price

they observe. Solving for the (PK , s̃K)−pair which satisfy (D.29) and (D.30) jointly, provides

us with a recursive solution for K > 1, starting from the CE equilibrium with γ̃1 ≡ ϕτs

ϕτs+τ0
:

PK = γ̃Ks + (1 − γ̃K)(µ0 − AZτ−1
s ) (D.31)

s̃K = γ̃K

γ̃K−1
s +

(
1 − γ̃K

γ̃K−1

)(
µ0 − AZτ−1

0

)
(D.32)

where:

γ̃K = α

1 − β
γ̃K−1

(D.33)

Solving (D.33) forwards yields the following equilibrium sensitivity for K > 1:

γ̃K = α

1 +∑K−2
j=1

(
−β

α

)j
−
(
−β

α

)K−2 β
γ̃1

= τs

τs + τ0 −
(
−1−ϕ

ϕ

)K
τ0

(D.34)

where the second equality uses the expressions for α and β.
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D.2 Properties of K-level Thinking

Let us start by studying the properties of the recursive relationship in (D.33), as this fully

characterizes K−level thinking equilibrium outcomes in (D.31) and (D.32). Figure 6 plots

this relationship in bold, together with the 45◦ line. The intersections of these two lines

correspond to two fixed points such that γ̃K−1 = γ̃K : γ̃K = α + β > 0 is the REE, and

γ̃K = 0 is a degenerate fixed point where the price is unresponsive to the signal. The arrows

then show the recursive evolution of γ̃K as we allow for rationality of higher order beliefs.

Figure 6 makes clear three properties of the K−level thinking equilibrium, two of which

generalize the intuitions on stability and over-reaction we uncovered in Section 2, and the

third relates to convergence to the REE as we allow for rationality of higher order beliefs.

We discuss them in turn.
Figure 6: Convergence of K−level thinking. This Figure plots the recursive relationship in (D.33)
in bold: the x−axis tracks the sensitivity of the misspecified mapping of a level K thinker, and the y−axis
tracks the corresponding sensitivity of the K−level thinking equilibrium price. The diagonal line is the 45◦

line. The intersection of these two lines correspond to two fixed points such that γ̃K−1 = γ̃K : γ̃K = α+β > 0
is the REE, and γ̃K = 0 is a degenerate fixed point. The arrows show the recursive evolution of γ̃K as we
allow for rationality of higher order beliefs, starting from γ̃1. The left panel depicts a case where α > β, and
the left panel shows a case for α < β.
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Proposition 12 (Stability and K−Level Thinking). The K−level thinking equilibrium is

stable if and only if β/̃γK−1 < 1. Otherwise, the equilibrium is unstable.

Proof. The aggregate excess demand function takes the following form:

XK
T OT − Z = ϕ

( τs

τs+τ0
s + τ0

τs+τ0
µ0 − PK

A(τs + τ0)−1

)
+ (1 − ϕ)

( τs

τs+τ0
s̃K + τ0

τs+τ0
µ0 − PK

A(τs + τ0)−1

)
(D.35)
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Moreover, from (D.29), we know that K−level uninformed agents use the following mapping

to extract information from prices: s̃K = 1
γ̃K−1

PK − 1−γ̃K−1
γ̃K

(µ0 − AZτ−1
0 ). Substituting this

into (D.35), and rearranging, we get:

XK
T OT − Z = 1

A(τs + τ0)−1

(
(1 − ϕ)τs

τs + τ0

1
γ̃K−1

− 1
)

PK + constants (D.36)

and since (1−ϕ)τs

τs+τ0
= β, we can rewrite this as:

XK
T OT − Z = 1

A(τs + τ0)−1

(
β

γ̃K−1
− 1

)
︸ ︷︷ ︸

slope of excess demand function

PK + constants (D.37)

Therefore, the K−level thinking equilibrium is stable if and only if the slope of this excess

demand function is negative, which is equivalent to:

(
β

γ̃K−1
− 1

)
< 0 ⇐⇒ β

γ̃K−1
< 1 (D.38)

Since β > 0, this condition is satisfied either if γ̃K−1 < 0, or if 0 < β < γ̃K−1. Otherwise,

the excess demand function is upward sloping, and the equilibrium unstable.

