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1. Introduction

In this paper we introduce the concept of generalized Boolean-like rings
which is a generalization of the concept of Boolean-like rings. It is the
purpose of this paper to initiate a study of generalized Boolean-like rings.

Boolean-like rings were introduced by A.L. Foster in [2]. Many
properties of these rings have been studied (also see [3], [5], [6], [7] and
[8D. The following properties of Boolean-like rings are well known:

(a) Each element is weakly idempotent;

(b) The nilpotent elements form an ideal;

(c) The idempotent elements form a subring;

(d) Each element can be uniquely written as the sum of an idempotent
element and a nilpotent element.

Now, in Section 2, we introduce generalized Boolean-like rings and give
an example of a generalized Boolean-like ring which is noncommutative.

In Section 3 and Section 4, we extend the above properties (a) and (b)
to generalized Boolean-like rings.

In generalized Boolean-like rings, the properties (¢) and (d) do not
hold in general. We characterize generalized Boolean-like rings with the
property (c) or (d) in Section 5 and Section 6, respectively.

2. Definition and example

A Boolean-like ring introduced by Foster [2] is a commutative ring with
identity of characteristic 2 in which (1—a)a(1—56)b=0 holds for all elements
a, b of the ring. Omitting the commutativity and the existence of identity
in Boolean-like rings, we get the following concept:

A ring R is called a generalized Boolean-like ring if R is of charac-
teristic 2 and (a—a?) (b—b*) =0 holds for all a, b of R.

Every Boolean ring is a generalized Boolean-like ring. Of course,
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every Boolean-like ring is a 'generalized Boolean-like ring. These rings
are commutative. We have noncommutative one as follows:

Let B be a Boolean ring with identity, M a unitary left B-module and
S=B®M the direct sum of B, M as additive groups. Define a multiplica-
tion in S by

(a, @) (b, B) = (ab, aB)
for all @, b of B and «, B of M. Then S is a generalized Boolean-like ring,
and S is commutative if and only if M={0}.

In fact, it can be easily seen that S is a ring. Also

(g, a) +(a,a)=(a+a,a+a)=(0,0),
for a+a=1+1)a=0a=0. Further
{(a, @) —(a, ®)*}{ (b, B) — (b, B)*}
={(a, @) — (@, aax) } {(b, B) — (b, b8) }
=(0,a—aa) (0, B—5bB3)=(0,0),
which imply that S is a generalized Boolean-like ring.

Finally, if M+{0}, then there exists an element a+0 in M, and we
have

1,0)(0, a)=(0, a) + (0, 0),
and

0, a) (1,0)=(0,0),
which imply that S is noncommutative.

3. Weak idempotency

We recall that each element of a Boolean-like ring is weakly idem-
potent. This is extended to generalized Boolean-like rings. Namely,
we have

THEOREM 1. Each element a of a generalized Boolean-like ring
satisfies

at=a?

PROOF. This follows from the expansion of (a—a?)? for the charac-
teristic of a generalized Boolean-like ring is 2, and (a—a?)?=0.

From this we immediately have
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COROLLARY. For each element a of a generalized Boolean-like
ring, and for all nonnegative integer n

n n
ati=a"*?,

That is, there are at most 3 powers a, a’, @® of a which are distinct.

4. Nilpotency

We recall that, in a Boolean-like ring H, the set N of all nilpotent
elements of H is an ideal of H, and that the factor ring H/N is a Boolean
ring.

In this section, we show that these properties can be extended to gene-
ralized Boolean-like rings. To do so we need a preliminary result.

LEMMA 1. In a generalized Boolean-like ring, an element a is nil-
potent only if a*=0.

PROOF. If @ is nilpotent, then the least integer »# such that &"=0
must either be 1, 2 or 3 by the corollary to Theorem 1. But #+3, for
a*=0 implies a?*(=a*)=0 by Theorem 1, and 3 would not be least. Hence
if a+0, then #=2, and in any case a*=0.

LEMMA 2. Let R be a generalized Boolean-like ring and N the set
of all nilpotent elements of R. Then
N={a—a’|acsR}.

PROOF. We have (a—a?)?=0 by definition of generalized Boolean-
like ring, whence a—a? is nilpotent.

Conversely if b is nilpotent, then =0 by Lemma 1. Hence b=b—10?
which completes the proof.

We have the immediate corollary, which is not needed in the sequel.

COROLLARY. A generalized Boolean-like ring is Boolean if and
only if 0 is its sole nilpotent element.
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LEMMA 3. In a generalized Boolean-like ring, if a, b are any nil-
potent elements, then ab=0.

PRrROOF. This is an immediate consequence of Lemma 2 and the defi-
nition of a generalized Boolean-like ring.

We now are able to show

THEOREM 2. Let R be a generalized Boolean-like ving and N the
set of all nilpotent elements of R. Then

(1) N is an ideal of R;

(2) R/N is a Boolean ring.

