
C
ER

N
-T

H
ES

IS
-2

01
2-

12
1

//
20

12

Olivier Canévet
Élève ingénieur en 3é année à TELECOM Bretagne

olivier.canevet@telecom-bretagne.eu

Evaluating ranking methods on

heterogeneous digital library collections

Master Recherche en Sciences, Technologies, Santé
de Télécom Bretagne en cohabilitation conjointe avec l'Université de Rennes1

Mention "Électronique et Télécommunications"
Spécialité Signal, Image, Systèmes Embarqués, Automatique

April � September 2012

Advisors

Jean-Yves Le Meur Ludmila Marian

jean-yves.le.meur@cern.ch ludmila.marian@cern.ch

Thierry Chonavel

thierry.chonavel@telecom-bretagne.eu

2

Abstract

In the frame of research in particle physics, CERN has been developing
its own web-based software Invenio to run the digital library of all the docu-
ments related to CERN and fundamental physics. The documents (articles,
photos, news, thesis, . . .) can be retrieved through a search engine.

The results matching the query of the user can be displayed in several
ways: sorted by latest �rst, author, title and also ranked by word similarity.

The purpose of this project is to study and implement a new ranking
method in Invenio: distributed-ranking (D-Rank). This method aims at
aggregating several ranking scores coming from di�erent ranking methods
into a new score. In addition to query-related scores such as word similarity,
the goal of the work is to take into account non-query-related scores such
as citations, journal impact factor and in particular scores related to the
document access frequency in the database. The idea is that for two equally
query-relevant documents, if one has been more downloaded for instance, it
should be displayed in front of the other.

The approach that we studied consists in using logistic regression as
the aggregation process, which is performed through a weighted sum of the
scores to be aggregated. Usually, optimal weights can be computed based
on the data. In our case, we used the user feedback: the search activity has
been recorded for six months (queries made, displayed, downloaded docu-
ments,. . .) and we divided this data set in two: one to estimate the optimal
coe�cients and the other to test them. The test consisted in reranking the
queries made by the users with the optimal coe�cients. Then we compared
the results with the initial ranking to see if the documents which were clicked
at the time were ranked higher.

The optimal coe�cients obtained are coherent in the sense that nega-
tive attributes for a document got a negative coe�cient in the logistic for-
mula. But the order of magnitude between the logistic coe�cients were un-
expected, as query-relevant score was much lower than the others weights.
The re-ranking of the queries showed some improvement for records which
had already been downloaded in the database and which were ranked higher.

4

Résumé

Dans le contexte de recherche en physique des particles, le CERN développe
sa propore application web Invenio pour stocker et gérer une bibliothèque
numérique de données hétérogènes, concernant principalement la physique
des particles et l'actualité du CERN. Les documents sont accessibles via un
moteur de recherche.

Les documents correspond à la requête faite par un utilisateur peuvent
être a�chés de di�érentes manières: ils peuvent être triés selon leur date (le
plus récent en premier), selon l'auteur ou encore le titre, ou bien ils peuvent
être hierarchisés suivant leur pertinence par rapport à la requête.

La �nalité de ce projet est d'étudier et d'implémenter dans Invenio une
nouvelle méthode de hiéarchisation des résultats : distributed-ranking (D-
Rank). Cette méthode consiste à aggréger di�érents scores provenant de
di�érents classements pour obtenir un nouveau classement. En plus des at-
tributs relatifs au contenu du document lui-même (comme la pertinence par
rapport à la requête, le nombre de citations ou le journal impact factor), on
cherche à prendre en compte également des données statistiques sur l'accès
à un document. En e�et, même si un document sera moins pertinent qu'un
autre par rapport à la requête, le fait d'avoir été plus consulté par les util-
isateurs doit lui conférer un certain avantage et ce dernier pourrait donc être
mieux classé.

D-Rank utilise la régression logistique pour l'aggrégation des scores. Cet
outil statistique suppose l'utilisation de poids sur chaque attribut que l'on
souhaite aggréger, poids qui peuvent être calculés grâce aux données pour
être optimaux. Dans notre cas, nous utilisons les requêtes faites par les
utilisateurs pour calculer ces coe�cients, la �nalité étant de classer en pre-
miers les documents qui ont le plus de chances d'être consultés. Pour cela,
nous avons utilisé cinq mois de données de navigation dans la librairie pour
calculer ces poids optimaux, puis nous avons utilisé les requêtes du sixième
mois, que nous avons classé avec cette nouvelle méthode, pour voir si les
documents qui avaient été consultés à l'époque ont été mieux classés.

Les coe�cients ont un signe coherent: les attributs péjoratifs pour un
document ont un poids négatif dans la régression logistique. Cependant,
l'ordre de grandeur entre les coe�cients est inattendu: le coe�cient de per-
tinence par rapport à la requête est bien inférieur aux coe�cients de la qualité

6

du document. Le reclassement des résultats du dernier mois a montré une
amélioration pour les documents qui avaient déjà été télechargés. Une expli-
cation possible à cet écart dans les ordres de grandeur des coe�cients est que
les requêtes utilisées pour l'apprentissage étaient triées selon les plus récents
document en premier, et non par pertinence.

Pour améliorer les résultats, il serait intéressant de ne retenir que cer-
taines requêtes pour l'apprentissage, celles qui correspondraient à une recherche
précise de l'utilisateur et qui pourraient être testées sur des requêtes simi-
laires dans le dernier mois.

Acknowledgments

First, I would like to thank Ludmila Marian who supervised my work all
along those six months, by helping and supporting me patiently, and for all
our musings which lead to interesting ideas.

Second, I would like to thank Jean-Yves Le Meur for proposing me to
work on this extremely challenging project, which had plenty of open ques-
tions from the beginning, which made it perfect for a Master Thesis project.

I would also like to thank Tibor �imko for his help on technical questions
and also for sharing his experience on Linux with me. I thank Jérôme Caf-
faro for the interest his showed all along in my project and his help on the
database. More generally, the Invenio development team is a great team I
was very glad to be in and thank everyone.

Last but not least, it is important for me to thank CERN for letting
students work within it, and for having great social activities: dance, bike-
towork, . . .

8

Contents

Introduction 11

1 Context of the internship 13

1.1 CERN . 13
1.2 Experiments at CERN . 13
1.3 Achievements . 15
1.4 CDS and Invenio . 16
1.5 Ranking the query results . 18
1.6 Objectives . 19

2 State of the art 21

2.1 Ranking scienti�c documents 21
2.1.1 Word similarity method 21
2.1.2 Citation ranking . 22

2.2 Aggregating rankings or scores 23
2.3 Distributed-ranking (D-Rank) 24

2.3.1 Overview . 24
2.3.2 Score normalization 25
2.3.3 Logistic regression . 25
2.3.4 Conclusion on D-Rank 31

3 Attributes to aggregate 33

3.1 De�ning the quality of a record 33
3.2 Fresh vs. mature records . 34
3.3 Aggregation of two scores . 36
3.4 Normalizing the quality regression coe�cients to 1 38
3.5 Considered approach during the project 39

4 Implementation of distributed-ranking in Invenio 43

4.1 Work�ow . 43
4.2 Analysing users queries . 45

4.2.1 Storing the actions of the users 45
4.2.2 Counting quality scores 50

4.3 Normalizing the counts . 53

10 CONTENTS

4.3.1 Implementation and tables involved 53
4.3.2 Analysis of the distribution of scores 53

4.4 Ranking with D-Rank at search time 55
4.4.1 General D-Rank search 55
4.4.2 Customization of the weights at search time 56

4.5 Conclusion on the implementation 57

5 Learning the optimal coe�cients from the user feedback 59

5.1 Building the observations . 59
5.2 The data set . 60
5.3 Methodology . 61
5.4 De�ning a distance from the �rst rank 62

5.4.1 Distance from top position 63
5.4.2 Modi�ed distance from top position 63

5.5 Estimation of logistic regression coe�cients 64
5.5.1 Values of the coe�cients 64
5.5.2 Interpretation . 65

5.6 Re-ranking the queries . 66
5.7 Comments of the results . 67

5.7.1 Normalization . 67
5.7.2 latest �rst as default sorting 69

Conclusion 71

Introduction

Document retrieval is a challenging task especially for digital repositories
containing millions of records. One may identify two tasks for this purpose:
the �rst one is to �nd text information of interest (matching a user query)
out of a large collection of documents. The second is to display the results
� in a reasonable amount of time � in a satisfactory order so that the user
�nds easily what (s)he is looking for. The latter task can be achieved by
estimating the relevance of a document towards the query or towards its
intrinsic content or history, which is then used to rank the results.

In the frame of fundamental research in Physics, CERN publishes lots of
various documents which has lead the institution to develop its own digital
library software (Invenio) which is currently used by CERN (as CDS CERN

document server) and by other institutions as well. Invenio allows to run an
online digital library and handles di�erent types of documents from articles
to books and from photos to videos, . . .

Currently, in addition to sorting methods based on date, author, title,
and other metadata �elds several ranking methods are implemented within
Invenio such as word similarity (towards the query) or citations (how many
times a document is cited by others) which all consist in a speci�c score
for the records. However, it can be interesting to take into account several
rankings at the same time and to aggregate several individual scores into one,
providing thus a new ranking score. In particular, it would be interesting to
take into account the access frequency of a document in the ranking. Indeed,
if a record is famous (e.g. downloaded a lot), it means that it is important,
and that its fame could contribute positively to its ranking score.

Distributed-ranking has been developed in the frame of CDS to combine
quality scores (such as the number of displays, downloads) with the query-
relevance of a record. This method involves logistic regression based on a
weighted sum, in which the weights directly a�ect the �nal aggregated score.
The principal concern of this dissertation is in �nding the best values for
the weights to provide an e�cient ranking of the results. For this purpose,
the search activities was recorded: for a given query, which records were
displayed and which ones were clicked (i.e. which one were of particular
interest for the user?)

The rest of the dissertation is organised as follows:

12 Introduction

Context We brie�y put the project into its context of research at CERN,
and in the development of Invenio.

State of the art We present what ranking is and how di�erent scores can
be aggregated. In particular, we present more in details distributed-
ranking which is the key point of the project.

Attributes to aggregate We present the attributes related to the access
frequency of a document that are going to be aggregated in the process
of ranking.

Implementation of D-Rank We describe how the method is implemented
within Invenio, and how the access counts to the documents are com-
puted.

Learning the optimal coe�cients from the user feedback We learn the
optimal coe�cients on a training set and we test them on a separate
set by comparing the rankings of the documents of interest between
the original ranking and the new ranking.

Chapter 1

Context of the internship

This chapter presents the context of the work done during this internship.
Although CERN carries out research in the �eld of fundamental physics, it
is also very active in information technology, and provides tools and facilities
for its own needs as well as for other institutions.

1.1 CERN

The European Organization for Nuclear Research (CERN) [1, 2] is an
international research center specialized in fundamental physics. It is located
in Geneva on the Franco-Swiss border but has several other sites in the area
for the facilities of some experiments. CERN was founded in 1954 by 12
European governments and now counts 20 European member states.

CERN provides the world's largest and most complex instruments and
facilities required for high-energy physics (HEP) and more particularly to
study the basic constituents of matter. The main instruments used for these
research activities are accelerators such as the Large Hadron Collider, Syn-
chrotron boosters, an Antiproton Decelerator (AD) and particle detectors
like the Compact Muon Solenoid.

