Glyceria maxima: Development of an OECD Test Guideline

Joanna Davies (Syngenta, UK)

Gertie Arts (Wageningen Environmental Research, NL)

Rena Isemer (Bayer AG, DE)

Johanna Kubitza (BASF SE, DE)

Monika Ratte (ToxRat, DE)

May 2020

Courtesy of Syngenta

Background

Glyceria maxima (Hartm.) Holmb. (Reed sweet grass)

- Emergent, rooted, rhizomatous
- Perennial reaching 2m in height

Figure 1. Known global distribution of Glyceria maxima. Map from GBIF Secretariat (2018).

EU Directive 1107: Annex II 8.2.6 & EFSA Aquatic GD:

Tests with an additional macrophyte species are required when:

- Lemna and algae are not sensitive ($EC_{50} > 1 \text{ mg/L}$)
- OR sediment is an important exposure route
- test species should be *Glyceria* for compounds that primarily affect monocots in terrestrial plant trials

Glyceria Work Group – Project History

Objective

- To ring-test a protocol for *Glyceria maxima* in a water-sediment system
- To deliver an OECD Test Guideline

Ring-test Objectives

1. Propagation method	 Establish a reproducible method for maintaining stock plants and propagation of test plants from rhizome sections 	
2. Test duration	 Ring-test 1 Assessments at 14 and 21 days 	
3. Assessment parameters	 Ring-test 1: leaf length <i>versus</i> shoot height Ring-test 2 : shoot v root fresh & dry weights 	
4. Understand variability	 Determine the experimental factors driving variability Replication required to achieve acceptable control coefficients of variation of <35%)

Key features of the protocol

Test parameter	Ring-test 1: Isoproturon	Ring-test 2: Imazapyr
Establishment phase	3 days	1 day
Exposure phase	14 and 21 days	14 days
Test vessel	Plant pots or beakers	Plant pots with holes
Starting material	1-3 shoot per pot	1 shoot per pot
Water depth over sediment	3 cm	5 cm
Experimental design	6 control reps & 4 reps of 5 concentrations	6 control reps & 4 reps of 6 concentrations
Assessment parameters	Shoot height, Leaf length (LL), Shoot FW, Shoot DW	Leaf length (LL), Shoot FW, Shoot DW Root FW, Root DW
Test substance analyses	None	0, 7 and 14 days
Temperature	22 ± 2°C	23 ± 2°C
Number of participants	13 labs	11 labs

Objective 1: Propagation

Seedlings grown from seed

Experimental shoot production

Courtesy of BASF, WER, Syngenta

Objective 2: Test duration

Ring-test 1

 Assessments of SFW, SDW, SH and LL were made at 14 and 21 days

Results (n = 10 to 11)

- Control plants achieved >2-fold increase in FW, DW & LL within the minimum 14-day test duration
- Doubling time for all growth parameters increased with increasing test duration from 14 to 21 days
 - due to slower growth rate between days 14 & 21
 - trend may be caused by nutrient limitations

Conclusion

• 14-day test is sufficient to achieve adequate growth

Objective 3: Assessment parameters

Ring-test 1

Assessments were made of SFW, SDW, SH and LL

Results (n = 10 to 11)

- Yield CoVs are higher than growth rate CoVs.
- For growth rate, CoVs for most endpoints were <35%
- For yield, only LL has a CoV of <35%
- High CoVs are typically correlated with larger plant size and high variability at test initiation.

Conclusions

- LL provides a more robust measure than SH
- Stricter recommendations on plant size at test initiation
- Modifications to test design are necessary

Objective 3: Assessment parameters

Ring-test 2

- Assessments of Shoot & root FW & DW were made at 0 and 14 days
- Comparison of control CoVs
- Ability to detect effects of imazapyr (i.e. minimum detectable differences, MDDs)

Results (n = 10 to 11)

- Shoots & leaves typically doubled in weight & length within 14 days, whereas roots frequently failed to double in weight (data not shown).
- Repeatability CoVs for control (or representative) plants at test initiation, control yields & control growth rates were <40% for shoots but >40% for roots
- For root variables, only effects >40% could typically be detected

Conclusion

 Root variables are less reliable than shoot variables, due to high variability

Repeatability

Objective 4 : Understanding variability

Comparison of Variability between Ring-test 1 (IPU) & Ring-test 2 (IMA)

Results

- Control growth rates for all shoot parameters were similar in both ring-tests (data not shown).
- Repeatability CoVs were similar or slightly improved in Ring-test 2 but reproducibility CoVs were typically worse

Conclusion

 Intra-laboratory variability must be reduced to meet validity criterion of <35% for control CoVs

Next steps

Ring-test 3 with Imazapyr

- Rescheduled for Summer 2021
- Objective Significantly improve CoVs
 - reducing variability in starting plant material
 - increasing standardisation of experimental conditions

Training in plant propagation and experimental techniques

- Workshop: postponed to Spring 2021
 - Hosted by Mesocosm GmbH & GG BioTech Design GmbH; Sponsored by

- Online training videos
 - Request to all participants if testing *Glyceria* in 2020, please consider sharing videos and/or photographs of work in progress
 - Details of preferred file formats and data platform will follow shortly

OECD Expert Group

• Updated version of protocol circulated for review in April 2020

Acknowledgements

Workgroup organisers

- Joanna Davies (Syngenta, UK)
- Gertie Arts (Wageningen Environmental Research, NL)
- Johanna Kubitza (BASF SE, DE)
- Rena Isemer (Bayer AG, DE)

Statistical support

- Monika Ratte (ToxRat GmbH, DE)
- Funded by ECPA

Test item supply

- Bayer AG (isoproturon)
- BASF (imazapyr)

Participating labs

- BASF SE (DE)
- Bayer AG (DE)
- BioChem Agrar GmbH (DE)
- ECT Oekotoxikologie GmbH (DE)
- Eurofins (DE)
- FERA (UK)
- Ibacon GmbH (DE)
- Fraunhofer IME (DE)
- Mesocosm GmbH (DE)
- NOACK Laboratorien GmbH (DE)
- Rheinland Pfalz AgroScience GmbH (DE)
- Smithers Viscient (US)
- Toxi-Coop (HU)
- Wageningen Environmental Research (NL)