## Appendix 11-A

*Murray River Coal Project: 2010 to 2012 Ecosystem and Vegetation Baseline Report* 

MURRAY RIVER COAL PROJECT

Application for an Environmental Assessment Certificate / Environmental Impact Statement

HD Mining International Ltd.

## MURRAY RIVER COAL PROJECT 2010 to 2012 Ecosystem and Vegetation Baseline Report







Rescan™ Environmental Services Ltd. Rescan Building, Sixth Floor - 1111 West Hastings Street Vancouver, BC Canada V6E 2J3 Tel: (604) 689-9460 Fax: (604) 687-4277



## MURRAY RIVER COAL PROJECT 2010 TO 2012 ECOSYSTEM AND VEGETATION BASELINE REPORT

June 2013 Project #0791-008-02-09

Citation:

Rescan. 2013. *Murray River Coal Project: 2010 to 2012 Ecosystem and Vegetation Baseline Report*. Prepared for HD Mining International Ltd. by Rescan Environmental Services Ltd.: Vancouver, British Columbia.

Prepared for:



HD Mining International Ltd.

Prepared by:



Rescan<sup>™</sup> Environmental Services Ltd. Vancouver, British Columbia

# **Executive Summary**



### **Executive Summary**

HD Mining International Ltd. (HD Mining) proposes to develop the Murray River Coal Project (the Project) as a 6 million tonne per annum (6 Mtpa) underground metallurgical coal mine. The property is located approximately 12.5 km south of Tumbler Ridge, British Columbia. The Project is located within the Peace River Coalfield (PRC), an area with a long history of metallurgical grade coal mining, mainly from open pit mining. HD Mining is proposing to access deeper zones of the coal field (600 to 1,000 m below surface) through underground mining techniques.

To support HD Mining's planning and development of the Project, and to fulfill the requirements of the environmental assessment process, environmental and socio-economic baseline studies were initiated by Rescan Environmental Services Ltd. (Rescan). Project-specific studies began in 2010 and have continued through 2012. As appropriate and available, historical data from government sources and neighbouring projects, as well as traditional use/knowledge information, have been compiled and incorporated into analysis.

This report presents a cumulative summary of all Ecosystems and Vegetation information compiled for the Project to date.

The goal of the Project baseline ecosystems and vegetation program was to document current conditions and to provide a means of determining and assessing future changes to ecosystems and vegetation related to the proposed development. The main objectives of the Ecosystems and Vegetation baseline program were to:

- review existing literature and data sources to describe the ecology of a regional study area (RSA);
- compile existing vegetation and terrestrial ecosystem information for the local study area (LSA);
- conduct field surveys to guide ecosystem mapping in the LSA;
- o conduct field surveys for rare and invasive plants species in the LSA;
- provide ecosystem maps for the RSA and LSA; and
- collect plant tissue samples for baseline metals analysis within the LSA and at reference sites within the RSA.

Baseline information will be used to evaluate the potential effects of the Project on vegetation and terrestrial ecosystems, including at-risk or endangered plant species and ecosystems, or those species/ecosystems identified by regulators, First Nations or the public as socially, economically or ecologically important.

# **Table of Contents**



## MURRAY RIVER COAL PROJECT 2010 TO 2012 ECOSYSTEM AND VEGETATION BASELINE REPORT

## **Table of Contents**

| Executi | ive Sumr             | nary              | •••••                                                              |                                                      | i        |  |  |  |  |  |
|---------|----------------------|-------------------|--------------------------------------------------------------------|------------------------------------------------------|----------|--|--|--|--|--|
| Table c | of Conter<br>List of | nts<br>Figures .  |                                                                    |                                                      | iii<br>v |  |  |  |  |  |
|         | List of Tables       |                   |                                                                    |                                                      |          |  |  |  |  |  |
|         | List of Plates       |                   |                                                                    |                                                      |          |  |  |  |  |  |
|         | List of .            | Appendi           | ces                                                                |                                                      | viii     |  |  |  |  |  |
| Glossar | y and At             | obreviat          | ions                                                               |                                                      | ix       |  |  |  |  |  |
| 1.      | Introdu              | ction             |                                                                    |                                                      | 1-1      |  |  |  |  |  |
| 2.      | Backgro              | ound Inf          | ormation.                                                          |                                                      | 2-1      |  |  |  |  |  |
|         | 2.1                  | Regiona           | al Setting                                                         |                                                      | 2-1      |  |  |  |  |  |
|         |                      | 2.1.1             | Dawson (                                                           | Creek Land and Resource Management Plan              | 2-2      |  |  |  |  |  |
|         | 2.2                  | Literature Review |                                                                    |                                                      |          |  |  |  |  |  |
|         |                      | 2.2.1             | .1 Occurrences of Plants Listed by the BC Conservation Data Centre |                                                      |          |  |  |  |  |  |
|         |                      | 2.2.2             | Invasive                                                           | Plant Occurrences                                    | 2-2      |  |  |  |  |  |
| 3.      | Methodology3         |                   |                                                                    |                                                      |          |  |  |  |  |  |
|         | 3.1                  | Ecosyst           | ystem Classification                                               |                                                      | 3-1      |  |  |  |  |  |
|         |                      | 3.1.1             | Natural D                                                          | Disturbance and Regeneration                         | 3-1      |  |  |  |  |  |
|         | 3.2                  | Ecosyst           | em Mappi                                                           | ng                                                   | 3-2      |  |  |  |  |  |
|         |                      | 3.2.1             | Predictiv                                                          | e Ecosystem Mapping (PEM) of the Regional Study Area | 3-2      |  |  |  |  |  |
|         |                      |                   | 3.2.1.1                                                            | PEM Input Components                                 | 3-3      |  |  |  |  |  |
|         |                      |                   | 3.2.1.2                                                            | PEM Input Data Quality                               | 3-9      |  |  |  |  |  |
|         |                      |                   | 3.2.1.3                                                            | PEM Assessment and Refinement                        | 3-10     |  |  |  |  |  |
|         |                      | 3.2.2             | Terrestri                                                          | al Ecosystem Mapping (TEM) of the Local Study Area   | 3-10     |  |  |  |  |  |
|         |                      | 3.2.3             | Vegetatio                                                          | on Structural Stage                                  | 3-11     |  |  |  |  |  |
|         | 3.3                  | Sensitiv          | /e Ecosyst                                                         | ems                                                  | 3-11     |  |  |  |  |  |
|         |                      | 3.3.1             | Listed Ecosystems                                                  |                                                      |          |  |  |  |  |  |
|         |                      | 3.3.2             | Non-liste                                                          | d Sensitive Ecosystems                               | 3-12     |  |  |  |  |  |
|         |                      |                   | 3.3.2.1                                                            | Riparian Ecosystems                                  | 3-12     |  |  |  |  |  |
|         |                      |                   | 3.3.2.2                                                            | Wetland Ecosystems                                   | 3-12     |  |  |  |  |  |

|   |         |                                                | 3.3.2.3                                                          | Alpine Ecosystems                                            | . 3-13 |  |  |  |
|---|---------|------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|--------|--|--|--|
|   |         | 3.3.3                                          | Ecosyster                                                        | ns of Significance to First Nations                          | . 3-13 |  |  |  |
|   | 3.4     | Field S                                        | urveys                                                           |                                                              | . 3-13 |  |  |  |
|   |         | 3.4.1                                          | 3.4.1 Terrestrial and Predictive Ecosystem Mapping Field Surveys |                                                              |        |  |  |  |
|   |         | 3.4.2                                          | Listed Pla                                                       | ants Species                                                 | . 3-14 |  |  |  |
|   |         | 3.4.3                                          | Plants of                                                        | Significance to First Nations                                | . 3-15 |  |  |  |
|   |         | 3.4.4                                          | Invasive I                                                       | Plant Species                                                | . 3-15 |  |  |  |
|   | 3.5     | Metal C                                        | Concentrat                                                       | ions in Plant Tissues                                        | . 3-15 |  |  |  |
| 4 | Results |                                                |                                                                  |                                                              | 4-1    |  |  |  |
|   | 4.1     | Regiona                                        | al Study Ar                                                      | rea.                                                         | 4-1    |  |  |  |
|   |         | 4.1.1 BEC Units within the Regional Study Area |                                                                  |                                                              |        |  |  |  |
|   |         |                                                | 4.1.1.1                                                          | The Boreal Altai Fescue Alpine                               | 4-2    |  |  |  |
|   |         |                                                | 4.1.1.2                                                          | Boreal White and Black Spruce- Moist Warm                    | 4-2    |  |  |  |
|   |         |                                                | 4.1.1.3                                                          | Boreal White and Black Spruce - Murray Wet Cool              | 4-2    |  |  |  |
|   |         |                                                | 4.1.1.4                                                          | Engelmann Spruce - Subalpine Fir - Bullmoose Moist Very Cold | 4-3    |  |  |  |
|   |         |                                                | 4.1.1.5                                                          | Engelmann Spruce - Subalpine Fir - Moist Very Cold Parkland  | 4-3    |  |  |  |
|   |         |                                                | 4.1.1.6                                                          | Engelmann Spruce Subalpine Fir - Cariboo Wet Cold            | 4-3    |  |  |  |
|   |         |                                                | 4.1.1.7                                                          | Engelmann Spruce Subalpine Fir - Wet Cold Parkland           | 4-3    |  |  |  |
|   |         |                                                | 4.1.1.8                                                          | Engelmann Spruce Subalpine Fir - Misinchinka Wet Cool        | 4-3    |  |  |  |
|   |         |                                                | 4.1.1.9                                                          | Sub-Boreal Spruce Zone - Finlay-Peace Wet Cool               | 4-4    |  |  |  |
|   |         | 4.1.2                                          | Site Serie                                                       | s and General Ecosystem Types                                | 4-4    |  |  |  |
|   |         | 4.1.3                                          | Structura                                                        | l Stages                                                     | 4-4    |  |  |  |
|   |         | 4.1.4                                          | Extent of                                                        | Sensitive Ecosystems                                         | 4-4    |  |  |  |
|   |         |                                                | 4.1.4.1                                                          | Listed Ecosystems                                            | 4-4    |  |  |  |
|   |         |                                                | 4.1.4.2                                                          | Non-listed Ecosystems                                        | . 4-25 |  |  |  |
|   | 4.2     | Local Study Area                               |                                                                  |                                                              |        |  |  |  |
|   |         | 4.2.1                                          | Extent of                                                        | BEC Units within the Local Study Area                        | . 4-25 |  |  |  |
|   |         | 4.2.2                                          | Extent of                                                        | Site Series and General Ecosystem Types                      | . 4-25 |  |  |  |
|   |         | 4.2.3                                          | Extent of                                                        | Sensitive Ecosystems                                         | . 4-28 |  |  |  |
|   |         |                                                | 4.2.3.1                                                          | Ecological Characteristics and Extent of Listed Ecosystems   | . 4-28 |  |  |  |
|   |         |                                                | 4.2.3.2                                                          | Extent of Non-listed Ecosystems                              | . 4-31 |  |  |  |
|   | 4.3     | Ecosyst                                        | ems and V                                                        | egetation Field Surveys                                      | . 4-31 |  |  |  |
|   |         | 4.3.1                                          | Terrestria                                                       | al Ecosystem and Predictive Ecosystem Mapping Field Surveys  | . 4-31 |  |  |  |
|   |         | 4.3.2                                          | Sensitive                                                        | Ecosystems Identified in the Field                           | . 4-32 |  |  |  |
|   |         |                                                | 4.3.2.1                                                          | Listed Ecosystems                                            | . 4-32 |  |  |  |
|   |         |                                                | 4.3.2.2                                                          | Non-listed Ecosystems                                        | . 4-35 |  |  |  |
|   |         | 4.3.3                                          | Species R                                                        | ichness                                                      | . 4-35 |  |  |  |
|   |         | 4.3.4                                          | BC CDC L                                                         | isted Plant Surveys                                          | . 4-35 |  |  |  |
|   |         | 4.3.5                                          | Invasive I                                                       | Plant Surveys                                                | . 4-35 |  |  |  |
|   |         |                                                | 4.3.5.1                                                          | Common Tansy                                                 | . 4-40 |  |  |  |

|        |         | 4.3.5.2                                                  | Canada Thistle      |     |  |
|--------|---------|----------------------------------------------------------|---------------------|-----|--|
|        | 4.3.5.3 |                                                          | Scentless Chamomile |     |  |
|        |         | 4.3.5.4                                                  | Bull Thistle        |     |  |
|        |         | 4.3.5.5                                                  | Pineapple Weed      |     |  |
| 5.     | Summary |                                                          |                     | 5-1 |  |
|        | 5.1     | Broad Scale Ecosystem Information                        |                     |     |  |
|        | 5.2     | Sensitive Ecosystems and Plants of Conservation Interest |                     |     |  |
|        | 5.3     | Plant Tissue, Lichens and Soils Metals Analysis5-1       |                     |     |  |
| Refere | ences   |                                                          |                     | R-1 |  |

#### List of Figures

# FIGUREPAGEFigure 1-1. Project Location1-2Figure 1-2. Project Study Boundaries1-3Figure 1-3. Preliminary Site Layout1-5Figure 2.1-1. Land and Resource Management Areas2-3Figure 3.2-1. PEM Input Data Coverage for Structural Stage and Terrain3-7Figure 4.1-1a. Distribution of General Ecosystem Types within the Regional Study Area - Map 14-7Figure 4.1-2a. Structural Stages within the Regional Study Area - Map 24-11Figure 4.1-2b. Structural Stages within the Regional Study Area - Map 14-11Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3c. Sensitive Ecosystems of the Regional Study Area - Map 24-17Figure 4.1-3b. Sensitive Ecosystems of the Regional Study Area - Map 24-17</td

#### List of Tables

| TABLE                                                                           | PAGE |
|---------------------------------------------------------------------------------|------|
| Table 2.2-1. Listed Plant Species Identified near the Project                   | 2-4  |
| Table 2.2-2. Documented Occurrences of Invasive Plants near the Project         | 2-4  |
| Table 3.1-1. Natural Disturbance Types and Descriptions                         | 3-2  |
| Table 3.2-1. Age Class Used to Define Structural Stages from Available VRI Data | 3-6  |

| Table 4.3-3. Environmental Characteristics and BC CDC Status: Wm02 Swamp Horsetail - Beaked |        |
|---------------------------------------------------------------------------------------------|--------|
| Sedge                                                                                       | . 4-34 |
|                                                                                             |        |
| Table 4.3-4. Invasive Plants within the Local Study Area                                    | . 4-39 |
| ,                                                                                           |        |

#### List of Plates

| PLATE PAGE                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Plate 3.2-1. Example of the available satellite imagery (left) and resulting land cover map ("classify1" variable; right) used as input for the PEM |
| Plate 3.2-2. Example of the LnQArea PEM input variable                                                                                              |
| Plate 3.2-3. Example of the Qweti PEM input variable                                                                                                |
| Plate 4.1-1. ESSFmv2 06: Subalpine fir-Alders-Horsetails ecosystem identified at Site 63 4-19                                                       |
| Plate 4.1-2. ESSFmv2 06: Subalpine fir-Alders-horsetails ecosystem identified at Site 98 4-19                                                       |
| Plate 4.1-3. BWBSmw/110: White Spruce-Oak Fern - Sarsaparilla ecosystem identified at Site 016 4-20                                                 |
| Plate 4.1-4. BWBSmw/110: White Spruce-Oak Fern - Sarsaparilla ecosystem identified at Site S-42 4-20                                                |
| Plate 4.1-5. BWBSmw/111: White spruce - Red Swamp Currant - Horsetail ecosystem at Site 054 4-21                                                    |
| Plate 4.1-6. BWBSmw/111: White spruce - Red Swamp Currant - Horsetail ecosystem at Site 106 4-21                                                    |
| Plate 4.1-7. Fm02: Balsam poplar - White spruce - Mountain alder - Dogwood ecosystem at<br>Site 40                                                  |
| Plate 4.1-8. Fm02: Balsam poplar -White spruce - Mountain alder - Dogwood ecosystem at<br>Site 280                                                  |
| Plate 4.1-9. Wb06: Tamarack - water sedge - fen moss identified at Site 90                                                                          |
| Plate 4.1-10. Wb06: Tamarack - water sedge - fen moss identified at Site 104                                                                        |
| Plate 4.2-1. Wb09: Black Spruce - Common Horsetail - Peat-mosses identified at Site 053 4-30                                                        |
| Plate 4.2-2. Wb09: Black Spruce - Common Horsetail - Peat-mosses identified at Site104 4-30                                                         |
| Plate 4.3-1. Wm02: Swamp horsetail - beaked sedge identified at Site 102                                                                            |
| Plate 4.3-2. Wm02: Swamp horsetail - beaked sedge identified at Site 102                                                                            |
| Plate 4.3-3. Blue listed <i>B. crenulatum</i> (Dainty Moonwort) on left and <i>B. lunaria</i> (Common Moonwort) on right                            |
| Plate 4.3-4. Typical site conditions for <i>B. crenulatum</i> occurrences along road margins                                                        |
| Plate 4.3-5. Typical site conditions for <i>Botrychium crenulatum</i> in forested areas                                                             |

#### List of Appendices

- Appendix 1. Predictive Ecosystem Mapping (PEM) Rule Sets
- Appendix 2. British Columbia Conservation Data Centre Listed Ecosystems in the Peace Forest District
- Appendix 3. British Columbia Conservation Data Centre Listed Plants in the Peace Forest District
- Appendix 4. Ecological Characteristics of Map Units within the Regional Study Area
- Appendix 5. Ecological Characteristics of Map Units within the Local Study Area
- Appendix 6. Terrestrial Ecosystem Map
- Appendix 7. Ecosystem Mapping Field Survey Data
- Appendix 8. Plant Species Identified during Field Surveys

# **Glossary and Abbreviations**



Terminology used in this document is defined where it is first used. The following list will assist readers who may choose to review only portions of the document.

- Alpine High-elevation land above the treeline. Alpine vegetation on zonal sites is dominated by low shrubs, herbs, bryophytes and lichens. Although treeless by definition, patches of stunted (krummholz) trees may occur. Much of the alpine is covered by rock and ice rather than vegetation.
- Attribute A characteristic required for describing or specifying some entity (Dunster and Dunster 1996), which is associated with an ecosystem map unit.
- ANPC Alberta Native Plant Council
- BC British Columbia
- **BC CDC** British Columbia Conservation Data Centre: collects and disseminates information on plants, animals and ecological communities(ecosystems) at risk at the provincial level, and is tied to NatureServe, an international, non-profit organization of cooperating conservation data centres and natural heritage programs all using the same methodology to gather and exchange information on the threatened elements of biodiversity.
- **BC EAA** British Columbia Environmental Assessment Act
- **BC MELP** British Columbia Ministry of Environment, Lands, and Parks
- BC MEM British Columbia Ministry of Energy and Mines
- **BC MOAFF** British Columbia Ministry of Agriculture, Food and Fisheries
- BC MOE British Columbia Ministry of Environment
- **BC MOFR** British Columbia Ministry of Forests and Range
- BC MSRM British Columbia Ministry of Sustainable Resource Management
- **BEC** Biogeoclimatic Ecosystem Classification: a standard, hierarchical classification system for mapping terrestrial ecosystems in British Columbia.
- **Biogeoclimatic** A site-specific level of the biogeoclimatic classification system that further defines Subzone the climate of an area. On the coast, subzones are divided based on climate and continentality (the relative influence of the marine environment on the terrestrial environment). In the interior, subzones are divided based on climate and precipitation.biogeoclimatic zone (Marcoux). The subzone describes the zonal/or climax vegetation and corresponding climate and soil.

- BiogeoclimaticA general term referring to any level of biogeoclimatic zones, subzones, variants orUnitsphases. Biogeoclimatic units are inferred from a system of ecological classification<br/>based on a floristic hierarchy of plant associations. The recognized units are a<br/>synthesis of climate, vegetation, and soil data (Pojar et al. 1987).
- BiogeoclimaticA further subdivision of biogeoclimatic subzone reflecting further differences in<br/>regional climate. Variants are described as warmer, colder, drier, wetter, or<br/>snowier than the typical subzone (e.g., ESSFmm1-Moist Mild Raush Engelmann<br/>Spruce-Subalpine Fir).
- BiogeoclimaticGeographical areas having similar patterns of energy flow, vegetation, and soils as a<br/>result of a broadly homogeneous macroclimate. Biogeoclimatic zones are comprised<br/>of biogeoclimatic subzones with similar zonal climax ecosystems.
- Blue-list A list of ecological communities and indigenous species and subspecies of special concern in British Columbia.
- CFIA Canadian Food Inspection Agency
- **COSEWIC** Committee on the Status of Endangered Wildlife in Canada: A national committee of experts that assesses and designates the level of threat to wildlife and vegetation species in Canada.
- **Decile** The proportion (in tenths) of a polygon covered by a particular ecosystem unit.
- **DEM** Digital Elevation Model: a digital array of elevations for a number of ground positions at regularly spaced intervals.
- Ecosystem A volume of earth-space that is composed of non-living parts (climate, geologic materials, groundwater, and soils) and living or biotic parts, which are all constantly in a state of motion, transformation, and development. No size or scale is inferred. For the purposes of Terrestrial Ecosystem Mapping, an ecosystem is characterized by a plant community (a volume of relatively uniform vegetation) and the soil polypedon (a volume of relatively uniform soil) upon which the plant community occurs (Pojar et al. 1987).
- Forb Non-grassy herbaceous plant.
- GIF Ground Inspection Form
- Herb A plant—annual, biennial or perennial—with stems that die back to the ground at the end of the growing season. Herbaceous species include forbs, graminoids (e.g., sedge, grasses, and rushes), ferns, and fern allies (e.g., horsetails).
- **Invasive Plant** Any alien plant species that has the potential to pose undesirable or detrimental impacts on humans, animals or ecosystems.
- **Krumholtz** A term widely used to describe the stunted and irregularly formed vegetation that results from exposure to strong winds and cold conditions in subalpine or arctic landscapes.

- Land Cover The physical and biological cover over the surface of land, including water, vegetation, bare soil, and/or artificial structures (Ellis 2007).
- LSA Local Study Area is 7,541 ha, and was defined by a combination of topographical features and buffers around proposed infrastructure, so that all project infrastructure is located at least 1.5 km from any edge of the LSA boundary.
- Mesic Water removed somewhat slowly in relation to supply; soil may remain moist for a significant, but sometimes short period of the year. Available soil moisture reflects climatic inputs (BC Ministry of Environment Lands and Parks and BC Ministry of Forests Research Branch 1998).
- MoistureIndicates, on a relative scale, the available moisture for plant growth in terms of<br/>the soil's ability to hold, lose, or receive water. Described as moisture classes from<br/>Very Xeric (0) to Hydric (8) (Luttmerding et al. 1990).
- NutrientIndicates the available nutrient supply for plant growth on a site relative to the<br/>supply on all surrounding sites. Nutrient regime is based on a number of<br/>environmental and biotic factors, and is described as classes from Oligotrophic<br/>(A) to Hypereutrophic (F) (Luttmerding et al. 1990).
- NEIPC North East Invasive Plant Council.
- Parkland Subalpine area characterized by forest clumps interspersed with open subalpine meadows and shrub thickets. Vegetation cover may vary in the proportion of treed patches, meadows, and shrub thickets. The term parkland can also be used for lower elevation forest that are open due to restricted moisture availability.
- **Polygon** Delineations that represent discrete areas on a map, bounded by a line. On an ecosystem map, polygons depicting ecosystem map units are nested within larger polygons containing the biogeoclimatic and ecoregion map units. Polygons depicting ecosystem units represent areas from less than one hectare to several hundred hectares, depending on the scale of mapping.
- **Red-list** List of ecological communities, and indigenous species and subspecies that are extirpated, endangered or threatened in British Columbia. Red-listed species and subspecies have—or are candidates for—official extirpated, endangered or threatened status in BC. Not all red-listed taxa will necessarily become formally designated. Placing taxa on these lists flags them as being at risk and requiring investigation.
- Rescan Rescan Environmental Services Ltd.
- **RIC** Resources Inventory Committee.
- SARA Species at Risk Act (2002): A piece of Canadian federal legislation which is designed to meet one of Canada's key commitments under the International Convention on Biological Diversity. The goal of the Act is to protect endangered or threatened organisms and their habitats. It also manages species which are not yet threatened, but whose existence or habitat is in jeopardy.

- Scale The degree of resolution at which ecological processes, structure, and changes across space and time are observed and measured (Avers 1993). Common scales of Terrestrial Ecosystem Mapping are 1:10,000 and 1:50,000.
- SEI Sensitive Ecosystem Inventory.
- Site Series Describes all land areas capable of producing the same late seral or climax plant community within a biogeoclimatic subzone or variant (Banner et al. 1993). Site series can usually be related to a specified range of soil moisture and nutrient regimes within a subzone or variant, but other factors, such as aspect or disturbance history may influence it as well. Site series form the basis of ecosystem units. Definition is taken directly from the terrestrial ecosystem mapping standards.

StructuralDescribes the structural characteristics, and often the age, of vegetated ecosystemsStage(RIC 1998).

- **TEM** Terrestrial Ecosystem Mapping: delineation and attribution of ecosystem units based on air photo interpretation. Mapping follows provincial standards and a pre-defined classification system.
- **Topography** The configuration of a surface, including its relief and the position of its natural and man-made features.
- TRIM Terrain Resource Information Management: refers to the digital dataset of geographic base mapping completed for the province of BC in 1996 at a scale of 1:20,000. The dataset includes elevational data and stream networks.
- Wetland Sites dominated by hydrophytic vegetation where soils are water-saturated for a sufficient length of time such that excess water and resulting low soil oxygen levels are principal determinants of vegetation and soil development (MacKenzie and Moran 2004).

# 1. Introduction



## 1. Introduction

HD Mining International Ltd. (HD Mining) proposes to develop the Murray River Coal Project (the Project) as a 6 million tonne per annum (6 Mtpa) underground metallurgical coal mine. The property is located approximately 12.5 km south of Tumbler Ridge, British Columbia (Figure 1-1), and consists of 57 coal licences covering an area of 16,024 hectares. The Project is located within the Peace River Coalfield (PRC), an area with a long history of metallurgical grade coal mining, mainly from open pit mining. HD Mining is proposing to access deeper zones of the coal field (600 to 1,000 m below surface) through underground mining techniques.

In October 2011, HD Mining submitted an application to the BC Ministry of Energy and Mines and Ministry of Environment seeking permission to complete a bulk sampling program as part of exploration of the property. In March 2012, HD Mining received approval to conduct a 100,000 tonne bulk sample for the purpose of conducting testing to assist in developing markets for the coal. Beyond the bulk sample program, in order to develop a full mine at the proposed 6 Mtpa, the Project is subject to both the BC and Canadian environmental assessment processes. Development of any infrastructure for the full mine is not permitted before the requirements of these processes are met.

To support HD Mining's planning and development of the Project, and to contribute to the environmental assessment process, environmental and socio-economic baseline studies were initiated by Rescan Environmental Services Ltd. (Rescan). Project-specific studies began in 2010 and have continued through 2012. As appropriate and available, historical data from government sources and neighbouring projects, as well as traditional use/knowledge information, have been compiled and incorporated into analysis.

In order to help guide the scope of baseline studies, regional and local study areas (RSA and LSA, respectively) have been developed (Figures 1-2 and 1-3). The RSA is intended to encompass an area beyond which effects of the Project would not be expected. It is also intended to be ecologically relevant based on the home range of key wildlife species known to inhabit the region. The LSA encompasses an area surrounding the proposed Project infrastructure within which direct effects from the Project may be anticipated. Its boundary has also been developed following natural terrain and drainage boundaries in order to be ecologically relevant. For consistency, the same RSA and LSA are used for all environmental studies.

This report presents a cumulative summary of all Ecosystems and Vegetation information compiled for the Project to date.

The goal of the Project baseline ecosystems and vegetation program was to document current conditions and to provide a means of determining and assessing future changes to ecosystems and vegetation related to the proposed development. The main objectives of the Ecosystems and Vegetation baseline program were to:

- review existing literature and data sources to describe the ecology of the RSA;
- compile existing vegetation and terrestrial ecosystem information for the LSA;









- conduct field surveys to guide ecosystem mapping in the LSA and RSA;
- o conduct field surveys for rare and invasive plants species at infrastructure areas in the LSA;
- o provide ecosystem maps for RSA and LSA; and
- collect plant tissue samples for baseline metals analysis within the LSA and at reference sites within the RSA.

Baseline information will be used to evaluate the potential effects of the Project on vegetation and terrestrial ecosystems, including at-risk or endangered plant species and ecosystems, or those species/ecosystems identified by regulators, relevant First Nations or the public as socially, economically or ecologically important. Information obtained through community-based data gathering will be incorporated into this report as it becomes available.

The following chapters outline the available background information that supports the study (Chapter 2); a description of the methods and rationale used to identify sites and collect Project-specific data (Chapter 3); the results of data collection (Chapter 4); and a summary that synthesizes the key findings of the baseline program (Chapter 5).



# 2. Background Information



## 2. Background Information

#### 2.1 REGIONAL SETTING

The Project is within the Rocky Mountain Foothills physiographic region in northeastern BC (Holland 1976). It is classified as part of the Central Canadian Rocky Mountain Ecoregion, the Sub-boreal Interior Ecoprovince and the Hart Foothills Ecosection (Demarchi 1995). The Hart Foothills are situated on the east side of the Rocky Mountains and consist of rounded mountains and wide valleys generally lower than the Rocky Mountains to the north and south. The Hart Foothills are in a relatively dry Ecosection, a result of Arctic air stalling in this area. Immediately northeast of the Project is the Boreal Plains and Peace River Lowlands physiographic region, characterized by a more gentle topography of rolling hills and plateaus (800 to 1,100 masl).

The RSA is drained by northeast-flowing drainages that originate in the Rocky Mountains, including Flatbed Creek, Bullmoose Creek, Wolverine River, and Murray River. These four watercourses merge into the Murray River near Tumbler Ridge. The Murray River then continues north, emptying into the Pine River near East Pine Provincial Park. The Pine River then flows north and east, joining the Peace River near the Town of Taylor, BC.

South of Tumbler Ridge, the Murray River is an approximately 60 m wide meandering river, incised into a floodplain between the higher remnants of benches from older floodplains. Through time the valley has undergone a process of flattening as the river has continued to rework the sand and gravel bed materials. North of its confluence with the Wolverine River, a study of tree ring data from the present floodplain indicated that there were no trees older than 150 years before present, suggesting that the river may have encompassed the entire floodplain over approximately the past 200 years (Thompson, Berwick, Pratt & Partners 1978).

The RSA spans elevations from approximately 730 masl along the Murray River to 1,900 masl at the peak of Mount Babcock and encompasses portions of the Boreal White and Black Spruce, Sub-Boreal Spruce, Engelmann Spruce-Subalpine Fir, and Boral Altai Fescue Alpine biogeoclimatic zones (Meidinger and Pojar 1991); however, the Project footprint is entirely within the Boreal White and Black Spruce zone.

The Boreal White and Black Spruce zone covers most of northeastern BC. Upland forests are characterized by trembling aspen, white spruce, lodgepole pine, subalpine fir, birch, and balsam poplar. Large expanses of low-lying terrain are muskeg (peat wetlands) characterized by scrub forest of black spruce and tamarack (DeLong, Annas, and Stewart 1991). The climatic conditions are continental, with low precipitation and long, cold winters. Average temperatures at Chetwynd, about 100 km north of Tumbler Ridge, range from -10.7°C in the winter to 15.3°C in the summer, and annual precipitation is 447.5 mm, approximately 38% of it falling as snow (Environment Canada 2011). Mammalian fauna observed in the Tumbler Ridge region include woodland caribou, Rocky Mountain elk, moose, mountain goat, mountain sheep, wolverine, fisher, marten, hoary marmot, black bear, grizzly bear, wolf, coyote, snowshoe hare, beaver, lynx, red fox, white-tail deer, mule deer, and cougar. A number of bird species are also present, including ptarmigans, raptors, songbirds and ducks (Rescan 2011b).

The RSA is part of the vast Arctic Ocean drainage system, and unlike the Pacific drainages immediately south and west of the Rocky Mountains, there are no anadromous fish such as salmon in the Project area. Fish species present in the Murray River include mountain whitefish, Arctic grayling, bull trout, northern pike, burbot, longnose sucker, slimy sculpin, longnose dace, finescale dace, and lake chub (Diversified Environmental Services 2011).

#### 2.1.1 Dawson Creek Land and Resource Management Plan

The proposed Project is located within the boundaries of the Dawson Creek LRMP (Figure 2.1-1). The Dawson Creek LRMP provides a guide for managing and directing resource development and conservation for each of the region's distinct landscape areas. The Dawson Creek LRMP was completed in 1999 as a strategic long-term planning framework for Crown land resource access, development and management (BC Ministry of Forests and Range 1999). The Dawson Creek LRMP provides General Management Directions (GMDs) to guide the management of key resources, interests and activities throughout the planning area. Principles guiding GMDs include:

- sustainable use of renewable natural resources;
- management of any one resource will take into consideration other resource values, rights, tenures and development opportunities which recognize the biological and physical limitations of the land and resources;
- maintenance or enhancement of the quality of life, social and economic stability, employment opportunities including job creation, and the vitality of local communities;
- acknowledgement that communities located within the planning area should have the opportunities to benefit from the natural resources within the planning area; and
- land, water, air and all living organisms are integral parts of the ecosystem and should be sustained and accommodated by management plans (BC Ministry of Forests and Range 1999).

The goals, objectives and GMD's served to guide the design and implementation of the ecosystem and vegetation baseline studies. Management direction relevant to terrestrial ecosystems and vegetation include, but are not limited to, the following:

- biodiversity (including diversity of plants, animals and other living organisms well as genetic and ecosystem diversity);
- o cultural heritage (ecosystems of importance for cultural reasons including traditional use plants);
- wildlife habitat;
- connectivity at the landscape (watershed) level; and
- scenic areas (i.e. ecosystems) for tourism and visual quality.

#### 2.2 LITERATURE REVIEW

#### 2.2.1 Occurrences of Plants Listed by the BC Conservation Data Centre

There are several occurrences of listed plants documented in past studies carried out in proximity to the proposed Project. Of these species, one is red listed and seven are blue listed. The plant species, associated habitat and source of the information are summarized in Table 2.2-1.

#### 2.2.2 Invasive Plant Occurrences

According to the BC Invasive Alien Plant Program Map Display, there are numerous documented occurrences of invasive plant species near the proposed Project (Table 2.2-2).

PROJECT #0194106-0003-0009 GIS # MUR-20-027 VERSION # T0.10



| Plant Species                                                       | Associated Habitat                                   | Status | Source                |
|---------------------------------------------------------------------|------------------------------------------------------|--------|-----------------------|
| Three lobed daisy (Erigeron trifidus)                               | terrestrial; alpine                                  | Red    | imap                  |
| Alpine draba (Draba alpina)                                         | terrestrial; alpine                                  | Blue   | imap                  |
| Blue milky draba (Draba lactea)                                     | stony slopes in alpine areas                         | Blue   | imap                  |
| Tender sedge (Carex tenera)                                         | hollow among outcrops in terrestrial<br>alpine areas | Blue   | imap                  |
| Western Jacob's ladder (Polemonium occidentale var. occidentale)    | talus slope                                          | Blue   | Peace River Coal Inc. |
| Arctic campion (Silene involucrata ssp. involcrata)                 | gravel and sparse vegetation                         | Blue   | Peace River Coal Inc. |
| Porsilid's whitlow-grass (Draba porsildii)                          | talus slopes                                         | Blue   | Peace River Coal Inc. |
| Small flowered willow herb (Epilobium occidentale ssp. occidentale) | Mountain-heather willow                              | Blue   | Peace River Coal Inc. |

Table 2.2-1. Listed Plant Species Identified near the Project

Table 2.2-2. Documented Occurrences of Invasive Plants near the Project

| Common Name         | Scientific Name          | Regulated by the Weed Control Act? |
|---------------------|--------------------------|------------------------------------|
| Spotted Knapweed    | Centaurea biebersteinii  | Yes                                |
| Canada Thistle      | Cirsium arvense          | Yes                                |
| Scentless Chamomile | Matricaria perforata     | Yes                                |
| Sowthistle species  | Sonchus spp.             | Certain species                    |
| Oxeye Daisy         | Leucanthemum vulgare     | Yes                                |
| Yellow Hawkweed     | Hieracium prateinse      | No                                 |
| Tall Hawkweed       | Hieracium pilloselloides | No                                 |
| Bull Thistle        | Cirsium vulgare          | No                                 |

# 3. Methodology



## 3. Methodology

#### 3.1 ECOSYSTEM CLASSIFICATION

Ecological classification is the stratification of ecosystems based on observed similarities. The most commonly used ecosystem classification system in BC is the Biogeoclimatic Ecosystem Classification (BEC). A full description of BEC methodology and associated terms can be found on the BC Ministry of Forests and Range internet site (BC Ministry of Forests and Range 2007).