1.2 Experiments at CERN

A wide range of experiments are conducted at CERN to understand
what the matter is made of as well as anti-matter. The main idea is to
accelerate particles to achieve a high energy level in which particles will
behave di�erently and analyse it through detectors. The following brie�y
describe some experiments.

At a low level of energy, ISOLDE [3] is a source of radioactive isotopes
and is located at the Proton-Synchrotron Booster. It can produce more than
1000 kinds of isotopes with a view to studying the nucleus, but some are also
related to astrophysics or life sciences.

14 Context of the internship

Figure 1.1: CERN accelerators

To produce antimatter, the proton synchrotron delivers high energy pro-
tons which collides with a block of metal thus producing a proton/antiproton
pair. As the antiprotons travel too fast, they cannot be used to create an-
tiatoms yet. The AD's task is to make a directed low-energy beam out of the
those antiprotons thanks to focussing magnets. When the antiprotons have
reached 10% of the speed of light, they are mixed with positrons to form
antiatoms. One experiment involved with AD uses antiprotons for access
the suitability in cancer therapy.

The �agship of CERN has been the Large Hadron Collider for the past
few years. LHC is a huge instrument build 100 m underground North Geneva
in the Pays de Gex, between the Jura mountains, the Geneva airport and
CERN. It consists in a 27 km circle pipe in which travel two hadrons (beams
of subatomic particles, protons or lead ions) in opposite direction. The two
hadrons collides in di�erent areas of the pipe depending on the experiment.
This allows physicists to recreate the conditions right after the Big Bang and
reach very high energies. The particles which are created during the collisions
are analysed by di�erent type of detectors. The two major experiments of
the LHC are ATLAS (A Toroidal LHC Apparatus [4]) and CMS (Compact
Muon Solenoid [5]). Those two experiments have common purposes such as
�nding the Higgs boson, particles involved in the dark matter or searching
for extra dimensions.

1.3 Achievements 15

Figure 1.2: CCC � The CERN Control Center where the eight accelerators
are controlled

The accelerators at CERN were also used to test the module AMS-02
(Alpha Magnetic Spectrometer Experiment) embedded in the International
Space Station (ISS). This module is designed to measure cosmic rays with
a view to �nding traces of unusual matter. This experiment tries to:

• improve the sensitivity of the antihelium/helium �ux ratio in the Uni-
verse,

• detect collisions of neutralinos (if they really exist), which may consti-
tute dark matter.

The accelerators at CERN allowed to expose the AMS-02 module to nuclear
particle beams before sending it to the ISS.

1.3 Achievements

Several major achievements have been made at CERN in those experi-
ments.

In 1983, the two experiments UA1 and UA2 [6] lead to the discovery of
the two heavy particles W and Z bosons which were only hypothetic so far.
The SPS accelerator was modi�ed into a proton-antiproton collider to reach
su�cient level of energy in comparison to the collision of one single beam on
a �xed target. The two physicists behind this experiment received the Nobel
Price of Physic the next year.

16 Context of the internship

Figure 1.3: AMS building on Prévessin site

In 1995, the PS210 experiment lead to the creation of the �rst antihy-
drogen atoms, traveling at the speed of light. And in 2011, the ALPHA
Collaboration succeeded in trapping antimatter for 1000 seconds [7]. This
amount of time was su�cient enough to change the state of the antiatoms
and thus analyse its spectrum.

Most recently [8], the two experiments CMS and ATLAS presented their
preliminary results on the search of the Higgs boson: We observe in our

data clear signs of a new particle, at the level of 5 sigma, in the mass region

around 126 GeV.

Besides physic discoveries or achievements, theWorld Wide Web was �rst
proposed at CERN in 1989 as a possible solution to manage general infor-
mation and tackles the problem of loss of information in an big organization
where the turnover of people is high. The original idea was to link and access
the information as a web of nodes in which the user can browse at will.

Following this idea of information storage and retrieval, CERN has been
developing its own digital library for HEP publications and other documents
related to life at CERN.

1.4 CDS and Invenio

The CERN Document Server (CDS) [9] is a digital library containing
over one million records mainly in HEP. Not only does CDS host articles,
books and proceedings but also multimedia such as pictures and videos,
presentations and talks, which makes it one of the largest heterogeneous

1.4 CDS and Invenio 17

digital library. Due to the complexity of the repository and CERN speci�c
needs such as articles written by hundreds of authors or a volume of data
of millions of records, CERN decided to develop its own software called
Invenio. Moreover, a study lead in the �eld of particles physics showed that
when it comes to �nding literature on a subject, users would rather turn to
specialized search engines than general purpose ones [10].

Figure 1.4: The CERN Document Server main page

Invenio [11] is an open source digital library software which provides
tools to run a digital library. Invenio is developed by CERN and other
contributors among its community like EPFL, DESY or SLAC. It is used by
many institutions or projects like INSPIRE (for HEP documents) or others
universities (for academic documents).

Invenio allows to manage very large heterogeneous collections of docu-
ments by following steps:

ingestion adding a document or bulk of documents to the �le archive col-
lection,

classi�cation assign the document to one or more categories,

indexing associate or tag the document with di�erent search terms,

18 Context of the internship

curation keep metadata updated regularly,

dissemination make information available for other systems or for the
users.

Invenio has a powerful Google-like search engine (see picture 1.4) and
can combine metadata, reference and fulltext search. Invenio is compliant
with standards such as the Open Archives Initiative metadata harvesting
protocol (OAI-PMH) for e�cient dissemination of content, it uses MARC 21
as its bibliographic format to store and process bibliographic meta-data. In-
venio also provides personalization and collaborative features such as alerts,
baskets, reviews or comments. It is available in 28 di�erent languages.

Invenio is developed and maintained by the two sections DLS and DLT

(Digital Library Service and Technology) which are part of the CIS (Collab-
oration and Information Services) group of IT department.

1.5 Ranking the query results

As stated before, Invenio has a powerful search engine to retrieve the
documents. The results can currently been sorted by common criteria based
on the �elds of the document (author, report number, title, latest �rst, year),
by ascending or descending order. Those criteria do not require any o�-line
precomputation and just correspond to a new arrangement of the records in
some ordered sequence.

Invenio also o�ers the possibility to rank the records based on precom-
puted scores or information such as word similarity or citation: the former
requires saving the keywords and their importance inside the document (log
entropy of a word in the document) which will be used at search time for
ranking while the latter involves building the graph of citations/references
of the documents in the database.

Sometimes, the �rst displayed results are not clicked by the user even
if they are the most relevant to the query. As queries are performed, some
records become more famous than the others: they are more downloaded and
viewed by the users. It is reasonable to think that therefore, those records
should be favored upon less famous records in future queries. It would then
be interesting to take into account the access frequency of the records in the
ranking of the documents in addition to already existing ranking methods
(word similarity, citation,. . .), to rank higher those famous documents and
�nally get results �tting the clicks to the user. Ideally, the user should �nd
what (s)he is looking for in the �rst page.

1.6 Objectives 19

1.6 Objectives

A promising aggregation method was proposed to take several ranking
scores into account to get a new ranking value: distributed-ranking (D-
Rank). Over the past two years, several students worked on analysing the
clicks of the users, work which was not integrated to the production version
of Invenio.

The objectives of the projects are the following:

• take over the previous work dealing with analysing the user queries,

• adapt the aggregation method to the need of the project,

• allow the user to customize the in�uence of the scores with one another,

• use the user feedback (what the users searched for and then clicked)
to extract the relevant and irrelevant records,

• compute optimal regression coe�cients on those data,

• test those coe�cients on another set of queries (for which we know
which records were clicked) to see if the new ranking method with the
optimal coe�cients ranks higher the documents of interest, ranking
method ranks higher the documents

• write a documentation/user guide on the general work�ow of the method,
from the query analysis to the computation of the coe�cients for rank-
ing.

20 Context of the internship

Chapter 2

State of the art

This chapter presents the work related to our research. We present cur-
rent methods used to rank search results, to aggregate scores and to �nd the
best aggregation functions.

2.1 Ranking scienti�c documents

Di�erent methods can be used to rank records depending on what the
user is interested in.

2.1.1 Word similarity method

Invenio provides word similarity ranking method [12, 13]. Once relevant
documents to the query are found, the next step is to rank them based on
the words of the query and on how those words appear in the document
(title, author, text, . . .) To do so, documents and queries are represented as
vectors in the term space.

When a document is inserted in the collection, a term list is built for
each document (indexing phase). This list contains relevant words inside
the document (word appearing at least once, and numbers, stopwords and
punctuation are removed). Then, a weight is computed for each word of the
list based on:

• how many times the word appears in the documents (L, local),

• how many times the word appears in the collections (G, global),

• a normalized value related to the size of the documents (N , normal-
ization),

given by following formula:
w = LGN

One should therefore note that as the repository gets more documents, the
weights of the words change even if the document remains unchanged.

22 State of the art

To compute the similarity of a document against a query, the dot prod-
uct between the two vectors is computed. The following example is taken
from [12]: query �infant fetus� on the document of table 2.1 gives following
similarity score:

0.18× 0.6︸ ︷︷ ︸
infant

+0.09× 0.3︸ ︷︷ ︸
fetus

= 0.135

A geometric interpretation of this dot product is the cosine of the angle
between the two vectors. In other words, ranking documents according to
word similarity is equivalent to ranking the angles between the document
vector and the query vector, knowing that a high similarity between the
query and the document corresponds to a low angle.

Table 2.1: Weights of a document and a query

Document Query
Word Weight Word Weight
blood 0.36 acid 0.3
fetus 0.09 fetus 0.3

placenta 0.09 placenta 0.3
infant 0.18 infant 0.6

.

The statistics and those weights are precomputed by Invenio after the
documents are indexed in the database. The weights are recomputed on a
regular basis by the task bibrank -R in the bibsched.

2.1.2 Citation ranking

Citations pages [14] are a good way to evaluate how relevant to the
community a scienti�c publication can be (just as the journal impact factor).
Indeed, the more cited a document will be, and the more relevant it should
be. However, the main drawback of citation count is that gives all the
citations the same importance.

To overcome this problem, the PageRank algorithm can be used on the
bibliographic graph of the publications. This algorithm was introduced by
Larry Page and used by the Google search engine, to rank results of web
searches. The representation used is a graph, in which the web pages are
nodes and the edges represent how they are linked with one another. The
graph is therefore directed. A weight is computed for each page: the more
pages will point to a page and the more important this latter will be. The
solution to this problem correspond to a stationary distribution of a Markov
chain which gives the �nal weight for each pages.

2.2 Aggregating rankings or scores 23

As scienti�c documents cite one another, the same representation can be
used to compute the impact of a document in the literature: is it cited a lot,
cited by major documents?. . .

As an example of use case, Google Scholar [15] uses citations to rank the
results of the queries. Although implemented in Invenio, this method is not
used yet on CDS because of limited amount of citation date.

2.2 Aggregating rankings or scores

Rank aggregation consists in combining several individual rankers to ob-
tain a new value, which is supposed to better rank the matching records than
each method individually. Rank aggregation are classi�ed in two categories:

score-based aggregation during the ranking process of each individual
ranker, a score is assigned to each record which will then be used in
the aggregation function to compute a new one. The records will then
be ranked based on this new value.

order-based aggregation after the ranking process, the aggregation will
be based on the order of the documents (and not on the score given by
each individual method)

For example, search engines can allow to combine multiple criteria to
[16]:

• merge the outputs of di�erent engines,

• let the user customize his/her search by choosing which criteria should
be emphasized,

• analyse the preferences of di�erent users for collaborative retrieval.