This result generalizes our findings in Proposition 1. Intuitively, when γ̃K−1 > 0 and
β/̃γK−1 > 0, the informational role of prices introduces strategic complementarities which work

against the strategic subsitutabilities from the scarcity role of prices, and push towards an

upward sloping aggregate excess demand function. When this is the case, β/̃γK−1 < 1 simply

ensures that the scarcity role dominates over the informational role, so that the demand

function is downward sloping, and the equilibrium is stable. On the other hand, notice that

with K−level thinking we may now also encounter cases when γ̃K−1 < 0, according to which

the informational role of prices introduces strategic substitutabilities. When this is the case,

there is no tension between the two roles of prices: instead, the informational role reinforces

the downward sloping nature of the demand function. Not only does this ensure stability, but

it also dampens the general equilibrium adjustment, thus leading to under-reaction relative
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to the REE, as shown in Figure 6.8,9

Next, we turn to the properties of K−level thinking when the equilibrium is stable.

Proposition 13 (K−level Thinking Over-/Under-reaction). When the equilibrium is stable,

K−level thinking outcomes exhibit over-reaction relative to the REE if and only if γ̃K−1 <

γ̃REE. Otherwise, they exhibit under-reaction.

Proof. The equilibrium sensitivity of the K−level thinking equilibrium price to the true

signal is given in equation (D.33):

γ̃K = α

1 − β
γ̃K−1

(D.39)

We also know that the K−level thinking equilibrium is stable is equivalent to γ̃K > 0. Since

α, β > 0, this is equivalent to γ̃K−1 > β. The REE sensitivity is given by:

γREE = α + β. (D.40)

By definition, the K−level thinking equilibrium exhibits over-reaction if γ̃K > γREE:

α

1 − β
γ̃K−1

> α + β ⇐⇒ γ̃K−1 < α + β = γREE (D.41)

where the last inequality uses the fact that the equilibrium is stable. Therefore, for a stable

equilibrium to exhibit over-reaction, we need: β < γ̃K−1 < γ̃K .

This result is clear in Figure 6: only when β < γ̃K−1 < γREE is the K−level thinking

equilibrium stable and γ̃K > γREE = α + β.

Intuitively, focusing on stable outcomes, when γ̃K−1 < γREE, U agents think that all

other agents are, on average, underreacting, and that the equilibrium price is less responsive
8The results from Proposition 12 can be seen in Figure 6 by noticing that γ̃K > 0 if and only if γ̃K−1 > β

or γ̃K−1 < 0. Moreover, when γ̃K−1 < 0, γ̃K < γ̃REE and the equilibrium exhibits under-reaction.
9The fact that K−level thinking can either dampen or amplify GE effects is consistent with Angeletos

and Lian (2017), who study a complete information setup where agents have limited capacity to think
through the response of others to a known shock. A different approach to studying wedges between partial
and general equilibrium effects is in Angeletos and Lian (2018), Angeletos and Sastry (2020) and Angeletos
and Huo (2021). They maintain common knowledge of rationality but add higher-order uncertainty: agents
engage in a beauty contest style of thinking to forecast other agents’ beliefs and responses to shocks, but
there is no inference from endogenous outcomes.
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to signals than it really is. Therefore, they attribute any price change they observe to more

extreme news than in reality. Since all U agents behave in the same way, this translates

into aggregate level over-reaction, just as in PET. Conversely, when γ̃K−1 > γREE, U agents

think that other agents are, on average, overreacting, and their combined response leads

to under-reaction in equilibrium. Therefore, in the specific case we consider (with level−1

being the CE), K−level thinking alternates between under-reaction when K is odd (and U

agents think others are overreacting) and over-reaction when K is even (and U agents think

others are underreacting). Section 3 makes this result about individual level inference more

general and shows that it is independent of K.

We end this section by considering the conditions for K−level thinking to converge to

the REE, as we allow for rationality of higher order beliefs.

Proposition 14 (Convergence to the REE). K−level thinking converges to the REE as we

allow for rationality of higher orders beliefs if and only if α > β. Otherwise, it converges to

the degenerate fixed point with γ̃K = 0.