BEC is a hierarchical classification method that uses a standardized terminology and methodology to assess the interrelationships between physiography, soils and vegetation. It is these interrelationships that result in the expression of repeated and predictable patterns of ecosystems across the landscape in response to changes in edaphic site conditions, local climate, and regional climate. The BEC system was used to identify ecosystems within the RSA and LSA.

The BEC system groups ecosystems at broad-scale (regional level) and fine-scales (local level). At the broadest scale, relatively large areas are classified into zones, subzones and variants. Zones reflect macro-level climate and are primarily determined from relative precipitation and temperature regimes. Zones are divided into subzones based on dominant vegetation or vegetation associations that express regional climate. Subzones may be divided into variants, which represent variations in climate associated with moisture and temperature. The combination of zone, subzone and variant is referred to as a BEC unit.

The next hierarchy is site series, which are finer-scale ecosystems based on the site's potential to produce a self-reproducing plant community at ecological climax (Banner et al. 1993). Site series are identified by site conditions, soil conditions and vegetation communities and generally refer to forested ecosystems. Each site series is assigned a two-digit, numerical code. The site series that best reflects the subzone and is the least influenced by local topography and/or soil properties is termed "zonal." The zonal site series of any subzone or variant is always coded as "01." This site series typically has intermediate soil moisture (mesic) and nutrient regimes, occurs on mid-slope positions, and has moderately deep, to deep soils with unrestricted drainage (Banner et al. 1993). All other site series within the same biogeoclimatic subzone or variant are measured in relation to the zonal site (e.g., wetter or drier than zonal). Non-forested ecosystems remain largely undefined in the BEC system and are assigned the code "00." A unique two-lettered code is also assigned to these units to help distinguish among them during ecological mapping.

#### 3.1.1 Natural Disturbance and Regeneration

In British Columbia, areas are also categorized by BEC unit into Natural Disturbance Types (NDTs). NTDs separate areas based on differences in disturbance processes, stand development, and temporal and spatial landscape patterns (Integrated Land Management Bureau ; BC MOF 1995). Understanding the interaction and influence of natural disturbances on the landscape is critical for effective ecosystem-based forest management, ecological restoration, and conservation activities (Swanson et al. 1993; Landres, Morgan, and Swanson 1999; Veblen 2003). NDT units were summarized per BEC unit for the RSA and LSA in order to provide further ecological context of ecosystem distribution and evolution. Five Natural Disturbance Types are recognized in BC (Table 3.1-1).

| Disturbance<br>Category | Definition                                             | Description                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NDT1                    | Ecosystems with rare<br>stand initiating<br>events     | In the absence of anthropogenic disturbance, forested landscapes in NDT 1 contain a high proportion of mature (>120 years) to old (>250 years) forests. These forests are uneven aged and multistoried, with regeneration occurring in gaps created by the death of individual trees or fine-scale disturbances such as small fires, windthrow, and avalanches (BC MOF 1995).           |
| NDT2                    | Ecosystems with infrequent stand initiating events     | Forested landscapes in NDT 2 have historically consisted of extensive areas of<br>even-aged stands interspersed with snags and veteran trees that survived<br>previous fire events. However, extended post-fire regeneration periods have<br>produced stands with uneven-aged tendencies because post disturbance<br>recruitment can take many decades (Jull 1990; Parish et al. 1999). |
| NDT3                    | Ecosystems with<br>frequent stand<br>initiating events | Forested landscapes within the NDT 3 are characterized by a mosaic of even aged stands of different ages depending on the timing and intensity of the disturbance. NDT 3 ecosystems frequently experience stand-initiating events (approximately every 100 to 150 years) (BC MOF 1995) such as wildfires and severe mountain pine beetle outbreaks.                                     |
| NDT4                    | Ecosystems with<br>frequent stand<br>initiating events | NDT 4 ecosystems frequently experience stand-maintaining low-intensity fires.<br>This NDT includes grassland, shrubland, and forested communities (typically<br>large old trees with fire resistant bark). There are no NDT 4 ecosystems within<br>the Project area.                                                                                                                    |
| NDT5                    | Ecosystems with rare<br>disturbance events             | The NDT 5 includes the alpine and parkland ecosystems where harsh climatic conditions at high elevations result in slow regeneration.                                                                                                                                                                                                                                                   |

| Table 3.1-1. | Natural | Disturbance | Types and | Descriptions |
|--------------|---------|-------------|-----------|--------------|
|--------------|---------|-------------|-----------|--------------|

#### 3.2 ECOSYSTEM MAPPING

Ecosystem mapping is the stratification of the landscape into similar units based upon ecological features such as terrain, soil, and vegetation communities. It provides information on the type and distribution of ecological units and is a valuable tool for resource planning.

Two different mapping methodologies, Predictive Ecosystem Mapping (PEM) and Terrestrial Ecosystem Mapping (TEM) were used to map ecological features in the Project area; PEM for the RSA and TEM for the LSA. Both methodologies use the BEC system as the basis for ecosystem identification. PEM is usually used at smaller scales and is ideal for covering large areas when less resolution is required. TEM is usually used at larger scales where more detailed information is required. Both are described in the following sections.

#### 3.2.1 Predictive Ecosystem Mapping (PEM) of the Regional Study Area

Predictive Ecosystem Mapping is a widely accepted method for predicting the distribution of ecosystems across the landscape. PEM is an automated, computer-based method using available imagery, spatial data, known environmental variables (e.g., terrain, slope and aspect) and ecological knowledge as inputs. For example, a particular wet forested ecosystem may be known to occur in depressions, toe-slopes, or adjacent to water-bodies. Thus, with the relevant environmental data, the likely location and distribution of this ecosystem can be predicted.

The end product can be either raster (pixel) or polygon-based, depending on the available input data, processing methodology, and desired output. A map generated using PEM serves to provide similar ecosystem information as one produced using TEM but is more effective for predicting larger areas.

The Murray River PEM was completed using a raster based approach for the full extent of the RSA (also the wildlife habitat suitability study area). The raster cell size was 20 m, each cell representing 20 m by 20 m on the ground. The PEM was built using the programs and procedures developed by

LandMapper Environmental Solutions Inc. (LMES). The procedures are based on two primary assumptions. The first is that topography is one of the primary controlling factors behind the local flow and accumulation of water, energy, and matter in landscapes (R.A. MacMillan 2003). The flow and accumulation of water shapes the development and properties of soils and site-level environmental conditions. The second is that, where subtle differences among classes are important, human-imposed classification systems are superior to those based on statistical analyses and ordination (R.A. MacMillan 2003). These assumptions, and consequently the LMES Direct-to-Site-Series (DSS) procedures, parallel the logic and decision making processes outlined in the regional field guides (DeLong, MacKinnon, and Jang 1990; DeLong 2004; DeLong et al. 2010) produced by the BC Ministry of Forests (MOF).

Map units are identified and described using both hard (Boolean) and soft (fuzzy) logic. Boolean logic is characterized by such statements as "yes/no", "0/1", and "true/false." Fuzzy logic uses the concept of "degree of membership" to a particular class (R.A. MacMillan et al. 2000). For example, with Boolean logic a particular pixel may be classified as "wet" or "dry," whereas using fuzzy logic, that same pixel may be recognized as being 40% wet, and 60% dry, allowing for the use of such statements as "slightly wet," and thus approximating a more "human" way of thinking (Hellmann 2001). Further detail on the LMES DSS method and its associated logic systems can be found in MacMillan (2005).

#### 3.2.1.1 PEM Input Components

The LMES DSS PEM method incorporates digital input layers that can be used to capture the ecological characteristics of the site series found in the area being mapped. The input layers incorporated into the Murray River PEM represent the classification logic presented in the landscape profile diagrams, edatopic grids (representing soil moisture and nutrient regimes), site series flowcharts, and environment tables of the applicable regional field guides (DeLong, Tanner, and Jull 1994; DeLong 2004). The input layers include:

- 1. regional climate (BEC subzones and variants);
- 2. land cover;
- 3. topography and landscape position;
- 4. potential moisture;
- 5. provincial terrain surficial material; and
- 6. exceptions mapping.

#### Regional Climate

The location and extent of different biogeoclimatic zones, sub-zones, and variants provide broad-scale information that describes the regional climate of a geographic area. BEC lines were acquired from the BC MOFR at the scale of 1:250,000. These classification zones were the initial stratification in the model. Subsequent refinement into BEC unit-specific site series followed.

A small portion of the Engelmann Spruce-Subalpine Fir - Bullmoose Moist Very Cold (ESSFmv2) was delineated as ESSF Moist Very Cold Parkland (ESSFmvp) during the mapping process, based upon satellite imagery, field data, and elevation breaks (>1,600 m elevation) that paralleled the government mapped BEC lines. This was most notable in an area within approximately 600 m of UTM location, 608,691 easting and 6,084,934 northing. It has been treated as ESSFmvp in this report.

Similarly, the Boreal White and Black Spruce (BWBS) zones have recently been reclassified by the province. The refined linework is currently unavailable to the public (B. Rogers, pers. comm.) and therefore, was not incorporated into the mapping. However, the updated BWBS subzone names, site series names, and descriptions were available in *A Field Guide to Ecosystem Identification for the* 

Boreal White and Black Spruce Zone of British Columbia (Delong et al. 2010). For example, the BWBS - Peace Moist Warm (BWBSmw1) was re-named BWBS - Moist Warm (BWBSmw). The new names and site series codes have been used throughout this report.

#### Land Cover

A land cover map was created through digital image classification of satellite imagery. Image classification refers to the process of clustering pixels based on the spectral signatures of the ground feature(s) represented in those pixels. Two common methods are supervised and unsupervised classification. In supervised classification, the analyst defines the classes prior to running an automated statistical clustering process, whereas in unsupervised classification, the analyst groups spectral clusters into meaningful classes after running the clustering algorithm.

SPOT5 multispectral imagery from three dates was acquired: August 19, 2005, July 25, 2008, and June 7, 2009. The three dates were necessary to ensure minimum cloud and snow cover in various portions of the RSA; the images were cut and merged such that the 2009 imagery covered the eastern portion of the RSA, the 2008 covered the western portion, and the 2005 imagery covered the southern portion. The imagery has a spatial resolution (i.e., pixel size) of 10 m.

A supervised image classification was run on the imagery using a maximum likelihood algorithm in PCI Geomatica. Field survey data from 2010 and extrapolated sites served as training sites for the classification. Each date of imagery was classified separately because they differed in spectral signatures for the classes of interest. Six land cover classes were defined: water, herb, shrub, unvegetated, conifer-dominated forest, and deciduous-dominated (or co-dominated) forest. These land cover categories were compiled into a variable called "classify1" (Plate 3.2-1) which was used in the PEM rule sets.



Plate 3.2-1. Example of the available satellite imagery (left) and resulting land cover map ("classify1" variable; right) used as input for the PEM.

#### Topography and Landscape Position

A Digital Elevation Model (DEM) was acquired from Pacific Geomatics Ltd., with a resolution of 20 m. In addition to absolute relief (elevation), a number of other derivatives from the DEM were used as input variables. These variables include descriptors of local shape and orientation (i.e., aspect, slope gradient and curvature), and of relative slope position (e.g., "crest", "mid-slope", "toe-slope"). Descriptors of relative slope position include the LMES program variables "Z to pit," "percent Z to pit," "Z to stream" and "percent Z to stream," all of which indicate a given pixels' height above the nearest depression/stream. Another variable of relative slope position is "LnQArea" (log of upslope, or catchment area; Plate 3.2-2) which indicates where on a slope a given pixel is based on how much area lies above it that would be capable of shedding water (the smaller the upslope area, the closer that pixel is to a crest). Measures of relative slope position help establish the context of each grid cell in the larger landscape. A more detailed discussion of these terrain derivatives is provided in MacMillan (2000) and MacMillan, Moon and Coupe (2007).

#### Potential Moisture

Potential moisture is another derivative of the DEM. Potential moisture is measured using the dimensionless Quinn Wetness Index (*Qweti*). This variable approximates the concepts associated with the terms used to describe relative moisture in the regional field guides (e.g., dry, moist, wet) (Plate 3.2-3). The general assumption associated with this variable is that water flows downhill and accumulates in level or depressed, down-slope landform positions. While reality may reflect more complex scenarios, this attribute is a reasonable predictor of relative moisture status. This variable however is not as effective in identifying seepage conditions or wet areas resulting from high water tables (e.g., sub-surface moisture).



Plate 3.2-2. Example of the LnQArea PEM input variable.

Plate 3.2-3. Example of the Qweti PEM input variable.

#### Provincial terrain surficial material

Terrain Inventory Mapping (TIM) at 1:50,000 scale was obtained from the BC government GeoBC (2011) website. It covered all but a small northeast portion of the RSA (Figure 3.2-1). Terrain surficial material was used to predict some ecosystems. For example, organic surficial material was used in modelling wetlands. The TIM polygons were assigned one to three deciles, or proportions, of surficial material type. Only the first decile was incorporated into the predictions and was treated as pure polygons.

#### **Exceptions and Overlays**

Exceptions mapping was conducted as a final step in the PEM process. It is a manual overlay of particular spatial data that identifies the map unit more efficiently than the modelled predictions. It is like a "cookie cutter" approach, where some features are deleted that were predicted using the LMES DSS modelling program and subsequently assigned different site series and/or structural stages using more reliable data. For example, the model may predict "wetter forest" but the Terrain Resource Information Management (TRIM) wetland data defines it as a swamp, therefore, it is re-classified as a TRIM swamp.

For the Murray River PEM, the following data were overlaid as exceptions to the model predictions:

- water and wetland features from TRIM data;
- Vegetation Resource Inventory (VRI) age data; and
- Canfor PEM structural stage data.

The TRIM lake/reservoir, swamp, river, marsh, and wetlands were used to predict water features. Additional modelling of water and wetland features was incorporated beyond the TRIM data (e.g., image classification for water, organic surficial material). In most cases, water features were predicted by the model in the same locations as the TRIM.

The VRI projected age data were used to predict structural stage for the vegetated areas that were classified as conifer forests or mixed/deciduous forests through image classification (Table 3.2-1). The projected date provided in the VRI data was 2009. For the Murray River PEM, two years was added to the VRI projected ages and subsequently assigned to a structural stage based on age categories derived from BC Ministry of Forests and Range and BC Ministry of Environment (2010). Although structural stage is not defined by age alone, and can also be dependent on the height and other structural characteristics of the vegetation, age data can be used to reasonably predict structural stage for the purposes of wildlife habitat suitability mapping.

| Table 2 2 4 | Are Class | llead to | Define | Chrysterral | Charac | from | Available | VDI Data |
|-------------|-----------|----------|--------|-------------|--------|------|-----------|----------|
|             | Age Class | Used to  | Derine | Structural  | Slages |      | Available | γκι μαια |

| Age Class (years) | Structural Stage Assigned <sup>1</sup> |
|-------------------|----------------------------------------|
| <5                | 2                                      |
| 5 to 12           | 3a                                     |
| 12 to 20          | 3b                                     |
| 20 to 39          | 4                                      |
| 40 to 79          | 5                                      |
| 80 to 139         | 6                                      |
| 140 to 250        | 7 <sup>2</sup>                         |
| >250              | 7 <sup>3</sup>                         |

<sup>1</sup> Age categories derived from BC Ministry of Forests and Range and BC Ministry of Environment 2010.

<sup>2</sup> BWBS BEC units.

<sup>3</sup> all other BEC units.




The government VRI was available for the RSA except for the area covered by Canfor's Tree Farm Licence (TFL) 48 (Figure 3.2-1). Several attempts were made to obtain the most recent TFL 48 forest cover data but it was not received in time for this project mapping. However, the TFL PEM (Canfor 1999) was available and although it is slightly out-dated, it provides a relatively good estimate of structural stage for the forested areas. Therefore, the Canfor structural stages were incorporated for areas of the Murray River PEM RSA that were: 1) missing VRI data, and 2) classified as conifer and mixed/deciduous stands via image classification.

For areas that were classified as shrub, herb, barren, or water throughout the RSA, the image classification class was used to determine structural stage. For example, a recent cutblock would be predicted and assigned herb or shrub structural stage through satellite image classification, regardless of the older VRI and/or Canfor PEM predictions of mature forest.

#### 3.2.1.2 PEM Input Data Quality

#### Satellite Imagery

The use of multi-date data resulted in minimal cloud, haze, and snow cover interference. The satellite imagery was ortho-rectified and projected to the same projection as the other digital data. The spatial resolution of this imagery (10 m) means that features smaller than 10 m cannot be detected. This resolution is adequate for ecosystem mapping (i.e., where the landscape is generalized into representative units).

#### BEC Lines

The scale of provincial BEC mapping (generally 1:250,000) is "conceptual" in that it is based on knowledge of regional climate. Wherever possible, boundaries were localized in areas were the provincial BEC mapping did not align with local conditions (e.g. parkland boundaries). In 2012 the MOFR released an updated version of the BEC lines for the province (Version 8); however, none of the 2012 spatial changes affect the BEC units within the RSA or LSA. In 2010, however, The BWBS zone classification was revised based on new data and inter-regional correlation of BWBS units (DeLong et al. 2010). The information used for the PEM classification uses the new site series resulting from this classification.

#### PEM Assembly

Assembly of the PEM involved combining and analyzing the various input data layers via two types of rules. Fuzzy attribute rules ("a rules") were constructed to define and delineate the numerical input data into particular, semantic constructs such as "ridge," "steeply sloping," or "very wet" (R.A. MacMillan, Moon, and Coupe 2007). The mapper constructs these "a rules" using likelihood models, the parameters of which are chosen based on a combination of visual review of the digital layers, and consultation of the regional field guide (Banner et al. 1993) which contains descriptions, landscape profile diagrams, and edatopic grids (relative moisture/nutrient grid) summarizing the site series existing in the region.

Once the attributes have been defined, the prediction of site series can begin. Fuzzy class rules ("c rules") represent a distinct combination of both Boolean and fuzzy attributes that together define a particular "environmental setting" within which a particular site series/ecosystem unit (or combination of site series/ecosystem units) can be expected to occur. Environmental settings were defined on the basis of BEC units (delineated using Boolean logic), and on the basis of finer-scale environmental conditions such as relative slope position, slope gradient and elevation (i.e., the previously defined fuzzy attributes). Appendix 1 contains all the rule sets created for this PEM. The application of these

rules is not appropriate for another geographic area since they were developed using site-specific ecological knowledge, site-specific environmental attributes, and dependent on the image classification developed from the satellite imagery used.

#### 3.2.1.3 PEM Assessment and Refinement

The PEM was assessed and refined throughout its development using:

- field survey data;
- satellite imagery and aerial photographs; and
- TEM information.

#### Field Survey Data

Field survey data collected during ecosystems and vegetation studies were used to refine the land cover map derived from satellite image classification. The land cover type (e.g., herb, shrub, coniferous-dominated forest, deciduous-dominated forest, etc.) identified at a particular location in the field was compared to the classified value at that same location. Where the two were not the same, the image classification was manually edited to match the field assessment. Likewise, the actual site series predicted by the PEM were compared to those mapped in the field. The PEM was refined if it did not reasonably approximate the field results.

#### Satellite Imagery and Aerial Photography

The satellite imagery used in the development of the PEM served as a backdrop and provided a general context for the area when viewing the PEM. It was used to immediately assess the reasonableness of the ecosystem predictions after each iteration of running the predictions for each BEC unit.

Aerial photographs at a scale of 1:30,000 were available for the TEM study area, but not for the entire PEM study area. Where available, the higher resolution orthophotos were used to manually edit and refine the image classification derived from the coarser satellite imagery.

#### TEM

TEM polygons were overlaid on the image classification. Ecosystem types predicted by the PEM that fell within a given TEM polygon were compared to the dominant and subdominant ecosystems types identified by TEM. The level of agreement between the two was visually assessed. Where significant differences resulted, the image classification was manually edited.

#### 3.2.2 Terrestrial Ecosystem Mapping (TEM) of the Local Study Area

Terrestrial Ecosystem Mapping is the manual delineation of ecosystem boundaries and attributes from aerial photographs. The first step involves the identification of permanent terrain units (based on surficial material, geomorphology and slope), while the second involves the identification of ecosystems (site series, from the BEC system), which are mapped within the terrain polygons. Each ecosystem within a polygon is assigned a decile on a scale from one to ten, which represents its proportional area within the polygon (e.g., 70% moist forest, 20% wetland and 10% forested swamp) (RIC 1998). There are a maximum of three deciles per polygon. Decile one contains the most dominant ecosystem, while deciles two and three represent the subdominant ecosystems. Each ecosystem is also assigned structural stage, structural stage modifiers, and stand composition modifiers. For non-vegetated and anthropogenically modified polygons, map codes from the provincial database are used.

The LSA was mapped using TEM as required in the Murray River Application Information Requirements (AIR) and the mine permit application (BC Ministry of Energy and Mines 1998). Mapping was conducted

using 1:30,000 scale 2005 colour aerial photographs and was guided by d provincial standards (Howes and Kenk 1997; RIC 1998, 2000). Field survey data were used to refine the mapping, and to provide quality control of mapping classification.

Mapping was completed using PurVIEW software within ArcMap 9.3. PurVIEW enables users to view stereo pairs of digital air photos in 3D at variable scales. A DEM created from the provincial TRIM data was used to provide a control on the vertical plane (z-axis) to enable on-screen digitizing of polygons that are photogrammetricly accurate. Ecosystem polygons were cut from the larger terrain polygons when necessary to ensure identical common boundaries. The dataset was then cleaned to ensure no gaps, slivers or overlaps between polygons exist. The associated database was then populated as per the provincial standards (RIC 1998).

#### 3.2.3 Vegetation Structural Stage

The existing vegetation developmental stage was described using structural stage. For example, a regenerating cut-block and a mature forest on the same site would be mapped as the same ecosystem type, but would have different structural stages. A numeric code is provided for each stage (Table 3.2-2), the details of which are provided in the TEM standards (RIC 1998). Structural stage is a required PEM and TEM attribute (RIC 1999) as it is an important attribute for wildlife (RIC 1998).

| Structural Stage Code | Structural Stage                         |
|-----------------------|------------------------------------------|
| 1                     | Sparse/Bryoid                            |
| 2                     | Herb/Dwarf Shrub                         |
| 3                     | Shrub (Herb)                             |
| 4                     | Pole/Sapling                             |
| 5                     | Young Forest                             |
| 6                     | Mature Forest                            |
| 7                     | Old Forest                               |
| N/A                   | Non-vegetated (water/snow/anthropogenic) |

| Table 3 2- |         | tation Stri | uctural | Stages |
|------------|---------|-------------|---------|--------|
| Table J.Z- | Z. VESE | Lation Str  | μεταιαί | JLAYES |

Structural stage was assigned during PEM for the RSA, based on the spatial data and satellite imagery as outlined in Section 3.2.1.1. For the LSA, structural stage was determined concurrently with the delineation of site series during TEM through air photo interpretation.

# 3.3 SENSITIVE ECOSYSTEMS

Sensitive ecosystems are ecosystems that are fragile and/or rare (BC MOE 2010b), as defined by the BC MOE. Ecosystem fragility refers to the sensitivity of an ecosystem with respect to disturbance (McPhee et al. 2000). For this report, sensitive ecosystems include BC CDC, SARA or COSEWIC listed ecosystems as well as riparian areas, wetlands and alpine ecosystems, which are considered locally threatened or sensitive to disturbance.

#### 3.3.1 Listed Ecosystems

A search of the online databases maintained by the BC CDC was conducted, and a list of blue or redlisted ecosystems potentially occurring in the RSA and LSA was compiled (Appendix 2). Red-listed ecosystems are those that have, or are candidates for, extirpated, endangered or threatened status in BC. Blue-listed ecosystems are those of special concern (formerly vulnerable) in BC. Placing taxa on these lists flags them as being at risk and requiring investigation (BC MOE 2007). Rankings depend on factors such as rarity, intrinsic vulnerability, environmental specificity, threats, and long- and short-term trends in population size or area (BC MOE 2007).

# 3.3.2 Non-listed Sensitive Ecosystems

#### 3.3.2.1 Riparian Ecosystems

Riparian ecosystems occupy the transitional area between a watercourse (i.e., river or stream) and upland. In general, riparian ecosystems occupy a small proportion of the landscape and contain distinct vegetation communities providing unique wildlife habitat. They serve a number of important ecological functions, such as providing early spring migration pathways, side-channel spawning, rearing habitat, and water temperature regulation as well as bank stability to reduce erosion (Banner and MacKenzie 1998).

For this assessment, riparian area buffers were assigned according to stream order as defined by the Ministry of Environment's 1:50,000 scale watershed atlas in GIS shapefile format. Orders are a measure of the relative size of streams (BC MOFR 2004a). Using a hierarchy of strength, stream order increases as the stream network expands. For example, it takes a joining of two first order streams to form a second order stream. When two second order streams combine, they form a third order stream, and when two third order streams join, they form a fourth and so on. Headwater streams or those streams in the upper reaches of watersheds are classified as orders one through three, while valley bottom streams invariably are assigned to higher orders.

Buffers were assigned to all streams above the third order. Third order streams were chosen because they typically represent the transition to perennial streams from ephemeral, or intermittent, streams, which are common among first and second order classifications. A 30m buffer was assigned to all 3rd and 4th order streams and a 100 m buffer was assigned to higher order streams. The chosen widths meet the mandated buffer widths outlined in the Riparian Areas Regulation (2004) enacted under section 12 of the *Fish Protection Act* (1997) as well as the *Forest and Range Practices Act* (*BC MOFR 2004b*).

#### 3.3.2.2 Wetland Ecosystems

Wetlands are dynamic, low-lying areas on the landscape that are saturated with water long enough to promote wetland or aquatic processes as indicated by poorly-drained soils, hydrophytic vegetation and various kinds of biological activity which are adapted to a wet environment (Warner and Rubec 1997). They include both the wet basin and surrounding transitional areas between wetter zones and upland vegetation (Huel 2000). Wetlands can range from sites that contain small, shallow areas of water that are present for only a few weeks after snow melt, to sites that comprise large, permanent open water zones (Stewart and Kantrud 1971). Wetlands are particularly important ecosystems as they fulfill a wide range of ecological, hydrological, biochemical, and habitat functions (Environment Canada 2003). They maintain water quality, regulate water flow on the landscape, and provide erosion control. They also provide habitat for a wide variety of wildlife, including many economically important game species (Natural Resources Canada 2009).

Wetland ecosystems were classified in the field using the Wetlands of BC classification guide (MacKenzie and Moran 2004). These data were then used to refine the TEM and the finer scale wetland mapping. For PEM, wetlands were mapped using inputs from TRIM data, Vegetation Resource Inventory (VRI), terrain and soils mapping data, and TEM data. These are used to guide the image classification exercise so that wetlands occupying a variety of landscape positions and parent materials are modelled.

A description of the quantity, size and location of wetlands as well as the hydrological physical, chemical and biological characteristics of wetlands are discussed in the Murray River Wetland Baseline Report 2011 (Rescan 2011).

# 3.3.2.3 Alpine Ecosystems

Alpine ecosystems are defined by a general absence of trees, although krummholz forms may exist. Alpine areas are often dominated by un-vegetated areas, such as permanent snow, ice fields, rock outcrops, and barren soil. The ecosystems are dominated by graminoid herb, forb, herb, and dwarf shrub vegetation communities. Alpine ecosystems are considered sensitive due to their slow recovery rates following disturbance which is primarily attributable to the short growing season of the alpine environment. Only vegetated alpine ecosystems will be considered as sensitive for the purposes of this report.

Alpine ecosystems are important seasonal habitat, providing forage, breeding areas, and escape from predators and insects. For example, grizzly bear (*Ursus arctos*) forage extensively in alpine and meadow areas in the summer and fall. Caribou (*Rangifer tarandus*) and mountain goat (*Oreamnos americanus*) both use alpine areas for winter habitat (Klinkenberg 2009).

# 3.3.3 Ecosystems of Significance to First Nations

Information obtained through community-based data gathering regarding ecosystems of significance will be included in the EA Application as it becomes available.

# 3.4 FIELD SURVEYS

The terrestrial ecosystems and vegetation field surveys occurred concurrently with the soils baseline field surveys (Rescan 2012). Data were collected in accordance with provincial standards and regional field guides (DeLong, MacKinnon, and Jang 1990; DeLong 2004). Field data were entered into the provincial data entry program VENUS (version 5.1) and quality checked for the following:

- all plant species names entered correctly (checked against the Master species list);
- all GPS UTM coordinates are entered correctly (checked against the field plot card);
- no blanks in any pertinent database fields; and
- no missing plot name, photo number, or UTM coordinate duplicates.

#### 3.4.1 Terrestrial and Predictive Ecosystem Mapping Field Surveys

The primary objective of the field surveys was to ground truth TEM and PEM by providing information on the types, locations and frequency of ecosystems. Survey efforts were concentrated in the LSA where the greatest potential Project-related effects on vegetation are expected to occur. The collection of vegetation data for the baseline studies occurred over three years during the summers of 2010, 2011 and 2012. Five field trips were completed in total, each of which was between 7 and 12 days in duration.

Field plot locations were selected based on representative slope positions, landform types, soil texture, soil drainage, species composition, stand structure and physiognomy according to the provincial standards (RIC 1998). At each survey location Ground Inspection Forms (GIF) or a FS882 form were used to record the following attributes: date, geographic location, slope, aspect, elevation, relative slope position, soil drainage, plant species and ecosystem unit, structural stage, and crown closure. Percent cover was estimated for the dominant and/or indicator plants and for the overall tree, shrub, herb and moss/lichen layers present within an area approximately 400 m<sup>2</sup>. In addition to these more detailed 'ground' inspections, a number of less detailed 'visual' observations were conducted. These visual surveys were usually conducted while travelling between ground inspection sites, particularly at unique or transitional sites, or from the helicopter. Both types of survey data have been used to refine the delineation of ecosystem units for TEM and assisted in the creation of PEM rule sets.

#### Plant Species Richness

Species richness is the number of species present within a defined area and is a way to measure environmental homogeneity. Species richness was determined from the plant list collected during field surveys. Differences in species richness between plots can be largely attributed to variations in the abundance of fine-scale habitat features, the development of which is associated with disturbances that may not be beneficial in terms of promoting site productivity and ecological stability.

#### 3.4.2 Listed Plants Species

Online searches were conducted to identify rare plants potentially occurring within the RSA prior to the commencement of field work and again prior to completion of the baseline report. The following databases were utilized:

- the BC Conservation Data Centre (BC CDC 2012);
- the Committee on the Status of Endangered Wildlife in Canada (COSEWIC); and
- the Species at Risk Registry (BC CDC 2012; Environment Canada 2010).

Query parameters for the BC CDC search were set to identify all red- and blue-listed vascular plants potentially occurring within the LSA and RSA. The resulting list of potentially occurring threatened, extirpated, or endangered species (Appendix 3) was used for general and specific surveys. Field surveys for listed plants were conducted in conjunction with general field surveys throughout the LSA in 2010 and 2011. A specific presence/not-detected survey for rare vascular plants of the Murray River proposed mine surface facilities area was performed June 24 to 27, 2011 and August 18 to 22, 2011 using the Alberta Native Plant Council Guidelines for Rare Plant Surveys in Alberta (Alberta Native Plant Council 2000). Surveys were timed to enable the detection of early and late flowering species.

While the potential location of listed vascular species cannot be identified using ecosystem maps, rare plant habitat is often associated with fine-scale and uncommon landscape features that can be linked to the types of features encountered during field surveys. Features such as wetlands, rock outcrops, and seepage areas are examples of uncommon landscape attributes that have a higher potential of supporting rare plant habitat. Initial surveys were completed in all habitat types found in the LSA, then focused on uncommon habitats (based on TEM mapping) and habitats likely to contain listed species identified in the literature search. Once a listed (or potentially listed) species was identified, surveys were focused on similar habitat to determine if other individuals or populations of the species occurred. Where listed plants were suspected in the field, they were documented and photographed. Site details and location were noted and voucher specimens of listed plants were collected at sites where the local population was not at risk. All species that could not be positively identified in the field were collected and identified with the aid of floral keys and a microscope. Species that were identified as rare, and those that were potential rare species, were pressed for expert confirmation.

Rare plant populations can often be very small, making voucher collection questionable. During rare plant surveys, full vouchers (entire plants) were taken if the population is large enough to withstand the loss of an individual, or if the rare species is locally abundant. Some experts recommend collecting vouchers only in populations with greater than 20 individuals; this number was assessed on a species by species basis. Although some rare species are reported to be sensitive to the genetic loss of even one individual, and this loss can precipitate population declines, most species can usually withstand collection of a partial specimen.

# 3.4.3 Plants of Significance to First Nations

Information obtained through community-based data gathering regarding plants of significance will be included in the EA Application as it becomes available. Given a particular plant species of interest to First Nations, Terrestrial Ecosystem Mapping and field survey data can be used to identify probable habitats and locations in relation to planned Project infrastructure and activities.

#### 3.4.4 Invasive Plant Species

Invasive plants generally refer to species (native or non-native) that have the ability to out-compete native species when introduced into natural settings (Haber 1997). A list of invasive plants and noxious weeds according to the *British Columbia Weed Control Act* (1985) and the (NEIPC) was compiled prior to the commencement of fieldwork. The plant prioritization categories and associated definitions are summarized in Table 3.4-1.

Table 3.4-1. North East Invasive Plant Council's Plant Prioritization Categories for Invasive Plants

| Plant Prioritization Category  | Definition                                                                                                                                                                                                                |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Prohibited Invasive Species | Prohibited invasive plants are highly competitive with an ability to spread rapidly.                                                                                                                                      |
| B. Primary Invasive Species    | Primary invasive plants have the ability to spread rapidly but are not as aggressive as prohibited invasive plants.                                                                                                       |
| C. Secondary Invasive Species  | Secondary invasive plants can spread easily but the requirement to contain them is usually site specific. Invasive plants under successful biological control and certain native plants may be included in this category. |

Source: North East Invasive Plant Committee (2010).

Presence/not detected level surveys were conducted for invasive plants throughout the LSA and at several sites within the RSA. Surveys focused primarily on transportation corridors and disturbed areas, such as forestry cut blocks and gravel pits as well as at TEM and PEM plot locations.

# 3.5 METAL CONCENTRATIONS IN PLANT TISSUES

The metals analyses determines baseline metal levels in soils, lichens and plants in the area of proposed infrastructure as well as control sites outside of the expected zone of influence of potential project environmental effects. This data comprises the basis to evaluate any changes in metal levels in soils, lichens and plants due to the Project. Soil, lichen and plant tissue samples were collected and analyzed as part of soils, terrestrial and wetland baseline studies conducted for the Project. Results from the baseline metals analysis may be used for country foods assessments and/or future monitoring programs. The samples collected, sampling sites and results of the metal analysis are provided in the *Murray River Coal Project:2010 to 2012 Ecosystem and Vegetation Baseline Report Report* (2013).