One reason why merging ranking is necessary is that it becomes di�cult
to store and manage continuous growing collections on a single device. The
collections are therefore split on several machines and at search time, queries
are sent to several search engines which will return several ranking tables.
The results are displayed to the �nal user in one single list by aggregating
the rankings. The authors of [17] proposed not to use the ranking but the
logarithm of it for aggregation. Indeed, a di�erence of 10 ranks in the �rst
positions (between rank 20 and 30 for instance) seems to be more meaningful
on the relevance of the documents than a di�erence of 10 farther in the
ranking (between rank 500 and 510). This is showed in �gure 2.1.

As for score-based aggregation, several basic functions can be used such as
the mean (arithmetic, geometric or any improvement of it). More complex
methods also exist, in particular distributed-ranking (D-Rank) which will
be presented more in detail later. In any case, the scores provided by the
di�erent ranking methods have to be normalized so that the scores can be
compared and thus aggregated.

24 State of the art

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10

P
ro
b
a
b
il
it
y
o
f
re
le
va
n
ce

Ln(rank)

Figure 2.1: Converting logarithm of ranking to probability of relevance for
aggregation

2.3 Distributed-ranking (D-Rank)

Distributed-ranking [18] is a ranking method developed by EPFL and
CERN in the frame of ranking scienti�c publications for Invenio. The main
goal is to aggregate several individual scores to obtain a better rank. For
instance in our case, we are going to aggregate the relevance of a document
to the search terms (word similarity) with its history: how many times it
was displayed, downloaded, seen, cited,. . .

2.3.1 Overview

We �rst brie�y describe the main steps of the D-Rank method.

1. The �rst step is to choose the attributes to aggregate. Just as with
other statistical approaches such as SVM, it is important for the at-
tributes not to be correlated.

2. The second step is the normalization: this phase consists in normalizing
the initial scores between 0 and 1 so that the new scores re�ect the
underlying distribution of the scores. As an example, if an initial score
n corresponds to the median score of all the observed scores for the
given attribute, its corresponding normalized score is 0.5.

3. The third step is the aggregation. It is performed using logistic re-

gression. The combination of the (normalized) scores is done with a
weighted sum, and returns a single value (between 0 and 1) which can

2.3 Distributed-ranking (D-Rank) 25

be interpreted as the probability for the document to be relevant (to
the query and all the statistical attributes of the document).

2.3.2 Score normalization

Aggregation should be performed on comparable scores in order to avoid
the predominance of some feature upon others.

Straightforward methods such as rescaling the scores in the range [0, 1],
shifting mean to 0 and variance to 1 could be used but they do not take into
account the distribution of the scores which make them sensitive to noise
and outliers.

Existing works such as [16, 19] address this issue. One way to make the
normalized scores re�ect the distribution of the scores is to use percentiles.
A score close to the median of the distribution should have a normalized
score of 0.5. This normalisation is performed in three steps:

1. compute values at a percentile level,

2. smooth values using standard estimation techniques,

3. construct the cumulative distribution.

Figure 2.2 shows an example of score normalisation for a randomly gen-
erated distribution of scores: we used three gaussian distributions of mean
6, 10 and 20 respectively. The median of the score is around 10 and receives
a normalized score of 0.5. We also note that in the range [14, 18], there are
few scores. As a result, they all receive a similar normalized score, meaning
that in this range, there is not that much distinction to make between the
records.

2.3.3 Logistic regression

This section describes the theoretical background for using logistic re-
gression and gives some simple examples of its application. It also presents
the method commonly used to estimate the regression coe�cients.

Overview

In a large number of problems, the response variable is categorical, such
as binary (success/failure, diseased/healthy) or ordinal (normal, mild or se-
vere) and depends on a set of explanatory variables. Basically, we have
observations of a binary variable and we have the values or the states of
several explanatory variables, for which we think they can have an impact
on the value of the response variable.

As an example, in 1991, in Alberta State, Canada, a study was conducted
before the legislation on the seat belt wearing, based on 86769 car-crash

26 State of the art

0

0.25

0.5

0.75

1

3 6 9 12 15 18 21

N
o
rm

a
li
ze
d
sc
o
re
s

Initial scores

Figure 2.2: Percentile normalisation

reports, to explain the seriousness of the injuries after an accident. The
following variables were used:

• the driver was on the in�uence of alcohol (yes/no),

• sex of the driver,

• the driver was wearing his/her seat belt.

The seriousness of the injuries ranged from 0 (nothing) to 3 (lethal).
More generally, logistic regression is used in epidemiological studies to

evaluate risks such as sanitary and is also convenient because one can in-
terpret easily how an explanatory variable will impact the outcome value in
comparison to the others.

This statistical tool is quite suitable for our purpose. Indeed, we want to
distinguish between relevant records and irrelevant records, from a set of ex-
planatory variables (relevance to the query, number of downloads, views,. . .)

Theoretical background: the logit model

The most natural way to quantify the chances that an event will occur
is the probabilities, ranging from 0 to 1. But other ways exist such as odds,
widely used by gamblers. The odd of an event is the ratio of the probability
of the event to the probability of its complementary. As a result, odds range

2.3 Distributed-ranking (D-Rank) 27

from 0 to∞. This transformation removes the upper bound, and taking the
logarithm removes the lower one.

The logit model consists in equating the log-odd of the output variable
(of probability π) as a linear combination of the input variables xi:

ln

(
π

1− π

)
= β0 +

∑
i

βixi

where βi correspond to the in�uence of variable xi. The probability of the
output variable can be computed by the inverse equation:

π =
1

1 + exp(−β0 −
∑

i βixi)

In other words, the logit model aggregates the di�erent scores of the
explanatory variables to produce the probability for the observation to be a
success or a failure. The choice of the coe�cients is therefore crucial to be
able to explain the observation. Those coe�cients can be estimated to be
optimal to the observation.

Maximum likelihood estimation

The optimal coe�cients to �t the data can be estimated with maximum
likelihood [20]. From a formal view, the binary response variable Y can be
seen as a random variable which depends on the explanatory variables Xi.
The probability density of Y can be written as:

p(Y |Xi)

and we can also write:

E[Y |Xi] = ln

(
p

1− p

)
= β.X

where β denotes all the weights for the explanatory variables Xi, with β0
the intercept.

For example, the observations of Y can be the each of the accident report
for the case study describe above. As all the observations Yk are independent,
the joint distribution is:

f(Y|β) =
∏
k

p(Yk|Xi)

The optimal coe�cients β̂ correspond to the maximum of the joint prob-
ability density, so we solve:

∂f(Y|β)
∂β

= 0

The method used to compute those coe�cients is the Newton-Raphson
method. The R software provides a library to compute those coe�cients
from a data �le.

28 State of the art

Example 1: Fisher's iris data set

The �rst example that we are going to give is the very popular Fisher's
iris data set. There are three species of Iris (Iris setosa, Iris virginica and
Iris versicolor) which can be di�erentiate from one another by the length
and the width of the sepals and petals. This data set is commonly used to
train a machine learning algorithm to classify the data into the three classes.
The �rst species (Iris setosa) can be linearly separated from the others. The
other two are are linearly separable like showed on the scatter plot of 2.3.

Figure 2.3: Di�erent combinations of scatter plot showing that the two
classes are not linearly separable

4.5 5 5.5 6 6.5 7 7.5 8 2
2.2

2.4
2.6

2.8
3
3.2

3.4
3.6

3.8

3
3.5
4

4.5
5

5.5
6

6.5
7

PL

SL

SW

PL

(a) SL-SW-PL

4.5 5 5.5 6 6.5 7 7.5 8 2
2.2

2.4
2.6

2.8
3
3.2

3.4
3.6

3.8

1
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6

PW

SL

SW

PW

(b) SL-SW-PW

To illustrate logistic regression as we will need it for D-Rank, we will use
the two species Iris virginica and Iris versicolor. The objective is to compute
the logistic coe�cients on a data set to learn how the length and width of
the sepals and petals determine to which species the given �ower belongs to.
Then we test it on another set (for which we know the class of the �ower).

The following data is an excerpt from the data, where S denotes sepal,
P petal, W width and L length. Species 0 is Iris versicolor and 1 is Iris

virginica:

SL SW PL PW Species

6.0 3.4 4.5 1.6 0

6.7 3.1 4.7 1.5 0

6.3 2.3 4.4 1.3 0

...

6.3 2.5 5.0 1.9 1

6.5 3.0 5.2 2.0 1

6.2 3.4 5.4 2.3 1

...

We use R to compute the coe�cients which gives following values.

2.3 Distributed-ranking (D-Rank) 29

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -41.034 24.954 -1.644 0.1001

SL -2.339 2.330 -1.004 0.3156

SW -6.882 4.512 -1.525 0.1272

PL 9.451 4.896 1.930 0.0536 .

PW 16.998 9.431 1.802 0.0715 .

Those coe�cients can now be used to classify a new �ower. Providing the
length and width of the petals and sepals, we can compute the corresponding
logit and the probability of the �ower to belong to one of the two classes.
Table 2.2 show the predicted classes on the test data (for which we know the
species but they were not used in the training). All of them were correctly
reclassi�ed. Note that for one of them, the probability is 0.56, which could
make the classi�er hesitate.

Figure 2.4 shows the probabilities of the testing. It is clear that the co-
e�cients are optimal for the data, as the two classes are correctly separated.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-25 -20 -15 -10 -5 0 5 10 15 20

Figure 2.4: In�uence of the logistic regression parameters

Example 2: Epidemiological study

In the previous example, the interpretation of the logistic coe�cients is
not that intuitive. Interpretation of such coe�cients is more common and

30 State of the art

Table 2.2: Predicted class after training (excerpt from 15 values for each
class)

SL SW PL PW Class Predicted class
6.0 3.4 4.5 1.6 0 1.6e-04
6.7 3.1 4.7 1.5 0 2.9e-04
6.3 2.3 4.4 1.3 0 3.6e-04
5.6 3.0 4.1 1.3 0 8.9e-07
.
7.7 3.0 6.1 2.3 1 1.0
6.3 3.4 5.6 2.4 1 0.99
6.4 3.1 5.5 1.8 1 0.99
6.0 3.0 4.8 1.8 1 0.56
.

more understandable when used on epidemiological studies. The following
example is taken from a case study on hypertension of blood pressure. For
this purpose, 9 independent explanatory variables were kept and are pre-
sented in table 2.3.

Table 2.3: Explanatory variables to explain the hypertension

Sex Smoker Exercise Overweight Alcohol
Stress Salt Income Education

The response variable is divided in 4 steps of seriousness: normal, high,
very high and severe based on the systolic value of the patient corresponding
to hypertension. The input variables are also classi�ed in several classes:
sex: M/F, exercise: little, medium, high, . . . which is the main di�erence
with the previous example, because the length of the �owers came from
measurements, and not categorical classi�cation.