Proof. We start with the recursive formulation of the equilibrium sensitivity (D.33):

γ̃K = α

1 − β
γ̃K−1

(D.42)

Solving for the fixed point of this equation, such that γ̃K = γ̃K−1, yields two solutions, γ̃K =

α+β = γREE and γ̃K = 0 (these are also shown in Figure 6). Define the convergence function

as f(γ̃K−1) = α

1− β
γ̃K−1

. The REE fixed point is attractive when the following condition is

met:

|f ′(γREE)| < 1 (D.43)

Straightforward algebra yields that this is verified when:

αβ

(γREE − β)2 < 1 ⇐⇒ αβ

(α + β − β)2 < 1 ⇐⇒ α > β (D.44)

Similarly, the attractive fixed point is the degenerate one if:

|f ′(0)| < 1 (D.45)
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which requires:
αβ

(0 − β)2 < 1 ⇐⇒ α < β. (D.46)

Using the values of α and β, we also notice that, in our setup, (D.44) is satisfied if and only

if ϕ > 1/2.

This result is intuitive in light of equation (D.34), where limK→∞ γ̃K = α + β = γREE if

α > β and limK→∞ γ̃K = 0 if α < β. Moreover, notice how convergence is independent of

the initial size of the bias, γ̃1. Instead, for K−level thinking outcomes to converge to the

REE, we simply need the equilibrium influence on prices of I agents (α) to be greater than

the influence on prices of U agents (β).10 Figure 6 depicts examples of convergence to the

REE and degenerate fixed points, in the left and right panels, respectively. The right panel

of Figure 6 also show that when α < β there always exists a K large enough such that the

K−level thinking equilibrium becomes unstable.

In our framework the condition for convergence reduces to ϕ > 1/2. This suggests that a

market populated by more U agents than I agents may exhibit smaller deviations from the

REE when agents have lower levels of K. If one were to interpret agents with higher levels

of K as being more sophisticated than their low K counterparts, the above result implies

that greater levels of sophistication may contribute to greater (rather than lower) mispricing

and to instability. Only when α > β and the market is populated by more I than U agents

do greater levels of sophistication bring us closer to the REE. We summarize these results

in Corollary 4.

Corollary 4 (Deviations from REE and Rationality of Higher Order Beliefs). When α > β,

the deviations of K−level thinking equilibrium outcomes from the REE are decreasing in K.

Conversely, when α < β, the deviations of K−level thinking equilibrium outcomes from the

REE are increasing in K for stable equilibria, and there exists a K large enough such that

the equilibrium becomes unstable.

Empirically, this suggests that we are likely to observe greater mispricing when the market
10When this is the case, the size of the bias shrinks as it gets compounded with K. Conversely, when

α < β, the extent of over-reaction in PET (2−level) is greater in absolute value than the extent of under-
reaction in CE (1−level). The mapping used by 3−level agents then deviates more from the REE than
the one used by 2−level thinkers, thus translating into even greater equilibrium deviations from the REE
outcomes, and to even more misspecified mappings for higher level thinkers.
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is populated by a large fraction of U agents with high levels of rational higher order beliefs.

In these scenarios, agents are more likely to chase mispricing rather than information. More

generally, our results illustrate the fragility of the REE assumption in settings where agents

are learning from endogenous outcomes.

E Heterogenous Agents

We have so far considered the case where all uninformed agents extract information from

prices using the same misspecified model of the world, be it PET or any general form of mis-

specified model. The empirical literature however document a large amount of heterogeneity

among agents’ actions and beliefs (see for example Giglio et al. 2020). The tractability of

our model allows us to consider the interaction of heterogeneous agents, who differ in their

level of sophistication in extracting information from prices.11

E.1 Misspecified Models

Let there be a fraction of informed agents, and a fraction of uninformed agents. Moreover,

let there be N different types of uninformed agents, each using a different misspecified model

of the world to extract information from prices.

Misspecified model of the world for each agent n = 1, 2, . . . , N . To solve the model,

we need to specify the mapping used by each type of agent to extract information from

prices. In this section we allow agents to have general linear mappings.12,13 We denote these

11Most papers studying model misspecification assume that all individuals share the same bias. No-
table exceptions include Gagnon-Bartsch (2016); Frick et al. (2019); and Bohren and Hauser (2021), who
characterizes long-run beliefs in general settings with model heterogeneity.