# 4. Results



# 4. Results

# 4.1 REGIONAL STUDY AREA

#### 4.1.1 BEC Units within the Regional Study Area

The Murray River RSA overlaps nine BEC units (Table 4.1-1). Six of the BEC units are forested, two are parkland (transition to alpine) and one is alpine. The lower elevation BWBS zone covers the greatest proportion (41%) of the RSA and contributes significant merchantable timber in the local forest industry. The environmental characteristics of each BEC unit are summarized in the following sections.

| BEC Unit Name                                                            | BEC<br>Unit<br>Label | General<br>Ecology  | Elevation<br>Range<br>(m) | Mean Annual<br>Precipitation<br>(mm) | Mean Annual<br>Temperature<br>(°C) | Extent<br>(ha) | Extent<br>(%) | Natural<br>Disturbance<br>Type* |
|--------------------------------------------------------------------------|----------------------|---------------------|---------------------------|--------------------------------------|------------------------------------|----------------|---------------|---------------------------------|
| Boreal Altai<br>Fescue Alpine -<br>undifferentiated                      | BAFAun               | Alpine              |                           | 700 to 3,000                         | -4.0 to 0.0                        | 6,822          | 3             | 5                               |
| Boreal White<br>and Black<br>Spruce -Moist<br>Warm                       | BWBSmw               | Forest              | 750 to 1,050              | 424 to 749                           | -0.8 to 3.6                        | 32,066         | 14            | 3                               |
| Boreal White<br>and Black<br>Spruce - Murray<br>Wet Cool                 | BWBSwk1              | Forest              | 850 to 1,200              | 644 to 897                           | 2.1 to 3.3                         | 60,897         | 27            | 3                               |
| Engelmann<br>Spruce -<br>Subalpine Fir -<br>Bullmoose Moist<br>Very Cold | ESSFmv2              | Subalpine<br>Forest | 1,000 to<br>1,400         | 414 to 1,259                         | -0.9 to 1.9                        | 85,109         | 37            | 2                               |
| Engelmann<br>Spruce -<br>Subalpine Fir -<br>Moist Very Cold<br>Parkland  | ESSFmvp              | Parkland<br>Forest  |                           |                                      |                                    | 11,996         | 5             | 5                               |
| Engelmann<br>Spruce<br>Subalpine Fir -<br>Cariboo Wet<br>Cold            | ESSFwc3              | Subalpine<br>Forest | 1,300 to<br>1,550         | 1,177 to 1,625                       | -3.1 to 1.1                        | 3,455          | 2             | 1                               |
| Engelmann<br>Spruce<br>Subalpine Fir -<br>Wet Cold<br>Parkland           | ESSFwcp              | Parkland<br>Forest  |                           |                                      |                                    | 1,652          | 1             | 5                               |

# Table 4.1-1. Ecological Characteristics and Extent of BEC Units within the Regional Study Area

(continued)

| BEC Unit Name                                                     | BEC<br>Unit<br>Label | General<br>Ecology  | Elevation<br>Range<br>(m) | Mean Annual<br>Precipitation<br>(mm) | Mean Annual<br>Temperature<br>(°C) | Extent<br>(ha) | Extent<br>(%) | Natural<br>Disturbance<br>Type* |
|-------------------------------------------------------------------|----------------------|---------------------|---------------------------|--------------------------------------|------------------------------------|----------------|---------------|---------------------------------|
| Engelmann<br>Spruce<br>Subalpine Fir -<br>Misinchinka Wet<br>Cool | ESSFwk2              | Subalpine<br>Forest | 950 to 1,300              | 1,190 to 1,738                       | -0.5 to 1.0                        | 3,594          | 2             | 1                               |
| Sub-Boreal<br>Spruce - Finlay<br>Peace Wet Cool                   | SBSwk2               | Forest              | 750 to 1,200              | 518 to 1,916                         | -0.1 to 5.0                        | 21,987         | 10            | 2                               |

Table 4.1-1. Ecological Characteristics and Extent of BEC Units within the Regional Study Area (completed)

\*NDT 3 BEC units include the following: BWBS, MS, SBPS, ESSFdc, ESSFdk, ESSFdm, ESSFdv, ESSFxc,ICHdk, ICHdw, ICHdm, ICHmk1, ICHmk2, ICHmk4, ICHmw1, ICHmw3, ICHxw, SBSdh, SBSdk, SBSdw, SBSmc, SBSmh, SBSmk, SBSmm, SBSmw and SBSwk3; NDT 5 BEC units comprise alpine and parkland units; NDT 1, 2 & 4 BEC units comprise all other BEC units (BC Ministry of Forests and Range and BC Ministry of Environment 2010).

#### 4.1.1.1 The Boreal Altai Fescue Alpine

The Boreal Altai Fescue Alpine undifferentiated (BAFAun) zone is the most extensive alpine BEC unit within the province. It covers alpine areas of the northern Rocky, Skeena, Omineca, and Cassiar Mountains and the lee side of the northern Coast Mountains (Banner et al. 1993). The BAFA zone is largely treeless; however, trees may occur in krummholz form at the lowest elevations (Pojar and Stewart 1991). The climate is characterized by very long, cold winters, and short, cool summers. Although deeper snowpacks may occur in some areas, a thin windblown snowpack is typical. Ground freezing and cryoturbation (soil frost churning) features are common. Much of the BAFA zone is well-vegetated alpine tundra. The most common plant groups are dwarf willows, grasses, sedges, and lichens (BC MOFR 2006).

#### 4.1.1.2 Boreal White and Black Spruce- Moist Warm

The Boreal White and Black Spruce - Moist Warm (BWBSmw) unit occurs in low-lying areas of northeastern valley bottoms and plateaus on the Alberta Plateau (Marcoux 2010). (Elevation ranges from 750 to 1,050 m. Stands of trembling aspen (*Populus tremuloides*) are common within this BEC unit, largely due to anthropogenic disturbance and fire history, which has created favourable habitat for this species (DeLong et al. 2010). Balsam poplar (*Populus balsamifera*) is common on lower slopes and along river and stream courses (DeLong et al. 2010). White spruce (*Picea glauca*) is typical on moister sites where there has been limited disturbance history, whereas lodgepole pine (*Pinus contorta*) is present as a seral species on drier and poorer sites. Black spruce (*Picea mariana*) forests, commonly with a minor component of tamarack (*Larix laricina*), are often found on organic soils. Black spruce also occurs on upland sites mixed with lodgepole pine where there are cold soils or limited rooting availability. Tamarack can occur, but to a limited extent, as pure stands on very wet rich sites as well as rarely on upland sites.

# 4.1.1.3 Boreal White and Black Spruce - Murray Wet Cool

The BWBS - Moist Warm (BWBSwk1) variant is found in the foothills and along mid to lower slopes of the Rocky Mountains from where the Rocky Mountains transect the Alberta border to just north of the Peace arm of Williston Lake (Delong et. al 2010). The elevation range is generally 850 to 1,200 m. White spruce dominates mature forests, with lesser amounts of black spruce occurring on wetter and poorer sites. Pure black spruce stands can occur on very wet sites on organic soils. Lodgepole pine is the dominant seral species and forms widespread forests along with minor amounts of white spruce

and/or black spruce. Trembling aspen is common as a seral species at lower elevations, particularly on warmer aspects.

#### 4.1.1.4 Engelmann Spruce - Subalpine Fir - Bullmoose Moist Very Cold

The ESSFmv2 unit occurs predominantly within the Rocky Mountain Foothills, east of the Rocky Mountain divide as far south as Willmore Wilderness Park and as far north as the Peace Arm of Williston Reservoir (DeLong, Tanner, and Jull 1994). The elevation ranges from 950 to 1,550 m and it lies above the SBSwk2 (MacKinnon et al. 1990 *in* (DeLong, Tanner, and Jull 1994) or BWBSwk1 (DeLong, MacKinnon, and Jang 1990)*in* (DeLong, Tanner, and Jull 1994). This variant is the driest and coldest of the lower elevation ESSF variants.

Zonal sites of this variant are dominated by a Engelmann spruce (*Picea engelmannii*) and subalpine fir (*Abies lasiocarpa*) canopy with a diverse, moderately well-developed understory of shrubs and herbs ((DeLong, Tanner, and Jull 1994). Dry sites are dominated by lodgepole pine and in combination with black spruce on poor sites. Wetter sites are dominated by Engelmann spruce canopy.

# 4.1.1.5 Engelmann Spruce - Subalpine Fir - Moist Very Cold Parkland

The ESSFmvp unit is the corresponding parkland subzone above the ESSFmv2. As such, the two areas share many characteristics. However, the harsher climate in the parkland subzones limits forest. Patches of trees are interspersed by dwarf shrubs and herb meadows (Banner et al. 1993).

# 4.1.1.6 Engelmann Spruce Subalpine Fir - Cariboo Wet Cold

The ESSF - Cariboo Wet Cold (ESSFwc3) variant occurs in north-eastern BC, south of the Peace River, within the Misinchinka, Hart and Park Ranges of the Rocky Mountains and the McGregor Plateau. This variant is characterized by a wet cold climate with a long lasting snowpack. Snow may persist for six to nine months (Banner et al. 1993).

The forests that are predominately coniferous are typically dominated by widely spaced subalpine fir. Non-forested ecosystems within the ESSFwc3 include moist subalpine sites, high elevation bedrock outcrops and avalanche tracks.

# 4.1.1.7 Engelmann Spruce Subalpine Fir - Wet Cold Parkland

The ESSF - Wet Cold Parkland (ESSFwcp) is the parkland subzone above the ESSFwc3. As such, the two areas share many characteristics. However, the harsher climate in the parkland subzones does not allow for the continuous growth of forest. Patches of trees are interspersed by dwarf shrubs and herb meadows (Banner et al. 1993)

#### 4.1.1.8 Engelmann Spruce Subalpine Fir - Misinchinka Wet Cool

The ESSF - Misinchinka Wet Cool (ESSFwk2) mainly occurs west of the Rocky Mountain divide as far south as the Morkill River and as far north as the Ospika Arm of Williston Reservoir. It always occurs below the ESSFwc3. This unit is characterized by a wet and cool climate and has snowpacks in excess of three metres.

The ESSFwk2 experiences rare stand-initiating natural disturbances and thus contains a high proportion of mature (>120 years) to old (>250 years) forests. These forests are predominantly comprised of Engelmann spruce and subalpine fir. In some of the low lying areas between ridges, particularly on north facing slopes extensive communities of Sitka alder (*Alnus crispa* ssp. *sinuata*) dominate the landscape (DeLong, Tanner, and Jull 1994).

# 4.1.1.9 Sub-Boreal Spruce Zone - Finlay-Peace Wet Cool

The Sub-Boreal Spruce - Finlay-Peace Wet Cool (SBSwk2) variant is characterized by a continental climate that results in cold, snowy winters and warm, moist summers. It occurs at mid-elevations along Williston Lake and other major drainages in the Rocky Mountains, from the Narraway River in the south to the Peace Arm of Williston Lake in the north (DeLong 2004).

The SBSwk2 variant is distinguished from adjacent biogeoclimatic units (BWBSdk1, BWBSmw, BWBSwk1, BWBSwk2, SBSmk1, and SBSmk2) by the presence of more devil's club (*Oplopanax horridus*) and oak fern (*Gymnocarpium dryopteris*) in the understory. The SBSwk2 is also differentiated from the ESSFmv3 by the presence of more devil's club and oak fern and less white-flowered rhododendron (*Rhododendron albiflorum*) on mesic sites.

The SBSwk2 is typically dominated by climax coniferous forests of hybrid spruce (*Picea glauca x engelmannii*), lodgepole pine and subalpine fir. Black cottonwood (*Populus balsimifera ssp. trichocarpa*) also occurs regularly along streams and rivers.

# 4.1.2 Site Series and General Ecosystem Types

A total of 113 ecosystems (BEC/site series), including undifferentiated '00' sites series, were mapped in the RSA. The BWBS zone classification has recently been revised based on new data and interregional correlation of BWBS units (DeLong et al. 2010). The information summarized in this report uses the new site series resulting from this revision. The ecological characteristics of each site series are summarized in Appendix 4.

In an effort to simplify the ecosystem mapping for reporting purposes, site series have been grouped into General Ecosystem Types. This was done according to their relative moisture status as well as their potential climax structural stage. The following section summarizes the extent of general ecosystem types within the RSA. The results are divided by BEC unit in order to provide additional ecological context.

The RSA is characterized predominantly by mesic forests, covering 42%, or 95,016 ha, of the RSA (Table 4.1-2; Figure 4.1-1). This includes all structural stages of mesic forest, from herb to old forest. The extent of each structural stage is provided in the following section.

#### 4.1.3 Structural Stages

The RSA contains a mix of forested and non-forested structural stages. Mature forests are the most extensive structural stage, covering approximately 35% of the overall RSA (Table 4.1-3; Figure 4.1-2). Shrub is the next most abundant, accounting for approximately 21% of the overall RSA. This includes much of the re-forested extent within the RSA. Old forest, herb, young forest, sparse/bryoid, and pole/sapling comprise the remaining portions of the vegetated landbase, from the greatest to least extent. Non-vegetated area (i.e., water) covers 0.01% of the RSA.

#### 4.1.4 Extent of Sensitive Ecosystems

#### 4.1.4.1 Listed Ecosystems

Seven provincially listed ecosystems were identified by PEM, covering 6% of the RSA (Table 4.1-4). Of these ecosystems, one is red listed (extirpated, endangered or threatened) and six are blue listed (of special concern; Figure 4.1-3). Descriptions of each listed community are provided in the following subsections.

|                                      |        |        |         |         | BEC UNIT |         |         |         |        | Total RSA   |
|--------------------------------------|--------|--------|---------|---------|----------|---------|---------|---------|--------|-------------|
| General Ecosystem Type               | BAFAun | BWBSmw | BWBSwk1 | ESSFmv2 | ESSFmvp  | ESSFwc3 | ESSFwcp | ESSFwk2 | SBSwk2 | Extent (ha) |
| Barren                               | 3,854  | 2,417  | 1,369   | 4,427   | 2,531    | 112     | 255     | 144     | 1,862  | 16,970      |
| Dry to Mesic Forest                  | 501    |        |         |         | 2,598    |         | 447     |         |        | 3,546       |
| Dry to Mesic Herb                    | 2,131  |        |         |         | 2,326    |         | 243     |         |        | 4,700       |
| Dry to Mesic Shrub                   |        |        |         |         | 2,877    |         | 495     |         |        | 3,371       |
| Mesic Forest                         |        | 14,706 | 27,751  | 41,017  |          | 2,003   |         | 2,041   | 7,498  | 95,016      |
| Moderately Dry Forest                |        | 5,696  | 3,690   | 3,911   |          | 470     |         | 79      | 5,794  | 19,641      |
| Moist Forest                         |        | 3,628  | 6,728   | 13,783  |          | 835     |         | 1,048   | 4,043  | 30,065      |
| Moist Forest/Mid Bench<br>Floodplain |        | 593    |         |         |          |         |         |         |        | 593         |
| Moist to Wet Herb                    | 331    |        |         |         | 383      |         | 74      |         |        | 788         |
| Moist to Wet Shrub                   |        |        |         |         | 752      |         | 92      |         |        | 844         |
| Slightly Dry to Moist Forest         |        | 1,732  | 15,016  | 17,488  |          |         |         |         | 1,226  | 35,461      |
| Water                                | 5      | 953    | 587     | 83      | 20       | 1       | 1       | 0       | 532    | 2,182       |
| Wet Forest                           |        |        |         | 3,298   | 500      |         | 42      | 273     |        | 4,114       |
| Wetland                              | 0      | 2,341  | 5,756   | 1,103   | 10       | 33      | 2       | 8       | 1,032  | 10,285      |
| Grand Total                          | 6,822  | 32,066 | 60,897  | 85,109  | 11,996   | 3,455   | 1,652   | 3,594   | 21,987 | 227,579     |

Table 4.1-2. Extent of General Ecosystem Types by BEC Unit in the Regional Study Area

Table 4.1-3. Extent of Structural Stage Types by BEC Unit in the Regional Study Area

|                   |                |                |                 |                 | BEC UNIT        |                 |                 |                 |                | Total RSA      | Proportion    |
|-------------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|---------------|
| Structural Stage  | BAFAun<br>(ha) | BWBSmw<br>(ha) | BWBSwk1<br>(ha) | ESSFmv2<br>(ha) | ESSFmvp<br>(ha) | ESSFwc3<br>(ha) | ESSFwcp<br>(ha) | ESSFwk2<br>(ha) | SBSwk2<br>(ha) | Extent<br>(ha) | of RSA<br>(%) |
| Sparse/Bryoid (1) | 3,854          | 2,417          | 1,369           | 4,440           | 2,531           | 112             | 255             | 144             | 1,862          | 16,984         | 7             |
| Herb (2)          | 2,462          | 4,486          | 4,005           | 5,689           | 2,730           | 132             | 318             | 335             | 3,304          | 23,462         | 10            |
| Shrub (3)         | 501            | 4,853          | 10,262          | 21,112          | 4,033           | 1,014           | 621             | 519             | 3,907          | 46,823         | 21            |
| Pole/Sapling (4)  |                | 619            | 3,299           | 436             | 1               |                 |                 |                 | 321            | 4,675          | 2             |
| Young Forest (5)  |                | 1,544          | 4,179           | 12,830          | 444             | 4               | 3               | 35              | 4,366          | 23,404         | 10            |
| Mature Forest (6) | 8,068          | 20,775         | 38,132          | 1,770           | 1,832           | 312             | 1,343           | 7,260           | 79,493         | 35             |               |
| Old Forest (7)    |                | 9,129          | 16,421          | 2,387           | 468             | 357             | 142             | 1,216           | 436            | 30,556         | 13            |
| Non-vegetated     | 5              | 953            | 587             | 83              | 20              | 1               | 1               | 0               | 532            | 2,182          | 1             |
| Grand Total       | 6,822          | 32,066         | 60,897          | 85,109          | 11,996          | 3,455           | 1,652           | 3,594           | 21,987         | 227,579        | 100.0         |

| Ecosystem<br>(site series/site association) | Scientific Name                                                                | English Name                                                 | BC CDC<br>List | Extent in RSA<br>(ha) |
|---------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|----------------|-----------------------|
| ESSFmv2/06: Ws08                            | Abies lasiocarpa - Alnus spp<br>Equisetum spp.                                 | Subalpine fir - Alders -<br>Horsetails                       | Blue           | 3,298                 |
| BWBSmw/110                                  | Picea glauca - Gymnocarpium<br>dryopteris - Aralia nudicaulis                  | White spruce - Oak fern -<br>Sasparilla                      | Blue           | 542                   |
| BWBSmw/111; BWBSwk1/110 <sup>1</sup>        | Picea glauca - Ribes triste -<br>Equisetum spp.                                | White spruce - Currant -<br>Horsetail                        | Blue           | 8,263                 |
| BWBSmw/112 <sup>2</sup>                     | Populus balsamifera - Picea glauca -<br>Alnus incana - Cornus stolonifera      | Balsam poplar - White spruce -<br>Mountain alder - Dogwood   | Red            | 593                   |
| BWBSwk1/103                                 | Picea glauca - Pinus contorta -<br>Shepherdia canadensis - Aster<br>conspicuus | White spruce - Lodgepole pine -<br>Soopolallie - Showy aster | Blue           | 370                   |
| SBSwk2/02                                   | Pinus contorta / Vaccinium<br>membranaceum / Cladina spp.                      | lodgepole pine / black<br>huckleberry / reindeer lichens     | Blue           | 474                   |
| Wb06                                        | Larix laricina - Aulacomnium palustre                                          | Tamarack - Glow moss                                         | Blue           | 120                   |
| Sum                                         |                                                                                |                                                              |                | 13,660                |

#### Table 4.1-4. Extent of BC CDC Listed Ecosystems within the RSA

Note: Seral site series are not included (e.g., BWBSwk1/101\$, etc).

<sup>1</sup> This map unit is an over-estimate because it is included in the predicted lumped site series of BWBSwk1/110/111.

<sup>2</sup> This map unit is an over-estimate because it is included in the predicted lumped site series of BWBSmw/111\$/112.













#### ESSFmv2/06 (Ws08): Subalpine Fir - Alders - Horsetails

The subalpine fir - alders - horsetails unit can be referred to as either ESSFmv2/06 site series or the Ws08 swamp wetland classification from Mackenzie and Moran (2004). This wet forested ecosystem occurs on level sites or in depressions (Plates 4.1-1 and 4.1-2; Table 4.1-5). Soils are hygric to hydric, and saturated throughout much of the growing season. Engelmann spruce forms an open canopy with lodgepole pine. The shrub, herb and moss layers are often dense and contain mountain alder (*Alnus incana ssp. tenuifolia*), rhododendron (*Rhododendron sp.*), horsetail (*Equisetum spp.*) and oak fern (*Gymnocarpium dryopteris*). The moss layer is comprised of knight's plume (*Ptilium crista-castrensis*) and step moss (*Hylocomium splendens*).



Plate 4.1-1. ESSFmv2 06: Subalpine fir-Alders-Horsetails ecosystem identified at Site 63.



Plate 4.1-2. ESSFmv2 06: Subalpine fir-Aldershorsetails ecosystem identified at Site 98.

| Table 4.1-5. | Environmental Characteristics and BC CDC Status: Subalpine Fir - Alders - Horsetails |
|--------------|--------------------------------------------------------------------------------------|
| Ecosystem    |                                                                                      |

| Status:              | blue listed                                                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR:                 | subhygric to hygric                                                                                                                                                                            |
| SNR:                 | mesic to rich                                                                                                                                                                                  |
| Percent Slope:       | 0-12                                                                                                                                                                                           |
| Slope Position:      | level or depressional                                                                                                                                                                          |
| Soil Classification: | Humic Gleysols                                                                                                                                                                                 |
| Soil Texture:        | coarse to medium                                                                                                                                                                               |
| Parent Material:     | fluvial (moraine)                                                                                                                                                                              |
| Water Table:         | at or near the surface throughout the growing season                                                                                                                                           |
| Wildlife Values:     | High values for breeding birds; moderate values for arboreal mammals such as red squirrel, marten and fisher; moderate value for spring forage for larger mammals such as bears and ungulates. |

#### BWBSmw/110: White Spruce - Oak Fern - Sarsaparilla

This forested ecosystem typically occurs on the middle to lower portion of north facing slopes (Table 4.1-6). Soil nutrients are generally rich as a result of nutrient inputs associated landscape position. The soil moisture regime ranges from mesic to subhygric. White spruce occupies the tree layer (Plates 4.1-3 and 4.1-4). The shrub layer is moderately dense and contains species such as highbush cranberry, mountain ash (*Sorbus scopulina*), devil's club (*Oplopanax horridus*) and red swamp currant (*Ribes triste*). The herb layer is dense and commonly includes bunchberry (*Cornus canadensis*), false Solomon's seal (*Smilicina racemosa*), trailing raspberry, palmate coltsfoot and bluejoint reedgrass. Step moss and red-stemmed feathermoss (*Pleurozium schreberi*) occupy the moss layer.



Plate 4.1-3. BWBSmw/110: White Spruce-Oak Fern - Sarsaparilla ecosystem identified at Site 016.



Plate 4.1-4. BWBSmw/110: White Spruce-Oak Fern - Sarsaparilla ecosystem identified at Site S-42.

Table 4.1-6. Environmental Characteristics and BC CDC Status: White Spruce-Oak Fern - Sarsaparilla Ecosystem

| Status:              | blue-listed                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR:                 | mesic to subhygric                                                                                                                                                          |
| SNR:                 | rich                                                                                                                                                                        |
| Percent Slope:       | 3- 25                                                                                                                                                                       |
| Slope Position:      | mid to lower                                                                                                                                                                |
| Soil Classification: | variable                                                                                                                                                                    |
| Parent Material:     | variable, but low coarse fragment content                                                                                                                                   |
| Soil Texture:        | variable                                                                                                                                                                    |
| Water Table:         | soil profile de-saturated for much of the growing season                                                                                                                    |
| Wildlife Values:     | Moderate to High value for moose winter habitat (at lowest elevations). High to moderate value for marten and arboreal furbeares. Moderate value for breeding forest birds. |

#### BWBSmw/111; BWBSwk1/110: White Spruce - Red Swamp Currant - Horsetails

White spruce - Red Swamp Currant - Horsetails forests are common within the BWBSmw and BWBSwk1 (Delong et.al. 2010). They are identified on lower slopes and transitions to the floodplains of small and medium watercourses. Soils are derived from fluvial and lacustrine parent materials, with coarse to fine textures (Table 4.1-7). Soils are weakly to strongly hydromorphic, and display the associated pedogenic properties, including mottles and gleyed horizons. The canopy is dominated by white spruce, and can be open to dense (Plates 4.1-5 and 4.1-6). Due to the variation in light regimes imposed, the understory can be vigorous to sparse, and includes prickly rose, highbush-cranberry, tall bluebells (*Mertensia paniculata*), red swamp currant, and black twinberry. A ground cover is moderately well developed to dense, which typically includes horsetails, twinflower (*Linnaea borealis*), trailing raspberry, and bunchberry. Step moss usually dominates the sparse to continuous moss layer.





Plate 4.1-5. BWBSmw/111: White spruce - Red Swamp Currant - Horsetail ecosystem at Site 054.

Plate 4.1-6. BWBSmw/111: White spruce - Red Swamp Currant - Horsetail ecosystem at Site 106.

| Status:              | blue listed                                                                                                                                                                                                                                                                 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR:                 | hygric to hydric                                                                                                                                                                                                                                                            |
| SNR:                 | mesic to rich                                                                                                                                                                                                                                                               |
| Percent Slope:       | 0 to 3                                                                                                                                                                                                                                                                      |
| Slope Position:      | level                                                                                                                                                                                                                                                                       |
| Soil Classification: | Brunisols, Gleysols (Regosols)                                                                                                                                                                                                                                              |
| Soil Texture:        | silt loams to gravelly                                                                                                                                                                                                                                                      |
| Parent Material:     | fluvial, lacustrine                                                                                                                                                                                                                                                         |
| Water Table:         | present through much of the growing season                                                                                                                                                                                                                                  |
| Wildlife Values:     | High to moderate value for moose winter range at lower elevation. High value for arboreal furbearers such as red squirrel, marten and fisher. Moderate forage values for bear and ungulates during the growing season and moderate to high value for breeding forest birds. |

| Tuble 1, 17, Environmental characteristics and be ebe status, white sprace carrant morsetail |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

#### BWBSmw/112 (Fm02): Balsam Poplar - White Spruce - Mountain Alder - Dogwood

This middle-bench floodplain forest can be referred to as BWBSmw/112 site series or Fm02 by Mackenzie and Moran (2004) wetland classification. It occurs on major rivers that experience regular flooding events and occasional over bank flooding (Plates 4.1-7 and 4.1-8; Table 4.1-8). It occurs on sandy or gravelly flats adjacent to streams and rivers that have relatively short flood durations followed by subterranean irrigation (MacKenzie and Moran 2004). Cottonwood forms an open canopy with scattered hybrid white spruce in the shrub and tree layer. Red osier dogwood (Cornus stolonifera), black twinberry (Lonicera involucrata) and highbush cranberry (Viburnum edule), dominate the majority of the shrub layer, with prickly rose (Rosa acicularis), Saskatoon berry (Amelanchier alnifolia) and common snowberry (Symphoricarpos albus) occurring to a lesser extent. Bluejoint reedgrass (Calamagrostis canadensis), palmate coltsfoot (Petasites frigidus var. palmatus) and purple peavine (Lathyrus nevadensis) occur in the herb layer.



Plate 4.1-7. Fm02: Balsam poplar - White spruce Plate 4.1-8. Fm02: Balsam poplar - White spruce - Mountain alder - Dogwood ecosystem at Site 40.

- Mountain alder - Dogwood ecosystem at Site 280.

Table 4.1-8. Environmental Characteristics and BC CDC Status: Balsam Poplar - White Spruce -Mountain Alder - Dogwood Ecosystem

| Status:              | red listed                                                                                                                                                                                                                                                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR:                 | mesic to hydric                                                                                                                                                                                                                                                          |
| SNR:                 | rich to very rich                                                                                                                                                                                                                                                        |
| Percent Slope:       | 0 to 3                                                                                                                                                                                                                                                                   |
| Slope Position:      | level                                                                                                                                                                                                                                                                    |
| Soil Classification: | Cumulic Regosols, Gleyed Brunisols                                                                                                                                                                                                                                       |
| Soil Texture:        | sandy to gravelly                                                                                                                                                                                                                                                        |
| Parent Material:     | fluvial                                                                                                                                                                                                                                                                  |
| Water Table:         | present through much of the growing season                                                                                                                                                                                                                               |
| Wildlife Values:     | High (Valuable for moose winter habitat, later successional stages provide cavities in large stems to support fisher and bear denning as well as roosting habitat for bats and nesting areas for birds. Diverse vegetation provides forage for a wide number of species. |

#### BWBSwk1/103: White spruce - Lodgepole Pine - Soopolallie - Showy Aster

This uncommon forested ecosystem is restricted to warm aspects but where it occurs, it can be relatively large in extent (Table 4.1-9). It generally occurs on mid to upper slopes and on moderately coarse- to coarse-textured soils derived from morainal or glaciofluvial parent materials. The open canopy is dominated by lodgepole pine and a well-developed to dense undergrowth includes soopolallie (*Shepherdia canadensis*), prickly rose, showy aster (*Aster conspicuous*), and birch-leaved spirea (*Spirea betulifolia*). A well-developed ground cover includes twinflower, bunchberry, and often dwarf blueberry (*Vaccinium caespitosum*). The sparse to dense moss layer is dominated by red-stemmed feathermoss.

No field photos were available.

| Table 4.1-9. | Environmental    | Characteristics and B | C CDC Status: | BWBSwk1/103 | White | Spruce - |
|--------------|------------------|-----------------------|---------------|-------------|-------|----------|
| Lodgepole Pi | ne - Soopalallie | - Showy Aster         |               |             |       |          |

| Status:              | blue listed                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR:                 | submesic                                                                                                                                                                                                                                                                                                                                                                                                         |
| SNR:                 | poor to rich                                                                                                                                                                                                                                                                                                                                                                                                     |
| Percent Slope:       | variable                                                                                                                                                                                                                                                                                                                                                                                                         |
| Slope Position:      | mid to upper slopes; warm aspect                                                                                                                                                                                                                                                                                                                                                                                 |
| Soil Classification: | not available                                                                                                                                                                                                                                                                                                                                                                                                    |
| Soil Texture:        | moderately coarse- to coarse-textured                                                                                                                                                                                                                                                                                                                                                                            |
| Parent Material:     | Morainal, glaciofluvial                                                                                                                                                                                                                                                                                                                                                                                          |
| Water Table:         | no                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wildlife Values:     | The climax successional stand provides moderate value to ungulates with some winter value if the stand occurs within capable elevation. Understory provides some berry production providing low to moderate late season bear habitat value. Pine stands will have moderate value for arboreal furbearers (marten, red squirrel and fisher), and pine stand will support nesting by some species of forest birds. |

#### SBSwk2/02: Lodgepole Pine - Black Huckleberry - Reindeer Lichens

This forested ecosystem is regionally uncommon and occurs on very dry to dry and poor soils on level or upper slope positions (Table 4.1-10). The canopy is dominated by lodgepole pine and the shrub understory consists of a low to moderate cover of soopolallie, prickly rose, highbush-cranberry, and lodgepole pine. The sparse herb layer typically consists of kinnikinnick (*Arctostaphylos uva-ursi*), bunchberry, and rough-leaved ricegrass (*Oryzopsis asperifolia*). The high cover moss layer is dominated by red-stemmed feather moss.

No field photos were available.

| Table 4.1-10.  | <b>Environmental Characteristics</b> | and BC CDC Status | s: Lodgepole F | 'ine - Black |
|----------------|--------------------------------------|-------------------|----------------|--------------|
| Huckleberry- I | Reindeer Lichens                     |                   |                |              |

| SMR:                 | subxeric-xeric                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNR:                 | poor-very poor                                                                                                                                                                                                                                                                                                                                                                                                  |
| Percent Slope:       | 0-6 (usually 0)                                                                                                                                                                                                                                                                                                                                                                                                 |
| Slope Position:      | level or upper                                                                                                                                                                                                                                                                                                                                                                                                  |
| Soil Classification: | not available                                                                                                                                                                                                                                                                                                                                                                                                   |
| Soil Texture:        | coarse                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parent Material:     | glaciofluvial, (fluvial)                                                                                                                                                                                                                                                                                                                                                                                        |
| Wildlife Values:     | Moderate to high value for caribou winter range depending upon lichen production. Berry production provides low to moderate late season (summer and fall) value for bear. Moderate to low value as moose winter habitat considering limited browse production. Pine stand provides moderate value for arboreal furbearers (marten, red squirrel and fisher) and pine will support some nesting by forest birds. |

#### Wb06: Tamarack - Water Sedge - Fen Moss

The Tamarack - Water sedge - Fen moss is a regionally common Bog/Poor Fen Site Association of the eastern BWBS. Within fen/bog complexes it represents the areas of higher hydrodynamism when compared to the adjacent stagnant domed bogs. It is often found along peatland streams, water tracks, or groundwater inflow seeps (Plates 4.1-9 and 4.1-10; Table 4.1-11). Sites are hummocky, with tamarack (*Larix laricina*) and black spruce growing on elevated sites and sedges rooting in the wet hollows. The water table remains high throughout the growing season, which prevents decomposition of organic matter. As a result, soils tend to be deep mesisols of woody peat and sedge. They are often forested, dominated by Tamarack up to 15 m high, with a lesser component of black spruce. A mixed low-shrub understorey dominated by *Betula nana* can be well developed. Forbs, dwarf shrubs, and smaller sedges occupy elevated hummocks, while sedges occupy the wetter microsites.

The Wb06 is transitional to fen, and is considered such in certain wetland classifications. Most notably, the hydrology, specifically the relatively high hydrodynamism, is more characteristics of a fen than of a bog.



Plate 4.1-9. Wb06: Tamarack - water sedge - fen moss identified at Site 90.



Plate 4.1-10. Wb06: Tamarack - water sedge - fen moss identified at Site 104.

Table 4.1-11. Environmental Characteristics and BC CDC Status: Wb06 Tamarack - Water Sedge - Fen Moss

| Status:              | blue listed                                                                                                                                                                                                                                                |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SMR:                 | hydric                                                                                                                                                                                                                                                     |
| SNR:                 | poor                                                                                                                                                                                                                                                       |
| Percent Slope:       | 0                                                                                                                                                                                                                                                          |
| Slope Position:      | level                                                                                                                                                                                                                                                      |
| Structural Stage:    | 4 to 7                                                                                                                                                                                                                                                     |
| Soil Classification: | Brunisols, Gleysols                                                                                                                                                                                                                                        |
| Soil Texture:        | Silty clay loam to sandy loam                                                                                                                                                                                                                              |
| Parent Material:     | moraine, fluvial                                                                                                                                                                                                                                           |
| Water Table:         | present through much of the growing season                                                                                                                                                                                                                 |
| Wildlife Values:     | Moderate values for ungulates and bears during growing season, moderate to high values for moose winter values if at lower elevations. Moderate value for arboreal furbearers (marten, red squirrel) and moderate to high value for breeding forest birds. |

# 4.1.4.2 Non-listed Ecosystems

#### Riparian and Floodplain Ecosystems

Riparian and floodplain ecosystems not listed by the BC CDC occupy 7,930 ha (3%) of the RSA. The majority of the area is associated with riparian area of stream orders 5 to 7 (Table 4.1-12).

| Stream Orders<br>Associated with<br>Riparian Area | Buffer Size | Total Riparian and<br>Floodplain Buffer<br>Area (ha) | Listed Riparian and<br>Floodplain Ecosystems<br>Area (ha) | Net Riparian and<br>Floodplain Buffer<br>Area (ha) |
|---------------------------------------------------|-------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|
| 3rd and 4th                                       | 30 m        | 4,016                                                | 684                                                       | 3,333                                              |
| 5th, 6th, and 7th                                 | 100 m       | 5,147                                                | 550                                                       | 4,597                                              |
| Total                                             |             | 9,163                                                | 1,233                                                     | 7,930                                              |

| Table 4 1-12 | Extent of Rin  | arian and | Floodplain | Fcosysten | as in the $RSA$ |
|--------------|----------------|-----------|------------|-----------|-----------------|
|              | LALEIIL OI KIP |           |            | LCOSYSLEI |                 |

#### Wetland Ecosystems

Wetland ecosystems not listed by the BC CDC and not included in the riparian area calculations cover 9,320 ha (4%) of the regional landscape (Table 4.1-13). The wetland mapping in the RSA is a generic, broad level mapping, primarily based on provincial TRIM wetlands. The wetland mapping at the local context provides more details of the types, the extent and distribution of wetlands. This can be found at a finer scale in the wetlands baseline report (Rescan 2011).

#### Alpine Ecosystems

Three vegetated alpine ecosystems not listed by the BC CDC and not already accounted for in the sensitive wetland summary were mapped by PEM (Table 4.1-14). They occupy 2,915 ha (1%) of the RSA, none of which exist in the LSA.

# 4.2 LOCAL STUDY AREA

#### 4.2.1 Extent of BEC Units within the Local Study Area

The Murray River LSA overlaps four BEC units (Table 4.2-1). The majority (58%) of the LSA is located within the BWBSmw subzone, with nearly equal amounts within the BWBSwk1 and ESSFmv2 variants and a small area within the SBSwk2 variant.

#### 4.2.2 Extent of Site Series and General Ecosystem Types

Sixty ecosystems (BEC unit/site series), including the various undifferentiated units, were mapped in the LSA, including 10 wetland ecosystems and 14 non-vegetated or anthropogenically modified units. The ecological characteristics of each site series are summarized in Appendix 5. The spatial distribution of site series is displayed in the Terrestrial Ecosystem Map (Appendix 6).