Just as before, we use R to compute the logistic coe�cients to explain the
explain the in�uence of the parameters from step 2 of hypertension (high)
or step 3 (very high). We obtain the following results:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.844025 1.188434 -1.552 0.1207

sex 0.560075 0.357126 1.568 0.1168

smoker 0.854682 0.351303 2.433 0.0150 *

exercise 0.162729 0.208968 0.779 0.4361

2.3 Distributed-ranking (D-Rank) 31

overweight 0.060407 0.192292 0.314 0.7534

alcohol 0.449477 0.222637 2.019 0.0435 *

stress -0.492103 0.216350 -2.275 0.0229 *

salt 0.134356 0.207504 0.647 0.5173

income 0.091265 0.218105 0.418 0.6756

education 0.009297 0.208126 0.045 0.9644

To understand the meaning of the logistic coe�cients, we are going to
focus on one particularly variables (smoker). For two identical patients in
all categories but smoker, the increase of the logit for the smoker patient is
0.854:

logit(Oddsmoker)− logit(Oddnon smoker) =
∑

smoker

βixi −
∑

non smoker

βixi

= βsmoker(1(smoker) − 0(non smoker))

logit(
Oddsmoker

Oddnon smoker
) = 0.854

Oddsmoker = e0.854 Oddnon smoker

Oddsmoker = 2.34 Oddnon smoker

In this case, the interpretation of the coe�cient has an easy meaning:
a smoker has 2.34 as many chances (from the odds point of view) to be in
category 3 than 2 in comparison to a non-smoker person.

2.3.4 Conclusion on D-Rank

Distributed-ranking has been tested on arti�cially generated ranked data
corresponding to the individual ranking to be aggregated. In our case, we
would like to aggregate relevance scores (word similarity) with some quality
attributes some of which re�ect how a given record was accessed in the
system. This aggregation will provide a new ranking score which will be
used. This new score will re�ect the probability for a document to be relevant
to the query by taking into account its relevance and its access frequency in
the system.

32 State of the art

Chapter 3

Attributes to aggregate

This chapter presents the attributes that will be used in the aggregating
process. We also present some leads that were discussed over the internship
as possible alternatives or improvements to the D-Rank method. In the end,
we present the methodology that we chose to work on.

3.1 De�ning the quality of a record

Our main concern here is to take into account the user behaviour as
searches are performed and in particular to interpret the clicks generated bu
the users. We would like to quantify in some way the searches.

We are interested in the standard behavior of a user looking for a doc-
ument in a database: the user enters a pattern in the search engine. This
may sounds commonplace, but as stated before, the default display order is
latest �rst. Very often, no query is used for the search in order to get the
latest documents, especially to look for the last videos or photos.

Once the search is done, the results are displayed to the user. This is the
�rst count that we can take into account to de�ne the quality of a record:
the number of times a records was displayed, which we will call number of
displays.

The user may click on a document in order to read a more detailed
description of it. From this new page, (s)he can download the �le attached
to the record (a download can also be initiated from the results page). These
can be considered quality scores: the number of views and the number of

downloads.
Finally, another attribute can be used. If the user clicked (viewed or

downloaded) the fourth document without clicking on either of the �rst three
(see �gure 3.1), we can reasonably assume that (s)he read the title, the
author(s) and the beginning of the abstract of the latter, and therefore that
those records did not ful�ll his/her expectations. As a result, we can say
that those records were seen. This is a negative attribute for a document:

34 Attributes to aggregate

the more it has been seen and the less interesting it should be.
Picture 3.1 shows how the attributes can be interpreted from a visual

point of view. Note that record displayed in position 4 was clicked, but it is
also seen because record at position 5 was also clicked.

d
is
p
la
y
edse

en

Figure 3.1: Clicks of a search

3.2 Fresh vs. mature records

Time should also be an important factor to take into account to rank
documents. Indeed, a newly created document cannot possibly have a lot of
quality counts.

We can therefore make a distinction between quality records (or mature
records, which have a su�cient history search in the library) and new docu-
ments (which have recently been inserted and did not have time to acquire
enough counts) This distinction should prevent those new records to be pe-
nalized in the ranking process.

Therefore, fresh records and mature records should be processed sepa-
rately and merged into a single list in the end, before displaying the results
to the user.

However, the notion of freshness is subjective. The �rst idea to de�ne a
freshness score computed was to use the number of days since when the record
was created in the library (creation date). The more recently it has been
created into the database, the newer it was considered, thus the freshness
score was close to 1. But a record can be very popular from the beginning,
and be displayed a lot quickly which would make it comparable with mature

records quickly. The second idea was then to use a minimum number of

3.2 Fresh vs. mature records 35

displays as a possible threshold to distinguish between mature and fresh

documents:

• nbdisplays > t⇒ mature record ⇒ use quality

• nbdisplays < t⇒ fresh record ⇒ use time

In addition to those remarks, given two fresh records created at the same
date, we could say that if the former has already been displayed and even
viewed or downloaded, it is already interesting and should be favored over
the latter. As a result, we proposed a new freshness function based on:

• the number of days of the record,

• the number of displays,

• the number of views.

0

0.25

0.5

0.75

1

0 50 100 150 200

F
re
sh
n
es
s
sc
o
re

Number of days after creation in the library

Displayed record viewed > 1/2 displayed
Displayed record viewed < 1/2 displayed

Record never displayed

Figure 3.2: Freshness score for di�erent records (half-time = 50 days)

The idea is to say that if a record has never been displayed, its freshness
score should be decreasing over the time (the document is less and less con-
sidered new in the database, see the red curve on 3.2). If the record has been
displayed (while still being considered fresh), we want its freshness score to
be modi�ed and take into account the number of times the document was
viewed:

• if the record was viewed less than half of its number of displays, its
freshness score should be reduced,

36 Attributes to aggregate

• if it was viewed more than half of its displays, its score should be
increased.

Picture 3.2 shows how the initial freshness score (red curve) is modi�ed
considering the number of views and displays: in green when viewed more
than half of the displays, and in blue when viewed less. The base function
is:

freshness =
1

1 +

(
x

t1/2

)3

and the modi�cation to take into account the number of displays is:

freshness =
1

1 +

(
x

2 views
displays t1/2

)3

In the two equations above, t1/2 is the number of days after which the
freshness scores falls bellow 0.5 (see black dashed line on 3.2), and a parallel
could be made with the half-life of a radioactive particle in physics.

It is important to note that some records cannot be viewed because they
point to an external source. Others can be both viewed and downloaded.
It would then be important to take the number of downloads into account:
the main di�culty would be to compare records that cannot be downloaded
with those which can.

But the main drawbacks of the previous methods is that they require a
parameter as input:

• the threshold to distinguish mature (quality) and fresh records,

• the half-time in days.

Those parameters should therefore be changed by the administrator of the
digital library. Indeed, as Invenio is used by di�erent institutions with dif-
ferent focuses and types of documents, the content of the collections will be
di�erent and it would be di�cult of put default parameters.

One idea which was discuss was to analyse the distribution of the quality
scores (for instance the number of displays or views) and to separate the
documents at some particular point of the distribution. In this case, the
threshold could be recomputed regularly and would be dynamic and would
�t any institution need. This idea was not further developed due to lack of
time.

3.3 Aggregation of two scores

As stated before, D-Rank consists in aggregating several scores. In our
case, if we aggregate relevance with quality attributes of a record, the logit
used in the logistic regression would look like:

3.3 Aggregation of two scores 37

logit = cst+ wRR︸ ︷︷ ︸
relevance

+wvivi+ wdodo+ wsnsn︸ ︷︷ ︸
quality

As relevance should be one very important attribute to take into account
for ranking, it seems to be lost in the equation among all those attributes.
Even if a high coe�cient wR on the relevance score could be used, it seems
to be less easy to have in�uence on it. As a result, alternatives to this
aggregation were discussed in order to have more in�uence on the relevance
score.

An alternative is to split the logit into two parts like showed on the
previous equation:

• one referring to the relevance of the document (which could also be
composed of several attributes in addition to word similarity, like the
image similarity at search time),

• the other referring to the quality of the record if it is a mature record,
or to the freshness if it is a new one.

The relevance score R is computed at search time with the words and
the �elds of the query. However, the quality score Q (and the freshness score
F) correspond to the state of a record in the database and can therefore be
precomputed. An alternative aggregation function to use was discussed. It
consists in using a modi�ed version of the geometric mean such as:

new score A = RwX1−w, 0 6 w 6 1

where X denotes either the quality score Q or the freshness score F depend-
ing on the nature of the document.

• If w = 1, we get A = R, only the relevance is taken into account,

• If w = 0, we get A = X, all the weight is on the other attribute (quality
or freshness).

Figure 3.3 shows several examples of the �nal aggregated score for di�erent
combinations of (R,Q). For instance, the green curve corresponds to a rele-
vance of R = 0.8 and a quality of Q = 0.2. The important point to notice is
that when w = 0.5, the aggregated score does not correspond to the mean
of the two scores.

As a result, we proposed a modi�ed version of this aggregation function
of two scores which is:

new score A = R+ (Q−R) 1

1 +

(
1

w
− 1

)3 , 0 < w 6 1

= R, if w = 0

38 Attributes to aggregate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

A
g
g
re
g
a
te
d
sc
o
re

x (weight)

Figure 3.3: Aggregation with RxQ1−x

The same observations regarding the extreme values of w can be made, for
which all the emphasis is put on either of the two scores. Figure 3.4 shows
the aggregation of the same scores as w varies from 0 to 1.

In this frame of score aggregation, the optimization of the parameters
seems to be more di�cult:

• �rst, we have all the weights on the quality scores to compute Q,

• second, we have wQ for the aggregation of quality records with rele-
vance,

• third, we have wF for the aggregation of freshness records with rele-
vance.

All the coe�cients to optimize are no longer in the same equation which will
make the optimization much more di�cult.

3.4 Normalizing the quality regression coe�cients
to 1

At the beginning of the project, it had been discussed as a possible quality
function to use a weighted sum for which the sum of the coe�cients would

3.5 Considered approach during the project 39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

A
g
g
re
g
a
te
d
sc
o
re

x (weight)

Figure 3.4: Aggregation with 1
1+(1

x
−1)3

be 1 [21]:
Q =

∑
λixi, with

∑
i

λi = 1

where in this case xi are quality scores such as:

• number of downloads, views, seens or displays,

• number of downloads, views, seens normalized over the number of dis-
plays.

If this method has the advantage to produce a quality score Q between 0
and 1, which make the aggregation easy with the previous method, all the
coe�cients are positive. That is to say that event a negative attribute such as
the number of seen will positively in�uence the quality score, which should
not be the case. Just as logistic regression allows negative coe�cients, so
any aggregation formula for quality based on a weighted sum should allow
negative coe�cients.

3.5 Considered approach during the project

As shown in the previous sections and in the previous chapter, there are
many ways to aggregate several scores into a new one, and the choice is not

40 Attributes to aggregate

Quality records Fresh records

Q scores qi R scores

logit = cstQ +
∑
wiqi + wRR

score = 1
1+exp(−logit) ∈ [0, 1]

F scores fiR scores

logit = cstF +
∑
wjfj + wRR

score = 1
1+exp(−logit) ∈ [0, 1]

+

Ranked
records

Figure 3.5: General work�ow considered to work on during the internship

obvious. Considering the state of the art and also the possible alternatives,
we chose to use the distributed-ranking method as it is describe in [19] and
to extend it to fresh records as well:

• the �rst step will be to aggregate quality and relevance for mature
records on one side,

• the second will be to aggregation freshness and relevance for fresh
records, with the same methods but with di�erent regression coe�-
cients.

