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Introduction

The recent algorithms proposed for Scene Text Recognition (STR) in English perform with an average Word
Recognition Rate (WRR) of 92.9% on 4 benchmark datasets.

GCAM 2019 MJ+ST 93.9 91.3 95.3 95.7
MJ + ST + SA + real

GTC [Hu et al.] 2020 (5.6M) 95.8 92.9 95.5 94 .4

Luo et al. 2020 MJ+ ST 95.4 92.7 96.3 94.8

Litman et al. 2020 MJ+ ST+ SA 93.7 92.7 96.3 93.9

Table 1 - Performance comparison of recognition algorithms on benchmark datasets
(the values correspond to the “No lexicon” results)

d However, these models have not performed well on non-Latin datasets. The domain of STR in non-
Latin languages has not been thoroughly explored as much as English.

1 We set new benchmarks for 6 different Indian Languages (Next Slide).



Gujarati

Hindi / Devanagari

Bounding Box

222001 242 alcnch

?HICHR

Baseline
Predictions
Malayalam —  Our Model
VA= ST o T Predictions
| R T RN ";§;
=S S ~

The correct predictions are in green, and the wrong predictions or missing characters are highlighted in color.



uu&mmm_eum

2_5 &L06T0TL_6MLD

2220 Y9 ANA\

-

UH R ez

tetkSign*Boar

‘ ag)a] il_632@50 ‘e)ce,(ma’) SUSIwod ‘



Motivation




Fragal e M dristiibutip@iCurve - Hindi

- e B, 3 b B E/ B:’ I?C,’g";( E’Ff E/ rgE/ EE/E/E?E

Motivation

d We compared n-grams of a corpus of 2
million words of the six languages in this
study and found many striking similarities.

[ The overall distribution curves of n-grams seen
similar for all the languages. (Ex: Fig.1, Fig.2)
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Motivation
English /¥

“Use of transfer learning boosts the performance of the task
amongst languages.”

Similar characters

O Based on the word length statistics and the similarity
between scripts, we choose the below mentioned order for
transfer learning.

. . o “Shirorekha”
* Gujarati -> Hindi (top-connegtorline) ./ B
* Hindi -> Bangla appearance

= Bangla -> Tamil
= Tamil -> Telugu
* Telugu -> Malayalam
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Languages & Data

(d Our study focuses on 6 most popular Indian languages - Bengali, Gujarati, Hindi, Malayalam, Tamil,
Telugu.

d We create >2.5 million synthetic data for training recognition algorithms using the
methodology proposed by Mathew et al.

Language #lmages Train Test (n, o) Word Length #Fonts
English 17.5M 17M 0.5M 5.12,2.99 >1200
Gujarati 2.5M 2M 0.5M 5.95,1.85 12
Hindi 2.5M 2M 0.5M 8.73,3.10 97
Bengali 2.5M 2M 0.5M 8.48, 2.98 68
Tamil 2.5M 2M 0.5M 10.92,3.75 158
Telugu 5M 5M 0.5M 9.75, 3.43 62
Malayalam 7.5M ™M 0.5M 12.29,4.98 20

[[1]: Mathew et al., “Benchmarking Scene Text Recognition in Devanagari, Telugu and Malayalam,” MOCR,2017 ]
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Visualizations
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Activations pertaining to English transfer are shown in red boxes, which are not happening in better models, i.e. (Hindi
and Gujarati - Hindi)
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Pipeline : Overview

CRNN
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Pipeline : Overview

STAR-Net
(with a Correction BiLSTM)
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Experiments

Real Dataset

v Finetuning on  WESAIsT:

Synthetic Training Real D
> eal Data

Dataset

If real training
data exists

Y

Testing




Results




Results : Synthetic Data

Individual CRNN STAR-Net Trained with CRNN STAR-Net
Language (WRR) (WRR) Transfer Learning (WRR) (WRR)
Model o P
, : @ : : : o
Gujarati (8185 91.40 )« English— Gujarati  (77.06 90.90
\
Hindi — Gujarati \84.21 92.81
f o~ >
Hindi Q 73.15 83.93 )| English — Hindi < 70.12 80.90
\ — b —
Gujarati — Findr——( 73.12" 84.32
~—
Bangla 70.76 82.79 Hindi — Bangla 70.22 82.81
Tamil 48.19 79.90 Bangla — Tamil 4474 81.73
Telugu 58.01 71.97 Tamil=Telugu 56.24 74.04
_— P—
Malayalam (70.56 82.10 Telugu — Malayalam qﬁ.78 77.97 l
\ \




Results : Real Data

PERFORMANCE (WRR) ON
BANGLA DATASET — MLT-17
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[[1]: Busta et al., “E2E-MLT-an Unconstrained End-to-End Method for Multi-Language Scene Text,” ACCV, 2018]



RECOGNITION RATES

RECOGNITION RATES
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[ [1]: Mathew et al., “Benchmarking Scene Text Recognition in Devanagari, Telugu and Malayalam,” MOCR,2017 ]
[ [2]: Saluja et al., “: OCR On-the-Go: Robust End-to-end Systems for Reading License Plates and Street Signs,” ICDAR 2019]
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Conclusion

dTransfer learning boosts performance over synthetic and real-world datasets,
thereby setting new benchmarks for STR tasks in Indian languages.

(dSources of scene-text in Indian languages involve hand-painted signboards and wall
paintings.

dThere is a potential to utilize data across different modalities (ex. handwritten text)
to augment recognition rates.

dThis possibility of developing an all-in-one model for the Indian languages can be
explored in the future.



THANK YOU

Please contact us @ {sanjana.gunna, rohit.saluja}@iiit.ac.in for any further discussion or questions.
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