As for the RSA, site series have been grouped into general ecosystem types for the LSA according to their relative moisture status and potential climax structural stage. The following section summarizes the extent of general ecosystem types within the LSA. The results are divided by BEC unit in order to provide additional ecological context.

| Table 4.1-13. | Extent of Wetland Ecosystems |   |
|---------------|------------------------------|---|
|               |                              | _ |

|                                                     |                     |                                                              | BEC Unit (ha) |        |         |         |         | Grand   |         |         |        |               |
|-----------------------------------------------------|---------------------|--------------------------------------------------------------|---------------|--------|---------|---------|---------|---------|---------|---------|--------|---------------|
|                                                     | Map Code            | Ecosystem Name                                               | BAFAun        | BWBSmw | BWBSwk1 | ESSFmv2 | ESSFmvp | ESSFwc3 | ESSFwcp | ESSFwk2 | SBSwk2 | Total<br>(ha) |
| Total Wetland<br>(including listed and<br>riparian) | N/A                 |                                                              | 0.3           | 2,339  | 5,740   | 1,110   | 10      | 33      | 2       | 8       | 909    | 10,152        |
| Listed and/or<br>Riparian Wetland                   | SBSwk2/06<br>(Ws07) | Sxw - Horsetail (Ws07 -<br>Common horsetail -<br>Leafy moss) |               |        |         |         |         |         |         |         | 65     | 65            |
|                                                     | MA                  | TRIM Marsh                                                   |               | 102    | 45      | 2       |         |         |         |         | 8      | 158           |
|                                                     | SA                  | TRIM Swamp                                                   |               | 68     | 43      | 7       |         |         |         |         | 13     | 131           |
|                                                     | WB                  | Wetland Bog                                                  |               | 27     | 16      | 5       |         |         |         |         |        | 48            |
|                                                     | WE                  | TRIM Wetland                                                 |               | 65     | 96      | 1       |         | 4       |         |         | 26     | 192           |
|                                                     | WF                  | Wetland Fen                                                  |               | 1      |         |         |         |         |         |         |        | 1             |
|                                                     | WH                  | Wetland Herb                                                 |               | 0.04   |         |         |         |         |         |         | 21     | 21            |
|                                                     | WS                  | Wetland Swamp                                                |               |        | 120     | 0.3     |         |         |         |         | 94     | 215           |
|                                                     | Sum                 |                                                              |               | 264    | 321     | 17      |         | 4       |         |         | 227    | 832           |
| Wetland Net of<br>Listed and Riparian               | SBSwk2/06<br>(Ws07) | Sxw - Horsetail (Ws07 -<br>Common horsetail -<br>Leafy moss) |               |        |         |         |         |         |         |         | 94     | 94            |
|                                                     | MA                  | TRIM Marsh                                                   |               | 229    | 189     | 66      | 4       |         |         |         | 23     | 511           |
|                                                     | SA                  | TRIM Swamp                                                   |               | 672    | 1,170   | 303     | 0.4     |         |         |         | 106    | 2,253         |
|                                                     | WB                  | Wetland Bog                                                  |               | 719    | 242     | 537     |         |         |         |         |        | 1,498         |
|                                                     | WE                  | TRIM Wetland                                                 | 0.3           | 412    | 949     | 186     | 6       | 29      | 2       | 8       | 206    | 1,798         |
|                                                     | WF                  | Wetland Fen                                                  |               | 43     |         |         |         |         |         |         |        | 43            |
|                                                     | WH                  | Wetland Herb                                                 |               | 0.3    |         | 0.1     |         |         |         |         | 71     | 72            |
|                                                     | WS                  | Wetland Swamp                                                |               |        | 2,869   | 1       |         |         |         |         | 182    | 3,053         |
|                                                     | Sum                 |                                                              | 0.3           | 2,076  | 5,419   | 1,094   | 10      | 29      | 2       | 8       | 682    | 9,320         |

| General Ecosystem Type within the BAFAun Subzone | RSA Extent (ha) |
|--------------------------------------------------|-----------------|
| Herb                                             | 2,102           |
| Subalpine fir krummholz                          | 490             |
| Wetter herb                                      | 323             |
| Grand Total                                      | 2,915           |

Table 4.1-14. Extent of Vegetated Non-listed and Non-Wetland Alpine Ecosystems

#### Table 4.2-1. Extent of BEC Units within the Local Study Area

| BEC Unit Name                                                          | Extent (ha) | Extent (%) |
|------------------------------------------------------------------------|-------------|------------|
| Boreal White and Black Spruce - Moist Warm (BWBSmw)                    | 7,000       | 58         |
| Boreal White and Black Spruce - Murray Wet Cool (BWBSwk1)              | 2,458       | 20         |
| Engelmann Spruce - Subalpine Fir - Bullmoose Moist Very Cold (ESSFmv2) | 2,456       | 20         |
| Sub-Boreal Spruce - Finlay Peace Wet Cool (SBSwk2)                     | 178         | 2          |
| Total                                                                  | 12,092      | 100        |

The LSA consists of hills and low mountains accented by elongated ridges. Much of the area is characterized by mesic forested ecosystems interspersed with anthropogenic developments such as seismic lines, roads, transmission lines, oil, gas and hydro power developments (Table 4.2-2). Anthropogenically modified areas occur throughout the LSA and are particularly common in the south eastern section, associated with the Quintette Mine.

|                              |        |         | BEC UNIT |        |             |
|------------------------------|--------|---------|----------|--------|-------------|
| General Ecosystem Type       | BWBSmw | BWBSwk1 | ESSFmv2  | SBSwk2 | Grand Total |
| Anthropogenically Modified   | 1,401  | 166     | 52       | 16     | 1,635       |
| Barren                       | 16     | 0       | 5        | 0      | 21          |
| Exposed Soil                 | 0      | 0       | 5        | 0      | 5           |
| Low Bench Floodplain         | 14     | 0       | 0        | 0      | 14          |
| Mesic Forest                 | 2,215  | 1,151   | 1,270    | 42     | 4,678       |
| Mid Bench Floodplain         | 217    | 0       | 0        | 7      | 224         |
| Moderately Dry Forest        | 1,269  | 583     | 286      | 50     | 2,189       |
| Moist Forest                 | 751    | 128     | 339      | 53     | 1,271       |
| Rock                         | 0      | 0       | 0        | 0      | 0           |
| Slightly Dry to Moist Forest | 757    | 408     | 431      | 4      | 1,600       |
| Water                        | 187    | 7       | 5        | 0      | 199         |
| Wet Forest                   | 0      | 0       | 47       | 0      | 47          |
| Wetland Bog                  | 134    | 0       | 13       | 5      | 152         |
| Wetland Fen                  | 2      | 1       | 2        | 1      | 6           |
| Wetland Marsh                | 23     | 0       | 1        | 0      | 24          |
| Wetland Swamp                | 14     | 14      | 0        | 0      | 28          |
| Total                        | 7,000  | 2,458   | 2,456    | 178    | 12,092      |

History of natural disturbances such as wildfires, windthrow, insect epidemics (notably pine beetle (*Dendroctonus ponderosae*)), and tree disease are widespread throughout both the RSA and LSA.

Valleys in the LSA are similar to those in the RSA in that they are generally wide and often deeply incised by rivers and streams (e.g. the Murray River, Wolverine River and Flatbed Creek). Floodplain forests, although limited in extent, dominate the banks of larger rivers and streams in the LSA and RSA. A variety of ecosystems occupy the hilly landscapes, including moderately dry forests, moist forests and slightly dry to moist forests, which are common in both the LSA and RSA.

Plains and gentle slopes cover approximately 60% of the land. Undulating landscapes, occur over approximately 25% of the LSA. Only about 10% of the LSA consists of irregularly shaped, steeper landscapes such as ridges and hummocks, which also contain many of the drier ecosystem types (barren and moderately dry forest). In contrast, most of the dry ecosystem (barren, dry to mesic forest, dry to mesic herb and dry to mesic shrub) within the RSA occur at higher elevation within the alpine and subalpine areas (BAFA and ESSFwvp).

#### Extent of Structural Stages

The LSA contains a mix of forested and non-forested structural stages. Young and mature forests are the most extensive structural stages, each accounting for approximately 29% of the overall LSA (Table 4.2-3). In the RSA, shrub ecosystems dominated the landscape, occupying 21% of the RSA whereas shrub-dominated structural stages are the next most abundant, accounting for approximately 13% of the overall LSA. Sparse/bryoid, herb, pole/sapling, and old forests comprise the remaining portions of the vegetated landbase. Non-vegetated areas (e.g., water features and anthropogenically modified areas) cover 9% of the land base. The distribution of structural stages is illustrated in Appendix 6.

|                   | BEC UNIT       |                 |                 |                |                          |                         |
|-------------------|----------------|-----------------|-----------------|----------------|--------------------------|-------------------------|
| Structural Stage  | BWBSmw<br>(ha) | BWBSwk1<br>(ha) | ESSFmv2<br>(ha) | SBSwk2<br>(ha) | Total LSA Extent<br>(ha) | Total LSA<br>Extent (%) |
| Sparse/Bryoid (1) | 596            | 10              | 23              | 9              | 638                      | 5.3                     |
| Herb (2)          | 421            | 172             | 12              | 0              | 605                      | 5.0                     |
| Shrub (3)         | 1,169          | 329             | 81              | 14             | 1,593                    | 13.2                    |
| Pole/Sapling (4)  | 669            | 201             | 134             | 7              | 1,011                    | 8.4                     |
| Young Forest (5)  | 1,510          | 968             | 930             | 62             | 3,470                    | 28.6                    |
| Mature Forest (6) | 1,689          | 624             | 1,177           | 71             | 3,561                    | 29.4                    |
| Old Forest (7)    | 150            | 0               | 0               | 2              | 152                      | 1.3                     |
| Non-vegetated     | 796            | 154             | 99              | 13             | 1,062                    | 8.8                     |
| Total             | 7,000          | 2,458           | 2,456           | 178            | 12,092                   | 100.0                   |

Table 4.2-3. Extent of Structural Stage Types by BEC Unit in the Local Study Area

# 4.2.3 Extent of Sensitive Ecosystems

#### 4.2.3.1 Ecological Characteristics and Extent of Listed Ecosystems

Eight provincially listed ecological communities were identified within the LSA, covering approximately 1,749 ha (Table 4.2-4). Of these ecosystems, one is red listed (extirpated, endangered or threatened) and seven are blue listed (of special concern). Many of the same listed communities were identified in

the RSA through PEM mapping and descriptions were provided in Section 4.1.4. One additional community (Wb06) was identified in the LSA through the TEM; a description is provided here.

| Ecosystem (site series/    |                                                                                |                                                                 | BC CDC | Extent in |
|----------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|--------|-----------|
| site association)          | Scientific Name                                                                | English Name                                                    | List   | LSA (ha)  |
| ESSFmv2/06; Ws08           | Abies lasiocarpa - Alnus spp<br>Equisetum spp.                                 | Subalpine fir - Alders -<br>Horsetails                          | Blue   | 98        |
| BWBSmw/110                 | Picea glauca - Gymnocarpium<br>dryopteris - Aralia nudicaulis                  | White spruce - Oak fern -<br>Sasparilla                         | Blue   | 452       |
| BWBSmw/111;<br>BWBSwk1/110 | Picea glauca - Ribes triste -<br>Equisetum spp.                                | White spruce - Red<br>Swamp Currant -<br>Horsetails             | Blue   | 518       |
| BWBSmw/112; Fm02           | Populus balsamifera - Picea<br>glauca - Alnus incana - Cornus<br>stolonifera   | Balsam poplar - White<br>spruce - Mountain alder -<br>Dogwood   | Red    | 177       |
| BWBSwk1/103                | Picea glauca - Pinus contorta /<br>Shepherdia canadensis / Aster<br>conspicuus | white spruce - lodgepole<br>pine / soopolallie / showy<br>aster | Blue   | 309       |
| SBSwk2/02                  | Pinus contorta / Vaccinium<br>membranaceum / Cladina spp.                      | lodgepole pine / black<br>huckleberry / reindeer<br>lichens     | Blue   | 27        |
| Wb06                       | Larix laricina - Aulacomnium<br>palustre                                       | Tamarack - Glow moss                                            | Blue   | 162       |
| Wb09                       | Picea mariana - Equisetum<br>arvense - Sphagnum spp.                           | Black spruce - Common<br>horsetail - Peat-mosses                | Blue   | 6         |
| Total                      |                                                                                |                                                                 |        | 1,749     |

Table 4.2-4. Extent of BC CDC Listed Ecosystems in the LSA

#### Wb09: Black Spruce - Common Horsetail - Peat-mosses

The Black spruce - Common horsetail - Peat-moss is an uncommon Bog/Poor Swamp Site Association found in small palustrine basins and at the periphery of larger peatlands (MacKenzie and Moran 2004). Although this ecosystem is transitional to forested swamps, it has abundant bog-affiliated species, very poor tree growth, and stagnant hydrology (Plates 4.2-1 and 4.2-2).

It is often found in strongly hummocky sites, with conifers and typical bog species occurring on elevated sites and minerotrophic (mineral-receiving groundwater) indicator plants in the hollows (Table 4.2-5). Hummock species include stunted black spruce, Labrador tea (*Ledum groenlandicum*), and peat moss (*Sphagnum* spp.). Common horsetail (*Equisetum arvense*) is always present between hummocks. Soils can be deep *Sphagnum* peat (down to 3 m) or shallow veneers over fine-textured mineral materials. Mesisols and Gleysols are also common. Standing water can persist between hummocks, but the hummocks are never flooded.



Plate 4.2-1. Wb09: Black Spruce - Common Horsetail - Peat-mosses identified at Site 053.



Plate 4.2-2. Wb09: Black Spruce - Common Horsetail - Peat-mosses identified at Site104.

| Table 4.2-5.   | <b>Environmental Characteristics</b> | and BC CDC Status: | Wb09 Black Spruce | - Common |
|----------------|--------------------------------------|--------------------|-------------------|----------|
| Horsetail - Pe | eat-mosses                           |                    |                   |          |

| SMR:                 | hydric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNR:                 | poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Percent Slope:       | Data not available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Slope Position:      | level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Soil Classification: | Soils can be deep <i>Sphagnum</i> peat (to 3 m) or shallow veneers over fine-textured mineral materials.<br>Mesisols and leysols are equally common.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Soil Texture:        | Fine textured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Water Table:         | Standing water can persist between hummocks (elevated sites are never flooded).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Parent Material:     | Organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Wildlife Values:     | The site has low to moderate values for ungulates during winter as the stand does not support preferred winter browse or snow interception cover. It has moderate values for bears in spring primarily from presence of horsetail as valuable spring forage, but the site has low values for bears during other seasons. Low values are anticipated for arboreal furbearers (marten, squirrel, and fisher). The site may support a diverse community of breeding birds in spring, and moist forest floor will likely be attractive to amphibians including western toad. |

# 4.2.3.2 Extent of Non-listed Ecosystems

#### Riparian and Floodplain Ecosystems

Riparian and floodplain ecosystems not listed by the BC CDC occupy 309 ha (Table 4.2-6). There are 147 ha associated with the buffer applied to 3<sup>rd</sup> and 4<sup>th</sup> order streams, and 162 ha for higher stream orders.

| Stream Orders<br>Associated with<br>Riparian Area | Buffer Size | Total Riparian and<br>Floodplain Buffer<br>Area (ha) | Listed Riparian and<br>Floodplain Ecosystems<br>Area (ha) | Net Riparian and<br>Floodplain Buffer<br>Area (ha) |
|---------------------------------------------------|-------------|------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|
| 3rd and 4th                                       | 30 m        | 182                                                  | 35                                                        | 147                                                |
| 5th, 6th, and 7th                                 | 100 m       | 281                                                  | 119                                                       | 162                                                |
| Total                                             |             | 463                                                  | 154                                                       | 309                                                |

| Table 4.2-6. | Extent of Riparia | n and Floodplain | Ecosystems |
|--------------|-------------------|------------------|------------|
|--------------|-------------------|------------------|------------|

#### Wetland Ecosystems

Wetland ecosystems not listed by the BC CDC and not accounted for in the riparian area calculations, occupy 111 ha (1%) of the LSA (Table 4.2-7). The ecological characteristics of wetlands are further described in Mackenzie and Moran (2004) and the extent and distribution of wetlands are summarized in the wetlands baseline report (Rescan 2011).

#### Table 4.2-7. Extent of Wetland Ecosystems

| Scientific Name                                 | English Name                                               | Ecosystem<br>Unit | LSA (ha) |
|-------------------------------------------------|------------------------------------------------------------|-------------------|----------|
| Picea mariana - Carex aquatilis -<br>Sphagnum   | Black spruce - Water sedge - Peat-moss                     | Wb05              | 2.4      |
| Lodgepole pine - Water sedge - Peat-<br>moss    | Pinus contorta - Carex aquatilis - Sphagnum                | Wb07              | 0        |
| Black spruce - Soft-leaved sedge -<br>Peat-moss | Picea mariana - Carex disperma - Sphagnum                  | Wb08              | 13.9     |
| Barclay's willow - Water sedge -<br>Glow moss   | Salix barclayi - Carex aquatilis - Aulacomnium<br>palustre | Wf04              | 25.0     |
| Beaked sedge - Water sedge                      | Carex utriculata - Carex aquatilis                         | Wm01              | 43.7     |
| Drummond's willow - Beaked sedge                | Salix drummondiana - Carex utriculata                      | Ws04              | 6.2      |
| Spruce - Common horsetail - Leafy<br>moss       | Picea X- Equisetum arvense - Mnium                         | Ws07              | 19.3     |
| Total Area                                      |                                                            |                   | 110.5    |

# 4.3 ECOSYSTEMS AND VEGETATION FIELD SURVEYS

# 4.3.1 Terrestrial Ecosystem and Predictive Ecosystem Mapping Field Surveys

Field survey data were collected to refine the ecosystem mapping in the RSA and LSA as well as to identify ecosystems and plants of special concern. A total of 332 ecosystem mapping plots were visited, 136 of which were ground plots and the remainder were visuals and wetland assessment plots (Appendix 6 and 7). Survey intensity level 2 (RIC 1998) was completed within the Potential Mine Surface Development Area, where the majority of the development is expected to occur. Survey intensity level 3 was completed for the remainder of the LSA.

# 4.3.2 Sensitive Ecosystems Identified in the Field

#### 4.3.2.1 Listed Ecosystems

Ten provincially listed ecological communities were identified in the field. Of these ecosystems, one is red listed (extirpated, endangered or threatened) and nine are blue listed (of special concern; Table 4.3-1; Figure 4.1-3). Two ecosystems, Black spruce - lingonberry - peat-mosses (*Picea mariana - Vaccinium vitis-idaea - Sphagnum* spp.; Wb03) and swamp horsetail - beaked sedge (*Equisetum fluviatile - Carex utriculata*; Wm02) were identified through field surveys and are described in Table 4.3-1

| Ecosystem (site                         |                                                                                |                                                                    |             |              |
|-----------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|--------------|
| series/site association)                | Scientific Name                                                                | English Name                                                       | BC CDC List | No. of Plots |
| ESSFmv2/06: Ws08                        | Abies lasiocarpa - Alnus spp<br>Equisetum spp.                                 | Subalpine fir - Alders -<br>Horsetails                             | Blue        | 4            |
| BWBSwk1/103                             | Picea glauca - Pinus contorta -<br>Shepherdia canadensis - Aster<br>conspicuus | White spruce -<br>Lodgepole pine -<br>Soopolallie - Showy<br>aster | Blue        | 6            |
| BWBSmw/112                              | Populus balsamifera - Picea<br>glauca - Alnus incana - Cornus<br>stolonifera   | Balsam poplar - White<br>spruce - Mountain alder<br>- Dogwood      | Red         | 3            |
| BWBSmw/111;<br>BWBSwk1/110 <sup>1</sup> | Picea glauca - Ribes triste -<br>Equisetum spp.                                | White spruce - Currant -<br>Horsetail                              | Blue        | 18           |
| BWBSmw/110                              | Picea glauca - Gymnocarpium<br>dryopteris - Aralia nudicaulis                  | White spruce - Oak fern<br>- Sasparilla                            | Blue        | 9            |
| SBSwk2/02                               | Pinus contorta / Vaccinium<br>membranaceum / Cladina spp.                      | lodgepole pine / black<br>huckleberry / reindeer<br>lichens        | Blue        | 1            |
| Wm02                                    | Equisetum fluviatile - Carex<br>utriculata                                     | swamp horsetail -<br>beaked sedge                                  | Blue        | 1            |
| Wb09                                    | Picea mariana - Equisetum<br>arvense - Sphagnum spp.                           | Black spruce - Common<br>horsetail - Peat-mosses                   | Blue        | 3            |
| Wb06                                    | Larix laricina - Aulacomnium<br>palustre                                       | Tamarack - Glow moss                                               | Blue        | 3            |
| Wb03                                    | Picea mariana - Vaccinium<br>vitis-idaea - Sphagnum spp.                       | black spruce -<br>lingonberry - peat-<br>mosses                    | Blue        | 1            |
| Total                                   |                                                                                |                                                                    |             | 49           |

#### Table 4.3-1. BC CDC Listed Ecosystems Identified in the Field

#### Wb03: Black Spruce - Ligonberry - Peat-mosses

This bog wetland community is widespread in the Taiga and Boreal Plains but uncommon further south (MacKenzie and Moran 2004). It occurs in topographic depressions with little groundwater influence. Its characteristics are summarized in Table 4.3-2.

Stunted black spruce, typically <10 m tall, is always present over an open herb layer and continuous peat moss layer. Labrador tea, cloudberry (*Rubus chamaemorus*), and lingonberry (*Vaccinium vitis-idaea*) are the most abundant species in the understory. Sites are hummocky, but the hummocks and hollows are usually close in moisture content due to the thick peat moss layer. Few minerotrophic indicators are present. However, high tree cover on some sites shades out peat moss, and feathermosses become dominant. Surface peat on elevated hummocks or domes may dry out, thereby becoming dominated by *Cladonia* and *Cladina* lichens.

Underlying permafrost is common for these sites and often contributes to a domed surface shape. There is typically a deep blanket of acidic peat moss and little to no surface water present. Soil types are Fibrisols or Organic Cryosols. This site was identified at P-26 within the local study area but no photos are available.

| SMR:                 | hydric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNR:                 | very poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Percent Slope:       | <2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Slope Position:      | level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Soil Classification: | Fibrisols, Organic Cryosols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Soil Texture:        | n/a - organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water Table:         | little to none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Parent Material:     | Typically organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wildlife Values:     | Low habitat value for most ungulates during winter due to lack of browse, although<br>terrestrial lichen may provide value for caribou when snow pack is non-limiting. Patchy<br>forest cover of black spruce supports low to very low habitat suitability for arboreal fur<br>bearers (marten, squirrel, fisher). Berry production may provide moderate value for spring<br>and fall use by black bear and grizzly. Black spruce islands will be used by some upland<br>nesting birds, particularly those most attracted to edges. Moist area can have value for<br>amphibians and may support breeding if open water occurs. |

| Table 4.3-2. | Environmental Characteristics and BC CDC Status: Wb03 Black Spruce - Ligonberry - |
|--------------|-----------------------------------------------------------------------------------|
| Peat-mosses  |                                                                                   |

#### Wm02: Swamp Horsetail - Beaked Sedge

This marsh site association occurs in back-levee depressions along sediment laden, low-gradient streams, protected bays of large lakes, or flooded fens (MacKenzie and Moran 2004).

Plant diversity is typically low. Sites are typically dominated by swamp horsetail (*Equisetum fluviatile*) and occasionally in combination with beaked sedge (*Carex utriculata*), Pondweed (*Potamogeton spp.*), and water milfoil (*Myriophyllum* spp.) are often scattered throughout (Plates 4.3-1 and 4.3-2; Table 4.3-3). Soils are derived from silty or fine-sandy fluvial, deep limnic deposits at open margins of lakes, or recently flooded peat.



Plate 4.3-1. Wm02: Swamp horsetail - beaked sedge identified at Site 102.



Plate 4.3-2. Wm02: Swamp horsetail - beaked sedge identified at Site 102.

Table 4.3-3. Environmental Characteristics and BC CDC Status: Wm02 Swamp Horsetail - Beaked Sedge

| SMR:                 | Hydric to hygric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNR:                 | Rich to very rich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Percent Slope:       | <2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Slope Position:      | level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Soil Classification: | Rego Gleysols, Terric Humisols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soil Texture:        | n/a - organic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Water Table:         | little to none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Parent Material:     | No available data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Wildlife Values:     | Low value for ungulates, with the exception of moose which may exploit this habitat during the growing season. Also, dependent on good shrub production at the edge of the site, it may have moderate winter value. No value for arboreal furbearers. Dependent on seasonal inundation, it may have some value for aquatic species, especially muskrat. Production of horsetails and sedges is valuable for bears and likely to have moderately high to high spring value for grizzly bear. Proximity to water suggests value for nesting waterfowl and waterbirds if sedge cover is adequate. Moist sites will be valuable to amphibians and may support small pools for breeding. |
# 4.3.2.2 Non-listed Ecosystems

## Riparian and Floodplain Ecosystems

Two non-listed riparian and floodplain ecosystems were identified in the field (Appendix 7, Figure 4.1-3), one in the ESSFmv2 and one in the BWBSmw.

# Wetland Ecosystems

Eighteen non-listed wetland ecosystems were identified in the field (Appendix 7) among 34 locations (Figure 4.1-3).

# Vegetated Alpine Ecosystems

Nine non-listed vegetated alpine ecosystems were identified in the field (Appendix 7) among nine locations (Figure 4.1-3).

# 4.3.3 Species Richness

A total of 388 plant species, (including those that were identified to genus only), were identified within the RSA. The complete list of species and plant types is summarized in Appendix 8.

# 4.3.4 BC CDC Listed Plant Surveys

Field surveys for listed plants were conducted in conjunction with general field surveys throughout the LSA in 2010 and 2011. A specific rare vascular plants survey was conducted in high priority areas within the potential mine surface development area was performed according to the Alberta Native Plant Council Guidelines for Rare Plant Surveys in Alberta (Alberta Native Plant Council 2000).

Over 240 vascular species were identified during the surveys. Samples of four potential listed species were collected and pressed for expert identification at the UBC herbarium. One blue-listed species, *Botrychium crenulatum* (dainty moonwort), was confirmed from the samples (Plate 4.3-3). A total of 99 *B. crenulatum* individuals were observed in 31 populations in two habitat types (Figure 4.3-1).

The most common habitat was disturbed margins of roads throughout the LSA (Plate 4.3-4). These areas were generally dominated by a variety of weedy and or introduced species and occurred in moist, shaded areas. Past and ongoing disturbance was significant, ranging from regular clearing of road-side vegetation, to dumping of old concrete, cars and other garbage. Every occurrence was mixed with larger numbers of the commonly occurring *B. lunaria* and occasionally *B. virginianum*, neither of which are listed species.

The less common habitat type (accounting for 12 of the 99 individuals in 5 locations) was mature broadleaf forests that are relatively common along the inactive floodplain of Murray River (Plate 4.3-5). These forest stands are dominated by cottonwood and trembling aspen, and contain lush, moist understories of a wide variety of shrubs and herbs. Both the number of *B. crenulatum* individuals and locations found during the surveys likely under-represent the true abundance in this habitat type due to difficulties identifying the species in thick ground cover.

# 4.3.5 Invasive Plant Surveys

Thirteen non-native plants were documented during field surveys (Table 4.3-4). These species were compared with the NEIPC's Invasive Plant Prioritization Categories to determine the level of invasiveness of each species. Of these plants, four are tracked by the NEIPC, three of which are also regulated by the Weed Control Act (Figure 4.3-1). One native plant (pineapple weed) tracked by the NEIPC was also documented.



Plate 4.3-3. Blue listed B. crenulatum (Dainty Moonwort) on left and B. lunaria (Common Moonwort) on right.



Plate 4.3-4. Typical site conditions for B. crenulatum occurrences along road margins.





*Plate 4.3-5.* Typical site conditions for Botrychium crenulatum in forested areas.

| Common Name         | Scientific Name              | North East Invasive<br>Plant Council | Weed Control Act                        |
|---------------------|------------------------------|--------------------------------------|-----------------------------------------|
| Common Tansy        | Tanacetum vulgare            | Prohibited                           | Noxious in other parts of the province. |
| Canada Thistle      | Cirsium arvense              | Primary Invasive                     | Noxious                                 |
| Scentless Chamomile | Tripleurospermum inodorum    | Primary Invasive                     | Noxious                                 |
| Bull Thistle        | Cirsium vulgare              | Secondary Invasive                   | n/a                                     |
| Pineapple Weed      | Matricaria discoidea         | Secondary Invasive                   | n/a                                     |
| Common Dandelion    | Taraxacum officinale         | n/a                                  | n/a                                     |
| Black Medic         | Medicago lupulina            | n/a                                  | n/a                                     |
| White Sweet-clover  | Melilotus alba               | n/a                                  | n/a                                     |
| Yellow Sweet-clover | Melilotus officinalis        | n/a                                  | n/a                                     |
| Aslike Clover       | Trifolium hybridum           | n/a                                  | n/a                                     |
| Red Clover          | Trifolium pratense           | n/a                                  | n/a                                     |
| Water Speedwell     | Veronica anagallis-aquatica  | n/a                                  | n/a                                     |
| Shepard's Purse     | Capsella bursa-pastoris      | n/a                                  | n/a                                     |
| Western Blue Flax   | Linum lewisii subsp. Lewisii | n/a                                  | n/a                                     |

### Table 4.3-4. Invasive Plants within the Local Study Area

Invasive plants can aggressively establish in disturbed areas, thereby decreasing biodiversity, crop and range productivity (Polster 2005). Invasive plants are a considerable threat to natural habitats (Canadian Food Inspection Agency 2008). Non-native plant species can influence ecosystem diversity, structure, and function through invasion and hybridization. Invasive plants can alter the structure of a natural ecosystem and ultimately change the way in which the site is utilized by wildlife, insects, and microorganisms. Changes to nutrient cycling, hydrology, erosion and fire regimes may also occur

(Canadian Food Inspection Agency 2008). The key biological features of weeds identified in the LSA that are regulated by the Weed Control Act and/or tracked by the NEIPC are described below.

# 4.3.5.1 Common Tansy

Common Tansy was documented at one site within the LSA at a small vehicle pull out on the Murray River Road. Common tansy is listed as noxious in the Bulkley-Nechako, Central Kootenay, Columbia-Shuswap, East Kootenay, North Okanagan regional districts but has yet to be listed in the Peace Forest Region (1985).

Common tansy is an aggressive competitor that prefers disturbed sites with well drained, rich soils (Cranston, Ralph, and Wikeem 2002) but is also known to establish in drier pastures, forests and agriculture areas (North East Invasive Plant Committee 2010). This perennial plant prefers disturbed sites with well drained, rich soils (Cranston, Ralph, and Wikeem 2002). It is common at low elevations in the southern half of the region and sporadic in the northeast.

## 4.3.5.2 Canada Thistle

Canada thistle was documented at one site along the Murray River Road near the conveyor belt access gate. Canada thistle is an aggressive competitor for nutrients and water (California Invasive Plant Council 2008). It grows on a variety of soil types in a range of habitats such as cultivated fields, meadows, pastures, roadsides, and stream banks (SK Ministry of Agriculture 2008a). It has deep; horizontal, creeping roots that make control of this weed very difficult (Bubar et al. 2000).

## 4.3.5.3 Scentless Chamomile

Chamomile was also documented at the same gravel pit as the common tansy within the LSA. Chamomile typically grows on roadsides, disturbed areas and amongst perennial forage crops. Chamomile is known to reduce biodiversity through the formation of monocultures along waterbodies, riparian areas or in areas that are exposed to periodic inundation (Invasive Plant Council of BC 2009).

# 4.3.5.4 Bull Thistle

Bull thistle was documented at one site along the Murray River Road near the conveyor belt access gate. Bull thistle is considered one of the less aggressive thistles and typically does not remain in any given area for an extended period of time (Lym and Zollinger 2000). Bull thistle grows on a variety of soil types, ranging from gravelly to clay textured (BC MOAFF and Open Learning Agency 2002), and in a range of habitats including cultivated fields, roadsides and cutblocks.

### 4.3.5.5 Pineapple Weed

Pineapple weed is an annual plant believed to be native to northeast Asia (Centre for Organic Horticulture). This plant occupies dry roadsides and disturbed areas at low to mid elevations and is widespread in the region (E-Flora BC 2011). Although, pineapple weed is listed by the NEIPC, it is considered a low priority and is not managed within the province.

# 5. Summary



# 5. Summary

# 5.1 BROAD SCALE ECOSYSTEM INFORMATION

The RSA overlaps nine Biogeoclimatic Ecosystem Classification (BEC) units, six of which are forested, two are parkland (transition to alpine), and one is alpine. The dominant BEC unit within the RSA is the Engelmann Spruce - Subalpine Fir - Bullmoose Moist Very Cold subzone covers the (ESSFmv2) followed by the Boreal White and Black Spruce - Murray Wet Cool (BWBSwk1). The RSA is characterized predominantly by mesic forests followed by slightly dry to moist forests. The most extensive structural stage is mature forests, followed by shrubs (which includes many of the re-forested areas within the RSA).

The LSA is located within four BEC units, the majority of which is the BWBS -Moist Warm (BWBSmw), with lesser amounts of BWBS - Murray Wet Cool (BWBSwk1), ESSFmv2, and Sub-Boreal Spruce - Finlay Peace Wet Cool (SBSwk2). The LSA is characterized predominantly by mesic forests and moderately dry forests. Anthropogenically modified areas, including existing mines, seismic lines, roads, transmission lines, oil, gas and hydro power developments, are interspersed throughout the LSA and are particularly common in the south eastern section. History of natural disturbances such as wildfires, windthrow, insect epidemics, notably pine beetle (*Dendroctonus ponderosae*), and disease are widespread.

# 5.2 SENSITIVE ECOSYSTEMS AND PLANTS OF CONSERVATION INTEREST

Ten ecosystems listed by the British Columbia Conservation Data Centre (BC CDC) were identified, one of which is red listed (extirpated, endangered or threatened) and the remainder of which are blue listed (of special concern). Seven of these ecosystems were mapped within the RSA and eight were mapped within the LSA. All ten ecosystems were identified through field survey.

Four additional sensitive ecosystem classes, considered locally threatened or sensitive to disturbance, were identified through mapping and field surveys. These include riparian and floodplain ecosystems, wetlands, and vegetated alpine not listed by the BC CDC.

Surveys for rare and invasive plants resulted in the identification of one blue-listed species, *Botrychium crenulatum* (dainty moonwort) and 14 exotic species of which three are regulated by the Weed Control Act and five of which are tracked by the NEIPC.

# 5.3 PLANT TISSUE, LICHENS AND SOILS METALS ANALYSIS

Plant tissue, lichen and soil samples were collected and analyzed as part of the terrestrial, soils and wetland baseline studies conducted for the Project. This information is used to quantify background tissue metal concentrations within the LSA and at reference sites outside of the LSA. The samples collected, sampling sites and results of the metal analysis are provided in the *Murray River Coal Project: 2010 to 2012 Ecosystem and Vegetation Baseline Report Report* (2013).

References



# References

Definitions of the acronyms and abbreviations used in this reference list can be found in the Glossary and Abbreviations section.

- 1985. Fisheries Act, RS. C. F-14. s. 1.
- 1996a. Mines Act, RSBC c 293. C. 293.
- 1996b. Water Act, RSBC. C. 483.
- 1996c. Weed Control Act, RSBC. C. 486.
- 1996d. Wildlife Act, RSBC. C. 488. s. 1.1.
- 1997. Fish Protection Act, SBC. C. 25.
- 2002a. Forest and Range Practices Act, SBC. C. 69. s. 149.1.
- 2002b. Forest and Range Practices Act, BC Reg 582/2004: Government Actions Regulation, SBC. C. 69. s. 149.1.
- 2002c. Species at Risk Act, SC. C. 29. s. 15.3.
- 2003. Environmental Management Act, SBC. C. 53.
- Banner, A. and W. MacKenzie. 1998. *Riparian areas: Providing landscape habitat diversity Part 5 of 7*. Victoria, BC: BC Ministry of Forests Research Branch, Extension Note 17.
- Banner, A., W. H. MacKenzie, S. Haeussler, S. Thomson, J. Pojar, and R. L. Trowbridge. 1993. A Field Guide to Site Identification and Interpretation for the Prince Rupert Forest Region Victoria, BC: Land Management Handbook Number 26. BC Ministry of Forests and Range Research Branch.
- BC EAO. 2012. Tumbler Ridge Wind Energy Project Assessment Report. http://a100.gov.bc.ca/appsdata/epic/documents/p297/1333048300087\_e7de5074bf91e4da303 e1c011832da31f38a731a6903894e87bb3609a58a8994.pdf. (accessed October 2012).
- BC Ministry of Energy and Mines. 1998. Application Requirements for a Permit Approving the Mine Plan and Reclamation Program Pursuant to the Mines Act R.S.B.C. 1996, C. 293.
- BC Ministry of Environment Lands and Parks and BC Ministry of Forests Research Branch. 1998. Field Manual for Describing Terrestrial Ecosystems. Victoria, BC: Land Management Handbook No. 25.
- BC Ministry of Forests and Range. 2004. Regulations Forest and Range Practices Act, Part 4, Division 3 - Riparian areas. http://www.for.gov.bc.ca/tasb/egsregs/frpa/frparegs/forplanprac/fppr.htm. (accessed May 2010).
- BC Ministry of Forests and Range. 2007. Biogeoclimatic Ecosystem Classification Program. http://www.for.gov.bc.ca/hre/becweb/index.html (accessed April 2010). Victoria, BC: Ministry of Forests Research Branch.
- BC MOAFF and Open Learning Agency. 2002. *Guide to Weeds in British Columbia*. 1 ed. Burnaby, BC: Open Learning Agency.
- BC MOE. 2007. BC Conservation Data Centre home http://www.env.gov.bc.ca/cdc/index.html (accessed May 2010).