Picture 3.5 shows the overview of the aggregation process.
For lack of time, it was not possible to work on both kinds of records,

and the freshness was not taken into account. As a result, we only dealt with
quality records to �nd the optimal coe�cients of the logit. Picture 3.6 show
the aggregation as it is made at the end of the internship.

3.5 Considered approach during the project 41

All quality records

Q scores qi R score

logit = cst+
∑
wiqi + wRR

score = 1
1+exp(−logit) ∈ [0, 1]

Ranked
records

Figure 3.6: Implemented work�ow at the end of the internship (the distinc-
tion between fresh and mature records is not made). All the documents are
considered mature

42 Attributes to aggregate

Chapter 4

Implementation of

distributed-ranking in Invenio

This sections presents how the D-Rank method is implemented in Inve-
nio. In particular, the way the queries are analysed and how the relevant
documents are extracted to compute optimal coe�cients.

4.1 Work�ow

First of all, searches are done by the users on the digital library: queries
are made, documents are downloaded, users log in, . . .

Then, o�ine, the module queryanalyser analyses the queries made by
the users to update the quality counts in table rnkUSAGEDATA. This tables
contains for each documents how many times it was:

• displayed,

• viewed,

• downloaded,

• seen.

In the same time, it saves in table rnkWORDSIM the raw word similarity scores
which corresponds to the pattern of the query and the displayed records.

Second, the module bibrank used on the D-Rank con�guration �le nor-
malizes the quality scores from the rnkUSAGEDATA table and the word simi-
larity score from rnkWORDSIM. Two other tables are thus populated:

rnkDRANK this table contains the look-up table and the normalized scores
for each record.

rnkDRANKQUALITY this table contains the logit quality part (
∑
wixi) which

can be computed o�ine in the logit formula logit = cst+
∑
wixi+wRR

44 Implementation of distributed-ranking in Invenio

user query user clicks

queryanalyser

counts

bibrank - DRank

quality
scores

freshness
scores

relevance
LUT

Figure 4.1: General work�ow to post-process the user query and normalizing
the counts

Picture 4.1 shows the main steps described and picture 4.2 shows the
tables involved.

At search time (see picture 4.3), when the user chooses to rank the results
with the D-Rank method, the hit set is split between mature and fresh
records.

• For mature records, table rnkDRANKQUALITY provides the quality part
of the logit; table rnkDRANK contains the look-up table for word simi-
larity which will give the corresponding normalized score of each doc-
ument to the query, and the �nal score is computed by the logistic
regression.

• For fresh record, table rnkDRANK provides the fresh scores for all known
fresh records. If a records has been inserted in the database between
the last time the bibrank module was ran and search time, the record
has not been indexed yet. As a result, its fresh scores will be 1, the
maximum value.

4.2 Analysing users queries 45

query user_query rnkPAGEVIEWS rnkDOWNLOADS

queryanalyser

rnkUSAGEDATA rnkWORDSIM

bibrank - DRank

rnkDRANK rnkDRANKQUALITY

Figure 4.2: Database tables involved in the post-processing

4.2 Analysing users queries

The computation of the di�erent quality scores requires to know all the
records that were displayed to each user following a search query. It would
be ine�cient to make those counts at search time. The response time would
be too long, and the whole navigation information of the user is needed,
which might take several hours when the user reads an article before carrying
his/her search.

As a result, the query analysis is divided into two steps:

1. At search time, the queries are stored in the database for each user as
well as the actions (abstract viewed and downloads),

2. O�ine, the queries and the clicks are reassembled to compute the
counts.

4.2.1 Storing the actions of the users

Three tables are used to save all the actions of the user. First, the query
table consists of an identi�er and the arguments of the search query (see
table 4.1). As an example, on March 16th 2012, 7,618,230 di�erent queries
had been made since 2002.

46 Implementation of distributed-ranking in Invenio

query

hitset

quality
scores

relevance
LUT

freshness
scores

logit = cstQ + wRR+Q logit = cstF + wRR+ F

score = 1
1+exp(−logit) ∈ [0, 1] score = 1

1+exp(−logit) ∈ [0, 1]

Q records
ranked

F records
ranked

ranked
records

qu
al
ity

re
co
rd
s

freshrecords

Figure 4.3: General work�ow for aggregation of quality and freshness with
relevance at search time

4.2 Analysing users queries 47

Second, the user_query table allows to link a user to the query made.
Table 4.2 shows the information used to reconstruct the user actions. For
display reason, we only put the �eld user. Actually, three di�erent �elds are
used to identify a user:

• the user identi�er (id_user),

• the client host (client_host) which allows to know where the query
was made from,

And third, the actions of the users are stored in three tables depending
on the type of the action:

• rnkPAGEVIEWS when the user views an abstract,

• rnkDOWNLOADS when the user downloads a document from the reposi-
tory,

• rnkEXTLINKS when the user downloads a document stored in an exter-
nal collection but which is displayed in the results.

When a user does a click (view or download), the identi�er of the document
is stored (id_bibrec) alongside with the user identi�er, the date and the
referer (the referer is the web-page which the user is coming from), see table
4.3.

48 Implementation of distributed-ranking in Invenio

T
ab
le
4.
1:

T
ab
le
qu
er
y

id
ur
la
rg
s

31
0

c
=
A
r
t
i
c
l
e
s
+
%
2
6
+
P
r
e
p
r
i
n
t
s
&
p
=
a
u
t
h
o
r
%
3
h
i
g
g
s

22
63
27
0

s
c
=
1
&
l
n
=
e
n
&
p
=
&
f
=
&
a
c
t
i
o
n
=
S
e
a
r
c
h
&
c
c
=
P
h
o
t
o
s
&
c
=
C
M
S
+
P
h
o
t
o
s

14
11
98
6

s
c
=
1
&
p
=
i
n
t
r
o
d
u
c
t
i
o
n
+
t
o
+
t
h
e
+
e
l
e
m
e
n
t
a
r
y
+
p
a
r
t
i
c
l
e
s
&
f
=
&
a
c
t
i
o
n
=
S
E
A
R
C
H
&
c
c
=
B
o
o
k
s

13
66
26
7

s
c
=
1
&
p
=
a
r
d
u
i
n
i
&
f
=
&
c
c
=
C
E
R
N
+
D
o
c
u
m
e
n
t
+
S
e
r
v
e
r
&
c
=
A
r
t
i
c
l
e
s
+
%
2
6
+
P
r
e
p
r
i
n
t
s

T
ab
le
4.
2:

T
ab
le
us
er
_
qu
er
y

us
er

da
te

id
_
qu
er
y

re
cl
is
t

re
fe
re
r

24
56
21
5

2
0
1
0
-
0
5
-
0
4
0
8
:
2
5
:
5
2

31
0

[1
5,

19
,
24
,
..
.]

h
t
t
p
:
/
/
c
d
s
w
e
b
.
c
e
r
n
.
c
h
/
.
.
.

24
78
54
12

2
0
1
0
-
0
5
-
0
4
1
0
:
0
2
:
4
7

21
54
2

[4
8,

57
]

h
t
t
p
:
/
/
w
w
w
.
g
o
o
g
l
e
.
f
r
/
.
.
.

4.2 Analysing users queries 49

T
ab
le
4.
3:

T
ab
le
rn
kP

A
G
E
V
IE
W
S
(s
im

ila
r
to

rn
kD

O
W
N
L
O
A
D
S)

id
_
bi
br
ec

id
_
us
er

vi
ew

_
ti
m
e

re
fe
re
r

19
24
56
21
5

2
0
1
0
-
0
5
-
0
4
0
8
:
2
6
:
1
5

h
t
t
p
:
/
/
c
d
s
w
e
b
.
c
e
r
n
.
c
h
/
s
e
a
r
c
h
?
p
=
h
i
g
g
s
.
.
.

48
25
74
44
4

2
0
1
0
-
0
5
-
0
4
1
1
:
2
5
:
2
5

h
t
t
p
:
/
/
w
w
w
.
g
o
o
g
l
e
.
f
r
/
s
e
a
r
c
h
?
q
=
.
.
.

95
14
7

12
07
37
4

2
0
1
0
-
1
0
-
0
2
1
0
:
0
4
:
5
9

h
t
t
p
:
/
/
c
d
s
w
e
b
.
c
e
r
n
.
c
h
/
s
e
a
r
c
h
?
c
c
=
A
T
L
A
S
j
r
e
c
=
1
1
&
p
=
h
e
i
n
e
m
a
n
n
&
f
=
a
u
t
h
o
r

50 Implementation of distributed-ranking in Invenio

4.2.2 Counting quality scores

The previous section described how the user actions were stored at search
time. Now, we are going to see how the queries are analysed (which is done
o�ine, later on).

First of all it is important to note that all the documents matching a
query are not displayed on the �rst page. By default, the number of displayed
document on a page is 10, and to see the following documents, the user can
click on �next page� which constitutes a new query. If the user searches for
�higgs boson�, the �rst ten results (records from position 1 to 10 for instance
sorted by latest �rst) will be displayed on page :

http://cdsweb.cern.ch/search?ln=en&c=Articles&p=higgs+boson

When the user clicks on the following page to display result from 11 to
20, the new URL is

http://cdsweb.cern.ch/search?ln=en&cc=Articles&jrec=11&p=higgs+boson

where �eld jrec indicates from which position the display starts. This is
therefore a new row in table user_query. As an example, we suppose that
a user performs those two queries and clicks on record 123 and 3, and then
on record 87 on the second page (see table 4.4).

Table 4.4: Clicked records on the two pages

First page Second page

Position identi�er Clicked? Position identi�er Clicked?
1 156 11 18
2 235 12 6
3 48 13 19
4 4 14 87 X
5 123 X 15 15
6 97 16 20
7 44 17 12
8 3 X 18 255
9 72 19 1024
10 13 20 7

At this point, table query has two rows which are given in table 4.5 and
table user_query (table 4.6) contains the two queries made by the user.
When the user clicks on the di�erent records, table rnkPAGEVIEWS is popu-
lated as describe by table 4.7.

Queries are processed one by one:

4.2 Analysing users queries 51

Table 4.5: Queries made

id urlargs
1 ln=en&c=Articles&p=higgs+boson

2 ln=en&cc=Articles&jrec=11&p=higgs+boson

Table 4.6: Attributes of the two queries made

user date id query reclist
7 2012-09-09 08:00:00 1 [156, . . . , 13]
7 2012-09-09 08:01:00 2 [18, . . . , 7]
referer
http://cdsweb.cern.ch/

http://..../search?ln=en&c=Articles&p=higgs+boson

Table 4.7: Recorded actions

record id_user view_time
46 7 2012-09-09 08:00:20
43 7 2012-09-09 08:00:40
37 7 2012-09-09 08:01:30
referer
http://.../search?ln=en&c=Articles&p=higgs+boson

http://.../search?ln=en&c=Articles&p=higgs+boson

http://.../search?ln=en&cc=Articles&jrec=11&p=higgs+boson

counting display for each of the query, table user_query gives the records
which were displayed at search time. The number of displays for those
records will be incremented by 1.

counting the clicks for all the clicks made, the referer is used to know
to which query the click belongs to. In addition to that, the user
identi�er (and the client host) to di�erentiate users performing same
searches simultaneously. The date stored in both user_query and
rnkPAGEVIEWS allows to check that the click really came as a result of
the search.

counting seens as a reminder, a record is seen by the user if it is not clicked
and if a record below is clicked. On the �rst page, the last clicked
record is at position 8. Therefore, the number of seens for records

52 Implementation of distributed-ranking in Invenio

from position 1 to 7 will be incremented. On the second page, records
from position 11 to 13 will be added one seen count. In addition to
this, as the user went to the second page, it also implies that (s)he saw
all the documents displayed by the referer, which (s)he is coming from.
As a result, records from 1 to 7 get an extra seen counts. If the user
went to the third page, all the documents of the second page will get
one more extra seen count.

