DRAFT INTERNATIONAL STANDARD
 ISO/DIS 3219-1

Rheology
 Part 1:
 General terms and definitions for rotational and oscillatory rheometry

Réologie -
Partie 1: Termes et définitions générales pour rhéométrie rotational et oscillatoire

ICS: 83.080.01

Member bodies are requested to consult relevant national interests in ISO/TC 61/SC 5 before casting their ballot to the e-Balloting application.

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

This document is circulated as received from the committee secretariat.

ISO/CEN PARALLEL PROCESSING

COPYRIGHT PROTECTED DOCUMENT
(C) ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 - Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 227490111
Fax: +41 227490947
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland

Contents

Foreword iv
1 Scope 1
2 Normative references 1
3 Terms and definitions 1
4 Symbols and units 8
(informative) Alphabetical index 10

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information givenfor the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaping of ISO specific terms and expressions related to conformity assessment, as well as informationabout ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/ iso/foreword.html.

This document was prepared by Technical Committe TSOTG35, Paints and varnishes, Subcommittee SC 9, Generaltest methods for paints andvarnishes, in çoperation with ISO/TC 61, Plastics, Subcommittee SC 5, Physical chemical properties.

A list of all parts in the ISO 3219 series can be founiden the ISO website.
Any feedback or questions on this documentshould be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Rheology -

Part 1:
 General terms and definitions for rotational and oscillatory rheometry

1 Scope

This document specifies general terms and definitions that are used in the context of rotational and oscillatory rheometry.

Other terms and definitions can be found in the other parts of the standards series where they are used.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referced document.(including any amendments) applies.

There are no normative references in this document. S°

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1

absolute value of the complex shear modulus
$\left|G^{*}\right|$
ratio of the amplitude of the shear stress τ_{0} and the amplitude of the shear $\operatorname{strain} \gamma_{0}$
Note 1 to entry: The absolute value of the complex shear modulus $\left|G^{*}\right|$ has the unit pascal (Pa).

3.2

absolute value of the complex shear viscosity
$\left|\eta^{*}\right|$
ratio of the amount of the complex shear modulus $\left|G^{*}\right|$ and the angular frequency ω
Note 1 to entry: The absolute value of the complex shear viscosity $\left|\eta^{*}\right|$ has the unit pascal multiplied by seconds (Pa•s).

3.3

amplitude sweep
oscillatory test with variable amplitude at a constant angular frequency ω

3.4
 angular displacement
 Φ

angular measure where the angle is indicated by the length of the arc
Note 1 to entry: The angular displacement has the unit radians (rad).

3.5
 angular frequency
 ω
 product of full circle angle 2π and frequency f

Note 1 to entry: The angular frequency has the unit radians per second (rad $\cdot \mathrm{s}^{-1}$), which is the SI unit, or reciprocal seconds $\left(s^{-1}\right)$, which also is very common.

3.6
 angular velocity
 Ω

temporal change of the angular displacement Φ
Note 1 to entry: The angular velocity Ω has the unit radians per second $\left(\mathrm{rad} \cdot \mathrm{s}^{-1}\right)$, the angular displacement Φ has unit radian (rad).

Note 2 to entry: The angular velocity Ω, in radians per second $\left(f \cdot a d \cdot s^{-1}\right)$, is linked to ε eotational speed n, in reciprocal seconds $\left(\mathrm{s}^{-1}\right)$, via the following relation:

$$
\Omega=2 \pi \cdot n
$$

3.7

continuous ramp

type of test where the specified variable from the initial value to the final value varies monotonously and constantly during the test

Note 1 to entry: The continuous ramp is performed by finear or logarithmic presetting.
Note 2 to entry: The alternative to the continuous ramp is the step ramp.

3.8
 elastic behaviour elasticity

property of a material to show reversible deformation and storage of energy

3.9

flow curve
graphical representation of the relation between shear stress τ and shear rate $\dot{\gamma}$

3.10

frequency
f
oscillation per unit of time
Note 1 to entry: The frequency f has the unit hertz (Hz), where: 1 Hz is 1 oscillation per second.
Note 2 to entry: The frequency f, in hertz (Hz), is linked to the angular frequency ω via the following relation:

$$
f=\frac{\omega}{2 \pi}
$$

3.11

frequency sweep
oscillatory test with variable angular frequency ω at a constant amplitude

3.12
 ideal-elastic behaviour
 Hookean behaviour

property of a material to show an immediate, fully reversible recovery after deformation

3.13
 in-phase component of the complex shear viscosity dynamic viscosity
 η^{\prime}
 real part of the complex shear viscosity η^{*}

Note 1 to entry: The dynamic viscosity η^{\prime} has the unit pascal multiplied by seconds (Pa•s).

3.14
 kinematic viscosity
 v
 ratio of shear viscosity η and density ρ

Note 1 to entry: The kinematic viscosity v has the unit square metres per second $\left(\mathrm{m}^{2} \cdot \mathrm{~s}^{-1}\right)$.

3.15
 laminar flow

flow where infinitesimally thin layers are moved in parallel to each other
Note 1 to entry: All calculations of rheological parameters for absolute measuring geometries (see ISO 3219-2) only apply on the assumption of laminar flow.