- BC MOE. 2010a. General Best Management Practices and Standard Project Considerations Standards and Best Practices for Instream Works. Version 1.0. http://www.env.gov.bc.ca/wld/instreamworks/generalBMPs.htm (accessed December, 2010).
- BC MOE. 2010b. Sensitive Ecosystem Inventories. http://www.env.gov.bc.ca/sei/ (accessed June 2011).
- BC MOF. 1995. *Biodiversity Guidebook*. Victoria, BC: British Columbia Ministry of Forests, Forest Practices Code.
- BC MOFR. 2004a. Appendix 3: Identification of stream orders, sub-basins and the point of interest in community watersheds, Interior Watershed Assessment Procedure Guidebook. http://www.for.gov.bc.ca/tasb/legsregs/fpc/fpcguide/iwap/iwapp3.htm. (accessed April 2010).
- BC MOFR. 2004b. Regulations Forest and Range Practices Act, Part 4, Division 3 Riparian areas.
- Canadian Food Inspection Agency. 2008. Invasive Alien Plants In Canada: Summary Report. Ottawa, ON: Canadian Food Inspection Agency.
- Centre for Organic Horticulture. Organic Weed Management: Pineapple Weed.
- Cranston, R., D. Ralph, and B. Wikeem. 2002. *Field guide to noxious and other selected weeds of British Columbia. 4th Ed.* N.p.: BC Ministry of Agriculture, Food and Fisheries, Food Safety and Quality Branch, and BC Ministry of Forests Silviculture Branch. http://www.agf.gov.bc.ca/cropprot/weedguid/weedguid.htm (accessed Jul 2009).
- DeLong, C. 2004. A Field Guide to Site Identification and Interpretation for the North Central Portion of the Northern Interior Forest Region. Victoria, B.C.: Land Management Handbook Number 54.
  B.C. Ministry of Forests and Range.
- DeLong, C., A. Banner, W. H. MacKenzie, B. J. Rogers, and B. Kaytor. 2010. A field guide to ecosystem identification for the Boreal White and Black Spruce Zone of British Columbia. Victoria: B.C. Min. For. Range. For. Sci. Prog.
- DeLong, C., D. Tanner, and M. J. Jull. 1994. A Field Guide for Site Identification and Interpretation for the Northern Rockies Portion of the Prince George Forest Region. BC MOF Research Branch Victoria, BC:
- E-Flora BC. 2011. E-Flora BC: Electronic Atlas of the Plants of British Columbia. http://www.geog.ubc.ca/biodiversity/eflora/. (accessed June 2011).
- Environment Canada. 2003. Wetland environmental assessment guideline. http://www.cwsscf.ec.gc.ca/publications/eval/wetl/index\_e.cfm. (accessed January 2008).
- Haber, E. 1997. Impact of Invasive Plants on Species and Habitats at Risk in Canada. Ottawa: Canadian Wildlife Service, Environment Canada.
- Howes, D. E. and E. Kenk. 1997. *Terrain Classification System for British Columbia* Victoria, BC: Version 2. BC Ministry of Environment.
- Huel, D. 2000. *Managing Saskatchewan Wetlands A Landowner's Guide*. Regina: Saskatchewan Wetland Conservation Corporation.
- Integrated Land Management Bureau. Dawson Creek Timber Supply Area Old Growth Management Project. http://archive.ilmb.gov.bc.ca/slrp/lrmp/fortstjohn/dawson\_creek/docs/dc\_old\_ growth\_background.pdf (accessed May 2011).

- Invasive Plant Council of BC. 2009. Home page. http://www.invasiveplantcouncilbc.ca (accessed September 2009).
- Landres, P. B., P. Morgan, and F. J. Swanson. 1999. Overview of the use of natural variability concepts in managing ecological systems. *Ecological Applications* 9 (4): 1179-88.
- Lym, R. G. and R. Zollinger. 2000. *Perennial and Biennial Thistle Control. W-799 (Revised)*. http://www.ag.ndsu.edu/pubs/plantsci/weeds/w799w.htm. (accessed May 2011).
- MacKenzie, W. H. and J. R. Moran. 2004. Wetlands of British Columbia A Guide to Identification. Victoria, BC: Land management handbook 52. BC Ministry of Forests Research Branch.
- MacMillan, R. A. 2003. LandMapR Software Toolkit C++ Version: Users Manual. . Edmonton, AB: LandMapper Environmental Solutions Inc.
- MacMillan, R. A. 2005. *Quesnel PEM Predictive Ecosystem Mapping Knowledge Base and Attribute Summary*. Unpublished Report. LandMapper Environmental Solutions Inc.
- MacMillan, R. A., D. E. Moon, and R. Coupe. 2007. Automated Predictive Ecological Mapping in a Forest Region of BC, Canada, 2001-2005. *Geoderma* 140 353-37.
- MacMillan, R. A., W. W. Pettapiece, S. C. Nolan, and T. W. Goddard. 2000. A Generic Procedure for Automatically Segmenting Landforms into Landform Elements Using DEMs, Heuristic Rules, and Fuzzy Logic. Fuzzy Sets and Systems 113 81-109.
- McPhee, M., P. Ward, J. Kirkby, L. Wolfe, N. Page, K. Dunster, N. Dawe, and I. Nykwist. 2000. Sensitive ecosystems inventory: East Vancouver Island and Gulf Islands, 1993-1997. Vol. 2 Of Conservation manual. Pacific and Yukon Region: Canadian Wildlife Service, Environmental Conservation Branch, Technical Report Series No. 345.
- Minister of Supply and Services Canada. 1995. Canadian Biodiversity Strategy: Canada's Response to the Convention on Biological Diversity 1995. http://www.biodivcanada.ca/default.asp?lang=En&n=560ED58E-1&offset=1&toc=show. (accessed November 2011).
- North East Invasive Plant Committee. 2010. 2010 Plan and Profile. http://prrd.bc.ca/services/environmental/weed\_control/documents/NEIPCPlan\_Profile\_2010. pdf. (accessed May 2011).
- Pojar, J. and A. C. Stewart. 1991. Alpine Tundra Zone. In *Ecosystems of British Columbia*. Ed. D. V. Meidinger and J. Pojar. Victoria, BC: Special Report Series 6, British Columbia Ministry of Forests and Range, Research Branch.
- Polster, D. F. 2005. The role of invasive plant species management in mined land reclamation. *Canadian Reclamation* Summer/Fall 2005 24-32.
- Rescan. 2011. *Murray River Project: Wetland Baseline Report*. Vancouver, BC: Prepared for HD Mining International Ltd. by Rescan Environmental Services Ltd.
- RIC. 1998. Standard for Terrestrial Ecosystem Mapping in British Columbia. Victoria, BC: Terrestrial Ecosystems Taskforce, Ecosystems Working Group, Resources Inventory Committee.
- RIC. 1999. Standard for Predictive Ecosystem Mapping in British Columbia. Version 1.0. Victoria, BC: Terrestrial Ecosystem Mapping Alternatives Task Force, Resources Inventory Committee.
- RIC. 2000. Standard for Terrestrial Ecosystem Mapping (TEM) Digital Data Capture in British Columbia. Ecosystem Technical Standards and Database Manual. Victoria, BC: Version 3.0. Terrestrial Ecosystems Task Force, Ecosystems Working Group, Resources Inventory Committee.

- Veblen, T. 2003. Historic range of variability of mountain forest ecosystems: concepts and applications. *The Forestry Chronicle* 79 (2): 223-26.
- Warner, B. G. and C. D. A. Rubec. 1997. *The Canadian Wetland Classification System*. n.p.: 2nd ed. National Wetlands Working Group, Wetlands Research Centre, University of Waterloo.

# Personal Communications

Rogers, B. 2012. Regional Research Ecologist. Personal Communication.

# Appendix 1

Predictive Ecosystem Mapping (PEM) Rule Sets



### Appendix 1a. Predictive Ecosystem Mapping Rules for BAFAunp Zone File 1000

|        | FUZZY CLASS TABLE (CRULES) |        |          |        |                           |           |          |           | FUZZY ATTRI | BUTE TABLE (ARUL | ES)    |        |        |        |        |    |
|--------|----------------------------|--------|----------|--------|---------------------------|-----------|----------|-----------|-------------|------------------|--------|--------|--------|--------|--------|----|
| F_NAME | FUZATTR                    | ATTRWT | FACET_NO | F_CODE | PREDICTING                | SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT   | MODEL_NO         | В      | B_LOW  | B_HI   | B1     | B2     |    |
| FH1011 | SubM2Mes                   | 20     | 1        | 1011   | Dry to mesic treed        | 1         | formfile | LNQAREA   | LnC2UM      | 5                | 7.50   | 7.50   | 7.50   | 0.00   | 7.60   | 0  |
| FH1011 | shrub                      | 30     | 1        | 1011   | Dry to mesic treed        | 2         | formfile | LNQAREA   | LnUM2L      | 1                | 8.60   | 8.60   | 8.60   | 7.50   | 9.70   | 1  |
|        |                            |        |          |        |                           | 3         | formfile | LNQAREA   | LnM2L       | 1                | 9.00   | 9.00   | 9.00   | 8.00   | 10.00  | 1  |
| FH1012 | Mesic                      | 20     | 2        | 1012   | Dry to mesic herb         | 4         | formfile | LNQAREA   | LnML2T      | 1                | 9.75   | 9.75   | 9.75   | 9.00   | 10.50  | 0  |
| FH1012 | herb                       | 30     | 2        | 1012   | Dry to mesic herb         | 5         | formfile | LNQAREA   | LnL2T       | 1                | 10.50  | 10.50  | 10.50  | 10.00  | 11.00  | 0  |
|        |                            |        |          |        |                           | 6         | formfile | LNQAREA   | LnV         | 4                | 11.00  | 11.00  | 11.00  | 10.00  | 16.79  | 1  |
| FH1021 | Submesic                   | 20     | 3        | 1021   | Dry to mesic treed        | 7         | formfile | LNQAREA   | LnUM2T      | 1                | 9.45   | 9.45   | 9.45   | 7.50   | 11.40  | 1  |
| FH1021 | SlopeGT10                  | 20     | 3        | 1021   | Dry to mesic treed        | 8         | formfile | QWETI     | Subxeric    | 5                | 4.50   | 4.50   | 4.50   | 0.00   | 4.51   | 0  |
| FH1021 | shrub                      | 30     | 3        | 1021   | Dry to mesic treed        | 9         | formfile | QWETI     | Submesic    | 1                | 5.00   | 5.00   | 5.00   | 4.50   | 5.50   | 0  |
|        |                            |        |          |        |                           | 10        | formfile | QWETI     | SubM2Mes    | 1                | 6.50   | 6.50   | 6.50   | 4.50   | 8.50   | 2  |
| FH1022 | Submesic                   | 20     | 4        | 1022   | Dry to mesic herb         | 11        | formfile | QWETI     | Mesic       | 1                | 6.65   | 6.65   | 6.65   | 5.50   | 7.80   | 1  |
| FH1022 | SlopeGT10                  | 20     | 4        | 1022   | Dry to mesic herb         | 12        | formfile | QWETI     | Subhygric   | 1                | 8.90   | 8.90   | 8.90   | 7.80   | 10.00  | 1. |
| FH1022 | herb                       | 30     | 4        | 1022   | Dry to mesic herb         | 13        | formfile | QWETI     | Hygric      | 4                | 10.00  | 10.00  | 10.00  | 9.00   | 26.00  | 1  |
|        |                            |        |          |        |                           | 14        | formfile | PROF      | Prof_cv     | 5                | -20.00 | -20.00 | -20.00 | -86.00 | -19.00 | 1  |
| FH1024 | Subxeric                   | 20     | 5        | 1024   | Dry to mesic herb         | 15        | formfile | PROF      | Prof_st     | 1                | 1.75   | 1.75   | 1.75   | -5.50  | 9.00   | 7  |
| FH1024 | herb                       | 30     | 5        | 1024   | Dry to mesic herb         | 16        | formfile | PROF      | Prof_cx     | 4                | 30.00  | 30.00  | 30.00  | 29.00  | 86.00  | 1  |
|        |                            |        |          |        |                           | 17        | formfile | SLOPE     | Steep       | 4                | 40.00  | 40.00  | 40.00  | 35.00  | 100.00 | 5  |
| FH1051 | Subhygric                  | 20     | 6        | 1051   | Moist to wet herb         | 18        | formfile | NEW_ASP   | NE_Aspect   | 1                | 90.00  | 90.00  | 90.00  | 0.00   | 180.00 | 45 |
| FH1051 | shrub                      | 30     | 6        | 1051   | Moist to wet herb         | 19        | formfile | NEW_ASP   | SW_Aspect   | 1                | 270.00 | 270.00 | 270.00 | 180.00 | 360.00 | 45 |
|        |                            |        |          |        |                           | 20        | formfile | SLOPE     | SlopeLT10   | 5                | 10.00  | 10.00  | 10.00  | 0.00   | 10.50  | 0  |
| FH1052 | Subhygric                  | 20     | 7        | 1052   | Moist to wet herb         | 21        | formfile | SLOPE     | SlopeGT10   | 4                | 11.00  | 11.00  | 11.00  | 10.00  | 100.00 | 1. |
| FH1052 | herb                       | 30     | 7        | 1052   | Moist to wet herb         | 22        | formfile | SLOPE     | SlopeLT20   | 5                | 20.00  | 20.00  | 20.00  | 0.00   | 20.50  | 0. |
|        |                            |        |          |        |                           | 23        | formfile | SLOPE     | SlopeGT20   | 4                | 21.00  | 21.00  | 21.00  | 20.00  | 100.00 | 1. |
| FH1062 | SlopeLT2                   | 20     | 8        | 1062   | Moist to wet herb         | 24        | formfile | SLOPE     | SlopeLT30   | 5                | 30.00  | 30.00  | 30.00  | 0.00   | 30.50  | 0  |
| FH1062 | Hygric                     | 20     | 8        | 1062   | Moist to wet herb         | 25        | formfile | SLOPE     | SlopeGT30   | 4                | 31.00  | 31.00  | 31.00  | 30.00  | 100.00 | 1  |
| FH1062 | herb                       | 30     | 8        | 1062   | Moist to wet herb         | 26        | formfile | SLOPE     | SlopeLT50   | 5                | 50.00  | 50.00  | 50.00  | 0.00   | 50.50  | 0. |
|        |                            |        |          |        |                           | 27        | formfile | SLOPE     | SlopeGT50   | 4                | 51.00  | 51.00  | 51.00  | 50.00  | 100.00 | 1  |
| FH1063 | water                      | 80     | 9        | 1063   | Barren/Sparsely Vegetated | 28        | formfile | SLOPE     | SlopeLT2    | 5                | 2.00   | 2.00   | 2.00   | 0.00   | 2.50   | 0  |
|        |                            |        |          |        |                           | 29        | formfile | SLOPE     | SlopeGT2    | 4                | 3.00   | 3.00   | 3.00   | 2.00   | 100.00 | 1. |
| FH1064 | barren                     | 80     | 10       | 1064   | Barren/Sparsely Vegetated | 30        | geofile  | Classify1 | conifer     | 1                | 5.00   | 5.00   | 5.00   | 4.99   | 5.01   | 0. |
|        |                            |        |          |        |                           | 31        | geofile  | Classify1 | deciduous   | 1                | 7.00   | 7.00   | 7.00   | 6.99   | 7.01   | 0  |
| FH1065 | conifer                    | 80     | 11       | 1065   | Dry to mesic treed        | 32        | geofile  | Classify1 | water       | 1                | 1.00   | 1.00   | 1.00   | 0.99   | 1.01   | 0. |
|        |                            |        |          |        |                           | 33        | geofile  | Classify1 | herb        | 1                | 2.00   | 2.00   | 2.00   | 1.99   | 2.01   | 0  |
|        |                            |        |          |        |                           | 34        | geofile  | Classify1 | shrub       | 1                | 3.00   | 3.00   | 3.00   | 2.99   | 3.01   | 0  |
|        |                            |        |          |        |                           | 35        | geofile  | Classify1 | barren      | 1                | 4.00   | 4.00   | 4.00   | 3.99   | 4.01   | 0  |

# Appendix 1b. Predictive Ecosystem Mapping Rules for BWBSmw Zone File 2000

|        |           | FUZZY CL | ASS TABLE (CRULE | S)     |                       |        |           | FUZZY CLASS | TABLE (CRULES) |        |            |
|--------|-----------|----------|------------------|--------|-----------------------|--------|-----------|-------------|----------------|--------|------------|
| F_NAME | FUZATTR   | ATTRWT   | FACET_NO         | F_CODE | PREDICTING            | F_NAME | FUZATTR   | ATTRWT      | FACET_NO       | F_CODE | PREDICTING |
| FH2021 | Vdry      | 40       | 1                | 2021   | 102                   | FH2032 | shrub     | 30          | 11             | 2032   | 103/102    |
| FH2021 | shrub     | 30       | 1                | 2021   | 102                   |        |           |             |                |        |            |
|        |           |          |                  |        |                       | FH2013 | SlopeGT6  | 15          | 12             | 2013   | 101        |
| FH2031 | Dry       | 30       | 2                | 2031   | 103                   | FH2013 | Fluvial   | 30          | 12             | 2013   | 101        |
| FH2031 | Warm      | 30       | 2                | 2031   | 103                   | FH2013 | NonChan   | 15          | 12             | 2013   | 101        |
| FH2031 | Up2Low    | 30       | 2                | 2031   | 103                   | FH2013 | shrub     | 30          | 12             | 2013   | 101        |
| FH2031 | shrub     | 30       | 2                | 2031   | 103                   |        |           |             |                |        |            |
|        |           |          |                  |        |                       | FH2008 | barren    | 80          | 13             | 2008   | barren     |
| FH2041 | Dry2Moist | 30       | 3                | 2041   | 104                   |        |           |             |                |        |            |
| FH2041 | SlopeLT6  | 30       | 3                | 2041   | 104                   | FH2009 | water     | 80          | 14             | 2009   | water      |
| FH2041 | NE_Aspect | 30       | 3                | 2041   | 104                   |        |           |             |                |        |            |
| FH2041 | shrub     | 30       | 3                | 2041   | 104                   | FH2221 | Vdry      | 40          | 15             | 2221   | 102        |
|        |           |          |                  |        |                       | FH2221 | herb      | 30          | 15             | 2221   | 102        |
| FH2011 | Dry2Moist | 30       | 4                | 2011   | 101                   |        |           |             |                |        |            |
| FH2011 | SlopeGT6  | 30       | 4                | 2011   | 101                   | FH2231 | Dry       | 30          | 16             | 2231   | 103        |
| FH2011 | NE_Aspect | 30       | 4                | 2011   | 101                   | FH2231 | Warm      | 30          | 16             | 2231   | 103        |
| FH2011 | shrub     | 30       | 4                | 2011   | 101                   | FH2231 | Fluvial   | 30          | 16             | 2231   | 103        |
|        |           |          |                  |        |                       | FH2231 | SlopeGT30 | 30          | 16             | 2231   | 103        |
| FH2012 | Fresh4    | 40       | 5                | 2012   | 101                   | FH2231 | herb      | 30          | 16             | 2231   | 103        |
| FH2012 | Up2Low    | 30       | 5                | 2012   | 101                   |        |           |             |                |        |            |
| FH2012 | shrub     | 30       | 5                | 2012   | 101                   | FH2241 | Dry2Moist | 30          | 17             | 2241   | 104        |
|        |           |          |                  |        |                       | FH2241 | SlopeLT6  | 30          | 17             | 2241   | 104        |
| FH2000 | M2VMoist  | 40       | 6                | 2000   | 110                   | FH2241 | NE_Aspect | 30          | 17             | 2241   | 104        |
| FH2000 | SlopeLT6  | 20       | 6                | 2000   | 110                   | FH2241 | herb      | 30          | 17             | 2241   | 104        |
| FH2000 | Low       | 30       | 6                | 2000   | 110                   |        |           |             |                |        |            |
| FH2000 | NE_Aspect | 30       | 6                | 2000   | 110                   | FH2211 | Dry2Moist | 30          | 18             | 2211   | 101        |
| FH2000 | shrub     | 30       | 6                | 2000   | 110                   | FH2211 | SlopeGT6  | 30          | 18             | 2211   | 101        |
|        |           |          |                  |        |                       | FH2211 | NE_Aspect | 30          | 18             | 2211   | 101        |
| FH2100 | Wet       | 30       | 7                | 2100   | 111 (112)             | FH2211 | herb      | 30          | 18             | 2211   | 101        |
| FH2100 | SlopeLT6  | 20       | 7                | 2100   | 111 (112)             |        |           |             |                |        |            |
| FH2100 | Fluvial   | 20       | 7                | 2100   | 111 (112)             | FH2212 | Fresh4    | 30          | 19             | 2212   | 101        |
| FH2100 | Channel   | 20       | 7                | 2100   | 111 (112)             | FH2212 | Up2Low    | 30          | 19             | 2212   | 101        |
| FH2100 | shrub     | 30       | 7                | 2100   | 111 (112)             | FH2212 | herb      | 30          | 19             | 2212   | 101        |
|        |           |          |                  |        |                       |        |           |             |                |        |            |
| FH2001 | M2VMoist  | 30       | 8                | 2001   | 110                   | FH2201 | M2VMoist  | 40          | 20             | 2201   | 110        |
| FH2001 | NE_Aspect | 30       | 8                | 2001   | 110                   | FH2201 | SlopeLT6  | 20          | 20             | 2201   | 110        |
| FH2001 | SlopeGT50 | 30       | 8                | 2001   | 110                   | FH2201 | Low       | 30          | 20             | 2201   | 110        |
| FH2001 | shrub     | 30       | 8                | 2001   | 110                   | FH2201 | NE_Aspect | 30          | 20             | 2201   | 110        |
|        |           |          |                  |        |                       | FH2201 | herb      | 30          | 20             | 2201   | 110        |
| FH2190 | SlopeLT6  | 20       | 9                | 2190   | Shrub wetland bog/fen |        |           |             |                |        |            |
| FH2190 | Organic   | 50       | 9                | 2190   | Shrub wetland bog/fen | FH2202 | Wet       | 30          | 21             | 2202   | 111 (112)  |
| FH2190 | shrub     | 30       | 9                | 2190   | Shrub wetland bog/fen | FH2202 | SlopeLT6  | 20          | 21             | 2202   | 111 (112)  |
|        |           |          |                  |        |                       | FH2202 | Fluvial   | 20          | 21             | 2202   | 111 (112)  |
| FH2043 | SlopeGT6  | 30       | 10               | 2043   | 104                   | FH2202 | Channel   | 20          | 21             | 2202   | 111 (112)  |
| FH2043 | Organic   | 50       | 10               | 2043   | 104                   | FH2202 | herb      | 30          | 21             | 2202   | 111 (112)  |
| FH2043 | shrub     | 30       | 10               | 2043   | 104                   |        |           |             |                | -      | ``'        |
|        |           |          | -                |        |                       | FH2203 | M2VMoist  | 30          | 22             | 2203   | 110        |
| FH2032 | SlopeLT6  | 15       | 11               | 2032   | 103/102               | FH2203 | NE_Aspect | 30          | 22             | 2203   | 110        |
| FH2032 | Dry2Moist | 20       | 11               | 2032   | 103/102               | FH2203 | SlopeGT50 | 30          | 22             | 2203   | 110        |
| FH2032 | Fluvial   | 30       | 11               | 2032   | 103/102               | FH2203 | herb      | 30          | 22             | 2203   | 110        |
| FH2032 | NonChan   | 15       | 11               | 2032   | 103/102               | FH2204 | SlopeLT6  | 20          | 23             | 2204   | bog/fen    |
|        |           |          |                  |        |                       |        |           |             |                |        |            |

# Appendix 1b. Predictive Ecosystem Mapping Rules for BWBSmw Zone File 2000

|        |           |        |          |        |                      |           |          | FUZ       | ZY ATTRIBUTE TAE | BLE (ARULES) |        |        |        |        |        |       |
|--------|-----------|--------|----------|--------|----------------------|-----------|----------|-----------|------------------|--------------|--------|--------|--------|--------|--------|-------|
| F_NAME | FUZATTR   | ATTRWT | FACET_NO | F_CODE | PREDICTING           | SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT        | MODEL_NO     | В      | B_LOW  | B_HI   | B1     | B2     | D     |
| FH2204 | Organic   | 50     | 23       | 2204   | Herb wetland bog/fen | 1         | formfile | LNQAREA   | Crest            | 5            | 6.00   | 6.00   | 6.00   | 0.00   | 6.10   | 0.10  |
| FH2204 | herb      | 30     | 23       | 2204   | Herb wetland bog/fen | 2         | formfile | LNQAREA   | Mid2Up           | 1            | 7.50   | 7.50   | 7.50   | 6.00   | 9.00   | 1.50  |
|        |           |        |          |        |                      | 3         | formfile | LNQAREA   | Up2Low           | 1            | 7.75   | 7.75   | 7.75   | 6.00   | 9.50   | 1.75  |
| FH2242 | SlopeGT6  | 30     | 24       | 2242   | 104                  | 4         | formfile | LNQAREA   | Low              | 1            | 10.00  | 10.00  | 10.00  | 9.00   | 11.00  | 1.00  |
| FH2242 | Organic   | 50     | 24       | 2242   | 104                  | 5         | formfile | LNQAREA   | Toe              | 4            | 11.00  | 11.00  | 11.00  | 10.00  | 17.04  | 1.00  |
| FH2242 | herb      | 30     | 24       | 2242   | 104                  | 6         | formfile | QWETI     | Vdry             | 5            | 4.00   | 4.00   | 4.00   | 0.00   | 4.01   | 0.01  |
|        |           |        |          |        |                      | 7         | formfile | QWETI     | Dry              | 1            | 5.00   | 5.00   | 5.00   | 4.00   | 6.00   | 1.00  |
| FH2232 | SlopeLT6  | 15     | 25       | 2232   | 103/102              | 8         | formfile | QWETI     | Fresh4           | 1            | 7.00   | 7.00   | 7.00   | 6.00   | 8.00   | 1.00  |
| FH2232 | Dry2Moist | 20     | 25       | 2232   | 103/102              | 9         | formfile | QWETI     | Dry2Moist        | 1            | 7.50   | 7.50   | 7.50   | 6.00   | 9.00   | 1.50  |
| FH2232 | Fluvial   | 30     | 25       | 2232   | 103/102              | 10        | formfile | QWETI     | M2VMoist         | 1            | 9.00   | 9.00   | 9.00   | 8.00   | 10.00  | 1.00  |
| FH2232 | NonChan   | 15     | 25       | 2232   | 103/102              | 11        | formfile | QWETI     | Wet              | 4            | 11.00  | 11.00  | 11.00  | 10.00  | 26.00  | 1.00  |
| FH2232 | herb      | 30     | 25       | 2232   | 103/102              | 12        | formfile | SLOPE     | Steep            | 4            | 40.00  | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
|        |           |        |          |        |                      | 13        | formfile | NEW_ASP   | NE_Aspect        | 1            | 90.00  | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| FH2213 | SlopeGT6  | 15     | 26       | 2213   | 101                  | 14        | formfile | NEW_ASP   | SW_Aspect        | 1            | 270.00 | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
| FH2213 | Fluvial   | 30     | 26       | 2213   | 101                  | 15        | formfile | NEW_ASP   | Warm             | 1            | 187.50 | 187.50 | 187.50 | 130.00 | 285.00 | 77.50 |
| FH2213 | NonChan   | 15     | 26       | 2213   | 101                  | 16        | geofile  | Classify1 | water            | 1            | 1.00   | 1.00   | 1.00   | 0.99   | 51.01  | 0.01  |
| FH2213 | herb      | 30     | 26       | 2213   | 101                  | 17        | geofile  | Classify1 | herb             | 1            | 2.00   | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |
|        |           |        |          |        |                      | 18        | geofile  | Classify1 | shrub            | 1            | 3.00   | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |
| FH2233 | Dry       | 30     | 27       | 2233   | 103                  | 19        | geofile  | Classify1 | barren           | 1            | 4.00   | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |
| FH2233 | Fluvial   | 30     | 27       | 2233   | 103                  | 20        | formfile | SLOPE     | SlopeLT30        | 5            | 30.00  | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |
| FH2233 | shrub     | 30     | 27       | 2233   | 103                  | 21        | formfile | SLOPE     | SlopeGT30        | 4            | 31.00  | 31.00  | 31.00  | 30.00  | 277.00 | 1.00  |
|        |           |        |          |        |                      | 22        | formfile | SLOPE     | SlopeLT6         | 5            | 6.00   | 6.00   | 6.00   | 0.00   | 6.50   | 0.50  |
| FH2234 | Dry       | 30     | 28       | 2234   | 103                  | 23        | formfile | SLOPE     | SlopeGT6         | 4            | 7.00   | 7.00   | 7.00   | 6.00   | 277.00 | 1.00  |
| FH2234 | Fluvial   | 30     | 28       | 2234   | 103                  | 24        | formfile | SLOPE     | SlopeLT50        | 5            | 50.00  | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |
| FH2234 | herb      | 30     | 28       | 2234   | 103                  | 25        | formfile | SLOPE     | SlopeGT50        | 4            | 51.00  | 51.00  | 51.00  | 60.00  | 277.00 | 1.00  |
|        |           |        |          |        |                      | 26        | formfile | PROF      | Prof_cv          | 5            | -6.00  | -6.00  | -6.00  | -80.00 | -5.00  | 1.00  |
|        |           |        |          |        |                      | 27        | formfile | PROF      | Prof_cx          | 4            | 17.00  | 17.00  | 17.00  | 16.00  | 88.00  | 1.00  |
|        |           |        |          |        |                      | 28        | geofile  | Terrain   | Bedrock          | 1            | 1.00   | 1.00   | 1.00   | 0.99   | 1.01   | 0.01  |
|        |           |        |          |        |                      | 29        | geofile  | Terrain   | Colluv           | 1            | 2.00   | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |
|        |           |        |          |        |                      | 30        | geofile  | Terrain   | Fluvial          | 1            | 3.00   | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |
|        |           |        |          |        |                      | 31        | geofile  | Terrain   | FG               | 1            | 4.00   | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |
|        |           |        |          |        |                      | 32        | geofile  | Terrain   | Lacust           | 1            | 5.00   | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |
|        |           |        |          |        |                      | 33        | geofile  | Terrain   | GlacLac          | 1            | 6.00   | 6.00   | 6.00   | 5.99   | 6.01   | 0.01  |
|        |           |        |          |        |                      | 34        | geofile  | Terrain   | Organic          | 1            | 7.00   | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |
|        |           |        |          |        |                      | 35        | geofile  | Terrain   | Moraine          | 1            | 8.00   | 8.00   | 8.00   | 7.99   | 8.01   | 0.01  |
|        |           |        |          |        |                      | 36        | geofile  | Terrain   | Other            | 1            | 9.00   | 9.00   | 9.00   | 8.99   | 9.01   | 0.01  |
|        |           |        |          |        |                      | 37        | relzfile | Z2St      | Channel          | 5            | 8.00   | 8.00   | 8.00   | 0.00   | 8.50   | 0.50  |

relzfile

Z2St

NonChan

9.00

4

9.00

9.00

8.00

573.00

1.00

38

#### Appendix 1c. Predictive Ecosystem Mapping Rules for BWBSmw Zone File 2500 FUZZY CLASS TABLE (CRULES)

| F_NAME | FUZATTR   | ATTRWT | FACET_NO | F_CODE | PREDICTING    |
|--------|-----------|--------|----------|--------|---------------|
|        | Vdry      | 40     | 1        | 2521   | 102           |
|        |           |        |          |        |               |
| FH2522 | Drv       | 30     | 2        | 2522   | 102           |
| FH2522 | SlopeLT6  | 30     | 2        | 2522   | 102           |
| FH2522 | Fluvial   | 30     | 2        | 2522   | 102           |
|        |           |        |          |        |               |
| FH2531 | Dry       | 30     | 3        | 2531   | 103           |
| FH2531 | Warm      | 30     | 3        | 2531   | 103           |
| H2531  | Up2Low    | 30     | 3        | 2531   | 103           |
|        |           |        |          |        |               |
| H2532  | Dry       | 30     | 4        | 2532   | 103           |
| H2532  | Warm      | 30     | 4        | 2532   | 103           |
| H2532  | Fluvial   | 30     | 4        | 2532   | 103           |
| FH2532 | SlopeGT30 | 30     | 4        | 2532   | 103           |
|        |           |        |          |        |               |
| FH2541 | Dry2Moist | 30     | 5        | 2541   | 104           |
| H2541  | NE_Aspect | 30     | 5        | 2541   | 104           |
| H2541  | SlopeGT50 | 30     | 5        | 2541   | 104           |
|        |           |        |          |        |               |
| FH2542 | Dry2Moist | 30     | 6        | 2542   | 104           |
| -H2542 | SlopeLT6  | 30     | 6        | 2542   | 104           |
| H2542  | NE_Aspect | 30     | 6        | 2542   | 104           |
|        |           |        |          |        |               |
| FH2511 | Dry2Moist | 30     | 7        | 2511   | 101           |
| H2511  | SlopeGT6  | 30     | 7        | 2511   | 101           |
| H2511  | NE_Aspect | 30     | 7        | 2511   | 101           |
|        |           |        |          |        |               |
| FH2512 | Fresh4    | 30     | 8        | 2512   | 101           |
| H2512  | Up2Low    | 30     | 8        | 2512   | 101           |
|        |           |        |          |        |               |
| FH2533 | Fresh4    | 30     | 9        | 2533   | 103           |
| H2533  | Warm      | 30     | 9        | 2533   | 103           |
|        |           |        |          |        |               |
| FH2551 | M2VMoist  | 40     | 10       | 2551   | 110           |
| H2551  | SlopeLT6  | 20     | 10       | 2551   | 110           |
| H2551  | Low       | 30     | 10       | 2551   | 110           |
| H2551  | NE_Aspect | 30     | 10       | 2551   | 110           |
|        |           |        |          | _      |               |
| H2500  | Wet       | 30     | 11       | 2500   | 111           |
| H2500  | SlopeLT6  | 20     | 11       | 2500   | 111           |
| H2500  | Warm      | 30     | 11       | 2500   | 111           |
| H2500  | Fluvial   | 20     | 11       | 2500   | 111           |
| H2500  | Channel   | 20     | 11       | 2500   | 111           |
| H2501  | Wet       | 30     | 12       | 2501   | 111           |
| H2501  | Toe       | 30     | 12       | 2501   | 111           |
| H2501  | Fluvial   | 20     | 12       | 2501   | 111           |
|        |           |        |          |        |               |
| H2552  | M2VMoist  | 30     | 13       | 2552   | 110           |
| H2552  | NE_Aspect | 30     | 13       | 2552   | 110           |
| H2552  | SlopeGT50 | 30     | 13       | 2552   | 110           |
|        | a         |        |          |        |               |
| H2504  | SlopeLT6  | 20     | 14       | 2504   | Wetland treed |
| FH2504 | Organic   | 50     | 14       | 2504   | Wetland treed |
|        |           | 20     |          | 0500   |               |
| H2502  | Wet       | 30     | 15       | 2502   | 111/112       |
| HZ50Z  | Fluvial   | 10     | 15       | 2502   | 111/112       |
| FH2502 | Channel   | 15     | 15       | 2502   | 111/112       |

|        |           | FUZZY CLASS | TABLE (CRULES) |        |            |
|--------|-----------|-------------|----------------|--------|------------|
| F_NAME | FUZATTR   | ATTRWT      | FACET_NO       | F_CODE | PREDICTING |
| FH2543 | SlopeGT6  | 30          | 16             | 2543   | 104        |
| FH2543 | Organic   | 50          | 16             | 2543   | 104        |
| FH2513 | Fresh4    | 30          | 17             | 2513   | 101        |
| FH2513 | SlopeLT6  | 30          | 17             | 2513   | 101        |
| FH2513 | NE_Aspect | 30          | 17             | 2513   | 101        |
| FH2534 | SlopeLT6  | 15          | 18             | 2534   | 103/102    |
| FH2534 | Dry2Moist | 20          | 18             | 2534   | 103/102    |
| FH2534 | Fluvial   | 30          | 18             | 2534   | 103/102    |
| FH2534 | NonChan   | 15          | 18             | 2534   | 103/102    |
| FH2514 | SlopeGT6  | 15          | 19             | 2514   | 101        |
| FH2514 | Fluvial   | 30          | 19             | 2514   | 101        |
| FH2514 | NonChan   | 15          | 19             | 2514   | 101        |

|           |          |           | FUZZ      | Y ATTRIBUTE TABLI | E (ARULES) |        |        |        |        |       |  |
|-----------|----------|-----------|-----------|-------------------|------------|--------|--------|--------|--------|-------|--|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO          | В          | B_LOW  | B_HI   | B1     | B2     | D     |  |
| 1         | formfile | LNQAREA   | Crest     | 5                 | 6.00       | 6.00   | 6.00   | 0.00   | 6.10   | 0.10  |  |
| 2         | formfile | LNQAREA   | Mid2Up    | 1                 | 7.50       | 7.50   | 7.50   | 6.00   | 9.00   | 1.50  |  |
| 3         | formfile | LNQAREA   | Up2Low    | 1                 | 7.75       | 7.75   | 7.75   | 6.00   | 9.50   | 1.75  |  |
| 4         | formfile | LNQAREA   | Low       | 1                 | 10.00      | 10.00  | 10.00  | 9.00   | 11.00  | 1.00  |  |
| 5         | formfile | LNQAREA   | Toe       | 4                 | 11.00      | 11.00  | 11.00  | 10.00  | 17.04  | 1.00  |  |
| 6         | formfile | QWETI     | Vdry      | 5                 | 4.00       | 4.00   | 4.00   | 0.00   | 4.01   | 0.01  |  |
| 7         | formfile | QWETI     | Dry       | 1                 | 5.00       | 5.00   | 5.00   | 4.00   | 6.00   | 1.00  |  |
| 8         | formfile | QWETI     | Fresh4    | 1                 | 7.00       | 7.00   | 7.00   | 6.00   | 8.00   | 1.00  |  |
| 9         | formfile | QWETI     | Dry2Moist | 1                 | 7.50       | 7.50   | 7.50   | 6.00   | 9.00   | 1.50  |  |
| 10        | formfile | QWETI     | M2VMoist  | 1                 | 9.00       | 9.00   | 9.00   | 8.00   | 10.00  | 1.00  |  |
| 11        | formfile | QWETI     | Wet       | 4                 | 11.00      | 11.00  | 11.00  | 10.00  | 26.00  | 1.00  |  |
| 12        | formfile | SLOPE     | Steep     | 4                 | 40.00      | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |  |
| 13        | formfile | NEW_ASP   | NE_Aspect | 1                 | 90.00      | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |  |
| 14        | formfile | NEW_ASP   | SW_Aspect | 1                 | 270.00     | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |  |
| 15        | formfile | NEW_ASP   | Warm      | 1                 | 187.50     | 187.50 | 187.50 | 130.00 | 285.00 | 77.50 |  |
| 16        | geofile  | Classify1 | conifer   | 1                 | 5.00       | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |  |
| 17        | geofile  | Classify1 | deciduous | 1                 | 7.00       | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |  |
| 18        | formfile | SLOPE     | SlopeLT30 | 5                 | 30.00      | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |  |
| 19        | formfile | SLOPE     | SlopeGT30 | 4                 | 31.00      | 31.00  | 31.00  | 30.00  | 277.00 | 1.00  |  |
| 20        | formfile | SLOPE     | SlopeLT6  | 5                 | 6.00       | 6.00   | 6.00   | 0.00   | 6.50   | 0.50  |  |
| 21        | formfile | SLOPE     | SlopeGT6  | 4                 | 7.00       | 7.00   | 7.00   | 6.00   | 277.00 | 1.00  |  |
| 22        | formfile | SLOPE     | SlopeLT50 | 5                 | 50.00      | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |  |
| 23        | formfile | SLOPE     | SlopeGT50 | 4                 | 51.00      | 51.00  | 51.00  | 60.00  | 277.00 | 1.00  |  |
| 24        | formfile | PROF      | Prof_cv   | 5                 | -6.00      | -6.00  | -6.00  | -80.00 | -5.00  | 1.00  |  |
| 25        | formfile | PROF      | Prof_cx   | 4                 | 17.00      | 17.00  | 17.00  | 16.00  | 88.00  | 1.00  |  |
| 26        | geofile  | Terrain   | Bedrock   | 1                 | 1.00       | 1.00   | 1.00   | 0.99   | 1.01   | 0.01  |  |
| 27        | geofile  | Terrain   | Colluv    | 1                 | 2.00       | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |  |
| 28        | geofile  | Terrain   | Fluvial   | 1                 | 3.00       | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |  |
| 29        | geofile  | Terrain   | FG        | 1                 | 4.00       | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |  |
| 30        | geofile  | Terrain   | Lacust    | 1                 | 5.00       | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |  |
| 31        | geofile  | Terrain   | GlacLac   | 1                 | 6.00       | 6.00   | 6.00   | 5.99   | 6.01   | 0.01  |  |
| 32        | geofile  | Terrain   | Organic   | 1                 | 7.00       | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |  |
| 33        | geofile  | Terrain   | Moraine   | 1                 | 8.00       | 8.00   | 8.00   | 7.99   | 8.01   | 0.01  |  |
| 34        | geofile  | Terrain   | Other     | 1                 | 9.00       | 9.00   | 9.00   | 8.99   | 9.01   | 0.01  |  |
| 35        | relzfile | Z2St      | Channel   | 5                 | 8.00       | 8.00   | 8.00   | 0.00   | 8.50   | 0.50  |  |
| 36        | relzfile | Z2St      | NonChan   | 4                 | 9.00       | 9.00   | 9.00   | 8.00   | 573.00 | 1.00  |  |