12As shown in the main text, the linearity assumption is unrestrictive for CE, PET, REE and K−level
thinking, and in section 3 we also discussed how this assumption nests many types of behavioral biases
studied in the literature.

13In a setup where there are heterogeneous agents extracting information from prices, this linearity as-
sumption simply requires that each agent n thinks that the (misspecified) mappings used by other agents
are linear. When this is the case, agent n believes that other agents’ (wrong) extracted signals are linear
functions of the true signal. Therefore, when each agent n aggregates his/her perception of all other agents’
linear asset demands, the resulting market clearing price function which determines his/her (misspecified)
mapping is also linear. In this case, the details of what each agent n thinks about other agent’s extracted
signals determines γ̃n, but not the functional form of their (misspecified) mapping.
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models as:14

P Misn = γ̃ns̃n + (1 − γ̃n)ζ1n (E.47)

So that inverting prices for each type of agent gives the following extracted signal:

s̃n = 1
γ̃n

P Misn −
(

1 − γ̃n

γ̃n

)
ζn (E.48)

True Model of the World. Given these N types of agents, the true price function takes

the following form:

P T rue = αs +
N∑

n=1
βns̃n + δ, (E.49)

where α, βn for n ∈ {1, . . . , N} and δ are constant coefficients that depend on the composition

of agents and fundamental parameters of the economy.

E.2 Equilibrium With Heterogeneous Agents

The equilibrium price and extracted signals again simply require that: P = P Mis1 = P Mis2 =

... = P MisN . This yields the equilibrium price P :

P = α

1 −∑N
n=1

βn

γ̃n

s +
δ −∑N

n=1
βn(1−γ̃n)

γ̃n
ζn

1 −∑N
n=1

βn

γ̃n

(E.50)

and the extracted signals for each type:

s̃n =
α
γ̃n

1 −∑N
m=1

βm

γ̃m

s + 1
γ̃n

δ −∑N
m=1

βm(1−γ̃m)
γ̃m

ζm

1 −∑N
m=1

βm

γ̃m

− (1 − γ̃n)ζn

 (E.51)

Notice that the resulting equilibrium is strikingly similar to the basic framework we

explored in the main text.15 In what follows, we show how stability and over-/under-reaction

generalize to this setup with heterogeneous agent.

14Notice that ζi could simply be equal to (µ0 −AZτ−1
0 ) as in the analysis in the main text. In this section

we leave it general as, for example, agents may believe that other agents have different priors.
15To add generality we did not take a stance on the coefficients ζn and δ of the price functions. It is easy

to verify that if we assume that ζi = µ0 − AZτ−1
0 for all i, and δ =

(
1 − α −

∑N
n=1 βn

)
(µ0 − AZτ−1

0 ), we
are back to the case we described in details in Section 3.
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Proposition 15 (Stability with Heterogeneous Agents). In an economy with N different

types of agents who extract information from prices using the linear mappings described in

(E.49), the equilibrium is stable if and only if:

N∑
m=1

(
βm

γ̃m

)
< 1 (E.52)

This follows immediately from noticing that, as before aggregade demand is downward-

sloping if and only if the cofficient on the signal in equation (E.50) is positive, and the

assumption that α > 0.

Notice that while (E.52) may seem more restrictive than the equivalent condition in

Proposition 1, this is not necessarily the case. To see why, recall from (E.49) that βn

captures the relative influence on equilibrium prices of agent n’s beliefs: the greater N is,

the smaller βn is, on average. Similarly, from (E.49), γ̃n is agent n’s perceived sensitivity

of the equilibrium price to new information: the greater the number of agents extracting

information from prices, the more likely it is that uninformed agents think the equilibrium

price is more sensitive to new information.

Next, we turn to characterize over-and under-reaction at the individual and aggregate

levels in the following two propositions.

Proposition 16 (Over- and Under-Reaction at the Individual Level). When the equilibrium

is stable, an agent of type n overreacts to changes in the unobserved signal s if and only if:

γ̃n <
α

1 −∑N
m=1

βm

γ̃m

= ∂P

∂s
(E.53)

and underreacts when the inequality is reversed.

