九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Generalized Boolean－like rings

Yakabe，Iwao
Department of Mathematics，College of General Education，Kyushu University
https：／／doi．org／10．15017／1449033

出版情報：九州大学教養部数学雑誌．13（2），pp．79－85，1982－12．九州大学教養部数学教室 バージョン：権利関係：

Generalized Boolean-like rings

Iwao Yakabe
(Received September 4, 1982)

1. Introduction

In this paper we introduce the concept of generalized Boolean-like rings which is a generalization of the concept of Boolean-like rings. It is the purpose of this paper to initiate a study of generalized Boolean-like rings.

Boolean-like rings were introduced by A.L. Foster in [2]. Many properties of these rings have been studied (also see [3], [5], [6], [7] and [8]). The following properties of Boolean-like rings are well known:
(a) Each element is weakly idempotent;
(b) The nilpotent elements form an ideal;
(c) The idempotent elements form a subring;
(d) Each element can be uniquely written as the sum of an idempotent element and a nilpotent element.

Now, in Section 2, we introduce generalized Boolean-like rings and give an example of a generalized Boolean-like ring which is noncommutative.

In Section 3 and Section 4, we extend the above properties (a) and (b) to generalized Boolean-like rings.

In generalized Boolean-like rings, the properties (c) and (d) do not hold in general. We characterize generalized Boolean-like rings with the property (c) or (d) in Section 5 and Section 6, respectively.

2. Definition and example

A Boolean-like ring introduced by Foster [2] is a commutative ring with identity of characteristic 2 in which $(1-a) a(1-b) b=0$ holds for all elements a, b of the ring. Omitting the commutativity and the existence of identity in Boolean-like rings, we get the following concept:

A ring R is called a generalized Boolean-like ring if R is of characteristic 2 and $\left(a-a^{2}\right)\left(b-b^{2}\right)=0$ holds for all a, b of R.

Every Boolean ring is a generalized Boolean-like ring. Of course,
every Boolean-like ring is a generalized Boolean-like ring. These rings are commutative. We have noncommutative one as follows:

Let B be a Boolean ring with identity, M a unitary left B-module and $S=B \oplus M$ the direct sum of B, M as additive groups. Define a multiplication in S by

$$
(a, \alpha)(b, \beta)=(a b, a \beta)
$$

for all a, b of B and α, β of M. Then S is a generalized Boolean-like ring, and S is commutative if and only if $M=\{0\}$.

In fact, it can be easily seen that S is a ring. Also

$$
(a, \alpha)+(a, \alpha)=(a+a, \alpha+\alpha)=(0,0)
$$

for $\alpha+\alpha=(1+1) \alpha=0 \alpha=0$. Further

$$
\begin{aligned}
& \left\{(a, \alpha)-(a, \alpha)^{2}\right\}\left\{(b, \beta)-(b, \beta)^{2}\right\} \\
= & \{(a, \alpha)-(a, a \alpha)\}\{(b, \beta)-(b, b \beta)\} \\
= & (0, \alpha-a \alpha)(0, \beta-b \beta)=(0,0),
\end{aligned}
$$

which imply that S is a generalized Boolean-like ring.
Finally, if $M \neq\{0\}$, then there exists an element $\alpha \neq 0$ in M, and we have

$$
(1,0)(0, \alpha)=(0, \alpha) \neq(0,0)
$$

and

$$
(0, \alpha)(1,0)=(0,0),
$$

which imply that S is noncommutative.

3. Weak idempotency

We recall that each element of a Boolean-like ring is weakly idempotent. This is extended to generalized Boolean-like rings. Namely, we have

ThEOREM 1. Each element a of a generalized Boolean-like ring satisfies

$$
a^{4}=a^{2}
$$

Proof. This follows from the expansion of $\left(a-a^{2}\right)^{2}$, for the characteristic of a generalized Boolean-like ring is 2, and $\left(a-a^{2}\right)^{2}=0$.

From this we immediately have

Corollary. For each element a of a generalized Boolean-like ring, and for all nonnegative integer n

$$
a^{n+4}=a^{n+2} .
$$

That is, there are at most 3 powers a, a^{2}, a^{3} of a which are distinct.

