

Main viral pandemics since1986

- 1986-87 Taiwan's collapse due to MBV or YHV?
- 1991 YHV in Thailand
- 1991/92 TSV in Ecuador
- 1992/94 WSSV Asian pandemic
- 1999 WSSV in Central America starts Latin America pandemic
- 1999 TSV in Asia
- 2004 IMNV in Brazil

These viral diseases have caused major socioeconomic losses to the aquaculture community

ESTIMATED ECONOMIC LOSSES FROM DISCOVERY TO 2006

VIRUS	SINCE/YEAR	PRODUCT LOSS				
IHHNV- Americas*	1981	\$ 0.5-1 billion				
YHV - Asia	1991	\$ 0.5 billion				
TSV-Americas	1991/92	\$ 1-2 billion				
TSV-Asia	1999	\$ 0.5-1 billion				
WSSV - Asia	1992/93	\$ > 6 billion				
WSSV - Americas	1999	\$ 1-2 billion				
IMNV – Americas	2004	\$ 100-200 million				
IMNV – Asia	2006	??				
* Includes Gulf of California fishery 1989-1994						

Main viral pandemics since1986

- These viral diseases can only be controlled by avoidance.
- The shrimp virus pandemics have changed the way shrimp are farmed.
- The requirement for clean shrimp stocks set in motion the industry switch to domesticated, SPF *Penaeus vannamei**.

* Shrimp taxonomy according to Holthuis LB (1980) FAO Species catalog, Vol. 1. Shrimp and prawns of the world. FAO Fish Synop 125:46.

In approximately 5-6 years (2002 to 2006):

- Domesticated stocks of the Pacific white shrimp, *Penaeus vannamei*, surpassed all other penaeid shrimp as the dominant farmed species globally.
- In Asia where *P. vannamei* is an introduced species, its production now even exceeds that of the Americas where the species is native.

P	. monodon
P.	. monodon
vannamei	P. monodon
45,387 MT	630,984 MT
599,423 MT	723,172 MT
1,000%	15%
	45,387 MT 599,423 MT 1,000%

Why and how did this occur?

- Following viral pandemics of the 1990's, wild postlarvae & broodstock were increasingly found to carry many of these diseases (e.g. WSSV, MSGS, IHHNV and others).
- Domesticated SPF P. *vannamei* stocks became available following the viral pandemics.
- Trials in affected farming regions with SPF P. vannamei were successful.
- The switch to domesticated SPF P. vannamei was underway...

New Developments in Shrimp Diseases of Concern to SE Asia

• TSV:

- ✓ TSV significant in China, Taiwan, Thailand,
- Malaysia, Indonesia & others that grow P. vannamei
- ✓ TSV found in *P. monodon* in Thailand
- ✓ New TSV strains emerging?
- WSSV continuing problem
- HPV and MBV associated with runting in *P. monodon*
- MSGV (Mondon slow growth virus) newly recognized virus; could it be the cause of domestication failures with *P. monodon*?
- IHHNV very high prevalence in *P. monodon*
- IMNV Made its way into SE Asia.

New Developments in Shrimp Diseases of Concern to SE Asia

Bacterial:

✓ Vibriosis – continuing problem; antibiotic residues
 ✓ Rickettsia – an overlooked problem?

• Parasitic:

"New" HP microsporidia – contributing to poor growth in *P. mondon*?

New Developments in Shrimp Diseases of Concern to the Americas

• Viral:

- ✓ Recurring WSSV & TSV outbreaks
- $\checkmark \text{New TSV}$ strains with increased virulence
- ✓IMNV appears to be confined to Brazil; major threat to shrimp farming industry if it spreads
- ✓ PvNV Newly discovered. Appears to be confined to Belize. Effect(s) on farmed shrimp has not been fully evaluated & is not clear at present.

New Developments in Shrimp Diseases of Concern to the Americas

• Bacterial:

- ✓Vibriosis recurring problem; antibiotic residues; antibiotic resistance
- ✓ NHP incidence increasing in semi-arid locations
- ✓ Spiroplasmosis Appears to be confined to Colombia. Potential to cause important losses
- Parasitic:
 - ✓ Haplosporidiosis

Genotypes & Biotypes of TSV

Since TSV emerged in Ecuador 1991/92:

- 4 distinct genetic lineages have emerged
- 2 serotypes have been documented
- Differences in virulence according to genotype & serotype documented
 ✓Belize strain virulence > all other lineages

Chronic Phase TSV Study Comparing Standard PCR, Real-Time PCR & Sample Type

- Standard RT-PCR can give false negative results for TSV in shrimp with chronic phase infection.
- Best sample for TSV detection in chronic phase by RT-PCR is hemolymph.

Chronic Phase TSV A life-long infection?

- Adults 8 to 12 months P.I. remain TSV +
- TSV + cells present in LO spheroids
- Hemolymph RT-PCR & bioassay TSV +
- TSV infection cycle in LO spheroids maintains life-long persistent infection

WSSV- multiple strains?

- In terms of virulence, one major WSSV strain appears to have caused the global shrimp farm pandemic.
- Strain(s) with lower virulence recently reported, but not confirmed.
- Genome sequencing information shows that there are numerous, apparently minor, genetic variants.

How has WSSV spread around the world?

- Inadvertent introduction of live shrimp (all stages) asymptomatically infected
- Possible pathways from reprocessing plants to wild shrimp & other decapods?
 - Bait shrimp pathway is direct, but volume of use is relatively small.
 - ✓ Packing wastes from shrimp reprocessing (shells, heads, rinse water, etc.) often discharged directly into coastal bays and estuaries (= nursery grounds for shrimp & crabs) & can be hundreds of kg/per day.