This proposition is immediate from inspecting Equation (E.51)

This proposition shows that to determine an individual’s level of over-/under-reaction, it

is enough to compare the sensitivity of their mapping to a single aggregate statistic. Intu-

itively, individual agents extract the correct signal from prices if they use the true sensitivity

of the equilibrium price to new information in their mapping. Agents who mistakingly think

that the sensitivity is lower than in reality attribute a given price change to a more extreme
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signal, and overreact. Conversely, if agents think the sensitivity is greater than in reality

they underreact.

When there is a single type of uninformed agent, this condition boils down to γ̃n < α+β =

γREE, which is consistent with our earlier result in Proposition 5. However, whenever there

are more than one type of agents, Proposition 16 shows that the correct benchmark to assess

individual level over-reaction is the true equilibrium mapping, and not the REE one.

We now turn to the behavior of aggregate prices.

Proposition 17 (Over- and Under-Reaction at the Aggregate Level). The aggregate price

function overreacts to changes in the signal s relative to the rational counterfactual if and

only if:
α

1 −∑N
m=1

βm

γ̃m

> α +
N∑

m=1
βm ⇐⇒

N∑
n=1

(
βn∑N

m=1 βm

1
γ̃n

)
>

1
γREE

(E.54)

and it underreacts when the inequality is reversed.

This proposition follows from inspecting ∂P/∂s from equation (E.50), and using the fact

that the rational counterfactual is such that γ̃n = α +∑N
m=1 βm for all n.

The left-hand side of (E.54) is the weighted average of 1/̃γn across agents, where the

weights are given by the relative influence that each agent has on equilibrium prices, βn/
∑N

m=1 βm.

If we call this weighted average 1/̄̃γ, then the above expression implies that equilibrium prices

exhibit over-reaction relative to the REE if and only if ¯̃γ < γREE. This is reminiscent of our

earlier result in Proposition 5, which now generalizes to a setup with heterogeneous agents:

if, on average, agents’ sensitivity is lower than γREE, then, on average, they extract signals

which are more extreme than in reality, leading to over-reaction in equilibrium outcomes.

Moreover, the first inequality in (E.54) also makes clear that when the equilibrium is

stable the extent of over-reaction is increasing in the strength of the aggregate feedback

effect, which can simply be represented as ∑N
n=1

βn

γ̃n
.

F Partially Revealing Prices

This section generalizes PET to environments where prices are only partially revealing. This

serves two purposes. First, it verifies that the insights we uncovered are robust to small
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variations in the information structure. Second, it allows us to expand our setup to a

symmetric case where all agents receive a private signal, as shown in Appendix G.

To do so, we model the supply of the risky asset as being stochastic, for example because

of the presence of noise traders. Therefore, the supply shock z is now drawn from a normal

distribution, z ∼ N(z̄, τ−1
z ). All other assumptions are the same as in our baseline framework.

To construct their demand functions, informed traders need to compute the distribution

of v|s (using simple Bayesian updating as we did throughout the main text), while uninformed

traders need to compute the distribution of (v, s, z)|P . Moreover, uninformed traders still

think that they lived in a cursed world. Using the same notation as in Section 3, we can

write uninformed agents’ misspecified model as:

P Mis = γ̃s̃ + (1 − γ̃)(µ0 − Azτ−1
0 ), (F.1)

Uninformed traders cannot observe z, but they can use standard Bayesian updating

to extract the maximum-likelihood signal. Following Diamond and Verrecchia (1981), we

first write down the distribution of the information structure of the uninformed agents,

(v, s, z, P Mis) ∼ N(m, M), which is multivariate normal with mean m and variance-covariance

matrix M , where:16

m = (µ0, µ0, z̄, µ0 − (1 − γ̃)Az̄τ−1
0 )T + (F.2)

M =



τ−1
0 τ−1

0 0 γ̃τ−1
0

τ−1
0 τ−1

0 + τ−1
s 0 γ̃(τ−1

0 + τ−1
s )

0 0 τ−1
z (1 − γ̃)τ−1

z

γ̃τ−1
0 γ̃(τ−1

0 + τ−1
s ) (1 − γ̃)τ−1

z γ̃2(τ−1
0 + τ−1

s ) + (1 − γ̃)2τ−1
z


=

 M11 M12

M21 M22

 ,

(F.3)

where M11 is 3 × 3 (making the distinction between what is in the information set of the

agent and what is not). Similarly, let m = (m1, m2), with m1 being 3 × 1.