4. Nilpotency

We recall that, in a Boolean-like ring H, the set N of all nilpotent elements of H is an ideal of H, and that the factor ring H / N is a Boolean ring.

In this section, we show that these properties can be extended to generalized Boolean-like rings. To do so we need a preliminary result.

Lemma 1. In a generalized Boolean-like ring, an element a is nilpotent only if $a^{2}=0$.

Proof. If a is nilpotent, then the least integer n such that $a^{n}=0$ must either be 1,2 or 3 by the corollary to Theorem 1. But $n \neq 3$, for $a^{3}=0$ implies $a^{2}\left(=a^{4}\right)=0$ by Theorem 1, and 3 would not be least. Hence if $a \neq 0$, then $n=2$, and in any case $a^{2}=0$.

Lemma 2. Let R be a generalized Boolean-like ring and N the set of all nilpotent elements of R. Then

$$
N=\left\{a-a^{2} \mid a \in R\right\} .
$$

Proof. We have $\left(a-a^{2}\right)^{2}=0$ by definition of generalized Booleanlike ring, whence $a-a^{2}$ is nilpotent.

Conversely if b is nilpotent, then $b^{2}=0$ by Lemma 1 . Hence $b=b-b^{2}$, which completes the proof.

We have the immediate corollary, which is not needed in the sequel.

Corollary. A generalized Boolean-like ring is Boolean if and only if 0 is its sole nilpotent element.

Lemma 3. In a generalized Boolean-like ring, if a, b are any nilpotent elements, then $a b=0$.

Proof. This is an immediate consequence of Lemma 2 and the definition of a generalized Boolean-like ring.

We now are able to show

Theorem 2. Let R be a generalized Boolean-like ring and N the set of all nilpotent elements of R. Then
(1) N is an ideal of R;
(2) R / N is a Boolean ring.

Proof. (1): Since R is periodic by Theorem 1, and since nilpotent elements of R commute with each other by Lemma 3, this follows from Theorem 4.3 in [1]; however, the full complexity of the proofs in [1] is not required here, so we include a more elementary proof.

For any element a, b of N, we have

$$
(a-b)^{2}=0,
$$

by Lemma 1 and Lemma 3.
For any element a of N and r of $R, e=(a r)^{2}$ is idempotent by Theorem 1 , and therefore $r e$-ere is nilpotent. Hence we have

$$
a(r e-e r e)=0,
$$

by Lemma 3 ; that is, $(a r)^{3}=0$, so we have

$$
(a r)^{2}=(a r)^{4}=0 .
$$

Since a and $a r$ are nilpotent, we have $a(r a)=0$ by Lemma 3 , so $(r a)^{2}=0$ as well.
(2): For any element r of $R, r-r^{2}$ is nilpotent by Lemma 2.

Hence we have

$$
r^{2} \equiv r(N),
$$

which implies that the factor ring R / N is Boolean.

5. Idempotency

We recall that, in a Boolean-like ring, the idempotent elements form its subring. However, in the case of generalized Boolean-like rings, this
does not hold in general.
For instance, in the generalized Boolean-like ring S constructed in Section 2, if $M \neq\{0\}$, then there exists an element $\alpha \neq 0$ in M. Then (1, α), $(1,0)$ are idempotent, but $(1, \alpha)-(1,0)$ is not idempotent, for $(1, \alpha)-(1,0)$ $=(0, \alpha)$ and $(0, \alpha)^{2}=(0,0) \neq(0, \alpha)$.

In this section, we characterize generalized Boolean-like rings in which the idempotent elements form a subring. We begin with the following lemmata.

Lemma 4. Let R be a generalized Boolean-like ring and J the set of all idempotent elements of R. Then

$$
J=\left\{a^{2} \mid a \in R\right\}
$$

Proof. For any element a of R, a^{2} is idempotent by Theorem 1. Conversely if b is idempotent, then $b=b^{2}$.

Lemma 5. In a generalized Boolean-like ring R, each element can be written as the sum of an idempotent element and a nilpotent element.

Proof. For any element a of R, we have

$$
a=a^{2}+\left(a-a^{2}\right),
$$

which is a demanded decomposition by Lemma 2 and Lemma 4.