After the post-process of those two queries, the documents will have
counts presented in table 4.8

Table 4.8: Final counts for the analysis of the two queries

id displays views downloads seens
156 1 0 0 2
235 1 0 0 2
48 1 0 0 2
4 1 0 0 2

123 1 1 0 2
97 1 0 0 2
44 1 0 0 2
3 1 1 0 1
72 1 0 0 1
13 1 0 0 1
18 1 0 0 1
6 1 0 0 1
19 1 0 0 1
87 1 1 0 0
15 1 0 0 0
20 1 0 0 0
12 1 0 0 0
255 1 0 0 0
1024 1 0 0 0

7 1 0 0 0

As we can see on this example, records from 156 to 44 are seen twice:

• one because the were seen when the �rst page was displayed,

• and another time when there are considered seen by displaying the
second page.

The is a misconsideration of the original implementation which could be
corrected. The �rst drawback of this is that a record can be more seen than
displayed, and the second one is that it gives more counts to some records

4.3 Normalizing the counts 53

and will penalize them later on, because the attributes seen is not a positive
attribute for a record.

4.3 Normalizing the counts

4.3.1 Implementation and tables involved

As described before, the attributes values have to be aggregated before
being used in the logistic regression formula. This is performed by the module
bibrank.

The module gets all the counts computed before and saved in table
rnkUSAGEDATA (see the general work�ow and the tables involved from pic-
tures 4.1 and 4.2). The distribution of scores is estimated by the python
function gaussian_kde and the cumulative distribution function gives the
normalized scores.

Table rnkDRANK (4.9) stores the look-up table of the attribute, which is
the correspondence between the raw scores and the normalized scores, and
the normalized scores for each record. The quality part of the logit can
also be precomputed to be then used at search time to save computation
time. This precomputed part is stored in table rnkDRANKQUALITY (4.10),
which was created in the database for the purpose of the project. The LUT
for word similarity it computed with the raw word similarity scores which
were saved in table rnkWORDSIM during the analysis of the queries by the
queryanalyser. There are no normalized scores for word similarity as they
are query dependent and only known at search time.

Table 4.9: Table rnkDRANK

id name lut percentiles
1 nb_views {0:0.2, 1:0.3, 9:0.5, . . . } {154: 0.4, 9856:0.2, . . . }
2 nb_seens
3 nb_displays
4 nb_downloads
5 word Does not exist

4.3.2 Analysis of the distribution of scores

Picture 2.2 showed the normalized scores for a random distribution of
scores. The scores where ranging from 0 to 1 with enough disparities among
all the initial scores.

54 Implementation of distributed-ranking in Invenio

Table 4.10: Table rnkDRANKQUALITY

name percentiles
drankArticles {154: 0.54, 9856: 2.45, . . . }
drankCustom

Working on the real scores from table rnkUSAGEDATA provides a com-
pletely di�erent distribution (see picture 4.4 for views, but the distribution
is the same for downloads, displays and seens). Lots of queries are made and
yet few documents are clicked. As a result, more than 75% of the documents
have 0 view and the normalized score for views (which is the cumulative of
the distribution) gets a high normalized score. There is therefore little dis-
parity between records viewed more than 3 times which will all be normalized
with a score close to 1.

On the contrary, the normalization for word similarity is much more
regular (see �gure 4.5). The initial raw scores range from 0 to more than 100
(for very relevant queries) but we only displayed it to 40. We can also note
that this distributed is quite stable over the months which shows a common
use of the digital repository.

0

0.25

0.5

0.75

1

0 100
0

1000

2000

3000

4000

5000

N
o
rm

a
li
ze
d
sc
o
re

N
u
m
b
er

o
f
re
co
rd
s

Number of views

Figure 4.4: Normalized scores for views

4.4 Ranking with D-Rank at search time 55

0

0.25

0.5

0.75

1

0 5 10 15 20 25 30 35 40

N
o
rm

a
li
ze
d
sc
o
re

fo
r
a
g
g
re
g
a
ti
o
n

Initial word similarity score

Jul. Aug. Sep. Oct.

Figure 4.5: Normalized scores for word similarity

4.4 Ranking with D-Rank at search time

4.4.1 General D-Rank search

At search time (see �gure 4.3), the hit set is split into two parts: the
mature and the fresh records.

For both, word similarity scores are computed with respect to the pattern
and are normalized using the LUT from rnkDRANK.word.

For quality records, the precomputed quality part Q stored in rnkDRANKQUALITY
is aggregated with the word similarity score R. For fresh record, the precom-
puted freshness F is in table rankDRANK.freshness. We have:

logitQ = cstQ + wRR+Q

logitF = cstF + wRR+ F

The �nal score is computed with the logistic regression function:

score =
1

1 + exp(−logit)
∈ [0, 1]

In the end, the two lists are merged to produce the �nal ranking and are
displayed to the user.

56 Implementation of distributed-ranking in Invenio

4.4.2 Customization of the weights at search time

More and more applications let users customize their own searches. As
three main attributes are aggregated here (relevance, quality and freshness),
even if we reach an optimal combination of those scores, we would like to let
the possibility to the user to customize its search by putting the weight of
its choice on the attributes.

As a reminder, the logit for the two aggregations is:

logit = cst+ wRR︸ ︷︷ ︸
relevance

+
∑

wiqi︸ ︷︷ ︸
quality

,

where qi is views, downloads, . . . and

logit = cst+ wRR︸ ︷︷ ︸
relevance

+
∑

wiqi︸ ︷︷ ︸
freshness

,

The two aggregation functions have been modi�ed to add an additional
weight on the attributes:

logit = cst+ xR(wRR) + xQ
∑

wiqi

logit = cst+ xR(wRR) + xFF

The three values xR, xF and xQ can be selected via sliders on the web
page at search time when this ranking method is used (see �gure 4.6). We
should have xR + xF + xQ = 1 and all positive values. The picture shows
three sliders but in fact the weights are linked. A better slider should look
like picture 4.7 but there was no time to develop it.

Figure 4.6: Sliders to choose the coe�cients

At the end of the internship, we did not have time to work more in details
on the aggregation of freshness. As a result, we only provide one slider (see
picture 4.8) to put emphasis either on quality or on relevance such as

logit = cst+ (1− x)×Q+ x×R,

4.5 Conclusion on the implementation 57

Q

R

F

Figure 4.7: Triangle slider for customizing the weights

where 0 6 x 6 1 is the value of the slider. Choosing value 1 for the slider
will put all the weight on relevance and the �nal ranking will be equivalent
to word similarity; choosing value 0 will put all the emphasis on quality and
the most famous records will be displayed �rst. In between, the two features
will be mixed and the �nal score will take both of them into account.

Figure 4.8: Slider currently implemented

4.5 Conclusion on the implementation

The implementation of D-rank relies on two main steps:

• the analysis of the queries to count how many times the records were
accessed throughout the queries,

• the normalization process and the precomputation part of the fresh
and quality scores.

At search time, the word similarity score is normalized before being ag-
gregated with the quality of freshness part. The �nal ranking therefore takes
into account the relevance of the document to the query and also the access
frequency of the document.

For now, we have not talked a lot about the coe�cients used for aggrega-
tion, i.e. the weights we put on the attributes which participate in the �nal
scores.

One idea would be to choose manually coe�cients, with a priori knowl-
edge on the in�uence of each attribute.

58 Implementation of distributed-ranking in Invenio

But as seen before, logistic regression coe�cients can be precomputed
from the data to explain the outcome of the binary variable. In our case,
we have the queries and what the users did, following chapter will present
how we used this user feedback to computed the optimal logistic regression
coe�cients.

Chapter 5

Learning the optimal

coe�cients from the user

feedback

This chapter presents how the optimal regression coe�cients are esti-
mated to �t the user expectations. The purpose is to train the coe�cients
on a �ve-month set of queries and then to test it on the sixth month, to see
if the records which were clicked at that time are ranked higher.

5.1 Building the observations

As presented in the logistic regression part, the regression coe�cients are
estimated from the observations. In the examples given, the hypertension
level was explained by the fact that the patient smoked, practiced a sport,. . .
and the class of the Iris was predicted from the features of the petals and
sepals, and the observation looked like the following:

SL SW PL PW Species

6.0 3.4 4.5 1.6 0

6.7 3.1 4.7 1.5 0

...

6.3 2.5 5.0 1.9 1

6.5 3.0 5.2 2.0 1

...

In our case here, we make the assumption that if a record was clicked
(abstract viewed or downloaded), it was relevant for the user (class 1). If a
record is seen without being clicked, we consider it an irrelevant document
(class 0). When a record is displayed and beyond the last clicked one, we do
not take it into account, because we cannot know if the user saw it.

We are going to use the following attributes:

60 Learning the optimal coe�cients from the user feedback

• number of views,

• number of displays,

• number of downloads,

• number of seens,

• word similarity to the query.

As queries are analysed by the queryanalyser, observations can be made
on whether a document is relevant or not and a �le is created: the relevant
�eld corresponds to the binary variable success/failure of the logistic model
(is the document relevant?) and the other �elds consists in the explanatory
variables taken into account to explain the response variable.

relevant recid word nb_views nb_downloads nb_displays nb_seens

0 1048741 11 0 0 9 6

0 1083536 12 0 0 9 6

0 986518 11 0 0 1 1

0 1101914 12 0 0 8 6

1 978015 31 1 3 6 2

0 1041754 8 0 8 6 1

0 1007493 12 0 0 4 3

0 322566 15 0 1 4 7

0 322567 12 0 0 5 7

5.2 The data set

The queries made by the users have been recorded from May 4th 2010 to
February 16th 2011. The data consists of 1139832 queries. It is important to
remind that when the user clicks on the next page to display the following
documents, this is considered a new search. As a result, lots of the queries
are linked together.

It is also important to note that the documents of CDS are indexed
by other search engines such as Google. As a result, documents can be
downloaded by a user coming from a Google page (the referer of the download
will look like http://www.google.com/search?...)

During this period:

• 4,707,398 abstracts were viewed. 3,722,795 had a referer coming from
CDS but only 384,600 from searches through CDS search engine. (see
table 5.1)

• 2,733,230 records were downloaded. 1,542,774 had a referer from CDS,

• 120,524 external documents were found among which 113,286 from
CDS.

5.3 Methodology 61

Table 5.1: Referers of the abstract views. Our only interest will be views

coming from search pages

Referer pre�x Number of views
http://cdsweb.cern.ch% 3,722,795
http://cdsweb.cern.ch/search% 384,600

http://cdsweb.cern.ch/collection% 152,154
http://cdsweb.cern.ch/journal% 7,331
http://cdsweb.cern.ch/event% 8,371
http://cdsweb.cern.ch/record% 3,140,068
other 30,271

The majority of the results were displayed by latest �rst : the new doc-
uments are displayed �rst and only 11,646 queries were ranked by word
similarity.