16Note that:
V ar(P Mis) = γ̃2(τ−1

0 + τ−1
s ) + (1 − γ̃)2τ−1

z .

While the covariances are given by:
Cov(P Mis, v) = γ̃τ−1

0 ,

Cov(P Mis, s) = γ̃(τ−1
0 + τ−1

s ),
Cov(P Mis, z) = (1 − γ̃)τ−1

z .
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Then (v, s, z)|P is jointly normal, with mean m∗, and covariance matrix M∗, where:

m∗ = m1 + M12M
−1
22 (P − m2) (F.4)

M∗ = M11 − M12M
−1
22 M21. (F.5)

The first element in m∗ and in M∗ characterize uninformed agents’ belief about the funda-

mental value of the asset, given their mapping: We can then write uninformed agents beliefs

as follows:

E[v|IU ] = µ0 +
τs/̃γ

τ0 + τs +
(

1−γ̃
γ̃

)2
τ0τs

τz

(P − µ0 + (1 − γ̃)Az̄τ−1
0 ) (F.6)

= µ0 + g

γ̃
(P − µ0 + (1 − γ̃)Az̄τ−1

0 ) (F.7)

Var[v|IU ] = τ−1
0 − τsτ

−1
0

τ0 + τs +
(

1−γ̃
γ̃

)2
τ0τs

τz

= τ−1
0 (1 − g) (F.8)

where g is the Kalman gain:17

g = τs

τ0 + τs +
(

1−γ̃
γ̃

)2
τ0τs

τz

(F.9)

Putting the above components together, U agents’ demand function is given by:18

XU =
µ0 + g

γ̃

(
P − µ0 + (1 − γ̃)Az̄τ−1

0

)
− P

Aτ−1
0 (1 − g)

. (F.10)

Moreover, I agents’ demand function is simply given by:

XI =
µ0 + τs

τs+τ0
(s − µ0) − P

A(τs + τ0)−1 (F.11)

As in our baseline case, the equilibrium price must solve the following market clearing

17When τz = ∞, we recover the Kalman gain with fixed supply: τs/(τ0 + τs).
18The algebra is less straightforward than in our baseline case, because PET agents are now using a lower

precision than informed agents: their inference is weakened by the noisy supply.
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condition, z = ϕXI + (1 − ϕ)XU :

z = ϕ

(
µ0 + τs

τs+τ0
(s − µ0) − P

A(τs + τ0)−1

)
+ (1 − ϕ)

µ0 + g
γ̃

(
P − µ0 + (1 − γ̃)Az̄τ−1

0

)
− P

Aτ−1
0 (1 − g)

 (F.12)

Before solving for the equilibrium price, notice that, just as in Section 2.2, prices still play

a dual role: their informational role gives rise to strategic complementarities, while their

scarcity role gives rise to strategic substitutabilities. The interaction of these two forces

determines whether the equilibrium is stable, as is clear from the excess demand function:

XT OT − z = 1
A

 (1 − ϕ)g
τ−1

0 (1 − g)
1
γ̃︸ ︷︷ ︸

information role

− ϕ

(τ0 + τs)−1 − (1 − ϕ)
τ−1

0 (1 − g)︸ ︷︷ ︸
scarcity role

P + constants (F.13)

As in Section 2, the complementarities introduced by the informational role of prices give rise

to a two-way feedback effect between outcomes and beliefs. The strength of this feedback

effect is now given by:

strength of feedback effect = (1 − ϕ)g
τ−1

0 (1 − g)
1
γ̃

, (F.14)

and this is increasing in the influence that uninformed agents have on prices
(

(1−ϕ)g
τ−1

0 (1−g)

)
,

and decreasing in the sensitivity of the misspecified mapping γ̃.19 When this feedback effect

is strong enough, the aggregate excess demand function becomes upward sloping and the

equilibrium unstable, just as we saw in Proposition 3. In particular, (F.13) shows that the

equilibrium is stable if and only if:

ϕ

(τ0 + τs)−1 + (1 − ϕ)
τ−1

0 (1 − g)
>

(1 − ϕ)g
τ−1

0 (1 − g)γ̃
(F.15)

19Notice that increasing g has two effects: first, it reduces the conditional variance of uninformed agents,
which makes them less risk averse, and this effect strengthens both the scarcity role and the informational
role of prices in equal proportions. Second, it increases the weight that uninformed agents put on prices
when performing Bayesian updating, and this increases the strength of the informational role. Therefore,
the net effect of an increase in g is to strengthen the informational role relative to the scarcity role, and this
contributed to instability. Moreover, as in Section 3, the strength of the feedback effect is decreasing in γ̃,
so that the insights we uncovered in the fully revealing case are preserved.
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We can now solve for the equilibrium price:

P =
ϕτ0 + (1−ϕ)(1− g

γ̃ )
τ−1

0 (1−g)
ϕ

(τ0+τs)−1 + (1−ϕ)
τ−1

0 (1−g) − (1−ϕ)g
τ−1

0 (1−g)
1
γ̃

µ0 + ϕτs

ϕ
(τ0+τs)−1 + (1−ϕ)

τ−1
0 (1−g) − (1−ϕ)g

τ−1
0 (1−g)

1
γ̃

s

+
(1−ϕ)g(1−γ̃)

(1−g)γ̃
ϕ

(τ0+τs)−1 + (1−ϕ)
τ−1

0 (1−g) − (1−ϕ)g
τ−1

0 (1−g)
1
γ̃

Az̄ − 1
ϕ

(τ0+τs)−1 + (1−ϕ)
τ−1

0 (1−g) − (1−ϕ)g
τ−1

0 (1−g)
1
γ̃

Az (F.16)

In Figure 7, we plot this price function against the signal informed agents receive, s, to-

gether with the equilibrium price function of the CE and REE in this setup. Our benchmark

results are preserved: PET features over-reaction, and lies outside the convex set of the

CE and REE prices.20 As in Section D, we can extend this argument to allow for K−level

thinking. Figure 7 plots the equilibrium price for 3−level thinking and we see that this once

again delivers under-reaction. Overall results are qualitatively and quantitatively similar to

our fully revealing benchmark. For the sake of clarity, and for ease of exposition, we focus

on the fully revealing case in the main text.

Figure 7: Comparing Equilibrium Prices as we allow for rationality of Higher Order Beliefs
in the Partially Revealing Case. This Figure plots the equilibrium prices which arise for different levels
of K−thinking as we vary the value of the true signal, s. The CE is 1−level thinking, PET is 2−level
thinking, and REE is ∞−level thinking. Here, ϕ is fixed at 0.6, τ−1

0 = 0.16, τ−1
0 = 0.12, µ0 = 1, Z̄ = 1,

τ−1
z = 0.1, and A = 2.
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Finally, notice how in this particular setup the PET equilibrium concept is much easier

20The fully cursed equilibrium (CE) benchmark corresponds to the case where no trader learns information
from prices, and all traders trade on their private information alone.
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to solve than the REE. Indeed, to solve for the REE one needs to postulate a price function,

use Bayesian updating to find uninformed agents’ demands conditional on the price function,

and then work through market clearing to obtain the equilibrium price function. After this,

agents still need to solve a fixed-point problem (that is far from trivial) where they equate the

postulated price functions to the equilibrium price function. In this respect, PET agents are

solving a much simpler problem, which requires far fewer cognitive skills than the REE.21.

G Private signals

In this section we consider an alternative setup where agents are ex-ante symmetric, and

all receive a different stochastic private signal. The price aggregates all private information,

and agents infer the information received by others by conditioning on the equilibrium price.

Specifically, there is a continuum of agents of measure 1, denoted by i ∈ [0, 1]. Supply is

stochastic as in Appendix F. Each agent i receives a signal:

si = v + ϵi (G.1)

with ϵi ∼i.i.d. N (0, τ−1
s ). By the law of large numbers, the average signal received by the

population corresponds to the period−1 payoff of the asset,
∫ 1

0 sidi = v.