WSSV Natural and **Experimental Hosts**

List of known hosts for WSSV is > 50:

- Penaeid shrimps & prawns
- Freshwater prawns
- Crabs several genera
- Spiny lobsters
- Freshwater crayfish susceptible genera: ✓ North American
 - ✓ European
 - ✓ Australian

Some strategies for management of WSSV

- Increased biosecurity
 - ✓ Filtration of water to exclude vectors from the wild
 - ✓ Reduced water exchange and lower densities
 - ✓ Complete dry out during cold season
- Use of SPF shrimp (WSSV free, at least)
- Hiperthermia
 - ✓ Reduced culture activity during the cold season
 - \checkmark Use of green house systems

since 2005 (Number of farms)							
	2005	5	200	6	200	7	
Pathogen	Total/ Affected	%	Total/ Affected	%	Total/ Affected	%	
NHP	128/73	57	126/32	25	112/40	36	
WSSV	128/96	75	126/25	20	112/3	3	
TSV	128/8	6	126/15	12	112/13	12	
(www.cosaes.com)							

Infectious Myonecrosis – IMNV Family Totiviridae Size: ~40 nm, unenveloped, icosahedron. Density (CsCI):1.369 g/ml Polypeptides: 1 major (approx. 106 kDa) Genome: dsRNA,~7.7 Kb Hosts: P. vannamei; chronic with with high mortalities

IMNV Economic Impact since Disease Emerged in 2002

• Brazil:

✓ 2004 losses ~\$20 million (Nunes 2004)

- ✓ lost production since IMN disease emerged may be ~\$200 million in NE Brazil.
- Indonesia & Hainan, China: √value of production losses?
 - ✓ potential for spread throughout region?

Penaeus vannamei specimens from Belize in 2005 with IMN-like pathology

- Significant mortalities noticed.
- Affected shrimp presented opaque muscle.
- - ✓ Significant formation of lymphoid organ spheroids.
- However, RT-PCR tests & ISH for IMNV were negative.

Experimental transmission of the Belize agent

- Frozen P. vannamei from Belize presenting presumptive IMN-like gross signs were used.
- SPF Kona-line P. *vannamei* fed test shrimp in challenge bioassay.
- Challenged Kona shrimp developed IMN-like gross signs & pathology, but RT-PCR & ISH results remained negative for IMNV.
- A new nodavirus was isolated from challenged shrimp. PvNV.

Comparison of IMNV and PvNV						
Characteristic	IMNV (Totiviridae)	PvNV (Nodaviridae)				
Gross signs	Muscle necrosis	Muscle necrosis				
Particle shape, size	Icosahedral, 40 nm	Icosahedral, 30 nm				
Nucleic acid	ds RNA-7560 bp	ss RNA-2 molecules-4328 bp				
Genome organization	5'ORF=capsid protein 3'ORF=RNA polymerase	RNA 1=RNA polymerase RNA 2=capsid protein				
Buoyant density	1.366 g/cm ³ in CsCl	Not Determined				
Capsid protein	106 kDa	Tentative 67-79 kDa				
Host Range (Experimental)	P. vannamei (P. stylirostris, P. monodon)	P. vannamei (P. monodon)				
Molecular tests (ISH and RT-PCR)	No cross-reaction with PvNv	No cross-reaction with IMNV				

NHP Disease Management

- Farm designed with deeper ponds to mitigate high temperatures.
- Water exchange to reduce salinity.
- Metaphylactic use of medicated feeds (OTC at 1.5 to 4 kg/t feed for 10-14 days).
 - \checkmark anticipate from farm history when NHP likely to occur.
 - \checkmark have medicated feed available on short notice
 - \checkmark monitor stocks & begin treatment at first sign of disease.
 - \checkmark Withdrawal for OTC is 2 days (FDA/INAD), but \geq 7 days is advisable.
- Florfenicol recently developed for NHP in Mexico.

VIBRIOSIS

Primary and Secondary Infection by *Vibrio* spp.

- Systemic infections.
- Enteric & oral region infections.
- Focal appendage necrosis.
- Wound infections.
- Shell disease.

VIBRIO - Agents

Characteristics:

- Gram negative, pleomorphic, curved rods.
- Halophilic, require salt (≥ 10 ‰ = ≥1%) for growth.
- Common in marine environments.
- Opportunistic or primary pathogens.
- Many species are in shrimp's normal microflora.

Antibiotic Resistance – An Emerging Problem?

- Vibrio parahaemolyticus most strains sensitive to OTC & Romet.
- Resistant strains documented:
 ✓Texas resistant to >100 µl OTC/ml OTC.
 ✓Sense strains resistant to OTC * Demot
 - ✓ Sonora strains resistant to OTC & Romet.
- Possible consequence of using these compounds to manage NHP w/o rotation?

METHODS FOR DISEASE MANAGEMENT IN PENAEID SHRIMP AQUACULTURE

- Maintain adequate water quality.
- Improve culture techniques & farm design to reduce stress, minimize handling.
- Sanitation among culture units & between crops
- Adequate feeds.
- Chemotherapy & antibiotics when necessary.
- Probiotics, immunostimulants.
- Use resistant stocks where pathogen enzootic.
- Avoidance where pathogen can be excluded.
 ✓ use stocks that test negative for significant pathogens.

Main viral pandemics since1986

- These viral diseases can only be controlled by avoidance.
- The shrimp virus pandemics have changed the way shrimp are farmed.
- The requirement for clean shrimp stocks set in motion the industry switch to domesticated, SPF *P. vannamei.*

ACKNOWLEDGEMENTS

Research & service support from:

•International shrimp farming industry through diagnostic fees & technical assistance agreements

US Marine Shrimp Farming Program – funded by U.S.D.A, Cooperative State Research, Education & Extension Service.
UAZ College of Agriculture, Hatch Program.