5.3 Methodology

As we would like to compute optimal coe�cients for the repository, we
will only take into account the queries made from CDS, i.e. referer like

http://cdsweb.cern.ch/...

Indeed, we want to study the user behavior on the repository only. Similarly,
only clicks following a CDS query will be kept, for which referer is like

http://cdsweb.cern.ch/search?...

Therefore, if a user did a search on Google, which redirected him/her to
CDS, this click is not taken into account.

As for the downloaded documents, we are interested in those:

• either coming directly from a search (referer like
http://cdsweb.cern.ch/search?),

• or coming after the corresponding abstract page has been viewed.

As usually in arti�cial intelligence, when it comes to learning some pa-
rameters from a data set, it is important to test them on a another data set
to avoid over-training.

In our case, we have more than eight months of data (from May to
the beginning of February). As the user behaviour might be di�erent at
the end of the year (Christmas, . . .), we chose to retain queries from May to
October. The �ve �rst months of data will be analysed to extract the relevant

62 Learning the optimal coe�cients from the user feedback

and irrelevant documents for each query and the optimal coe�cients will be
estimated over those queries. Then, those coe�cients will be used to re-rank
the queries made in October. For those queries, we also have:

• the records which were displayed,

• the records which were viewed/downloaded.

Our purpose is to see whether the documents that were clicked at that time
are better ranked with D-Rank, optimized over the previous period.

5.4 De�ning a distance from the �rst rank

Our interest here is to compare the original ranking at the time the
queries in October were made with the new ranking given by the D-Rank
method. In particular, we would like to see how the records of interest are
ranked.

There are a lot of methods in the literature to compare several ranking
returned by search engines. Those methods are mainly based on the number
of permutations between the rankings. But our concern here is di�erent: we
would like to see how the relevant records are newly ranked, and we do not
care about those which were not clicked by the user.

Table 5.2: Example of initial ranking and re-ranked results

Display position Initial ranking D-Rank
1 47 12
2 18 11
3 17 10
4 16 14
5 15 13
6 14 17
7 13 18
8 12 47
9 11 15
10 10 13

We would like to evaluate the performance of the re-ranking from a quan-
titative point of view. Table 5.2 shows an example of an initial ranking and
the new ranking obtained. The green records correspond to the ones which
were clicked, so which we will be consider relevant. As we can see, record 12
was better ranked (from position 8 to position 1) but record 15 was worse
ranked (from position 5 to 9).

5.4 De�ning a distance from the �rst rank 63

From this observation, how can we evaluate this new ranking: is it better
or worse?

• on the one hand, we could say it is better because one record gained 7
ranks and the other only lost 4.

• But on the other hand, more records will be seen, because the user will
have to go down to position 9 to �nd what (s)he is looking for.

Since it seems to be subjective depending on the point of view, we choose
to work with several criteria:

• the distance from the �rst rank,

• a modi�ed distance from the �rst rank to prevent outliers to have too
much in�uence on the overall records of interest,

• the number of documents better/worse ranked,

• the number of relevant documents on the �rst page.

5.4.1 Distance from top position

The natural way to evaluate the ranking of an element is its distance
from the top position. To evaluate the overall ranking of the documents of
interest, we sum all the distances from the top:

D =
∑
i

ri

where ri denotes the position of the ith record of interest. The di�erence
between the initial distance and the new distance can re�ect how good or
bad the new ranking is. In the previous example, the initial distance is
4 + 7 = 11 and the �nal distance is 0 + 8 = 8 which is a good point.

But if record would have been rank much lower (more than rank 20
for instance), the �nal distance would have been completely di�erent and
much bigger. This method is sensitive to outliers. This is all the truer so,
because if we had 5 records of interest, and 4 of them re-ranked in the �rst 4
positions, and the last one at position 20, the di�erence between initial and
�nal distance is likely to be negative, although we could consider the new
ranking better because 4 of the records of interest are ranked at the �rst 4
positions.

As a result, we modify this distance to be less sensitive to outliers.

5.4.2 Modi�ed distance from top position

This method is inspired from [17] previously discussed. The idea is to
say that after a certain position, the di�erence between two ranks is less
important than at the beginning of the ranking. Instead of taking the rank

64 Learning the optimal coe�cients from the user feedback

itself as the distance from the top (which is always increasing), we modify it
to be bound, as follows:

D = 1− 1

1 +
(x
10

)3
The factor 10 is the rank for which the distance is 0.5 (i.e. half of its

maximum value). The value was chosen because the default number of dis-
play document is 10. After 10, the user has to click on the next page to see
the following records. Picture 5.1 shows the corresponding function.

0

0.25

0.5

0.75

1

0 5 10 15 20

M
o
d
ifi
ed

d
is
ta
n
ce

fr
o
m

fi
rs
t
p
o
si
ti
o
n

Rank position

Figure 5.1: Modi�ed distance from the top position

In this case, if a document is ranked at position 20 or 40, its modi�ed
position will not a�ect that much the overall cumulative distance of the
documents of interest.

Once optimal parameters are estimated, the purpose is to re-run those
queries, rank the records with those parameters, recompute the distance of
the records of interest from position 1 and see if the distance has decreased.

To avoid an over-learning, optimization should be perform on a set of
queries and veri�cation on an other set (e.g. �nd optimized parameters on
queries ran for two months and use those parameters on the third month).

5.5 Estimation of logistic regression coe�cients

5.5.1 Values of the coe�cients

The logistic coe�cients were estimated on queries made from July to
September 2010. We used the R software and in particular the glm (general-

5.5 Estimation of logistic regression coe�cients 65

ized linear model) function on the data �le made during the analysis of the
queries.

Data from May to June was only used for the counts to let enough records
to be accessed a su�cient amount of time. We also wanted to observe the
impact of the training set size on the coe�cients. So we �rst used one-month
data (July), then two and eventually three (from July to September).

Table 5.3 presents the coe�cients that we estimated. First, we used
the whole data for the estimation, then only documents related to scienti�c
publications (articles, preprints, . . .). For the two �rst computations, the
formula used in the model was:

relevant ~ word + nb_displays + nb_views + nb_downloads + nb_seens

In the last computation, we took the number of displays o� the formula.

relevant ~ word + nb_views + nb_downloads + nb_seens

Indeed, we can state that only downloads, views or seen really re�ect the
quality of a document, and that a document matching a lot of queries with
key words (as during a important event) should not be favored upon others
in a more precise query. The number of displays for a document is charac-
terizing more the search behaviour than the quality of the records.

Table 5.3: Estimated coe�cients

All documents relevance display view download seen
Jul. 0.544 2.67 2.99 1.73 -7.12
Jul. Aug. 0.634 2.65 2.92 1.92 -6.96
Jul. Aug. Sep. 0.726 2.67 2.79 2.04 -7.03
Articles

Jul. 0.161 2.82 3.08 1.81 -8.31
Jul. Aug. 0.263 2.79 2.23 2.98 -8.15
Jul. Aug. Sep. 0.366 2.49 2.19 3.52 -8.02
All Documents

Sep. 1.015 ∅ 2.805 2.422 -4.353
Jul. Aug. Sep. 0.7047 ∅ 3.1073 2.1502 -4.2916

5.5.2 Interpretation

Sign of the coe�cients

The coe�cients for word similarity, displays, views and downloads are
positive. This means that these attributes have a positive e�ect on the

66 Learning the optimal coe�cients from the user feedback

outcome of the �nal aggregated score: the more a record had been viewed
or downloaded, and the bigger its �nal score will be. We can make the same
observation for word similarity.

On the contrary, the sign of the seen coe�cient is negative, which shows
that this attribute penalizes the �nal score of the document.

These results were expected in the sense that they correspond to the
intuition that one can have of the attribute meanings. When a record is
displayed �rst and not clicked, it is not relevant. So for later queries, it
should be lower ranked. And when a record is downloaded or viewed but
with few seen counts, it means that the users stopped their search after
clicking it. So for future queries, not only will it be favored because of its
access counts, but in addition to that it won't be penalized by its seen counts.

Order of magnitude of the coe�cients

What is more surprising in these results is the order of magnitude between
the coe�cients. Indeed, the word similarity score (relevance in the table) is
between 6 and 10 times smaller than the quality coe�cients. It means that
only a small change in the counts of the quality features can greatly a�ects
the �nal score in comparison to word similarity. As a result, a much less
relevant document to the query yet quite famous will be better ranked than
a very relevant document yet little accessed.

The possible causes explaining these values will be discussed at section
5.7.

Stability

Over the three months, we can notice little evolution in the coe�cients
and the values are quite the same for each of them. This means that the
training set size has little in�uence to compute optimal coe�cients.

5.6 Re-ranking the queries

Our purpose here is to use the queries made in October by the users for
which we know:

• the records which were displayed,

• the records which were clicked.

We are going to rank the hit set as if the users had chosen the D-Rank
method to display the results. The D-Rank method will use the coe�cients
that we estimated over the three previous months. Then, we are going to
compare the initial ranking with the new ranking using the criteria described
in section 5.4. We are only interested in the records of interest, those clicked

5.7 Comments of the results 67

at the time by the user. The goal is to see whether or not those documents
are better ranked.

Table 5.5 presents the results obtained. Only 20,965 queries in October
could have been retained for re-ranking. Indeed, we were interested in queries
re�ecting a �normal� search. For this purpose, we removed queries:

• without any pattern,

• containing a pattern which was a regular expression (/^j*/),

• related to a report number or containing only numbers,

• which did not lead to any clicks.

Out of those queries, we kept queries containing more than one displayed
record which gave 14421 queries for re-ranking.

Looking at the raw number of records ranked better or worse, 15,114 were
better ranked by D-Rank. 537 of them were fresh (that is to say they were
not quality record at the time and the logistic coe�cients were computed
to better ranked quality records). So we are not going to take them into
account. 11,688 records were ranked worse by the method, out of which 419
of them were fresh. In addition to that 3598 of the worse ranked records
were clicked for the �rst time in October: that is to say that is was the �rst
time those records were relevant for the user. So they had a very low quality
part in the logit and were therefore lower ranked. In the end, 11,776 quality
records were better ranked (60%) and 7671 were worse ranked.

Considering the modi�ed distance presented at section 5.4.2, 8,336 queries
(58%) were considered better ranked: it means that the average distance
from position 1 of all the clicked records was smaller; the records of interest
were closer to the beginning of the ranking. 6085 (42%) were considered
worse ranked. If we do not take into account the fresh records in the evalu-
ation, 8,889 queries are better ranked (62%) and 5532 are worse.

5.7 Comments of the results

On the one hand the sign of the estimated coe�cients are coherent. On
the other hand, the order of magnitude are quite unexpected considering
the low value for word similarity and also the percentage of better ranked
queries (64%) and of better ranked quality records (61%). Several reasons
may explain these results.