The misspecified model of the world corresponds to the case where all agents trade on

their private information alone (the CE benchmark), which yields the following misspecified

price function:

P Mis = γ̃v + (1 − γ̃)(µ0 − Azτ−1
0 ), (G.2)

with γ̃ = τs/(τ0 + τs). All agents condition on si and P to update their prior. As previously,

we start by constructing the variance-covariance structure:

Cov(v, si) = τ−1
0 , (G.3)

Cov(P Mis, si) = γ̃τ−1
0 . (G.4)

21Computationally, the PET equilibrium is the first-step in solving the fixed-point process of the REE.
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Which gives the following covariance matrix for the triplet (v, si, P ):

M =


τ−1

0 τ−1
0 γ̃τ−1

0

τ−1
0 τ−1

0 + τ−1
s γ̃τ−1

0

γ̃τ−1
0 γ̃τ−1

0 γ̃2τ−1
0 + (1 − γ̃)2τ−1

z

 . (G.5)

We now need to define two Kalman gain coefficients, as all agents condition both on the

price and on the private signal they receive:

gs = (1 − γ̃)2τs

γ̃2τz + (1 − γ̃)2(τ0 + τs)
, (G.6)

gv = γ̃2τz

γ̃2τz + (1 − γ̃)2(τ0 + τs)
. (G.7)

Therefore, agent’s posterior beliefs of the fundamental value of the asset are normal, and

characterized by the following posterior mean and variance:

E[v|si, P ] = µ0 + gs(si − µ0) + gv

(
P − µ0 − (1 − γ̃)Az̄τ−1

0
γ̃

)
(G.8)

V ar[v|si, P ] = τ−1
0 (1 − gs − gv). (G.9)

Individual i’s demand function is then given by:

Xi =
µ0 + gs(si − µ0) + gv

(
P −µ0+(1−γ̃)Az̄τ−1

0
γ̃

)
− P

Aτ−1
0 (1 − gs − gv)

. (G.10)

We can now impose market clearing and use the law of large numbers to aggregate private

signals. This leads to the following equilibrium price expression:

P = 1 − gs − gv/γ̃

1 − gv

γ̃

µ0 + gs

1 − gv

γ̃

v − (1 − gs − gv)
1 − gv

γ̃

Azτ−1
0 −

gv
1−γ̃

γ̃

1 − gv

γ̃

Az̄τ−1
0 (G.11)

Figure 8 displays how the equilibrium price varies with the value of the fundamental.

The results are qualitatively and quantitatively similar to our baseline framework.

Notice how the price sensitivity to the fundamental realization in (G.11) has exactly the
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Figure 8: Comparing Equilibrium Prices with Symmetric Private Signals. This Figure plots
the equilibrium prices as we vary the value of the fundamental realization, v. Here, τ−1

0 = 0.16, τ−1
s = 0.32,

and τ−1
z = 0.95 so that the condition which guarantees that the equilibrium PET price is stable is satisfied.
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same form as the sensitivity of the price to new information in the general case with model

misspecification in (46). With private signals, the feedback effect between outcomes and

beliefs is now represented by the ratio gv/γ̃, since gv pertains to how agents incorporate into

prices the information they get by learning from prices – the exact counterpart of β̂ in our

main framework. As such, all the insights we uncovered in the main text remain valid here.

We conclude with a remark on how the volatility of supply relates to the stability of the

equilibrium.

Corollary 5. In this setup with symmetric agents and stochastic supply, the equilibrium is

stable, and the price is increasing in the fundamental, if and only if:

γ̃ > gv ⇐⇒ τz <
τ 2

0
τs

(G.12)

In other words, once we allow for a symmetric information structure, the stochastic supply

needs to be volatile enough for the equilibrium to be stable. Intuitively, when prices are close

to fully revealing, the signal agents can recover from prices is infinitely more informative

than their own private signal. Therefore, in this extreme case, agents do not use their own

signal in their demand function. However, if all agents act in this way, no private signal is

incorporated into prices, and the resulting price becomes completely uninformative. Since
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PET agents fail to realize that all other agents are also learning from prices (and therefore

that they are not incorporating their own private signal in them), they treat the price as

informative even when it is not, and this contributes to unstable outcomes.
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