### Appendix 1d. Predictive Ecosystem Mapping Rules for BWBSwk1 Zone File 3000

|        |           | FUZZ   | Y CLASS TABLE | (CRULES) |            |         |           | FUZZY CLASS | TABLE (CRULES) |        |            |
|--------|-----------|--------|---------------|----------|------------|---------|-----------|-------------|----------------|--------|------------|
| F_NAME | FUZATTR   | ATTRWT | FACET_NO      | F_CODE   | PREDICTING | F_NAME  | FUZATTR   | ATTRWT      | FACET_NO       | F_CODE | PREDICTING |
| FH3001 | water     | 80     | 1             | 3001     | water      | FH3044  | SMes2SHy  | 20          | 13             | 3044   | 104        |
|        |           |        |               |          |            | FH3044  | SlopeLT5  | 20          | 13             | 3044   | 104        |
| FH3002 | barren    | 80     | 2             | 3002     | barren     | FH3044  | shrub     | 40          | 13             | 3044   | 104        |
| FH3021 | Sxe2Sme   | 20     | 3             | 3021     | 102        | FH3045  | Mesic     | 20          | 14             | 3045   | 104        |
| FH3021 | LnCrest   | 30     | 3             | 3021     | 102        | FH3045  | shrub     | 40          | 14             | 3045   | 104        |
| FH3021 | shrub     | 40     | 3             | 3021     | 102        | FH3045  | SlopeLT10 | 20          | 14             | 3045   | 104        |
|        |           |        |               |          |            | FH3045  | Upland    | 30          | 14             | 3045   | 104        |
| FH3031 | Sxe2Sme   | 20     | 4             | 3031     | 103        |         |           |             |                |        |            |
| FH3031 | SW_Aspect | 30     | 4             | 3031     | 103        | FH3014  | Mesic     | 20          | 15             | 3014   | 101        |
| FH3031 | SlopeGT30 | 20     | 4             | 3031     | 103        | FH3014  | shrub     | 40          | 15             | 3014   | 101        |
| FH3031 | shrub     | 40     | 4             | 3031     | 103        | FH3014  | Lowland   | 30          | 15             | 3014   | 101        |
| FH3041 | Sve2Sme   | 20     | 5             | 3041     | 104        | FH3022  | Sve2Sme   | 20          | 16             | 3022   | 102        |
| FH3041 | NF Aspect | 30     | 5             | 3041     | 104        | FH3022  | InCrest   | 30          | 16             | 3022   | 102        |
| FH3041 | SlopeGT30 | 20     | 5             | 3041     | 104        | FH3022  | herb      | 40          | 16             | 3022   | 102        |
| FH3041 | shrub     | 40     | 5             | 3041     | 104        | 1113022 | herb      | 40          | 10             | 3022   | 102        |
|        |           |        |               |          |            | FH3014  | SMes2SHy  | 20          | 17             | 3014   | 101        |
| FH3042 | SMes2SHy  | 20     | 6             | 3042     | 104        | FH3014  | NE_Aspect | 30          | 17             | 3014   | 101        |
| FH3042 | NE_Aspect | 30     | 6             | 3042     | 104        | FH3014  | SlopeLT50 | 20          | 17             | 3014   | 101        |
| FH3042 | SlopeGT50 | 20     | 6             | 3042     | 104        | FH3014  | herb      | 40          | 17             | 3014   | 101        |
| FH3042 | shrub     | 40     | 6             | 3042     | 104        |         |           |             |                |        |            |
|        |           |        |               |          |            | FH3015  | Mesic     | 20          | 18             | 3015   | 101        |
| FH3011 | SMes2SHy  | 20     | 7             | 3011     | 101        | FH3015  | herb      | 40          | 18             | 3015   | 101        |
| FH3011 | NE_Aspect | 30     | 7             | 3011     | 101        | FH3015  | SlopeGT10 | 20          | 18             | 3015   | 101        |
| FH3011 | SlopeLT50 | 20     | 7             | 3011     | 101        | FH3015  | Upland    | 30          | 18             | 3015   | 101        |
| FH3011 | shrub     | 40     | 7             | 3011     | 101        |         |           |             |                |        |            |
|        |           |        |               |          |            | FH3016  | SMes2SHy  | 20          | 19             | 3016   | 101        |
| FH3012 | Mesic     | 20     | 8             | 3012     | 101        | FH3016  | LnMid     | 30          | 19             | 3016   | 101        |
| FH3012 | shrub     | 40     | 8             | 3012     | 101        | FH3016  | LnUp      | 30          | 19             | 3016   | 101        |
| FH3012 | SlopeGT10 | 20     | 8             | 3012     | 101        | FH3016  | herb      | 40          | 19             | 3016   | 101        |
| FH3012 | Upland    | 30     | 8             | 3012     | 101        |         |           |             |                |        |            |
|        |           |        |               |          |            | FH3017  | Mesic     | 20          | 20             | 3017   | 101        |
| FH3013 | SMes2SHy  | 20     | 9             | 3013     | 101        | FH3017  | herb      | 40          | 20             | 3017   | 101        |
| FH3013 | LnMid     | 30     | 9             | 3013     | 101        | FH3017  | Lowland   | 30          | 20             | 3017   | 101        |
| FH3013 | LnUp      | 30     | 9             | 3013     | 101        |         |           |             |                |        |            |
| FH3013 | shrub     | 40     | 9             | 3013     | 101        | FH3032  | Sxe2Sme   | 20          | 21             | 3032   | 103        |
|        |           |        |               |          |            | FH3032  | SW_Aspect | 30          | 21             | 3032   | 103        |
| FH3043 | LnMid     | 30     | 10            | 3043     | 104        | FH3032  | SlopeGT30 | 20          | 21             | 3032   | 103        |
| FH3043 | Subhygric | 40     | 10            | 3043     | 104        | FH3032  | herb      | 40          | 21             | 3032   | 103        |
| FH3043 | NE_Aspect | 30     | 10            | 3043     | 104        |         |           |             |                |        |            |
| FH3043 | shrub     | 40     | 10            | 3043     | 104        | FH3046  | Sxe2Sme   | 20          | 22             | 3046   | 104        |
|        |           |        |               |          |            | FH3046  | NE_Aspect | 30          | 22             | 3046   | 104        |
| FH3110 | Lnlow     | 30     | 11            | 3110     | 110/111    | FH3046  | SlopeGT30 | 20          | 22             | 3046   | 104        |
| FH3110 | Subhygric | 40     | 11            | 3110     | 110/111    | FH3046  | herb      | 40          | 22             | 3046   | 104        |
| FH3110 | shrub     | 40     | 11            | 3110     | 110/111    |         |           |             |                |        |            |
|        |           |        |               |          |            | FH3047  | SMes2SHy  | 20          | 23             | 3047   | 104        |
| FH3111 | LnLow     | 20     | 12            | 3111     | 110/111    | FH3047  | NE_Aspect | 30          | 23             | 3047   | 104        |
| FH3111 | Hygric    | 40     | 12            | 3111     | 110/111    | FH3047  | SlopeGT50 | 20          | 23             | 3047   | 104        |
| FH3111 | shrub     | 40     | 12            | 3111     | 110/111    | FH3047  | herb      | 40          | 23             | 3047   | 104        |

### Appendix 1d. Predictive Ecosystem Mapping Rules for BWBSwk1 Zone File 3000

| FUZZY CLASS TABLE (CRULES) |           |        |          |        |                          |           |          |           |           | FUZZY ATTRIBUT | E TABLE (ARUL | .ES)   |        |
|----------------------------|-----------|--------|----------|--------|--------------------------|-----------|----------|-----------|-----------|----------------|---------------|--------|--------|
| F_NAME                     | FUZATTR   | ATTRWT | FACET_NO | F_CODE | PREDICTING               | SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO       | В             | B_LOW  | B_HI   |
| FH3048                     | LnMid     | 30     | 24       | 3048   | 104                      | 1         | formfile | LNQAREA   | LnCrest   | 5              | 6.30          | 6.30   | 6.30   |
| FH3048                     | Subhygric | 40     | 24       | 3048   | 104                      | 2         | formfile | LNQAREA   | LnUp      | 1              | 6.90          | 6.90   | 6.90   |
| FH3048                     | NE_Aspect | 30     | 24       | 3048   | 104                      | 3         | formfile | LNQAREA   | LnMid     | 1              | 8.50          | 8.50   | 8.50   |
| FH3048                     | herb      | 40     | 24       | 3048   | 104                      | 4         | formfile | LNQAREA   | Lnlow     | 1              | 10.00         | 10.00  | 10.00  |
|                            |           |        |          |        |                          | 5         | formfile | LNQAREA   | LnV       | 4              | 10.00         | 10.00  | 10.00  |
| FH3112                     | Lnlow     | 30     | 25       | 3112   | 110/111                  | 6         | formfile | QWETI     | Sxe2Sme   | 5              | 5.50          | 5.50   | 5.50   |
| FH3112                     | Subhygric | 40     | 25       | 3112   | 110/111                  | 7         | formfile | QWETI     | Mesic     | 1              | 6.65          | 6.65   | 6.65   |
| FH3112                     | herb      | 40     | 25       | 3112   | 110/111                  | 8         | formfile | QWETI     | Subhygric | 1              | 8.90          | 8.90   | 8.90   |
|                            |           |        |          |        |                          | 9         | formfile | QWETI     | SMes2SHy  | 1              | 7.00          | 7.00   | 7.00   |
| FH3113                     | LnLow     | 20     | 26       | 3113   | 110/111                  | 10        | formfile | QWETI     | Hygric    | 4              | 10.00         | 10.00  | 10.00  |
| FH3113                     | Hygric    | 40     | 26       | 3113   | 110/111                  | 11        | formfile | SLOPE     | Steep     | 4              | 40.00         | 40.00  | 40.00  |
| FH3113                     | herb      | 40     | 26       | 3113   | 110/111                  | 12        | formfile | NEW_ASP   | NE_Aspect | 1              | 90.00         | 90.00  | 90.00  |
|                            |           |        |          |        |                          | 13        | formfile | NEW_ASP   | SW_Aspect | 1              | 270.00        | 270.00 | 270.00 |
| FH3049                     | SMes2SHy  | 20     | 27       | 3049   | 104                      | 14        | geofile  | Classify1 | water     | 1              | 1.00          | 1.00   | 1.00   |
| FH3049                     | SlopeLT5  | 20     | 27       | 3049   | 104                      | 15        | geofile  | Classify1 | herb      | 1              | 2.00          | 2.00   | 2.00   |
| FH3049                     | herb      | 40     | 27       | 3049   | 104                      | 16        | geofile  | Classify1 | shrub     | 1              | 3.00          | 3.00   | 3.00   |
|                            |           |        |          |        |                          | 17        | geofile  | Classify1 | barren    | 1              | 4.00          | 4.00   | 4.00   |
| FH3050                     | Mesic     | 20     | 28       | 3050   | 104                      | 18        | formfile | SLOPE     | SlopeLT30 | 5              | 30.00         | 30.00  | 30.00  |
| FH3050                     | herb      | 40     | 28       | 3050   | 104                      | 19        | formfile | SLOPE     | SlopeGT30 | 4              | 31.00         | 31.00  | 31.00  |
| FH3050                     | SlopeLT10 | 20     | 28       | 3050   | 104                      | 20        | formfile | SLOPE     | SlopeLT5  | 5              | 5.00          | 5.00   | 5.00   |
| FH3050                     | Upland    | 30     | 28       | 3050   | 104                      | 21        | formfile | SLOPE     | SlopeGT5  | 4              | 6.00          | 6.00   | 6.00   |
|                            |           |        |          |        |                          | 22        | formfile | SLOPE     | SlopeLT10 | 5              | 10.00         | 10.00  | 10.00  |
| FH3200                     | Hygric    | 40     | 29       | 3200   | Wetland shrub/herb swamp | 23        | formfile | SLOPE     | SlopeGT10 | 4              | 11.00         | 11.00  | 11.00  |
| FH3200                     | SlopeLT2  | 20     | 29       | 3200   | Wetland shrub/herb swamp | 24        | formfile | SLOPE     | SlopeLT15 | 5              | 15.00         | 15.00  | 15.00  |
| FH3200                     | Prof_cv   | 40     | 29       | 3200   | Wetland shrub/herb swamp | 25        | formfile | SLOPE     | SlopeGT15 | 4              | 16.00         | 16.00  | 16.00  |
|                            |           |        |          |        |                          | 26        | formfile | SLOPE     | SlopeLT20 | 5              | 20.00         | 20.00  | 20.00  |
| FH3300                     | Organic   | 80     | 30       | 3300   | Wetland shrub/herb bog   | 27        | formfile | SLOPE     | SlopeGT20 | 4              | 21.00         | 21.00  | 21.00  |
|                            |           |        |          |        |                          | 28        | formfile | SLOPE     | SlopeLT50 | 5              | 50.00         | 50.00  | 50.00  |
|                            |           |        |          |        |                          | 29        | formfile | SLOPE     | SlopeGT50 | 4              | 51.00         | 51.00  | 51.00  |
|                            |           |        |          |        |                          | 30        | formfile | PROF      | Prof_cv   | 5              | -10.00        | -10.00 | -10.00 |
|                            |           |        |          |        |                          | 31        | formfile | PROF      | Prof_cx   | 4              | 17.00         | 17.00  | 17.00  |

32

33

34

35

36

37

38

relzfile

relzfile

geofile

relzfile

relzfile

formfile

formfile

PCTZ2PIT

PCTZ2PIT

Terrain

Z2St

Z2St

SLOPE

SLOPE

Upland

Lowland

Organic

Channel

NonChan

SlopeLT2

SlopeGT2

B1

0.00

6.30

7.50

9.50

9.50

0.00

5.50

7.80

5.00

9.00

35.00

0.00

180.00

0.99

1.99

2.99

3.99

0.00

30.00

0.00

5.00

0.00

10.00

0.00

15.00

0.00

20.00

0.00

50.00

-85.33

16.00

49.00

0.00

6.99

0.00

8.00

0.00

2.00

50.00

49.00

7.00

8.00

9.00

2.00

3.00

50.00

49.00

7.00

8.00

9.00

2.00

3.00

50.00

49.00

7.00

8.00

9.00

2.00

3.00

4

5

1

5

4

5

4

B2

6.40

7.50

9.50

10.50

16.79

5.51

7.80

10.00

9.00

26.00

100.00

180.00

360.00

1.01

2.01

3.01

4.01

30.50

277.00

5.50

277.00

10.50

277.00

15.50

277.00

20.50

277.00

50.50

100.00

-9.00

88.00

100.00

49.50

7.01

8.50

573.00

2.50

277.00

D

0.10

0.60

1.00

0.50

1.00

0.1

1.15

1.10

2.00

1.00

5.00

45.00

45.00

0.01

0.01

0.01

0.01

0.50

1.00

0.50

1.00

0.50

1.00

0.50

1.00

0.50

1.00

0.50

1.00

1.00

1.00

1.00

0.50

0.01

0.50

1.00

0.50

1.00

### Appendix 1e. Predictive Ecosystem Mapping Rules for BWBSwk1 Zone File 3500

|          |             | FUZZY  | CLASS TABLE (CRU | LES)   |            |           |         |            |        | FUZZY CLASS TABLE | E (CRULES) |                     |           |
|----------|-------------|--------|------------------|--------|------------|-----------|---------|------------|--------|-------------------|------------|---------------------|-----------|
| F_NAME   | FUZATTR     | ATTRWT | FACET_NO         | F_CODE | Predicting | Stand     | F_NAME  | FUZATTR    | ATTRWT | FACET_NO          | F_CODE     | Predicting          | Stand     |
| FH3521   | Sxe2Sme     | 20     | 1                | 3521   | 102        | Conifer   | FH3711  | SMes2SHv   | 20     | 15                | 3711       | 1015                | Deciduous |
| FH3521   | InCrest     | 30     | 1                | 3521   | 102        | Conifer   | FH3711  | NF Aspect  | 30     | 15                | 3711       | 1015                | Deciduous |
| 5113521  | Enciese     | 40     | 1                | 3521   | 102        | Conifer   | 5112744 |            | 30     | 15                | 3711       | 1015                | Desiduous |
| FH3521   | contrer     | 40     | I                | 3521   | 102        | Contrer   | FH3/11  | StopeL150  | 20     | 15                | 3711       | 1015                | Deciduous |
|          |             |        |                  |        |            |           | FH3711  | deciduous  | 40     | 15                | 3711       | 101\$               | Deciduous |
| FH3531   | Sxe2Sme     | 20     | 2                | 3531   | 103        | Conifer   |         |            |        |                   |            |                     |           |
| FH3531   | SW_Aspect   | 30     | 2                | 3531   | 103        | Conifer   | FH3712  | Mesic      | 20     | 16                | 3712       | 101\$               | Deciduous |
| FH3531   | SlopeGT30   | 20     | 2                | 3531   | 103        | Conifer   | FH3712  | deciduous  | 40     | 16                | 3712       | 101\$               | Deciduous |
| FH3531   | conifer     | 40     | 2                | 3531   | 103        | Conifer   | FH3712  | SlopeGT10  | 20     | 16                | 3712       | 1015                | Deciduous |
| 1115551  | conner      | 40     | -                | 5551   | 105        | conner    | FU2742  | Upland     | 20     | 10                | 3712       | 1015                | Deciduous |
|          |             |        |                  |        |            |           | FH3/12  | Upland     | 30     | 10                | 3712       | 1015                | Deciduous |
| FH3541   | Sxe2Sme     | 20     | 3                | 3541   | 104        | Conifer   |         |            |        |                   |            |                     |           |
| FH3541   | NE_Aspect   | 30     | 3                | 3541   | 104        | Conifer   | FH3713  | SMes2SHy   | 20     | 17                | 3713       | 101\$               | Deciduous |
| FH3541   | SlopeGT30   | 20     | 3                | 3541   | 104        | Conifer   | FH3713  | LnMid      | 30     | 17                | 3713       | 101\$               | Deciduous |
| FH3541   | conifer     | 40     | 3                | 3541   | 104        | Conifer   | FH3713  | LnUp       | 30     | 17                | 3713       | 101\$               | Deciduous |
|          |             |        |                  |        |            |           | FH3713  | deciduous  | 40     | 17                | 3713       | 1015                | Deciduous |
| EU 2E 42 | CH2CH-      | 20     |                  | 25.42  | 404        | Conifor   | 1115/15 | acciduous  | 40     | 17                | 5715       | 1015                | Deciduous |
| FH304Z   | SMeszSHy    | 20     | 4                | 3042   | 104        | Contrer   |         |            |        |                   |            |                     |           |
| FH3542   | NE_Aspect   | 30     | 4                | 3542   | 104        | Conifer   | FH3714  | Mesic      | 20     | 18                | 3714       | 101\$               | Deciduous |
| FH3542   | SlopeGT50   | 20     | 4                | 3542   | 104        | Conifer   | FH3714  | deciduous  | 40     | 18                | 3714       | 101\$               | Deciduous |
| FH3542   | conifer     | 40     | 4                | 3542   | 104        | Conifer   | FH3714  | Lowland    | 30     | 18                | 3714       | 101\$               | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3511   | SM002CHV    | 20     | 5                | 3511   | 101        | Conifor   | FH2721  | Syn75mn    | 20     | 10                | 3731       | 1070                | Deciduour |
| EU0544   | JINESZONY   | 20     | 5                | 3511   | 101        | Contrel   | FU2724  | SVETSHIE   | 20     | 17                | 2721       | (000                | Deciduous |
| FH3511   | NE_Aspect   | 30     | 5                | 3511   | 101        | Coniter   | FH3731  | SW_Aspect  | 30     | 19                | 3/31       | 1035                | Deciduous |
| FH3511   | SlopeLT50   | 20     | 5                | 3511   | 101        | Conifer   | FH3731  | SlopeGT30  | 20     | 19                | 3731       | 103\$               | Deciduous |
| FH3511   | conifer     | 40     | 5                | 3511   | 101        | Conifer   | FH3731  | deciduous  | 40     | 19                | 3731       | 103\$               | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3512   | Mesic       | 20     | 6                | 3512   | 101        | Conifer   | FH3741  | Sxe2Sme    | 20     | 20                | 3741       | 104\$               | Deciduous |
| FU2E12   | conifor     | 40     | 4                | 2512   | 101        | Conifor   | EU2741  | NE Aspest  | 20     | 20                | 27.41      | 1046                | Desiduous |
|          | conner      | 40     | 0                | 3312   | 101        | Conner    | FH3741  | NE_ASPECT  | 30     | 20                | 3741       | 1043                | Deciduous |
| FH3512   | SlopeG I 10 | 20     | 6                | 3512   | 101        | Conifer   | FH3741  | SlopeG130  | 20     | 20                | 3/41       | 104\$               | Deciduous |
| FH3512   | Upland      | 30     | 6                | 3512   | 101        | Conifer   | FH3741  | deciduous  | 40     | 20                | 3741       | 104\$               | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3513   | SMes2SHv    | 20     | 7                | 3513   | 101        | Conifer   | FH3742  | SMes2SHv   | 20     | 21                | 3742       | 104\$               | Deciduous |
| FH3513   | InMid       | 30     | 7                | 3513   | 101        | Conifer   | FH3742  | NE Aspect  | 30     | 21                | 3742       | 1045                | Deciduous |
| FU2E12   | Lalla       | 30     | 7                | 2513   | 101        | Conifor   | FU2742  | ClanaCTE0  | 20     | 21                | 37 12      | 1045                | Deciduous |
| FH3313   | LIUp        | 30     | /                | 3313   | 101        | Conner    | FH374Z  | sloped 150 | 20     | 21                | 374Z       | 1043                | Deciduous |
| FH3513   | coniter     | 40     | /                | 3513   | 101        | Conifer   | FH3742  | deciduous  | 40     | 21                | 3/42       | 104\$               | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3543   | LnMid       | 30     | 8                | 3543   | 104        | Conifer   | FH3743  | LnMid      | 30     | 22                | 3743       | 104\$               | Deciduous |
| FH3543   | Subhygric   | 40     | 8                | 3543   | 104        | Conifer   | FH3743  | Subhygric  | 40     | 22                | 3743       | 104\$               | Deciduous |
| FH3543   | NF Aspect   | 30     | 8                | 3543   | 104        | Conifer   | FH3743  |            | 30     | 22                | 3743       | 1045                | Deciduous |
| FU2E 42  | conifor     | 40     | 0                | 2542   | 104        | Conifer   | FU2742  | desiduous  | 40     | 22                | 3743       | 1045                | Deciduous |
| FH3043   | conner      | 40     | 0                | 5345   | 104        | Conner    | FH3/43  | deciduous  | 40     | 22                | 3743       | 104\$               | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3610   | Lnlow       | 30     | 9                | 3610   | 110/111    | Conifer   | FH3761  | Lnlow      | 30     | 23                | 3761       | 110\$/111\$         | Deciduous |
| FH3610   | Subhygric   | 40     | 9                | 3610   | 110/111    | Conifer   | FH3761  | Subhygric  | 40     | 23                | 3761       | 110\$/111\$         | Deciduous |
| FH3610   | conifer     | 40     | 9                | 3610   | 110/111    | Conifer   | FH3761  | deciduous  | 40     | 23                | 3761       | 110\$/111\$         | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3612   | La ow       | 20     | 10               | 3617   | 110/111    | Conifor   | FH3763  | La low     | 20     | 24                | 2762       | 110¢/111¢           | Deciduour |
| FU2(42   | LILOW       | 20     | 10               | 3012   | 10/111     | Contrel   | FU27(2  | LILOW      | 20     | 24                | 3702       | 1102/1112           | Deciduous |
| FH3612   | Hygric      | 40     | 10               | 3612   | 110/111    | Coniter   | FH3/62  | Hygric     | 40     | 24                | 3762       | 110\$/111\$         | Deciduous |
| FH3612   | conifer     | 40     | 10               | 3612   | 110/111    | Conifer   | FH3762  | deciduous  | 40     | 24                | 3762       | 110\$/111\$         | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3544   | SMes2SHv    | 20     | 11               | 3544   | 104        | conifer   | FH3744  | SMes2SHv   | 20     | 25                | 3744       | 104\$               | Deciduous |
| FH3544   | Slopel T5   | 20     | 11               | 3544   | 104        | conifer   | FH3744  | Slopel T5  | 20     | 25                | 3744       | 104\$               | Deciduous |
| EU2544   | conifor     | 40     | 11               | 3544   | 104        | conifor   | EU2744  | dociduous  | 40     | 25                | 3744       | 1045                | Dociduous |
| 1115344  | conner      | 40     |                  | 3044   | 104        | conner    | FF13/44 | ueciauous  | 40     | 20                | 2/44       | 1045                | Deciduous |
|          |             |        |                  |        |            |           |         |            |        |                   |            |                     |           |
| FH3545   | Mesic       | 20     | 12               | 3545   | 104        | Conifer   | FH3745  | Mesic      | 20     | 26                | 3745       | 104\$               | Deciduous |
| FH3545   | conifer     | 40     | 12               | 3545   | 104        | Conifer   | FH3745  | deciduous  | 40     | 26                | 3745       | 104\$               | Deciduous |
| FH3545   | SlopeLT10   | 20     | 12               | 3545   | 104        | Conifer   | FH3745  | SlopeLT10  | 20     | 26                | 3745       | 104\$               | Deciduous |
| FH3545   | Unland      | 30     | 17               | 3545   | 104        | Conifer   | FH3745  | Unland     | 30     | 26                | 3745       | 104\$               | Deciduour |
| 1113343  | optand      | 50     | 12               | 5045   | 104        | Conner    | 1113/45 | optand     | 50     | 20                | 3743       | 1049                | Deciduous |
|          |             |        |                  |        |            |           |         |            |        | -                 |            |                     |           |
| FH3514   | Mesic       | 20     | 13               | 3514   | 101        | Conifer   | FH3800  | Hygric     | 40     | 27                | 3800       | Treed Wetland swamp |           |
| FH3514   | conifer     | 40     | 13               | 3514   | 101        | Conifer   | FH3800  | SlopeLT2   | 20     | 27                | 3800       | Treed Wetland swamp |           |
| FH3514   | Lowland     | 30     | 13               | 3514   | 101        | Conifer   | FH3800  | Prof_cv    | 40     | 27                | 3800       | Treed Wetland swamp |           |
|          |             |        |                  |        |            |           |         | -          |        |                   |            | ,                   |           |
| FH3721   | Syo75mo     | 20     | 14               | 3721   | 107¢       | Deciduous | FH2801  | Organic    | 80     | 28                | 7901       | Wetland trood bor   |           |
| FU2724   | JACZONIC    | 20     | 14               | 3721   | 102.2      | Desiduous | 1113001 | Organic    | 00     | 20                | 3001       | metiana treea D0g   |           |
| FH3/21   | Lnurest     | 30     | 14               | 3721   | 102\$      | Deciduous |         |            |        |                   |            |                     |           |
| FH3/21   | deciduous   | 40     | 14               | 3721   | 102\$      | Deciduous |         |            |        |                   |            |                     |           |

### Appendix 1e. Predictive Ecosystem Mapping Rules for BWBSwk1 Zone File 3500

|           |          |           |           | FUZZY ATTRIBU | TE TABLE (ARUL | _ES)   |        |        |        |       |
|-----------|----------|-----------|-----------|---------------|----------------|--------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO      | В              | B_LOW  | B_HI   | B1     | B2     | D     |
| 1         | formfile | LNQAREA   | LnCrest   | 5             | 6.30           | 6.30   | 6.30   | 0.00   | 6.40   | 0.10  |
| 2         | formfile | LNQAREA   | LnUp      | 1             | 6.90           | 6.90   | 6.90   | 6.30   | 7.50   | 0.60  |
| 3         | formfile | LNQAREA   | LnMid     | 1             | 8.50           | 8.50   | 8.50   | 7.50   | 9.50   | 1.00  |
| 4         | formfile | LNQAREA   | Lnlow     | 1             | 10.00          | 10.00  | 10.00  | 9.50   | 10.50  | 0.50  |
| 5         | formfile | LNQAREA   | LnV       | 4             | 10.00          | 10.00  | 10.00  | 9.50   | 16.79  | 1.00  |
| 6         | formfile | QWETI     | Sxe2Sme   | 5             | 5.50           | 5.50   | 5.50   | 0.00   | 5.51   | 0.1   |
| 7         | formfile | QWETI     | Mesic     | 1             | 6.65           | 6.65   | 6.65   | 5.50   | 7.80   | 1.15  |
| 8         | formfile | QWETI     | Subhygric | 1             | 8.90           | 8.90   | 8.90   | 7.80   | 10.00  | 1.10  |
| 9         | formfile | QWETI     | SMes2SHy  | 1             | 7.00           | 7.00   | 7.00   | 5.00   | 9.00   | 2.00  |
| 10        | formfile | QWETI     | Hygric    | 4             | 10.00          | 10.00  | 10.00  | 9.00   | 26.00  | 1.00  |
| 11        | formfile | SLOPE     | Steep     | 4             | 40.00          | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| 12        | formfile | NEW_ASP   | NE_Aspect | 1             | 90.00          | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| 13        | formfile | NEW_ASP   | SW_Aspect | 1             | 270.00         | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
| 14        | geofile  | Classify1 | conifer   | 1             | 5.00           | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |
| 15        | geofile  | Classify1 | deciduous | 1             | 7.00           | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |
| 16        | formfile | SLOPE     | SlopeLT30 | 5             | 30.00          | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |
| 17        | formfile | SLOPE     | SlopeGT30 | 4             | 31.00          | 31.00  | 31.00  | 30.00  | 277.00 | 1.00  |
| 18        | formfile | SLOPE     | SlopeLT5  | 5             | 5.00           | 5.00   | 5.00   | 0.00   | 5.50   | 0.50  |
| 19        | formfile | SLOPE     | SlopeGT5  | 4             | 6.00           | 6.00   | 6.00   | 5.00   | 277.00 | 1.00  |
| 20        | formfile | SLOPE     | SlopeLT10 | 5             | 10.00          | 10.00  | 10.00  | 0.00   | 10.50  | 0.50  |
| 21        | formfile | SLOPE     | SlopeGT10 | 4             | 11.00          | 11.00  | 11.00  | 10.00  | 277.00 | 1.00  |
| 22        | formfile | SLOPE     | SlopeLT15 | 5             | 15.00          | 15.00  | 15.00  | 0.00   | 15.50  | 0.50  |
| 23        | formfile | SLOPE     | SlopeGT15 | 4             | 16.00          | 16.00  | 16.00  | 15.00  | 277.00 | 1.00  |
| 24        | formfile | SLOPE     | SlopeLT20 | 5             | 20.00          | 20.00  | 20.00  | 0.00   | 20.50  | 0.50  |
| 25        | formfile | SLOPE     | SlopeGT20 | 4             | 21.00          | 21.00  | 21.00  | 20.00  | 277.00 | 1.00  |
| 26        | formfile | SLOPE     | SlopeLT50 | 5             | 50.00          | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |
| 27        | formfile | SLOPE     | SlopeGT50 | 4             | 51.00          | 51.00  | 51.00  | 50.00  | 100.00 | 1.00  |
| 28        | formfile | PROF      | Prof_cv   | 5             | -10.00         | -10.00 | -10.00 | -85.33 | -9.00  | 1.00  |
| 29        | formfile | PROF      | Prof_cx   | 4             | 17.00          | 17.00  | 17.00  | 16.00  | 88.00  | 1.00  |
| 30        | relzfile | PCTZ2PIT  | Upland    | 4             | 50.00          | 50.00  | 50.00  | 49.00  | 100.00 | 1.00  |
| 31        | relzfile | PCTZ2PIT  | Lowland   | 5             | 49.00          | 49.00  | 49.00  | 0.00   | 49.50  | 0.50  |
| 32        | geofile  | Terrain   | Organic   | 1             | 7.00           | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |
| 33        | relzfile | Z2St      | Channel   | 5             | 8.00           | 8.00   | 8.00   | 0.00   | 8.50   | 0.50  |
| 34        | relzfile | Z2St      | NonChan   | 4             | 9.00           | 9.00   | 9.00   | 8.00   | 573.00 | 1.00  |
| 35        | formfile | SLOPE     | SlopeLT2  | 5             | 2.00           | 2.00   | 2.00   | 0.00   | 2.50   | 0.50  |
| 36        | formfile | SLOPE     | SlopeGT2  | 4             | 3.00           | 3.00   | 3.00   | 2.00   | 277.00 | 1.00  |