5.7.1 Normalization

As we saw on picture 2.2, the distribution of scores is such as lots of doc-
uments have the same value for a given attribute (0 for seen and downloads
and 1 for displays and seens). As the normalization is supposed to re�ect
the distribution (percentile level described at section 2.3.2), those values get

68 Learning the optimal coe�cients from the user feedback

Table 5.4: Results of re-ranking in October

General �gures

Total queries 20,965
Queries with clicks and > 1 display 14,421
Modi�ed distance

Better ranked queries 8,336
Worse ranked queries 6,085
Better ranked (without fresh records) 8,889
Worse ranked queries (without fresh records) 5,532
Records

Better ranked records 15,114
Worse ranked records 11,688
Fresh records (no quality scores)
Better ranked 537
Worse ranked 419
Better clicked for the �rst time in October 2,801
Worse clicked for the �rst time in October 3,598
Only quality records

Better ranked records 11,776
Worse ranked records 7,671

a high normalized score from the beginning (0.47 for 0 views for example),
which leave only 0.53 for all the other scores (from 1 to 50 views). In ad-
dition to that, lots of documents have 1 views and the normalized is 0.95.
As a result, records having more than 2 views will have a normalized score
between 0.95 and 1. Very little distinction is thus made between records
having 3, 5 or 50 counts. The normalisation for those scores is more like
either 0.5 or 1.

Moreover, the normalisation process estimates the density with gaussian
techniques but as the interval is compact on one side (starting from 0), a
bias is introduced. And as the distribution is discrete, the �rst score has a
non null score. As a result, a document which is not viewed gets a non null
normalized score: the corresponding logit is increased even if the document
has no views. Unfortunately, this problem was discovered late during the
work and there was no time to adjust the normalisation.

As far as the word similarity normalization is concerned, it is performed
on all the raw scores obtained over the months: all the di�erent queries are
put at the same level. In the end, a query with few terms will be normalized
with a small score whereas a detailed query will have a large normalized
score. In the �rst case, quality will be naturally more emphasised. Another

5.7 Comments of the results 69

Table 5.5: Queries with more than 10 displays (several pages)

Number of queries with > 10 displays 4707
Better ranked records

Better ranked record (still on the �rst page) 1056
Better ranked (not on the �rst page yet) 3529

Better ranked (now on the �rst page) 2584
Worse ranked records

Worse ranked (but still on the �rst page) 925
Worse ranked (was not on the �rst page) 2760

Worse ranked (no longer on the �rst page) 2049

approach to consider would be to normalise the raw scores with the most
relevant score of the hit set: the most relevant document will get the score
of 1. In this way, the �rst documents of two di�erent queries would be
normalised with the same score.

Finally, as discussed in section 5.5.1, the number of displays might not
be a good quality indicator, but more a general trend on all the database.
However, instead of normalising the coe�cients at a percentile level, they
could be normalised over their number of displays. In this case, a record
downloaded 5 times out of 10 displays will have the same normalized as a
document downloaded 50 times out of 100 displays. Again, it is subjective:
which one should be favoured? The �rst normalization will favour the sec-
ond record, but the other would put both records at the same level. But
the advantage of the second one will naturally reduce the disparities in the
distribution of the scores.

5.7.2 latest �rst as default sorting

The queries used for training and counting were sorted by latest �rst : the
more recent documents were at the top of the displayed records. As a result,
the number of seen of the records was important: the documents of interest
were not necessary at the top. In addition to that, the queryanalyser

overestimates the number of seens.
Furthermore, it is di�cult to know why a user clicked on a document,

displayed by latest �rst : was it because the document is relevant, or is it
because it is displayed �rst? Would the user have clicked on it if it was
sorted di�erently and displayed a few pages after?

This default sorting method also explains why the weight for word sim-
ilarity is so low in comparison to the others. Latest �rst sorting does not
take into account word similarity, but put all emphasis on the quality and
especially on the seen count(based on the large coe�cient for seen). It would

70 Learning the optimal coe�cients from the user feedback

have been better to take into account only ranked queries (ranked by word
similarity) and to do the counts and estimation on these data. But with few
queries, the counts would not have been relevant (only 16000 ranked queries
over the 9 months). Another problem raises: how can we compare a seen
count for a document coming from a ranked query and a seen count coming
from a latest �rst display?

In the end, maybe only the download and the view counts should be
taken as quality scores at the beginning, and the seen counts be used only
from D-Rank queries as a negative parameter coming from the same method
we would like to optimize.

Conclusion

In this dissertation, we studied, adapted and used distributed-ranking in
the frame of ranking documents in Invenio, the CERN software to manage
an online digital library. This ranking method aggregates di�erent ranking
scores to produce a new one, which re�ects the contribution of the individual
scores all together.

Among the attributes to aggregate, we used the frequency access of a
document, considering that documents which have already been accessed
should be favoured in later queries. These attributes can come in addition
to standard attributes such as word similarity.

The aggregation relying on logistic regression has been optimized by us-
ing the user behaviour at search time on the repository: his/her actions
were taken into account so that already accessed documents could be better
ranked in future queries. We used �ve months of user actions to estimate
the optimal coe�cients and tested them on the following months: we com-
pared the original ranking of the documents that the user was looking for
with the new ranking obtained with the optimal distributed-ranking. These
coe�cients provided a better ranking for 64% of the records and for 61% of
the queries, the clicked records were on average better ranked.

The coe�cients showed that the more a document is viewed or down-
loaded, the better it will be ranked later, and the more it has been seen,
the lower ranked it will be. Word similarity (i.e. relevance to the query) is
also contributing positively to the ranking, but surprisingly with a smaller
weight.

This can be explained by the fact that the queries were displayed by latest
�rst which gave lots of weight to seen counts. Moreover, the distribution
of scores lead to a poor normalization of the attributes, which could have
underestimated the importance of word similarity.

Further developments could consider improving the score normalization
and also a better �ltering of the data in order to work with relevant queries.
Another development is the aggregation of mature records with fresh records,
which do not have enough quality counts to be ranked with the others.

72 Conclusion

Bibliography

[1] CERN, �Cern in a nutshell,� http://public.web.cern.ch/public/

en/About/About-en.html, Retrieved on April 27th, 2012.

[2] CERN, �History highlights,� http://public.web.cern.ch/public/

en/About/History-en.html, Retrieved on April 27th, 2012.

[3] CERN, �Facility,� http://isolde.web.cern.ch/isolde/default2.

php?index=index/facilityindex.htm&main=facility/facility.

php, Retrieved on August 12th, 2012.

[4] CERN, �Atlas,� http://public.web.cern.ch/public/en/LHC/

ATLAS-en.html, Retrieved on August 12th, 2012.

[5] CERN, �Cms � compact muon solenoid,� http://public.web.cern.

ch/public/en/LHC/CMS-en.html, Retrieved on August 12th, 2012.

[6] CERN, �A nobel discovery � hunting the heavyweights with ua1
and ua2,� http://public.web.cern.ch/public/en/research/UA1_

UA2-en.html, Retrieved on August 12th, 2012.

[7] Katarina Anthony, �Getting to grips with antihydrogen,� http://

cdsweb.cern.ch/record/1431851?ln=en, Retrieved on August 12th,
2012.

[8] CERN Press Release, �Cern experiments observe particle consis-
tent with long-sought higgs boson,� http://cdsweb.cern.ch/record/
1459454?ln=en, Retrieved on August 12th, 2012.

[9] CERN Document Server, �Cern document server,� http://cdsweb.

cern.ch/, Retrieved on April 27th, 2012.

[10] Anne Gentil-Beccot, Salvatore Mele, Annette Holtkamp, Heath B.
O'Connell, and Travis C. Brooks, �Information resources in high-
energy physics: Surveying the present landscape and charting the future
course,� CoRR, vol. abs/0804.2701, 2008.

[11] Invenio, �About invenio,� http://invenio-software.org/, Retrieved
on April 27th, 2012.

http://public.web.cern.ch/public/en/About/About-en.html
http://public.web.cern.ch/public/en/About/About-en.html
http://public.web.cern.ch/public/en/About/History-en.html
http://public.web.cern.ch/public/en/About/History-en.html
http://isolde.web.cern.ch/isolde/default2.php?index=index/facilityindex.htm&main=facility/facility.php
http://isolde.web.cern.ch/isolde/default2.php?index=index/facilityindex.htm&main=facility/facility.php
http://isolde.web.cern.ch/isolde/default2.php?index=index/facilityindex.htm&main=facility/facility.php
http://public.web.cern.ch/public/en/LHC/ATLAS-en.html
http://public.web.cern.ch/public/en/LHC/ATLAS-en.html
http://public.web.cern.ch/public/en/LHC/CMS-en.html
http://public.web.cern.ch/public/en/LHC/CMS-en.html
http://public.web.cern.ch/public/en/research/UA1_UA2-en.html
http://public.web.cern.ch/public/en/research/UA1_UA2-en.html
http://cdsweb.cern.ch/record/1431851?ln=en
http://cdsweb.cern.ch/record/1431851?ln=en
http://cdsweb.cern.ch/record/1459454?ln=en
http://cdsweb.cern.ch/record/1459454?ln=en
http://cdsweb.cern.ch/
http://cdsweb.cern.ch/
http://invenio-software.org/

74 BIBLIOGRAPHY

[12] E. Chisholm and T.G. Kolda, �New term weighting formulas for the
vector space method in information retrieval,� Research Report, 1999.

[13] Invenio, �Word similarity/similar records methods,� http://

invenio-demo.cern.ch/help/hacking/bibrank-word-similarity,
Retrieved on August 12th, 2012.

[14] Ludmila Marian, Jean-Yves Le Meur, Martin Rajman, and Martin
Vesely, �Citation graph based ranking in invenio,� Lect. Notes Comput.
Sci., vol. 6273, no. CERN-IT-2010-001. 10.1007/978-3-642-15464-5_25,
pp. 236�247. 12 p, Sep 2010.

[15] Google Scholar, �About google scholar,� http://scholar.google.com/
intl/en/scholar/about.html, Retrieved on June 29th, 2012.

[16] M. Fernández, D. Vallet, and P. Castells, �Probabilistic score normal-
ization for rank aggregation,� Advances in Information Retrieval, pp.
553�556, 2006.

[17] A. Le Calvé and J. Savoy, �Database merging strategy based on logistic
regression,� Information Processing & Management, vol. 36, no. 3, pp.
341�359, 2000.

[18] Martin Vesely and Martin Rajman, �Rank aggregation in scienti�c pub-
lication databases based on logistic regression,� Technical Report No.
LIA-REPORT-2009-002 LIA-REPORT-2009-002, Swiss Federal Insti-
tute of Technology (EPFL), Lausanne (Switzerland), October 2009.

[19] M. Vesel�y, M. Rajman, J.Y. Le Meur, L. Marian, and J. Ca�aro, �D-
rank: a framework for score aggregation in specialized search,� 3rd

International Conference on Agents and Arti�cial Intelligence, 2010.

[20] S.A. Czepiel, �Maximum likelihood estimation of logistic regression
models: theory and implementation,� 2002.

[21] Peter Amoako-Yirenkyi, �Distributed ranking in invenio �
ranking by relevance and quality,� https://indico.cern.ch/

contributionDisplay.py?contribId=5&confId=103885, 2010.

http://invenio-demo.cern.ch/help/hacking/bibrank-word-similarity
http://invenio-demo.cern.ch/help/hacking/bibrank-word-similarity
http://scholar.google.com/intl/en/scholar/about.html
http://scholar.google.com/intl/en/scholar/about.html
https://indico.cern.ch/contributionDisplay.py?contribId=5&confId=103885
https://indico.cern.ch/contributionDisplay.py?contribId=5&confId=103885