3.16
 linear viscoelastic range (LVR)

range where the shear strain γ is proportional to theshear stress τ

3.17
 linearity limit

$\left[\tau_{\mathrm{L}}, \gamma_{\mathrm{L}}\right]$
point on the curve $\tau(\gamma)$ or $\gamma(\tau)$, above which the ratio of shear stress τ and shear strain γ is not anymore constant

Note 1 to entry: The linearity limit isgiven as shear stress τ_{L} with the unit pascal (Pa) and as shear strain γ_{L} with the unit 1.
3.18
loss angle
phase angle
δ
phase shift between shear stress τ and shear strain γ at a harmonic steady-state excitation
Note 1 to entry: The loss angle δ has the unit degrees (${ }^{\circ}$) or radians (rad).

3.19

loss factor
damping factor
tan δ
ratio of shear loss modulus $G^{\prime \prime}$ and shear storage modulus G^{\prime}
Note 1 to entry: The loss factor $\tan \delta$ has the unit 1.

```
3.20
Newtonian flow behaviour
ideal-viscous flow behaviour
behaviour where the shear viscosity }\eta\mathrm{ is independent of shear rate }\dot{\gamma}\mathrm{ , shear stress }\tau\mathrm{ and time t
```


3.21
 Newtonian standard sample

sample of a Newtonian liquid whose kinematic viscosity has been measured at one or more temperatures using standard viscometers and whose viscosity values and its traceability to the national standard for the viscosity unit have been documented

Note 1 to entry: Capillary viscometers are used as standard viscometers.
Note 2 to entry: Precondition for a Newtonian liquid is that the change in viscosity with time is sufficiently small.

3.22

non-Newtonian flow behaviour

behaviour where the shear viscosity η is dependent either on shear rate $\dot{\gamma}$ and shear stress τ or on shear rate $\dot{\gamma}$, shear stress τ and time t
3.23

normal force

F_{n}
force acting perpendicularly to the surface of a volume element
Note 1 to entry: The normal force F_{n} has the unit newton (N).
Note 2 to entry: Normal forces can either be triggered by shear deformation of the sample or be applied by the rheometer. In addition to this, not shear induced normal forces can be caused by the sample preparation or by changes during the measurement (e.g. swelling, drying, andshirinking).

3.24
 oscillatory test

test where both shear planes of the measuring geometryarenonically oscillate around the same axis of rotation

3.25

oscillatory test with controlled (shear) strain
oscillatory test with controlled (shear) deformation (CD)
test where the amplitude of the shear deformation ψ_{0} and the angular frequency ω are given
3.26
oscillatory test with controlled (shear) stress (CS)
test where the amplitude of the shear stress τ_{0} and the angular frequency ω are given
3.27
out-of-phase component of the complex shear viscosity
$\eta^{\prime \prime}$
imaginary part of the complex shear viscosity η^{*}
Note 1 to entry: The out-of-phase component of the complex shear viscosity η "has the unit pascal multiplied by second (Pa•s).

3.28

rheology
science of deformation behaviour and flow behaviour of materials

3.29
 rheometry
 part of rheology that covers the measurement of deformation behaviour and flow behaviour of materials

3.30
rheopexy
rheopectic behaviour
reversible, time-dependent increase of shear viscosity η at a constant shear rate $\dot{\gamma}$ or shear stress τ
Note 1 to entry: Details on the determination of rheopexy see ISO 3219-3.

```
3.31
rotational speed
rotational frequency
n
number of rotations per unit time
```

Note 1 to entry: The rotational speed n has the SI unit reciprocal seconds (s^{-1}), in practice it is often given in reciprocal minutes $\left(\mathrm{min}^{-1}\right)$.

3.32
 rotational test

test where both shear planes of the measuring geometry are rotating relative to each other around the same axis of rotation
3.33
rotational test with controlled (shear) rate (CR)
test where the shear rate $\dot{\gamma}$ is given as a function of time t
Note 1 to entry: In case there is no absolute measuring geometry (see ISO 3219-2) used, it is a speed-controlled rotational test.

3.34
 rotational test with controlled (shear) stress (CS)

test where the shear stress τ is given as a function of time t
Note 1 to entry: In case there is no absolute measuringgeometry (see IS0 3219-2) used, it is a torque-controlled rotational test.
3.35
shear compliance
J
ratio of shear deformation γ and shear stress τ
Note 1 to entry: The shear compliance J is the reverse of the shear modulus G.
Note 2 to entry: The shear compliance J has the unit reciprocal pascal $\left(\mathrm{Pa}^{-1}\right)$.
3.36
shear loss modulus
viscous shear modulus
G"
measure of the viscous behaviour of a viscoelastic material
Note 1 to entry: The shear loss modulus $G^{\prime \prime}$ has the unit pascal (Pa).
Note 2 to entry: The shear loss modulus $G^{\prime \prime}$ is the imaginary part of the complex shear modulus G^{*}.
3.37
shear modulus
G
ratio of shear stress τ and shear strain γ
Note 1 to entry: The shear modulus G has the unit pascal (Pa).
3.38
shear rate
shear strain rate
shear deformation rate
$\dot{\gamma}$