### Appendix 1f. Predictive Ecosystem Mapping Rules for ESSFmv2 Zone File 4000

|        |           | FUZZY  | CLASS TABLE | E (CRULES) |                         |        | FL        | JZZY CLASS TAI | BLE (CRULES) |        |            |
|--------|-----------|--------|-------------|------------|-------------------------|--------|-----------|----------------|--------------|--------|------------|
| F_NAME | FUZATTR   | ATTRWT | FACET_NO    | F_CODE     | PREDICTING              | F_NAME | FUZATTR   | ATTRWT         | FACET_NO     | F_CODE | PREDICTING |
| FH4001 | barren    | 50     | 1           | 4001       | Parkland barren ESSFmvp | FH4017 | Submesic  | 20             | 12           | 4017   | 01 herb    |
| FH4001 | GT1600    | 40     | 1           | 4001       | Parkland barren ESSFmvp | FH4017 | SlopeLT50 | 20             | 12           | 4017   | 01 herb    |
|        |           |        |             |            |                         | FH4017 | herb      | 30             | 12           | 4017   | 01 herb    |
| FH4002 | barren    | 40     | 2           | 4002       | barren (ESSFmv2)        | FH4017 | LT1600    | 40             | 12           | 4017   | 01 herb    |
| FH4002 | LT1600    | 40     | 2           | 4002       | barren                  |        |           |                |              |        |            |
|        |           |        |             |            |                         | FH4041 | SlopeLT20 | 30             | 13           | 4041   | 04 shrub   |
| FH4021 | Subxeric  | 20     | 3           | 4021       | 02 shrub                | FH4041 | Mesic     | 20             | 13           | 4041   | 04 shrub   |
| FH4021 | shrub     | 30     | 3           | 4021       | 02 shrub                | FH4041 | shrub     | 30             | 13           | 4041   | 04 shrub   |
| FH4021 | LT1600    | 40     | 3           | 4021       | 02 shrub                | FH4041 | LT1600    | 40             | 13           | 4041   | 04 shrub   |
|        |           |        |             |            |                         |        |           |                |              |        |            |
| FH4022 | Subxeric  | 20     | 4           | 4022       | 02 herb                 | FH4042 | SlopeLT20 | 30             | 14           | 4042   | 04 herb    |
| FH4022 | herb      | 30     | 4           | 4022       | 02 herb                 | FH4042 | Mesic     | 20             | 14           | 4042   | 04 herb    |
| FH4022 | LT1600    | 40     | 4           | 4022       | 02 herb                 | FH4042 | herb      | 30             | 14           | 4042   | 04 herb    |
|        |           |        |             |            |                         | FH4042 | LT1600    | 40             | 14           | 4042   | 04 herb    |
| FH4023 | Submesic  | 20     | 5           | 4023       | 02 shrub                |        |           |                |              |        |            |
| FH4023 | SlopeGT50 | 20     | 5           | 4023       | 02 shrub                | FH4051 | SlopeGT10 | 20             | 15           | 4051   | 05 shrub   |
| FH4023 | shrub     | 30     | 5           | 4023       | 02 shrub                | FH4051 | Subhygric | 20             | 15           | 4051   | 05 shrub   |
| FH4023 | LT1600    | 40     | 5           | 4023       | 02 shrub                | FH4051 | shrub     | 30             | 15           | 4051   | 05 shrub   |
|        |           |        |             |            |                         | FH4051 | LT1600    | 40             | 15           | 4051   | 05 shrub   |
| FH4024 | Submesic  | 20     | 6           | 4024       | 02 herb                 |        |           |                |              |        |            |
| FH4024 | SlopeGT50 | 20     | 6           | 4024       | 02 herb                 | FH4052 | SlopeGT10 | 20             | 16           | 4052   | 05 herb    |
| FH4024 | herb      | 30     | 6           | 4024       | 02 herb                 | FH4052 | Subhygric | 20             | 16           | 4052   | 05 herb    |
| FH4024 | LT1600    | 40     | 6           | 4024       | 02 herb                 | FH4052 | herb      | 30             | 16           | 4052   | 05 herb    |
|        |           |        |             |            |                         | FH4052 | LT1600    | 40             | 16           | 4052   | 05 herb    |
| FH4012 | SubM2Mes  | 20     | 7           | 4012       | 01/03/04 shrub          |        |           |                |              |        |            |
| FH4012 | SlopeLT50 | 20     | 7           | 4012       | 01/03/04 shrub          | FH4053 | SlopeGT2  | 20             | 17           | 4053   | 05 shrub   |
| FH4012 | shrub     | 30     | 7           | 4012       | 01/03/04 shrub          | FH4053 | Hygric    | 20             | 17           | 4053   | 05 shrub   |
| FH4012 | LT1600    | 40     | 7           | 4012       | 01/03/04 shrub          | FH4053 | shrub     | 30             | 17           | 4053   | 05 shrub   |
|        |           |        |             |            |                         | FH4053 | LT1600    | 40             | 17           | 4053   | 05 shrub   |
| FH4013 | SubM2Mes  | 20     | 8           | 4013       | 01/03/04 herb           |        |           |                |              |        |            |
| FH4013 | SlopeLT50 | 20     | 8           | 4013       | 01/03/04 herb           | FH4054 | SlopeGT2  | 20             | 18           | 4054   | 05 herb    |
| FH4013 | herb      | 30     | 8           | 4013       | 01/03/04 herb           | FH4054 | Hygric    | 20             | 18           | 4054   | 05 herb    |
| FH4013 | LT1600    | 40     | 8           | 4013       | 01/03/04 herb           | FH4054 | herb      | 30             | 18           | 4054   | 05 herb    |
|        |           |        |             |            |                         | FH4054 | LT1600    | 40             | 18           | 4054   | 05 herb    |
| FH4014 | SlopeGT20 | 30     | 9           | 4014       | 01 shrub                |        |           |                |              |        |            |
| FH4014 | SubM2Mes  | 20     | 9           | 4014       | 01 shrub                | FH4031 | SlopeLT10 | 20             | 19           | 4031   | 03 shrub   |
| FH4014 | shrub     | 30     | 9           | 4014       | 01 shrub                | FH4031 | SubM2Mes  | 20             | 19           | 4031   | 03 shrub   |
| FH4014 | LT1600    | 40     | 9           | 4014       | 01 shrub                | FH4031 | shrub     | 30             | 19           | 4031   | 03 shrub   |
|        |           |        |             |            |                         | FH4031 | LT1600    | 40             | 19           | 4031   | 03 shrub   |
| FH4015 | SlopeGT20 | 30     | 10          | 4015       | 01 herb                 |        |           |                |              |        |            |
| FH4015 | SubM2Mes  | 20     | 10          | 4015       | 01 herb                 | FH4032 | SlopeLT10 | 20             | 20           | 4032   | 03 herb    |
| FH4015 | herb      | 30     | 10          | 4015       | 01 herb                 | FH4032 | SubM2Mes  | 20             | 20           | 4032   | 03 herb    |
| FH4015 | LT1600    | 40     | 10          | 4015       | 01 herb                 | FH4032 | herb      | 30             | 20           | 4032   | 03 herb    |
|        |           |        |             |            |                         | FH4032 | LT1600    | 40             | 20           | 4032   | 03 herb    |
| FH4016 | Submesic  | 20     | 11          | 4016       | 01 shrub                |        |           |                |              |        |            |
| FH4016 | SlopeLT50 | 20     | 11          | 4016       | 01 shrub                | FH4061 | Hygric    | 20             | 21           | 4061   | 06 shrub   |
| FH4016 | shrub     | 30     | 11          | 4016       | 01 shrub                | FH4061 | Prof_cv   | 20             | 21           | 4061   | 06 shrub   |
| FH4016 | LT1600    | 40     | 11          | 4016       | 01 shrub                | FH4061 | shrub     | 30             | 21           | 4061   | 06 shrub   |
|        |           |        |             |            |                         | FH4061 | LT1600    | 40             | 21           | 4061   | 06 shrub   |

### Appendix 1f. Predictive Ecosystem Mapping Rules for ESSFmv2 Zone File 4000

|        |           | FUZZY  | CLASS TABL | E (CRULES) |                         |           |          |           |           | FUZZY ATTRIBU | TE TABLE (ARU | JLES)   |         |         |         |       |
|--------|-----------|--------|------------|------------|-------------------------|-----------|----------|-----------|-----------|---------------|---------------|---------|---------|---------|---------|-------|
| F_NAME | FUZATTR   | ATTRWT | FACET_NO   | F_CODE     | PREDICTING              | SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO      | В             | B_LOW   | B_HI    | B1      | B2      | D     |
| FH4062 | Hygric    | 20     | 22         | 4062       | 06 herb                 | 1         | formfile | LNQAREA   | LnC2UM    | 5             | 7.50          | 7.50    | 7.50    | 0.00    | 7.60    | 0.10  |
| FH4062 | Prof_cv   | 20     | 22         | 4062       | 06 herb                 | 2         | formfile | LNQAREA   | LnUM2L    | 1             | 8.60          | 8.60    | 8.60    | 7.50    | 9.70    | 1.10  |
| FH4062 | herb      | 30     | 22         | 4062       | 06 herb                 | 3         | formfile | LNQAREA   | LnM2L     | 1             | 9.00          | 9.00    | 9.00    | 8.00    | 10.00   | 1.00  |
| FH4062 | LT1600    | 40     | 22         | 4062       | 06 herb                 | 4         | formfile | LNQAREA   | LnML2T    | 1             | 9.75          | 9.75    | 9.75    | 9.00    | 10.50   | 0.75  |
|        |           |        |            |            |                         | 5         | formfile | LNQAREA   | LnL2T     | 1             | 10.50         | 10.50   | 10.50   | 10.00   | 11.00   | 0.50  |
| FH4063 | SlopeLT2  | 20     | 23         | 4063       | 06 shrub                | 6         | formfile | LNQAREA   | LnV       | 4             | 11.00         | 11.00   | 11.00   | 10.00   | 16.79   | 1.00  |
| FH4063 | Hygric    | 20     | 23         | 4063       | 06 shrub                | 7         | formfile | LNQAREA   | LnUM2T    | 1             | 9.45          | 9.45    | 9.45    | 7.50    | 11.40   | 1.95  |
| FH4063 | shrub     | 30     | 23         | 4063       | 06 shrub                | 8         | formfile | QWETI     | Subxeric  | 5             | 4.50          | 4.50    | 4.50    | 0.00    | 4.51    | 0.01  |
| FH4063 | LT1600    | 40     | 23         | 4063       | 06 shrub                | 9         | formfile | QWETI     | Submesic  | 1             | 5.00          | 5.00    | 5.00    | 4.50    | 5.50    | 0.50  |
|        |           |        |            |            |                         | 10        | formfile | QWETI     | SubM2Mes  | 1             | 6.50          | 6.50    | 6.50    | 4.50    | 8.50    | 2.00  |
| FH4064 | SlopeLT2  | 20     | 24         | 4064       | 06 herb                 | 11        | formfile | QWETI     | Mesic     | 1             | 6.65          | 6.65    | 6.65    | 5.50    | 7.80    | 1.15  |
| FH4064 | Hygric    | 20     | 24         | 4064       | 06 herb                 | 12        | formfile | QWETI     | Mesic2Hyg | 4             | 7.00          | 7.00    | 7.00    | 6.00    | 12.00   | 1.00  |
| FH4064 | herb      | 30     | 24         | 4064       | 06 herb                 | 13        | formfile | QWETI     | SubH2Hyg  | 4             | 9.00          | 9.00    | 9.00    | 8.50    | 26.00   | 0.50  |
| FH4064 | LT1600    | 40     | 24         | 4064       | 06 herb                 | 14        | formfile | QWETI     | Subhygric | 1             | 8.90          | 8.90    | 8.90    | 7.80    | 10.00   | 1.10  |
|        |           |        |            |            |                         | 15        | formfile | QWETI     | Hygric    | 4             | 10.00         | 10.00   | 10.00   | 9.00    | 26.00   | 1.00  |
| FH4055 | Subhygric | 20     | 25         | 4055       | 05 shrub                | 16        | formfile | PROF      | Prof_cv   | 5             | -20.00        | -20.00  | -20.00  | -86.00  | -19.00  | 1.00  |
| FH4055 | shrub     | 30     | 25         | 4055       | 05 shrub                | 17        | formfile | PROF      | Prof_st   | 1             | 1.75          | 1.75    | 1.75    | -5.50   | 9.00    | 7.25  |
| FH4055 | LT1600    | 40     | 25         | 4055       | 05 shrub                | 18        | formfile | PROF      | Prof_cx   | 4             | 30.00         | 30.00   | 30.00   | 29.00   | 86.00   | 1.00  |
|        |           |        |            |            |                         | 19        | formfile | SLOPE     | Steep     | 4             | 40.00         | 40.00   | 40.00   | 35.00   | 100.00  | 5.00  |
| FH4056 | Subhygric | 20     | 26         | 4056       | 05 herb                 | 20        | formfile | NEW_ASP   | NE_Aspect | 1             | 90.00         | 90.00   | 90.00   | 0.00    | 180.00  | 45.00 |
| FH4056 | herb      | 30     | 26         | 4056       | 05 herb                 | 21        | formfile | NEW_ASP   | SW_Aspect | 1             | 270.00        | 270.00  | 270.00  | 180.00  | 360.00  | 45.00 |
| FH4056 | LT1600    | 40     | 26         | 4056       | 05 herb                 | 22        | formfile | SLOPE     | SlopeLT10 | 5             | 10.00         | 10.00   | 10.00   | 0.00    | 10.50   | 0.50  |
|        |           |        |            |            |                         | 23        | formfile | SLOPE     | SlopeGT10 | 4             | 11.00         | 11.00   | 11.00   | 10.00   | 100.00  | 1.00  |
| FH4100 | Mesic     | 20     | 27         | 4100       | Submesic to mesic shrub | 24        | formfile | SLOPE     | SlopeLT20 | 5             | 20.00         | 20.00   | 20.00   | 0.00    | 20.50   | 0.50  |
| FH4100 | shrub     | 30     | 27         | 4100       | Submesic to mesic shrub | 25        | formfile | SLOPE     | SlopeGT20 | 4             | 21.00         | 21.00   | 21.00   | 20.00   | 100.00  | 1.00  |
| FH4100 | GT1600    | 40     | 27         | 4100       | Submesic to mesic shrub | 26        | formfile | SLOPE     | SlopeLT50 | 5             | 50.00         | 50.00   | 50.00   | 0.00    | 50.50   | 0.50  |
|        |           |        |            |            |                         | 27        | formfile | SLOPE     | SlopeGT50 | 4             | 51.00         | 51.00   | 51.00   | 50.00   | 100.00  | 1.00  |
| FH4200 | Mesic     | 20     | 28         | 4200       | Submesic to mesic Herb  | 28        | formfile | SLOPE     | SlopeLT2  | 5             | 2.00          | 2.00    | 2.00    | 0.00    | 2.50    | 0.50  |
| FH4200 | herb      | 30     | 28         | 4200       | Submesic to mesic Herb  | 29        | formfile | SLOPE     | SlopeGT2  | 4             | 3.00          | 3.00    | 3.00    | 2.00    | 100.00  | 1.00  |
| FH4200 | GT1600    | 40     | 28         | 4200       | Submesic to mesic Herb  | 30        | geofile  | Classify1 | water     | 1             | 1.00          | 1.00    | 1.00    | 0.99    | 1.01    | 0.01  |
|        |           |        |            |            |                         | 31        | geofile  | Classify1 | herb      | 1             | 2.00          | 2.00    | 2.00    | 1.99    | 2.01    | 0.01  |
| FH4101 | SubH2Hvg  | 20     | 29         | 4101       | Wetter shrub            | 32        | geofile  | Classify1 | shrub     | 1             | 3.00          | 3.00    | 3.00    | 2.99    | 3.01    | 0.01  |
| FH4101 | shrub     | 30     | 29         | 4101       | Wetter shrub            | 33        | geofile  | Classify1 | barren    | 1             | 4.00          | 4.00    | 4.00    | 3.99    | 4.01    | 0.01  |
| FH4101 | GT1600    | 40     | 29         | 4101       | Wetter shrub            | 34        | geofile  | Elev      | LT1600    | 5             | 1600.00       | 1600.00 | 1600.00 | 0.00    | 1600.50 | 0.50  |
|        |           |        |            |            |                         | 35        | geofile  | Elev      | GT1600    | 4             | 1601.00       | 1601.00 | 1601.00 | 1600.00 | 2093.00 | 1.00  |
| FH4201 | SubH2Hvg  | 20     | 30         | 4201       | Wetter Herb             | 36        | geofile  | Elev      | LT1700    | 5             | 1700.00       | 1700.00 | 1700.00 | 0.00    | 1600.50 | 0.50  |
| FH4201 | herb      | 30     | 30         | 4201       | Wetter Herb             | 37        | geofile  | Elev      | GT1700    | 4             | 1701.00       | 1701.00 | 1701.00 | 1700.00 | 2093.00 | 1.00  |
| FH4201 | GT1600    | 40     | 30         | 4201       | Wetter Herb             | L         | 5        |           |           |               |               |         |         |         |         |       |

# Appendix 1g. Predictive Ecosystem Mapping Rules for ESSFmv2 Zone File 4500

|         |            |        | FUZZY CLASS TAB | LE (CRULES) |                  |           |          |            |        | FUZZY CLASS TABL | LE (CRULES) |                            |           |
|---------|------------|--------|-----------------|-------------|------------------|-----------|----------|------------|--------|------------------|-------------|----------------------------|-----------|
| F_NAME  | FUZATTR    | ATTRWT | FACET_NO        | F_CODE      | PREDICTING       | Stand     | F_NAME   | FUZATTR    | ATTRWT | FACET_NO         | F_CODE      | PREDICTING                 | Stand     |
| FH4511  | SlopeGT20  | 30     | 1               | 4511        | 01 conifer       | Conifer   | FH4542   | SlopeLT20  | 30     | 14               | 4542        | 04 conifer shrub           | Deciduous |
| FH4511  | SubM2Mes   | 20     | 1               | 4511        | 01 conifer       | Conifer   | FH4542   | Mesic      | 20     | 14               | 4542        | 04 conifer shrub           | Deciduous |
| FH4511  | conifer    | 30     | 1               | 4511        | 01 conifer       | Conifer   | FH4542   | deciduous  | 30     | 14               | 4542        | 04 conifer shrub           | Deciduous |
| FH4511  | LT1600     | 40     | 1               | 4511        | 01 conifer       | Conifer   | FH4542   | LT1600     | 40     | 14               | 4542        | 04 conifer shrub           | Deciduous |
| FH4512  | SlopeGT20  | 30     | 2               | 4512        | 01 conifer shrub | Deciduous | FH4551   | Subhygric  | 20     | 15               | 4551        | 05 conifer                 | Conifer   |
| FH4512  | SubM2Mes   | 20     | 2               | 4512        | 01 conifer shrub | Deciduous | FH4551   | conifer    | 30     | 15               | 4551        | 05 conifer                 | Conifer   |
| FH4512  | deciduous  | 30     | 2               | 4512        | 01 conifer shrub | Deciduous | FH4551   | LT1600     | 40     | 15               | 4551        | 05 conifer                 | Conifer   |
| FH4512  | LT1600     | 40     | 2               | 4512        | 01 conifer shrub | Deciduous |          |            |        |                  |             |                            |           |
|         |            |        |                 |             |                  |           | FH4552   | Subhygric  | 20     | 16               | 4552        | 05 conifer shrub           | Deciduous |
| FH4513  | Submesic   | 20     | 3               | 4513        | 01 conifer       | Conifer   | FH4552   | deciduous  | 30     | 16               | 4552        | 05 conifer shrub           | Deciduous |
| FH4513  | SlopeLT50  | 20     | 3               | 4513        | 01 conifer       | Conifer   | FH4552   | LT1600     | 40     | 16               | 4552        | 05 conifer shrub           | Deciduous |
| FH4513  | conifer    | 30     | 3               | 4513        | 01 conifer       | Conifer   |          |            |        |                  |             |                            |           |
| FH4513  | 1 T1600    | 40     | 3               | 4513        | 01 conifer       | Conifer   | FH4553   | SlopeGT10  | 20     | 17               | 4553        | 05 conifer                 | Conifer   |
| 1114313 | ETIOOD     | -10    | 5               | 4515        | or conner        | conner    | FH4553   | Subhygric  | 20     | 17               | 4553        | 05 conifer                 | Conifer   |
| FH4514  | Submosic   | 20     | 4               | 4514        | 01 conifer shrub | Deciduous | FH4553   | conifer    | 30     | 17               | 4553        | 05 conifer                 | Conifer   |
| EU4514  | Slopel T50 | 20     | 4               | 4514        | 01 conifor shrub | Dociduous | EU4553   | 171600     | 40     | 17               | 4553        | 05 conifer                 | Conifor   |
|         | desiduous  | 20     | 4               | 4514        | 01 conifer shrub | Deciduous | 1114555  | LIIOOO     | 40     | 17               | 4000        | os conner                  | conner    |
|         | LT1400     | 20     | 4               | 4514        | 01 conifer shrub | Deciduous | ELLARE A | SlanaCT10  | 20     | 19               | 4554        | OF conifor shrub           | Dociduous |
| FH4J14  | LIIGUU     | 40     | 4               | 4314        | or conner sinub  | Deciduous | FH4334   | Supedito   | 20     | 10               | 4554        | 05 contret shrub           | Deciduous |
|         | Clonel TEO | 20     | 5               | 4515        | 01/02/04 conifor | Conifor   | FH4004   | Subhygric  | 20     | 10               | 4004        | 05 conifer shrub           | Deciduous |
|         | Superior   | 20     | 5               | 4515        | 01/03/04 conner  | Conifer   | FH4334   | LT4(00     | 30     | 10               | 4554        | 05 contret shrub           | Deciduous |
| FH4515  | Submzmes   | 20     | 5               | 4515        | 01/03/04 conifer | Conifer   | FH4004   | L11600     | 40     | 10               | 4004        | 05 contrer shrub           | Deciduous |
| FH4515  | coniter    | 30     | 5               | 4515        | 01/03/04 conifer | Conifer   | 511 (555 | ci         | 20     | 10               |             | 05 14                      | <i>c</i>  |
| FH4515  | L11600     | 40     | 5               | 4515        | 01/03/04 conifer | Conifer   | FH4555   | SlopeGTZ   | 20     | 19               | 4555        | US coniter                 | Conifer   |
|         |            |        |                 |             |                  |           | FH4555   | Hygric     | 20     | 19               | 4555        | 05 coniter                 | Conifer   |
| FH4516  | SlopeLT50  | 20     | 6               | 4516        | 01 conifer shrub | Deciduous | FH4555   | conifer    | 30     | 19               | 4555        | 05 conifer                 | Conifer   |
| FH4516  | SubM2Mes   | 20     | 6               | 4516        | 01 conifer shrub | Deciduous | FH4555   | L11600     | 40     | 19               | 4555        | 05 coniter                 | Conifer   |
| FH4516  | deciduous  | 20     | 6               | 4516        | 01 conifer shrub | Deciduous |          |            |        |                  |             |                            |           |
| FH4516  | LT1600     | 40     | 6               | 4516        | 01 conifer shrub | Deciduous | FH4556   | SlopeGT2   | 20     | 20               | 4556        | 05 conifer shrub           | Deciduous |
|         |            |        |                 |             |                  |           | FH4556   | Hygric     | 20     | 20               | 4556        | 05 conifer shrub           | Deciduous |
| FH4521  | Submesic   | 20     | 7               | 4521        | 02 conifer       | Conifer   | FH4556   | deciduous  | 30     | 20               | 4556        | 05 conifer shrub           | Deciduous |
| FH4521  | SlopeGT50  | 20     | 7               | 4521        | 02 conifer       | Conifer   | FH4556   | LT1600     | 40     | 20               | 4556        | 05 conifer shrub           | Deciduous |
| FH4521  | conifer    | 30     | 7               | 4521        | 02 conifer       | Conifer   |          |            |        |                  |             |                            |           |
| FH4521  | LT1600     | 40     | 7               | 4521        | 02 conifer       | Conifer   | FH4561   | SlopeLT2   | 20     | 21               | 4561        | 06 conifer                 | Conifer   |
|         |            |        |                 |             |                  |           | FH4561   | Hygric     | 20     | 21               | 4561        | 06 conifer                 | Conifer   |
| FH4522  | Submesic   | 20     | 8               | 4522        | 02 conifer shrub | Deciduous | FH4561   | conifer    | 30     | 21               | 4561        | 06 conifer                 | Conifer   |
| FH4522  | SlopeGT50  | 20     | 8               | 4522        | 02 conifer shrub | Deciduous | FH4561   | LT1600     | 40     | 21               | 4561        | 06 conifer                 | Conifer   |
| FH4522  | deciduous  | 30     | 8               | 4522        | 02 conifer shrub | Deciduous |          |            |        |                  |             |                            |           |
| FH4522  | LT1600     | 40     | 8               | 4522        | 02 conifer shrub | Deciduous | FH4562   | SlopeLT2   | 20     | 22               | 4562        | 06 conifer shrub           | Deciduous |
|         |            |        |                 |             |                  |           | FH4562   | Hygric     | 20     | 22               | 4562        | 06 conifer shrub           | Deciduous |
| FH4523  | Subxeric   | 20     | 9               | 4523        | 02 conifer       | Conifer   | FH4562   | deciduous  | 30     | 22               | 4562        | 06 conifer shrub           | Deciduous |
| FH4523  | conifer    | 30     | 9               | 4523        | 02 conifer       | Conifer   | FH4562   | LT1600     | 40     | 22               | 4562        | 06 conifer shrub           | Deciduous |
| FH4523  | LT1600     | 40     | 9               | 4523        | 02 conifer       | Conifer   |          |            |        |                  |             |                            |           |
|         |            |        |                 |             |                  |           | FH4563   | Hygric     | 20     | 23               | 4563        | 06 conifer                 | Conifer   |
| FH4524  | Subxeric   | 20     | 10              | 4524        | 02 conifer shrub | Deciduous | FH4563   | Prof_cv    | 20     | 23               | 4563        | 06 conifer                 | Conifer   |
| FH4524  | deciduous  | 30     | 10              | 4524        | 02 conifer shrub | Deciduous | FH4563   | conifer    | 30     | 23               | 4563        | 06 conifer                 | Conifer   |
| FH4524  | LT1600     | 40     | 10              | 4524        | 02 conifer shrub | Deciduous | FH4563   | LT1600     | 40     | 23               | 4563        | 06 conifer                 | Conifer   |
| FH4531  | SlopeLT10  | 20     | 11              | 4531        | 03 conifer       | Conifer   | FH4564   | Hygric     | 20     | 24               | 4564        | 06 conifer shrub           | Deciduous |
| FH4531  | SubM2Mes   | 20     | 11              | 4531        | 03 conifer       | Conifer   | FH4564   | Prof_cv    | 20     | 24               | 4564        | 06 conifer shrub           | Deciduous |
| FH4531  | conifer    | 30     | 11              | 4531        | 03 conifer       | Conifer   | FH4564   | deciduous  | 30     | 24               | 4564        | 06 conifer shrub           | Deciduous |
| FH4531  | LT1600     | 40     | 11              | 4531        | 03 conifer       | Conifer   | FH4564   | LT1600     | 40     | 24               | 4564        | 06 conifer shrub           | Deciduous |
| FH4532  | SlopeLT10  | 20     | 12              | 4532        | 03 conifer shrub | Deciduous | FH4600   | Mesic      | 20     | 25               | 4600        | Mesic parkland/woodland    | Not used  |
| FH4532  | SubM2Mes   | 20     | 12              | 4532        | 03 conifer shrub | Deciduous | FH4600   | GT1600     | 40     | 25               | 4600        | Mesic parkland/woodland    | Not used  |
| FH4532  | deciduous  | 30     | 12              | 4532        | 03 conifer shrub | Deciduous |          | 011000     | 10     | 25               | 1000        | mesie paritailar noodtaila | Hot used  |
| EU4532  | 1 T1600    | 40     | 12              | 4532        | 03 conifor shrub | Dociduous | EH4601   | Submosic   | 20     | 26               | 4601        | Drior parkland (woodland   | Not used  |
|         | 211000     | -10    | 12              | -7332       | os conner sinub  | Deciduous | FH4601   | SlopeGT50  | 20     | 20               | 4601        | Drier parkland/woodland    | Not used  |
| FH4541  | Slopel T20 | 30     | 13              | 4541        | 04 conifer       | Conifer   | FH4601   | GT1600     | 40     | 20               | 4601        | Drier parkland/woodland    | Not used  |
| FH4541  | Morie      | 20     | 13              | 45.44       | 04 conifor       | Conifor   | 114001   | 011000     | -10    | 20               | -1001       | prici parsianu/woodidhu    | not used  |
| FH4541  | conifor    | 20     | 13              | 45.44       | 04 conifor       | Conifor   | FU4603   | Sub-U2Uve  | 20     | 77               | 4603        | Wetter parkland /woodland  | Not used  |
| FH4541  | 1 71600    | 10     | 13              | 45.44       | 04 conifor       | Conifor   | FUAGO    | Slopal T20 | 20     | 27               | 4603        | Wetter parkland /woodland  | Not used  |
| 119391  | 211000     | 40     | 15              | 4J41        | 04 COIIIIEI      | contret   | FU4603   | CT1400     | 40     | 27               | -1003       | Wetter parkland/woodland   | Not used  |
|         |            |        |                 |             |                  |           | FH40U3   | 611000     | 40     | 27               | 4003        | wetter parkland/woodland   | NOT USED  |

#### Appendix 1g. Predictive Ecosystem Mapping Rules for ESSFmv2 Zone File 4500

|        | FUZZY CLASS TABLE (CRULES) |        |          |        |                         |          |  |  |  |  |  |  |  |
|--------|----------------------------|--------|----------|--------|-------------------------|----------|--|--|--|--|--|--|--|
| F_NAME | FUZATTR                    | ATTRWT | FACET_NO | F_CODE | PREDICTING              | Stand    |  |  |  |  |  |  |  |
| FH4606 | Submesic                   | 20     | 28       | 4606   | Mesic parkland/woodland | Not used |  |  |  |  |  |  |  |
| FH4606 | SlopeLT50                  | 20     | 28       | 4606   | Mesic parkland/woodland | Not used |  |  |  |  |  |  |  |
| FH4606 | GT1600                     | 40     | 28       | 4606   | Mesic parkland/woodland | Not used |  |  |  |  |  |  |  |
| FH4607 | Subxeric                   | 20     | 29       | 4607   | Drier parkland/woodland | Not used |  |  |  |  |  |  |  |
| FH4607 | GT1600                     | 40     | 29       | 4607   | Drier parkland/woodland | Not used |  |  |  |  |  |  |  |
| FH4700 | Organic                    | 60     | 30       | 4700   | Wetland treed           |          |  |  |  |  |  |  |  |

| [         |          |           |           | FUZZY AT | TRIBUTE TABLE (ARULI | ES)     |         |         |         |       |
|-----------|----------|-----------|-----------|----------|----------------------|---------|---------|---------|---------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO | В                    | B_LOW   | B_HI    | B1      | B2      | D     |
| 1         | formfile | LNQAREA   | LnC2UM    | 5        | 7.50                 | 7.50    | 7.50    | 0.00    | 7.60    | 0.10  |
| 2         | formfile | LNQAREA   | LnUM2L    | 1        | 8.60                 | 8.60    | 8.60    | 7.50    | 9.70    | 1.10  |
| 3         | formfile | LNQAREA   | LnM2L     | 1        | 9.00                 | 9.00    | 9.00    | 8.00    | 10.00   | 1.00  |
| 4         | formfile | LNQAREA   | LnML2T    | 1        | 9.75                 | 9.75    | 9.75    | 9.00    | 10.50   | 0.75  |
| 5         | formfile | LNQAREA   | LnL2T     | 1        | 10.50                | 10.50   | 10.50   | 10.00   | 11.00   | 0.50  |
| 6         | formfile | LNQAREA   | LnV       | 4        | 11.00                | 11.00   | 11.00   | 10.00   | 16.79   | 1.00  |
| 7         | formfile | LNQAREA   | LnUM2T    | 1        | 9.45                 | 9.45    | 9.45    | 7.50    | 11.40   | 1.95  |
| 8         | formfile | QWETI     | Subxeric  | 5        | 4.50                 | 4.50    | 4.50    | 0.00    | 4.51    | 0.01  |
| 9         | formfile | QWETI     | Submesic  | 1        | 5.00                 | 5.00    | 5.00    | 4.50    | 5.50    | 0.50  |
| 10        | formfile | QWETI     | SubM2Mes  | 1        | 6.50                 | 6.50    | 6.50    | 4.50    | 8.50    | 2.00  |
| 11        | formfile | QWETI     | Mesic     | 1        | 6.65                 | 6.65    | 6.65    | 5.50    | 7.80    | 1.15  |
| 12        | formfile | QWETI     | Subhygric | 1        | 8.90                 | 8.90    | 8.90    | 7.80    | 10.00   | 1.10  |
| 13        | formfile | QWETI     | SubH2Hyg  | 4        | 9.00                 | 9.00    | 9.00    | 8.50    | 26.00   | 0.50  |
| 14        | formfile | QWETI     | Hygric    | 4        | 10.00                | 10.00   | 10.00   | 9.00    | 26.00   | 1.00  |
| 15        | formfile | PROF      | Prof_cv   | 5        | -20.00               | -20.00  | -20.00  | -86.00  | -19.00  | 1.00  |
| 16        | formfile | PROF      | Prof_st   | 1        | 1.75                 | 1.75    | 1.75    | -5.50   | 9.00    | 7.25  |
| 17        | formfile | PROF      | Prof_cx   | 4        | 30.00                | 30.00   | 30.00   | 29.00   | 86.00   | 1.00  |
| 18        | formfile | SLOPE     | Steep     | 4        | 40.00                | 40.00   | 40.00   | 35.00   | 100.00  | 5.00  |
| 19        | formfile | NEW_ASP   | NE_Aspect | 1        | 90.00                | 90.00   | 90.00   | 0.00    | 180.00  | 45.00 |
| 20        | formfile | NEW_ASP   | SW_Aspect | 1        | 270.00               | 270.00  | 270.00  | 180.00  | 360.00  | 45.00 |
| 21        | formfile | SLOPE     | SlopeLT10 | 5        | 10.00                | 10.00   | 10.00   | 0.00    | 10.50   | 0.50  |
| 22        | formfile | SLOPE     | SlopeGT10 | 4        | 11.00                | 11.00   | 11.00   | 10.00   | 100.00  | 1.00  |
| 23        | formfile | SLOPE     | SlopeLT20 | 5        | 20.00                | 20.00   | 20.00   | 0.00    | 20.50   | 0.50  |
| 24        | formfile | SLOPE     | SlopeGT20 | 4        | 21.00                | 21.00   | 21.00   | 20.00   | 100.00  | 1.00  |
| 25        | formfile | SLOPE     | SlopeLT30 | 5        | 30.00                | 30.00   | 30.00   | 0.00    | 30.50   | 0.50  |
| 26        | formfile | SLOPE     | SlopeGT30 | 4        | 31.00                | 31.00   | 31.00   | 30.00   | 100.00  | 1.00  |
| 27        | formfile | SLOPE     | SlopeLT50 | 5        | 50.00                | 50.00   | 50.00   | 0.00    | 50.50   | 0.50  |
| 28        | formfile | SLOPE     | SlopeGT50 | 4        | 51.00                | 51.00   | 51.00   | 50.00   | 100.00  | 1.00  |
| 29        | formfile | SLOPE     | SlopeLT2  | 5        | 2.00                 | 2.00    | 2.00    | 0.00    | 2.50    | 0.50  |
| 30        | formfile | SLOPE     | SlopeGT2  | 4        | 3.00                 | 3.00    | 3.00    | 2.00    | 100.00  | 1.00  |
| 31        | geofile  | Classify1 | conifer   | 1        | 5.00                 | 5.00    | 5.00    | 4.99    | 5.01    | 0.01  |
| 32        | geofile  | Classify1 | deciduous | 1        | 7.00                 | 7.00    | 7.00    | 6.99    | 7.01    | 0.01  |
| 33        | geofile  | Elev      | LT1600    | 5        | 1600.00              | 1600.00 | 1600.00 | 0.00    | 1600.50 | 0.50  |
| 34        | geofile  | Elev      | GT1600    | 4        | 1601.00              | 1601.00 | 1601.00 | 1600.00 | 2093.00 | 1.00  |
| 35        | geofile  | Terrain   | Organic   | 1        | 7.00                 | 7.00    | 7.00    | 6.99    | 7.01    | 0.01  |