PROOF. (1): Since R is periodic by Theorem 1, and since nilpotent
elements of R commute with each other by Lemma 3, this follows from
Theorem 4.3 in [1]; however, the full complexity of the proofs in [1] is
not required here, so we include a more elementary proof.

For any element a, & of N, we have

(a—b)*=0,
by Lemma 1 and Lemma 3.
For any element @ of N and » of R, e=(ar)? is idempotent by Theorem
1, and therefore re—ere is nilpotent. Hence we have
a(re—ere) =0,
by Lemma 3; that is, (ar)*=0, so we have
(ar)=(ar)*=0.
Since @ and ar are nilpotent, we have a(ra) =0 by Lemma 3, so (ra)?=0 as
well.
(2): For any element # of R, r—7? is nilpotent by Lemma 2.
Hence we have
r’=r (N),
which implies that the factor ring R/N is Boolean.

5. Idempotency

We recall that, in a Boolean-like ring, the idempotent elements form
its subring. However, in the case of generalized Boolean-like rings, this
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does not hold in general.

For instance, in the generalized Boolean-like ring S constructed in Sec-
tion 2, if M=+{0}, then there exists an element a+0 in M. Then (1, a),
(1,0) are idempotent, but (1,a)—(1,0) is not idempotent, for (1,a)—(1,0)
=(0,a) and (0, ®)?=(0,0) = (0, @).

In this section, we characterize generalized Boolean-like rings in which
the idempotent elements form a subring. We begin with the following
lemmata.

LEMMA 4. Let R be a generalized Boolean-like ring and J the set
of all idempotent elements of R. Then
J={a*lasR}.

PROOF. For any element a of R, a® is idempotent by Theorem 1.
Conversely if b is idempotent, then b=52

LEMMA 5. In a generalized Boolean-like ring R, each element can
be written as the sum of an idempotent element and a nilpotent element.

PROOF. For any element a of R, we have
a=a’+ (a—ad),

which is a demanded decomposition by Lemma 2 and Lemma 4.

We now have

THEOREM 3. Let R be a generalized Boolean-like ring, J the set
of all idempotent elements of R and N the set of all nilpotent elements
of R. Then the following conditions are equivalent:

(1) J is a subring of R;

(2) Each element of J commutes with each element of N;

(3) N is contained in the center of R;

4) R is commutative.

PROOF. (1)=>(2): For any element a of J and & of N, we have
(a+b)*=a+ab+ba,
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where (a+b)? and a are elements of J.| Hence ab+ba is an element of 1/,
for J is a subring of R. On the other hand, ab-+ba is an element of N
by Theorem 2. Therefore
ab+bacs /N N={0},
which implies ab=ba, for R is of characteristic 2.
(2)=>(3): For any element x of R, by Lemma 5 we can write
x=a-+b,
with some a of J and b of N. Then, for any element ¢ of N, we have
cx=ca+cb=ac+bc=xc.
(3)=>(4): R is periodic, and N is contained in the center of R.
Then this follows from Herstein's result in [4].
(4)=>(1): This is easily seen.

6. Uniqueness of additive decomposition

We recall that, in a Boolean-like ring, each additive decomposition
mentioned in Lemma 5 is unique. However, in the case of generalized
Boolean-like ring, this does not hold in general.

For instance, in the generalized Boolean-like ring S constructed in Sec-
tion 2, if M+{0}, then there exists an element a+0 in M. Then (1,a)
can be written in two ways as follows:

La)=0,0+0,a)=1,a)+(0,0),
where (1,0), (1, a) are idempotent, and (0, @), (0,0) are nilpotent.

In this section, we characterize generalized Boolean-like rings in which

each additive decomposition is unique. We begin with

LEMMA 6. Suppose that each element of a generalized Boolean-like
ring R can be uniquely written as the sum of an idempotent element and

a nilpotent element.
If a, b are idempotent elements of R and a—b is a nilpotent element

of R, then a=b.

PROOF. Put a—b=c¢, then we have
a=a+0=b+c,
where a, b are idempotent, and 0, ¢ are nilpotent. Hence the assumption

shows that e¢=b and ¢=0.
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We now are able to show

THEOREM 4. Let R be a generalized Boolean-like ring, | the set of
all idempotent elements of R and N the set of all nilpotent elements of
R.

Then each element of R can be uniquely written as the sum of an
idempotent element and a nilpotent if and only if R is commutative.

PROOF. Necessity: For any element @ of J and & of N, we have
(a+b)*=a-+ab+ba,

where (a+b)? a are elements of J and ab+ba is an element of N. Hence
Lemma 6 shows that ab+ba=0. Therefore we have ab=ba.

Since each element of J commutes with each element of N, Theorem 3
shows that R is commutative.

Sufficience: If

atb=a+b (a,a ], bbcN),

then a+a'=b+¥b. By Theorem 3 and Lemma 1 together with Theorem 2,

we have
(a+a)*=a+a'=b+b)?=0,
which implies that ¢=a’, and therefore b=0".
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