We now have

Theorem 3. Let R be a generalized Boolean-like ring, J the set of all idempotent elements of R and N the set of all nilpotent elements of R. Then the following conditions are equivalent:
(1) J is a subring of R;
(2) Each element of J commutes with each element of N;
(3) N is contained in the center of R;
(4) R is commutative.

Proof. (1) \Rightarrow (2): For any element a of J and b of N, we have

$$
(a+b)^{2}=a+a b+b a
$$

where $(a+b)^{2}$ and a are elements of $J .1$ Hence $a b+b a$ is an element of J, for J is a subring of R. On the other hand, $a b+b a$ is an element of N by Theorem 2. Therefore

$$
a b+b a \in J \cap N=\{0\},
$$

which implies $a b=b a$, for R is of characteristic 2 .
(2) \Rightarrow (3): For any element x of R, by Lemma 5 we can write $x=a+b$,
with some a of J and b of N. Then, for any element c of N, we have $c x=c a+c b=a c+b c=x c$.
(3) $\Rightarrow(4): R$ is periodic, and N is contained in the center of R.

Then this follows from Herstein's result in [4].
(4) $\Rightarrow(1)$: This is easily seen.

6. Uniqueness of additive decomposition

We recall that, in a Boolean-like ring, each additive decomposition mentioned in Lemma 5 is unique. However, in the case of generalized Boolean-like ring, this does not hold in general.

For instance, in the generalized Boolean-like ring S constructed in Section 2, if $M \neq\{0\}$, then there exists an element $\alpha \neq 0$ in M. Then ($1, \alpha$) can be written in two ways as follows:

$$
(1, \alpha)=(1,0)+(0, \alpha)=(1, \alpha)+(0,0),
$$

where $(1,0),(1, \alpha)$ are idempotent, and $(0, \alpha),(0,0)$ are nilpotent.
In this section, we characterize generalized Boolean-like rings in which each additive decomposition is unique. We begin with

Lemma 6. Suppose that each element of a generalized Boolean-like ring R can be uniquely written as the sum of an idempotent element and a nilpotent element.

If a, b are idempotent elements of R and $a-b$ is a nilpotent element of R, then $a=b$.

Proof. Put $a-b=c$, then we have

$$
a=a+0=b+c,
$$

where a, b are idempotent, and $0, c$ are nilpotent. Hence the assumption shows that $a=b$ and $c=0$.

We now are able to show

Theorem 4. Let R be a generalized Boolean-like ring, J the set of all idempotent elements of R and N the set of all nilpotent elements of R.

Then each element of R can be uniquely written as the sum of an idempotent element and a nilpotent if and only if R is commutative.

Proof. Necessity: For any element a of J and b of N, we have

$$
(a+b)^{2}=a+a b+b a,
$$

where $(a+b)^{2}, a$ are elements of J and $a b+b a$ is an element of N. Hence Lemma 6 shows that $a b+b a=0$. Therefore we have $a b=b a$.

Since each element of J commutes with each element of N, Theorem 3 shows that R is commutative.

Sufficience: If

$$
a+b=a^{\prime}+b^{\prime} \quad\left(a, a^{\prime} \in J, b, b^{\prime} \in N\right),
$$

then $a+a^{\prime}=b+b^{\prime} . \quad$ By Theorem 3 and Lemma 1 together with Theorem 2, we have

$$
\left(a+a^{\prime}\right)^{2}=a+a^{\prime}=\left(b+b^{\prime}\right)^{2}=0,
$$

which implies that $a=a^{\prime}$, and therefore $b=b^{\prime}$.

References

[1] H.E. Bell: On quasi-periodic rings, Arch. Math. 36 (1981), 502-509.
[2] A.L. Foster: The theory of Boolean-like rings, Trans. Amer. Math. Soc. 59 (1946), 166-187.
[3] F. Harary: Atomic Boolean-like rings with finite radical, Duke Math. J. 17 (1950), 273-276.
[4] I. N. Herstein: A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620.
[5] V. Swaminathan: On Foster's Boolean like rings, Math. Sem. Notes Kobe Univ. 8 (1980), 347-367.
[6] : Geometry of Boolean like rings, ibid. 9 (1981), 195-214.
[7] : A Stone's representation theorem for Boolean like rings, ibid. 9 (1981), 215-218.
[8] : Structure of Boolean like rings, ibid. 9 (1981), 471-493.

