XYZ States at LHCb

Tadeusz Lesiak on behalf of the LHCb collaboration

Institute of Nuclear Physics Polish Academy of Sciences, Kraków

- 1. (Very brief) introduction to the spectroscopy of hadron states
- 2. LHCb spectrometer an excellent tool for heavy hadron spectroscopy
- 3. Exotic hadrons at LHCb (pentaquarks excluded)
 - ✓ X(3872) and X(3842)
 - ✓ The X states decaying to J/ ψ ϕ
 - ✓ Tetraquark X(5568) ?
 - $\sqrt{Z_c}$ (4430), Z_c (4200) and Z_c (4100)
 - ✓ Search for beautiful tetraquarks
 - ✓ Search for dibaryons
 - ✓ Open charm exotic states in Λ_c^+ excitations

Standard vs Exotic States

CLUSHIQ2020, Beppu

Tadeusz Lesiak

XYZ States at LHCb

Jan. 2020

LHCb Spectrometer

The first hadron-collider experiment that is dedicated to heavy flavour (HF) physics

LHCb Spectrometer

- General advantages (pp interaction):
 - High production cross-sections for HF (2x10⁴ bbar pairs/s i.e.10³ larger than at the e⁺e⁻ B factories)
 - Simultaneous accumulation of huge B_d, B_s and b-baryons data samples (composition 4:1:2)
 - The decay vertices are well separated from the production point (high boost of heavy hadrons)
- LHCb specific advantages (single arm forward spectrometer: 0.8° < Θ < 15.4°):</p>
 - LHCb captures a HF production cross-section, comparable to that of ATLAS and CMS (high-p_T range) in MUCH SMALLER SOLID ANGLE → smaller number of electronic channels
 → smaller event size → larger trigger bandwith to store (dominated by b and c physics)
 - LHCb forward detector (p >> p_T): efficient muon identification for lower P_T values
 - Space to accommodate excellent RICH detectors (flavour tagging, background suppression)
 - General drawbacks:
 - The instantaneous luminosity is limited by the detector readout capabilities (4x10³² cm⁻²s⁻¹)
 - The efficiencies of γ , π^0 and η reconstruction are much lower, compared with the e⁺e⁻

Taa	01107	Lacial
60	IEUSZ	LESIAK
		Leonary

LHCb Data Sample

- All results presented here correspond to Run 1 data: 3 fb⁻¹
 4 x 10¹² b-hadrons produced
- Run 2 vs Run 1:
 - more abundant production of b-hadrons
 - improvements in trigger and selection efficiencies

Production of Charmed Hadrons

The (striking) properties of X(3872):

X(3872): Past and Latest Measurements

Spin-parity: $J^{PC} = 1^{++}$ - unequivocally determined by the LHCb (2013): data: 1 fb⁻¹, 313±26 ev. 3.

HC

X(3872): Past and Latest Measurements

Multiplicity Dependence χ_{c1} (3872) and ψ (2S) Production

 \rightarrow consistent with the interpretation of the $\chi_{c1}(3872)$ as a weakly bound state e.g. a $D^0 \overline{D^{0*}}$ hadronic molecule which should dissociate strongly in prompt production

+ χ_{c1}(3872)

 $+\psi(2S)$

Interpretation: X(3872) is likely a mixture of a $\chi_{c1}(2^3P_{1++})$ charmonium and of $D^0\bar{D^{0*}}$ molecule **Molecule:** properties 1, 2, 3, 4a, 5 (\rightarrow only a small admixture of $D^+ D^{+*}$, compare with $D^0 D^{0*}$), 6 and 10 Charmonium: radiative decays (4b*), 7 and observation of prompt production rates (ALICE and ATLAS)

CLUSHIQ2020, Beppu

HER New Charmonium State X(3842) in DD

LHCb (2019):

JHEP 07 (2019) 035

Study of near DD threshold spectroscopy: .

Prompt D⁰D⁰ and D⁺D⁻ pairs combined; two displaced vertices coming from the same primary vertex The first LHCb analysis using Run1 & Run2 data: 9fb⁻¹

Four peaking structures observed:

1200

14

• The measured mass of the $\chi_{c2}(3930)$ is midway between the PDG mass of this state and the mass of the X(3915) hadron, which is only known to decay to the J/ $\psi\omega$ final state

The open question: are the $\chi_{c2}(3930)$ and X(3915) two distinct hadrons or there is just one charmonium state in this mass region?

PRL 115 (2015) 022001

Negative results from B-factories

Tadeusz Lesiak

The Puzzling States $X \rightarrow J/\psi \phi$

PRL 118 (2017) 02203, PR D95 (2017) 012002

> LHCb (2017): the first amplitude analysis of $B^+ \rightarrow [J/\psi \phi] K^+$ decays

- 4289+-151 candidates; nearly background free
- 6D phase space composed of m(φK), helicity angles and Δφ angles
- The amplitude analysis aimed to resolve $K^* \rightarrow K \phi$ from the potential $X \rightarrow J/\psi \phi$ resonances
- The model with excited K*s (→ Kφ) does not describe the data
- Good description upon inclusion of four broad exotic resonances
- The X(4140) width is substantially larger than previously determined (average of other meas. (1D fits): 15.7±6.3 MeV/c²)
- X(4140) and X(4274) the leading interpretation as tetraquarks (no light valence quarks) or χ_{c1}(3P)

- X(4140) $D_s^{*+}D_s^{*-}$ molecules 0⁺⁺ and 2⁺⁺ ruled out; possible cusp $D_s^{\pm}D_s^{*\mp}$
- X(4274) incompatible with cusps and molecular bound states

Tadeusz Lesiak

 $-D_{s}^{*+}D_{s}^{*-}$ (0⁺⁺)molecule

or $\chi_{c0}(4P)$, $\chi_{c0}(5P)$

Controversy About the Tetraquark X(5568)

Controversy About the Tetraquark X(5568)

LHCb (2016): 20x more D_s than D0 collab. - lack of observation of any X(5568)-like signal

Tadeusz LesiakXYZ States at LHCbCLUSHIQ2020, BeppuJan. 2020	19

Charged Exotic State Z_c(4430)⁻

LHCb (2014-15): tenfold increase in the signal yield (25 000 decays; Run1 3fb⁻¹); two approaches:

Tadeusz Lesiak

HC

15.8

16.1

14.6

9.7

sign. σ

 $J^{P} = 0^{-1}$

 $\Gamma(Z_c(4430)^-) = 220 \pm 47^{+108}_{-74} \text{ MeV/c}^2$

 $M(Z_0^-) = 4239 \pm 18^{+45}_{-10} \text{ MeV/c}^2$

 6σ

Charged Exotic State Z_c(4430)⁻

4D amplitude analysis cont

Additional fit to the $Z_c(4430)^-$ Breit-Wigner amplitude in 6 M²($\psi'\pi$) bins (M_z = 4475 MeV/c², Γ_z =172 MeV/c²; M²($\psi'\pi$) increases counterclockwise)

Model independent approach:

- The Kπ angular distributions are extracted from data with Legendre polynomial moments and projected as reflection of the m(ψ'π) spectrum
- The hypothesis that Kπ reflections with J(K*) ≤ 2 can explain the m(ψ'π) spectrum excluded (>8σ)
 The discrepancy concentrates around 4430 MeV/c²

Positive parity → hypotheses of threshold effect $\overline{D}^*(2007)D_1(2420)$ and $\overline{D}^*(2007)D_2^*(2460)$ ruled out
The most plausible interpretation of Z_c(4430): a tetraquark; the minimal quark content $c\overline{c}d\overline{u}$

Tadeusz Lesiak

$Z_c(4200)^-$ in $B^0 \rightarrow J/\psi \pi^- K^+$ Decays

$\frac{Hcb}{Hcp} \quad Z_c(4100)^- \text{ in } B^0 \rightarrow \eta_c(1S)K^+ \pi^- \text{ Decays } \blacksquare$

>

No exotic hadron, composed of more than two heavy guarks has been observed so far

Several theoretical predictions for the existence of an exotic state $X_{b\overline{b}b\overline{b}}$

- Mass in the range [18.4, 18.8] GeV/c², close but below the η_bη_b threshold (18.798±0.005) GeV/c²
- \rightarrow The expected, experimentally favorable, decay mode: $X_{b\bar{b}b\bar{b}} \rightarrow \Upsilon(1S)l^+l^-$, $(l = e, \mu)$
- Lattice QCD calculations: no indication for the X state in the hadron spectrum

Jan. 2020

No evidence of peaking structures found

Tadeusz Lesiak

Jan. 2020

Lнср

Conclusions

- The renaissance of heavy flavour spectroscopy in recent 15 years:
 - Observation of numerous new states: many of them exotic-like
 - A vivid field of research with strong liaisons between theory and experiment
- LHCb has been one of crucial players in heavy flavour spectroscopy of exotic states – the discussed states shown in black fields
- More precise spectroscopic measurements from the LHCb experiment and, hopefully, some discoveries should follow with the analysis of Run 2 data
- LHC and LHCb upgrade: 50 fb⁻¹ of integrated luminosity expected by 2030....