# Appendix 1h. Predictive Ecosystem Mapping Rules for ESSFmvp Zone File 5000

FH5064

80

barren

12

5064

barren

|        | F         | UZZY CLAS | S TABLE (CRU | LES)   |              |           |          |           | FUZZY AT  | TRIBUTE TABLE | (ARULES) |        |        |        |        |       |
|--------|-----------|-----------|--------------|--------|--------------|-----------|----------|-----------|-----------|---------------|----------|--------|--------|--------|--------|-------|
| F_NAME | FUZATTR   | ATTRWT    | FACET_NO     | F_CODE | PREDICTING   | SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO      | В        | B_LOW  | B_HI   | B1     | B2     | D     |
| FH5011 | Mesic     | 20        | 1            | 5011   | Mesic shrub  | 1         | formfile | LNQAREA   | LnC2UM    | 5             | 7.50     | 7.50   | 7.50   | 0.00   | 7.60   | 0.10  |
| FH5011 | shrub     | 30        | 1            | 5011   | Mesic shrub  | 2         | formfile | LNQAREA   | LnUM2L    | 1             | 8.60     | 8.60   | 8.60   | 7.50   | 9.70   | 1.10  |
|        |           |           |              |        |              | 3         | formfile | LNQAREA   | LnM2L     | 1             | 9.00     | 9.00   | 9.00   | 8.00   | 10.00  | 1.00  |
| FH5012 | Mesic     | 20        | 2            | 5012   | Mesic herb   | 4         | formfile | LNQAREA   | LnML2T    | 1             | 9.75     | 9.75   | 9.75   | 9.00   | 10.50  | 0.75  |
| FH5012 | herb      | 30        | 2            | 5012   | Mesic herb   | 5         | formfile | LNQAREA   | LnL2T     | 1             | 10.50    | 10.50  | 10.50  | 10.00  | 11.00  | 0.50  |
|        |           |           |              |        |              | 6         | formfile | LNQAREA   | LnV       | 4             | 11.00    | 11.00  | 11.00  | 10.00  | 16.79  | 1.00  |
| FH5021 | Submesic  | 20        | 3            | 5021   | Drier shrub  | 7         | formfile | LNQAREA   | LnUM2T    | 1             | 9.45     | 9.45   | 9.45   | 7.50   | 11.40  | 1.95  |
| FH5021 | SlopeGT50 | 20        | 3            | 5021   | Drier shrub  | 8         | formfile | QWETI     | Subxeric  | 5             | 4.50     | 4.50   | 4.50   | 0.00   | 4.51   | 0.01  |
| FH5021 | shrub     | 30        | 3            | 5021   | Drier shrub  | 9         | formfile | QWETI     | Submesic  | 1             | 5.00     | 5.00   | 5.00   | 4.50   | 5.50   | 0.50  |
|        |           |           |              |        |              | 10        | formfile | QWETI     | SubM2Mes  | 1             | 6.50     | 6.50   | 6.50   | 4.50   | 8.50   | 2.00  |
| FH5022 | Submesic  | 20        | 4            | 5022   | Drier herb   | 11        | formfile | QWETI     | Mesic     | 1             | 6.65     | 6.65   | 6.65   | 5.50   | 7.80   | 1.15  |
| FH5022 | SlopeGT50 | 20        | 4            | 5022   | Drier herb   | 12        | formfile | QWETI     | Subhygric | 1             | 8.90     | 8.90   | 8.90   | 7.80   | 10.00  | 1.10  |
| FH5022 | herb      | 30        | 4            | 5022   | Drier herb   | 13        | formfile | QWETI     | Hygric    | 4             | 10.00    | 10.00  | 10.00  | 9.00   | 26.00  | 1.00  |
|        |           |           |              |        |              | 14        | formfile | PROF      | Prof_cv   | 5             | -20.00   | -20.00 | -20.00 | -86.00 | -19.00 | 1.00  |
| FH5023 | Subxeric  | 20        | 5            | 5023   | Drier shrub  | 15        | formfile | PROF      | Prof_st   | 1             | 1.75     | 1.75   | 1.75   | -5.50  | 9.00   | 7.25  |
| FH5023 | shrub     | 30        | 5            | 5023   | Drier shrub  | 16        | formfile | PROF      | Prof_cx   | 4             | 30.00    | 30.00  | 30.00  | 29.00  | 86.00  | 1.00  |
|        |           |           |              |        |              | 17        | formfile | SLOPE     | Steep     | 4             | 40.00    | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| FH5024 | Subxeric  | 20        | 6            | 5024   | Drier herb   | 18        | formfile | NEW_ASP   | NE_Aspect | 1             | 90.00    | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| FH5024 | herb      | 30        | 6            | 5024   | Drier herb   | 19        | formfile | NEW_ASP   | SW_Aspect | 1             | 270.00   | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
|        |           |           |              |        |              | 20        | formfile | SLOPE     | SlopeLT10 | 5             | 10.00    | 10.00  | 10.00  | 0.00   | 10.50  | 0.50  |
| FH5051 | Subhygric | 20        | 7            | 5051   | Wetter shrub | 21        | formfile | SLOPE     | SlopeGT10 | 4             | 11.00    | 11.00  | 11.00  | 10.00  | 100.00 | 1.00  |
| FH5051 | shrub     | 30        | 7            | 5051   | Wetter shrub | 22        | formfile | SLOPE     | SlopeLT20 | 5             | 20.00    | 20.00  | 20.00  | 0.00   | 20.50  | 0.50  |
|        |           |           |              |        |              | 23        | formfile | SLOPE     | SlopeGT20 | 4             | 21.00    | 21.00  | 21.00  | 20.00  | 100.00 | 1.00  |
| FH5052 | Subhygric | 20        | 8            | 5052   | Wetter herb  | 24        | formfile | SLOPE     | SlopeLT30 | 5             | 30.00    | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |
| FH5052 | herb      | 30        | 8            | 5052   | Wetter herb  | 25        | formfile | SLOPE     | SlopeGT30 | 4             | 31.00    | 31.00  | 31.00  | 30.00  | 100.00 | 1.00  |
|        |           |           |              |        |              | 26        | formfile | SLOPE     | SlopeLT50 | 5             | 50.00    | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |
| FH5061 | SlopeLT2  | 20        | 9            | 5061   | Wetter shrub | 27        | formfile | SLOPE     | SlopeGT50 | 4             | 51.00    | 51.00  | 51.00  | 50.00  | 100.00 | 1.00  |
| FH5061 | Hygric    | 20        | 9            | 5061   | Wetter shrub | 28        | formfile | SLOPE     | SlopeLT2  | 5             | 2.00     | 2.00   | 2.00   | 0.00   | 2.50   | 0.50  |
| FH5061 | shrub     | 30        | 9            | 5061   | Wetter shrub | 29        | formfile | SLOPE     | SlopeGT2  | 4             | 3.00     | 3.00   | 3.00   | 2.00   | 100.00 | 1.00  |
|        |           |           |              |        |              | 30        | geofile  | Classify1 | water     | 1             | 1.00     | 1.00   | 1.00   | 0.99   | 1.01   | 0.01  |
| FH5062 | SlopeLT2  | 20        | 10           | 5062   | Wetter herb  | 31        | geofile  | Classify1 | herb      | 1             | 2.00     | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |
| FH5062 | Hygric    | 20        | 10           | 5062   | Wetter herb  | 32        | geofile  | Classify1 | shrub     | 1             | 3.00     | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |
| FH5062 | herb      | 30        | 10           | 5062   | Wetter herb  | 33        | geofile  | Classify1 | barren    | 1             | 4.00     | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |
| FH5063 | water     | 80        | 11           | 5063   | water        |           |          |           |           |               |          |        |        |        |        |       |

Appendix 1i. Predictive Ecosystem Mapping Rules for ESSFmvp Zone File 5500

|        |           | F      | UZZY CLASS TAB | LE (CRULES) |                           |         |           |          |         | FUZZY ATTR | BUTE TABLE (ARUL | ES)    |        |        |        |        |       |  |  |  |  |
|--------|-----------|--------|----------------|-------------|---------------------------|---------|-----------|----------|---------|------------|------------------|--------|--------|--------|--------|--------|-------|--|--|--|--|
| F_NAME | FUZATTR   | ATTRWT | FACET_NO       | F_CODE      | PREDICTING                | Stand   | SORTORDER | FILE_IN  | ATTR_IN | CLASS_OUT  | MODEL_NO         | В      | B_LOW  | B_HI   | B1     | B2     | D     |  |  |  |  |
| FH5511 | Mesic     | 20     | 1              | 5511        | Dry to mesic forest/treed | Conifer | 1         | formfile | QWETI   | Subxeric   | 5                | 4.50   | 4.50   | 4.50   | 0.00   | 4.51   | 0.01  |  |  |  |  |
|        |           |        |                |             |                           |         | 2         | formfile | QWETI   | Submesic   | 1                | 5.00   | 5.00   | 5.00   | 4.50   | 5.50   | 0.50  |  |  |  |  |
| FH5521 | Submesic  | 20     | 2              | 5521        | Dry to mesic forest/treed | Conifer | 3         | formfile | QWETI   | SubM2Mes   | 1                | 6.50   | 6.50   | 6.50   | 4.50   | 8.50   | 2.00  |  |  |  |  |
| FH5521 | SlopeGT50 | 20     | 2              | 5521        | Dry to mesic forest/treed | Conifer | 4         | formfile | QWETI   | Mesic      | 1                | 6.65   | 6.65   | 6.65   | 5.50   | 7.80   | 1.15  |  |  |  |  |
|        |           |        |                |             |                           |         | 5         | formfile | QWETI   | Subhygric  | 1                | 8.90   | 8.90   | 8.90   | 7.80   | 10.00  | 1.10  |  |  |  |  |
| FH5523 | Subxeric  | 20     | 3              | 5523        | Dry to mesic forest/treed | Conifer | 6         | formfile | QWETI   | Hygric     | 4                | 10.00  | 10.00  | 10.00  | 9.00   | 26.00  | 1.00  |  |  |  |  |
|        |           |        |                |             |                           |         | 7         | formfile | PROF    | Prof_cv    | 5                | -20.00 | -20.00 | -20.00 | -86.00 | -19.00 | 1.00  |  |  |  |  |
| FH5551 | Subhygric | 20     | 4              | 5551        | Wetter forest/treed       | Conifer | 8         | formfile | PROF    | Prof_st    | 1                | 1.75   | 1.75   | 1.75   | -5.50  | 9.00   | 7.25  |  |  |  |  |
| FH5551 | SlopeLT30 | 20     | 4              | 5551        | Wetter forest/treed       | Conifer | 9         | formfile | PROF    | Prof_cx    | 4                | 30.00  | 30.00  | 30.00  | 29.00  | 86.00  | 1.00  |  |  |  |  |
|        |           |        |                |             |                           |         | 10        | formfile | SLOPE   | Steep      | 4                | 40.00  | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |  |  |  |  |
| FH5552 | Subhygric | 20     | 5              | 5552        | Dry to mesic forest/treed | Conifer | 11        | formfile | NEW_ASP | NE_Aspect  | 1                | 90.00  | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |  |  |  |  |
| FH5552 | SlopeGT30 | 20     | 5              | 5552        | Dry to mesic forest/treed | Conifer | 12        | formfile | NEW_ASP | SW_Aspect  | 1                | 270.00 | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |  |  |  |  |
|        |           |        |                |             |                           |         | 13        | formfile | SLOPE   | SlopeLT30  | 5                | 30.00  | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |  |  |  |  |
| FH5553 | Hygric    | 20     | 6              | 5553        | Wetter forest/treed       | Conifer | 14        | formfile | SLOPE   | SlopeGT30  | 4                | 31.00  | 31.00  | 31.00  | 30.00  | 100.00 | 1.00  |  |  |  |  |
|        |           |        |                |             |                           |         | 15        | formfile | SLOPE   | SlopeLT50  | 5                | 50.00  | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |  |  |  |  |
| FH5554 | Submesic  | 20     | 7              | 5554        | Dry to mesic forest/treed | Conifer | 16        | formfile | SLOPE   | SlopeGT50  | 4                | 51.00  | 51.00  | 51.00  | 50.00  | 100.00 | 1.00  |  |  |  |  |
| FH5554 | SlopeLT50 | 20     | 7              | 5554        | Dry to mesic forest/treed | Conifer | ·         |          |         |            |                  |        |        |        |        |        |       |  |  |  |  |

### Appendix 1j. Predictive Ecosystem Mapping Rules for ESSFwc3 Zone File 6000

| F NAME  | FUZATTR   | ATTRWT | FACET NO | F CODE | Predicting |
|---------|-----------|--------|----------|--------|------------|
| FH6021  | Drv       | 30     | 1        | 6021   | 02         |
| FH6021  | L nUn     | 30     | 1        | 6021   | 02         |
| FH6021  | shrub     | 30     | 1        | 6021   | 02         |
| 1110021 | Sindb     | 50     | ·        | 0021   | 02         |
| FH6011  | Dry       | 30     | 2        | 6011   | 01         |
| FH6011  | LnMid     | 30     | 2        | 6011   | 01         |
| FH6011  | shrub     | 30     | 2        | 6011   | 01         |
| FH6012  | LnUp      | 30     | 3        | 6012   | 01         |
| FH6012  | Mesic     | 30     | 3        | 6012   | 01         |
| FH6012  | shrub     | 30     | 3        | 6012   | 01         |
| FH6013  | LnUp      | 30     | 4        | 6013   | 01         |
| FH6013  | Moist     | 30     | 4        | 6013   | 01         |
| FH6013  | shrub     | 30     | 4        | 6013   | 01         |
| FH6031  | Moist     | 30     | 5        | 6031   | 03         |
| FH6031  | LnMid     | 30     | 5        | 6031   | 03         |
| FH6031  | shrub     | 30     | 5        | 6031   | 03         |
| FH6032  | LnLow     | 30     | 6        | 6032   | 03         |
| FH6032  | SlopeLT30 | 30     | 6        | 6032   | 03         |
| FH6032  | shrub     | 30     | 6        | 6032   | 03         |
| FH6014  | Mesic     | 30     | 7        | 6014   | 01         |
| FH6014  | shrub     | 30     | 7        | 6014   | 01         |
| FH6015  | LnLow     | 30     | 8        | 6015   | 01         |
| FH6015  | SlopeGT30 | 30     | 8        | 6015   | 01         |
| FH6015  | shrub     | 30     | 8        | 6015   | 01         |
| FH6033  | LnLow     | 30     | 9        | 6033   | 03         |
| FH6033  | Moist     | 30     | 9        | 6033   | 03         |
| FH6033  | shrub     | 30     | 9        | 6033   | 03         |
| FH6003  | barren    | 80     | 10       | 6003   | Barren     |
| FH6004  | water     | 80     | 11       | 6004   | water      |
| FH6022  | Dry       | 30     | 12       | 6022   | 02         |
| FH6022  | LnUp      | 30     | 12       | 6022   | 02         |
| FH6022  | herb      | 30     | 12       | 6022   | 02         |
| FH6016  | Dry       | 30     | 13       | 6016   | 01         |
| FH6016  | LnMid     | 30     | 13       | 6016   | 01         |
| FH6016  | herb      | 30     | 13       | 6016   | 01         |
| FH6017  | LnUp      | 30     | 14       | 6017   | 01         |
| FH6017  | Mesic     | 30     | 14       | 6017   | 01         |
| FH6017  | herb      | 30     | 14       | 6017   | 01         |

|        | FUZZY CLASS TABLE (CRULES)<br>NAME FUZATTR ATTRWT FACET_NO F_CODE Predicting |        |          |        |            |  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------|--------|----------|--------|------------|--|--|--|--|--|--|--|--|
| F_NAME | FUZATTR                                                                      | ATTRWT | FACET_NO | F_CODE | Predicting |  |  |  |  |  |  |  |  |
| FH6018 | LnUp                                                                         | 30     | 15       | 6018   | 01         |  |  |  |  |  |  |  |  |
| FH6018 | Moist                                                                        | 30     | 15       | 6018   | 01         |  |  |  |  |  |  |  |  |
| FH6018 | herb                                                                         | 30     | 15       | 6018   | 01         |  |  |  |  |  |  |  |  |
| FH6034 | Moist                                                                        | 30     | 16       | 6034   | 03         |  |  |  |  |  |  |  |  |
| FH6034 | LnMid                                                                        | 30     | 16       | 6034   | 03         |  |  |  |  |  |  |  |  |
| FH6034 | herb                                                                         | 30     | 16       | 6034   | 03         |  |  |  |  |  |  |  |  |
| FH6035 | LnLow                                                                        | 30     | 17       | 6035   | 03         |  |  |  |  |  |  |  |  |
| FH6035 | SlopeLT30                                                                    | 30     | 17       | 6035   | 03         |  |  |  |  |  |  |  |  |
| FH6035 | herb                                                                         | 30     | 17       | 6035   | 03         |  |  |  |  |  |  |  |  |
| FH6019 | Mesic                                                                        | 30     | 18       | 6019   | 01         |  |  |  |  |  |  |  |  |
| FH6014 | herb                                                                         | 30     | 18       | 6014   | 01         |  |  |  |  |  |  |  |  |
| FH6111 | LnLow                                                                        | 30     | 19       | 6111   | 01         |  |  |  |  |  |  |  |  |
| FH6111 | SlopeGT30                                                                    | 30     | 19       | 6111   | 01         |  |  |  |  |  |  |  |  |
| FH6111 | herb                                                                         | 30     | 19       | 6111   | 01         |  |  |  |  |  |  |  |  |
| FH6036 | LnLow                                                                        | 30     | 20       | 6036   | 03         |  |  |  |  |  |  |  |  |
| FH6036 | Moist                                                                        | 30     | 20       | 6036   | 03         |  |  |  |  |  |  |  |  |
| FH6036 | herb                                                                         | 30     | 20       | 6036   | 03         |  |  |  |  |  |  |  |  |

|           |          |           |           | FUZZY ATTI | RIBUTE TAB | LE (ARULES) |        |        |        |       |
|-----------|----------|-----------|-----------|------------|------------|-------------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO   | В          | B_LOW       | B_HI   | B1     | B2     | D     |
| 1         | formfile | LNQAREA   | LnUp      | 1          | 7.40       | 7.40        | 7.40   | 7.00   | 7.80   | 0.40  |
| 2         | formfile | LNQAREA   | LnMid     | 1          | 8.40       | 8.40        | 8.40   | 7.80   | 9.00   | 0.60  |
| 3         | formfile | LNQAREA   | LnLow     | 4          | 9.00       | 9.00        | 9.00   | 8.00   | 11.00  | 1.00  |
| 4         | formfile | LNQAREA   | LnCrest   | 5          | 7.00       | 7.00        | 7.00   | 0.00   | 7.10   | 0.10  |
| 5         | formfile | QWETI     | Dry       | 5          | 5.50       | 5.50        | 5.50   | 1.43   | 5.60   | 0.10  |
| 6         | formfile | QWETI     | Mesic     | 1          | 6.40       | 6.90        | 6.90   | 5.50   | 7.30   | 0.90  |
| 7         | formfile | QWETI     | Moist     | 1          | 9.65       | 10.15       | 10.15  | 7.30   | 12.00  | 2.35  |
| 8         | formfile | SLOPE     | SlopeGT70 | 4          | 70.00      | 70.00       | 70.00  | 69.00  | 100.00 | 1.00  |
| 9         | formfile | SLOPE     | Steep     | 4          | 40.00      | 40.00       | 40.00  | 35.00  | 100.00 | 5.00  |
| 10        | formfile | NEW_ASP   | NE_Aspect | 1          | 90.00      | 90.00       | 90.00  | 0.00   | 180.00 | 45.00 |
| 11        | formfile | NEW_ASP   | SW_Aspect | 1          | 270.00     | 270.00      | 270.00 | 180.00 | 360.00 | 45.00 |
| 12        | geofile  | Classify1 | water     | 1          | 1.00       | 1.00        | 1.00   | 0.99   | 51.01  | 0.01  |
| 13        | geofile  | Classify1 | herb      | 1          | 2.00       | 2.00        | 2.00   | 1.99   | 2.01   | 0.01  |
| 14        | geofile  | Classify1 | shrub     | 1          | 3.00       | 3.00        | 3.00   | 2.99   | 3.01   | 0.01  |
| 15        | geofile  | Classify1 | barren    | 1          | 4.00       | 4.00        | 4.00   | 3.99   | 4.01   | 0.01  |
| 16        | formfile | SLOPE     | SlopeLT40 | 5          | 40.00      | 40.00       | 40.00  | 0.00   | 40.01  | 0.01  |
| 17        | formfile | SLOPE     | SlopeLT80 | 5          | 80.00      | 80.00       | 80.00  | 0.00   | 80.01  | 0.01  |
| 18        | formfile | SLOPE     | SlopeLT20 | 5          | 20.00      | 20.00       | 20.00  | 0.00   | 20.01  | 0.01  |
| 19        | formfile | SLOPE     | SlopeGT20 | 4          | 20.00      | 20.00       | 20.00  | 19.00  | 100.00 | 1.00  |
| 20        | formfile | SLOPE     | SlopeGT40 | 4          | 40.00      | 40.00       | 40.00  | 39.00  | 100.00 | 1.00  |
| 21        | formfile | SLOPE     | SlopeLT30 | 5          | 30.00      | 30.00       | 30.00  | 0.00   | 30.01  | 0.01  |
| 22        | formfile | SLOPE     | SlopeGT30 | 4          | 30.00      | 30.00       | 30.00  | 29.00  | 100.00 | 1.00  |

## Appendix 1k. Predictive Ecosystem Mapping Rules for ESSFwc3 Zone File 6500

|         | FUZ       | LT CLASS I | ADLE (CRULE | 3)     |            |
|---------|-----------|------------|-------------|--------|------------|
| F_NAME  | FUZATTR   | ATTRWT     | FACET_NO    | F_CODE | Predicting |
| FH6521  | Dry       | 30         | 1           | 6521   | 02         |
| FH6521  | LnUp      | 30         | 1           | 6521   | 02         |
| FH6521  | conifer   | 30         | 1           | 6521   | 02         |
|         |           |            |             |        |            |
| FH6511  | Dry       | 30         | 2           | 6511   | 01         |
| FH6511  | LnMid     | 30         | 2           | 6511   | 01         |
| FH6511  | conifer   | 30         | 2           | 6511   | 01         |
|         |           |            |             |        |            |
| FH6512  | LnUp      | 30         | 3           | 6512   | 01         |
| FH6512  | Mesic     | 30         | 3           | 6512   | 01         |
| FH6512  | conifer   | 30         | 3           | 6512   | 01         |
| FH6513  | InUn      | 30         | 4           | 6513   | 01         |
| FH6513  | Moist     | 30         | 4           | 6513   | 01         |
| FH6513  | conifer   | 30         | 4           | 6513   | 01         |
|         | conner    | 50         | Ŧ           | 0313   |            |
| FH6531  | Moist     | 30         | 5           | 6531   | 03         |
| FH6531  | LnMid     | 30         | 5           | 6531   | 03         |
| FH6531  | conifer   | 30         | 5           | 6531   | 03         |
|         |           |            |             |        |            |
| FH6532  | LnLow     | 30         | 6           | 6532   | 03         |
| FH6532  | SlopeLT30 | 30         | 6           | 6532   | 03         |
| FH6532  | conifer   | 30         | 6           | 6532   | 03         |
| FH6514  | Mesic     | 30         | 7           | 6514   | 01         |
| FH6514  | conifer   | 30         | 7           | 6514   | 01         |
|         |           |            |             |        |            |
| FH6515  | LnLow     | 30         | 8           | 6515   | 01         |
| FH6515  | SlopeGT30 | 30         | 8           | 6515   | 01         |
| FH6515  | conifer   | 30         | 8           | 6515   | 01         |
|         |           |            |             |        |            |
| FH6533  | LnLow     | 30         | 9           | 6533   | 03         |
| FH6533  | Moist     | 30         | 9           | 6533   | 03         |
| FH6533  | conifer   | 30         | 9           | 6533   | 03         |
| EU4522  | Dry       | 20         | 10          | 4522   | 02         |
| FH0322  | Diy       | 20         | 10          | 6322   | 02         |
| F110322 | LNUp      | 30         | 10          | 6022   | 02         |
| гп0322  | deciduous | 30         | 10          | 0322   | 02         |
| FH6516  | Dry       | 30         | 11          | 6516   | 01         |
| FH6516  | LnMid     | 30         | 11          | 6516   | 01         |
| FH6516  | deciduous | 30         | 11          | 6516   | 01         |
|         |           |            |             |        |            |
| FH6517  | LnUp      | 30         | 12          | 6517   | 01         |
| FH6517  | Mesic     | 30         | 12          | 6517   | 01         |
| FH6517  | deciduous | 30         | 12          | 6517   | 01         |
| FU/ F19 | مالما     | 20         | 10          | 4549   | 01         |
|         | LNUp      | 30         | 13          | 6518   | 01         |
| FH6518  | Moist     | 30         | 13          | 6518   | 01         |
| FH6518  | deciduous | 30         | 13          | 6518   | 01         |

|        | FUZZY CLASS TABLE (CRULES) |        |          |        |            |  |  |  |  |  |  |  |  |
|--------|----------------------------|--------|----------|--------|------------|--|--|--|--|--|--|--|--|
| F_NAME | FUZATTR                    | ATTRWT | FACET_NO | F_CODE | Predicting |  |  |  |  |  |  |  |  |
| FH6534 | Moist                      | 30     | 14       | 6534   | 03         |  |  |  |  |  |  |  |  |
| FH6534 | LnMid                      | 30     | 14       | 6534   | 03         |  |  |  |  |  |  |  |  |
| FH6534 | deciduous                  | 30     | 14       | 6534   | 03         |  |  |  |  |  |  |  |  |
| FH6535 | LnLow                      | 30     | 15       | 6535   | 03         |  |  |  |  |  |  |  |  |
| FH6535 | SlopeLT30                  | 30     | 15       | 6535   | 03         |  |  |  |  |  |  |  |  |
| FH6535 | deciduous                  | 30     | 15       | 6535   | 03         |  |  |  |  |  |  |  |  |
| FH6519 | Mesic                      | 30     | 16       | 6519   | 01         |  |  |  |  |  |  |  |  |
| FH6519 | deciduous                  | 30     | 16       | 6519   | 01         |  |  |  |  |  |  |  |  |
| FH6591 | LnLow                      | 30     | 17       | 6591   | 01         |  |  |  |  |  |  |  |  |
| FH6591 | SlopeGT30                  | 30     | 17       | 6591   | 01         |  |  |  |  |  |  |  |  |
| FH6591 | deciduous                  | 30     | 17       | 6591   | 01         |  |  |  |  |  |  |  |  |
| FH6536 | LnLow                      | 30     | 18       | 6536   | 03         |  |  |  |  |  |  |  |  |
| FH6536 | Moist                      | 30     | 18       | 6536   | 03         |  |  |  |  |  |  |  |  |
| FH6536 | deciduous                  | 30     | 18       | 6536   | 03         |  |  |  |  |  |  |  |  |

|           |          |           | FUZZY AT  | TRIBUTE TABLE | E (ARULES) | )      |        |        |        |       |
|-----------|----------|-----------|-----------|---------------|------------|--------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO      | В          | B_LOW  | B_HI   | B1     | B2     | D     |
| 1         | formfile | LNQAREA   | LnUp      | 1             | 7.40       | 7.40   | 7.40   | 7.00   | 7.80   | 0.40  |
| 2         | formfile | LNQAREA   | LnMid     | 1             | 8.40       | 8.40   | 8.40   | 7.80   | 9.00   | 0.60  |
| 3         | formfile | LNQAREA   | LnLow     | 4             | 9.00       | 9.00   | 9.00   | 8.00   | 11.00  | 1.00  |
| 4         | formfile | LNQAREA   | LnCrest   | 5             | 7.00       | 7.00   | 7.00   | 0.00   | 7.10   | 0.10  |
| 5         | formfile | QWETI     | Dry       | 5             | 5.50       | 5.50   | 5.50   | 1.43   | 5.60   | 0.10  |
| 6         | formfile | QWETI     | Mesic     | 1             | 6.40       | 6.90   | 6.90   | 5.50   | 7.30   | 0.90  |
| 7         | formfile | QWETI     | Moist     | 1             | 9.65       | 10.15  | 10.15  | 7.30   | 12.00  | 2.35  |
| 8         | formfile | SLOPE     | SlopeGT70 | 4             | 70.00      | 70.00  | 70.00  | 69.00  | 100.00 | 1.00  |
| 9         | formfile | SLOPE     | Steep     | 4             | 40.00      | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| 10        | formfile | NEW_ASP   | NE_Aspect | 1             | 90.00      | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| 11        | formfile | NEW_ASP   | SW_Aspect | 1             | 270.00     | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
| 12        | geofile  | Classify1 | conifer   | 1             | 5.00       | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |
| 13        | geofile  | Classify1 | deciduous | 1             | 7.00       | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |
| 14        | formfile | SLOPE     | SlopeLT40 | 5             | 40.00      | 40.00  | 40.00  | 0.00   | 40.01  | 0.01  |
| 15        | formfile | SLOPE     | SlopeLT80 | 5             | 80.00      | 80.00  | 80.00  | 0.00   | 80.01  | 0.01  |
| 16        | formfile | SLOPE     | SlopeLT20 | 5             | 20.00      | 20.00  | 20.00  | 0.00   | 20.01  | 0.01  |
| 17        | formfile | SLOPE     | SlopeGT20 | 4             | 20.00      | 20.00  | 20.00  | 19.00  | 100.00 | 1.00  |
| 18        | formfile | SLOPE     | SlopeGT40 | 4             | 40.00      | 40.00  | 40.00  | 39.00  | 100.00 | 1.00  |
| 19        | formfile | SLOPE     | SlopeLT30 | 5             | 30.00      | 30.00  | 30.00  | 0.00   | 30.01  | 0.01  |
| 20        | formfile | SLOPE     | SlopeGT30 | 4             | 30.00      | 30.00  | 30.00  | 29.00  | 100.00 | 1.00  |

### Appendix 11. Predictive Ecosystem Mapping Rules for ESSFwcp Zone File 7000

FH7064

80

barren

12

7064

barren

|        |           | FUZZY C | LASS TABLE | (CRULES) |                        | ] [ |           |          |           | FUZZY AT  | TRIBUTE TAB | le (aru | LES)   |        |        |        |       |
|--------|-----------|---------|------------|----------|------------------------|-----|-----------|----------|-----------|-----------|-------------|---------|--------|--------|--------|--------|-------|
| F_NAME | FUZATTR   | ATTRWT  | FACET_NO   | F_CODE   | PREDICTING             |     | SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO    | В       | B_LOW  | B_HI   | B1     | B2     | D     |
| FH7011 | Mesic     | 20      | 1          | 7011     | Mesic Conifer/shrub    | 1 1 | 1         | formfile | LNQAREA   | LnC2UM    | 5           | 7.50    | 7.50   | 7.50   | 0.00   | 7.60   | 0.10  |
| FH7011 | shrub     | 30      | 1          | 7011     | Mesic Conifer/shrub    |     | 2         | formfile | LNQAREA   | LnUM2L    | 1           | 8.60    | 8.60   | 8.60   | 7.50   | 9.70   | 1.10  |
|        |           |         |            |          |                        |     | 3         | formfile | LNQAREA   | LnM2L     | 1           | 9.00    | 9.00   | 9.00   | 8.00   | 10.00  | 1.00  |
| FH7012 | Mesic     | 20      | 2          | 7012     | Mesic herb             |     | 4         | formfile | LNQAREA   | LnML2T    | 1           | 9.75    | 9.75   | 9.75   | 9.00   | 10.50  | 0.75  |
| FH7012 | herb      | 30      | 2          | 7012     | Mesic herb             |     | 5         | formfile | LNQAREA   | LnL2T     | 1           | 10.50   | 10.50  | 10.50  | 10.00  | 11.00  | 0.50  |
|        |           |         |            |          |                        |     | 6         | formfile | LNQAREA   | LnV       | 4           | 11.00   | 11.00  | 11.00  | 10.00  | 16.79  | 1.00  |
| FH7021 | Submesic  | 20      | 3          | 7021     | Drier Conifer/shrub    |     | 7         | formfile | LNQAREA   | LnUM2T    | 1           | 9.45    | 9.45   | 9.45   | 7.50   | 11.40  | 1.95  |
| FH7021 | SlopeGT50 | 20      | 3          | 7021     | Drier Conifer/shrub    |     | 8         | formfile | QWETI     | Subxeric  | 5           | 4.50    | 4.50   | 4.50   | 0.00   | 4.51   | 0.01  |
| FH7021 | shrub     | 30      | 3          | 7021     | Drier Conifer/shrub    |     | 9         | formfile | QWETI     | Submesic  | 1           | 5.00    | 5.00   | 5.00   | 4.50   | 5.50   | 0.50  |
|        |           |         |            |          |                        |     | 10        | formfile | QWETI     | SubM2Mes  | 1           | 6.50    | 6.50   | 6.50   | 4.50   | 8.50   | 2.00  |
| FH7022 | Submesic  | 20      | 4          | 7022     | Drier herb             |     | 11        | formfile | QWETI     | Mesic     | 1           | 6.65    | 6.65   | 6.65   | 5.50   | 7.80   | 1.15  |
| FH7022 | SlopeGT50 | 20      | 4          | 7022     | Drier herb             |     | 12        | formfile | QWETI     | Subhygric | 1           | 8.90    | 8.90   | 8.90   | 7.80   | 10.00  | 1.10  |
| FH7022 | herb      | 30      | 4          | 7022     | Drier herb             |     | 13        | formfile | QWETI     | Hygric    | 4           | 10.00   | 10.00  | 10.00  | 9.00   | 26.00  | 1.00  |
|        |           |         |            |          |                        |     | 14        | formfile | PROF      | Prof_cv   | 5           | -20.00  | -20.00 | -20.00 | -86.00 | -19.00 | 1.00  |
| FH7023 | Subxeric  | 20      | 5          | 7023     | Drier Conifer/shrub    |     | 15        | formfile | PROF      | Prof_st   | 1           | 1.75    | 1.75   | 1.75   | -5.50  | 9.00   | 7.25  |
| FH7023 | shrub     | 30      | 5          | 7023     | Drier Conifer/shrub    |     | 16        | formfile | PROF      | Prof_cx   | 4           | 30.00   | 30.00  | 30.00  | 29.00  | 86.00  | 1.00  |
|        |           |         |            |          |                        |     | 17        | formfile | SLOPE     | Steep     | 4           | 40.00   | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| FH7024 | Subxeric  | 20      | 6          | 7024     | Drier herb             |     | 18        | formfile | NEW_ASP   | NE_Aspect | 1           | 90.00   | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| FH7024 | herb      | 30      | 6          | 7024     | Drier herb             |     | 19        | formfile | NEW_ASP   | SW_Aspect | 1           | 270.00  | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
|        |           |         |            |          |                        |     | 20        | formfile | SLOPE     | SlopeLT10 | 5           | 10.00   | 10.00  | 10.00  | 0.00   | 10.50  | 0.50  |
| FH7051 | Subhygric | 20      | 7          | 7051     | Wetter conifer / shrub |     | 21        | formfile | SLOPE     | SlopeGT10 | 4           | 11.00   | 11.00  | 11.00  | 10.00  | 100.00 | 1.00  |
| FH7051 | shrub     | 30      | 7          | 7051     | Wetter conifer / shrub |     | 22        | formfile | SLOPE     | SlopeLT20 | 5           | 20.00   | 20.00  | 20.00  | 0.00   | 20.50  | 0.50  |
|        |           |         |            |          |                        |     | 23        | formfile | SLOPE     | SlopeGT20 | 4           | 21.00   | 21.00  | 21.00  | 20.00  | 100.00 | 1.00  |
| FH7052 | Subhygric | 20      | 8          | 7052     | Wetter herb            |     | 24        | formfile | SLOPE     | SlopeLT30 | 5           | 30.00   | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |
| FH7052 | herb      | 30      | 8          | 7052     | Wetter herb            |     | 25        | formfile | SLOPE     | SlopeGT30 | 4           | 31.00   | 31.00  | 31.00  | 30.00  | 100.00 | 1.00  |
|        |           |         |            |          |                        |     | 26        | formfile | SLOPE     | SlopeLT50 | 5           | 50.00   | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |
| FH7061 | SlopeLT2  | 20      | 9          | 7061     | Wetter conifer / shrub |     | 27        | formfile | SLOPE     | SlopeGT50 | 4           | 51.00   | 51.00  | 51.00  | 50.00  | 100.00 | 1.00  |
| FH7061 | Hygric    | 20      | 9          | 7061     | Wetter conifer / shrub |     | 28        | formfile | SLOPE     | SlopeLT2  | 5           | 2.00    | 2.00   | 2.00   | 0.00   | 2.50   | 0.50  |
| FH7061 | shrub     | 30      | 9          | 7061     | Wetter conifer / shrub |     | 29        | formfile | SLOPE     | SlopeGT2  | 4           | 3.00    | 3.00   | 3.00   | 2.00   | 100.00 | 1.00  |
|        |           |         |            |          |                        |     | 30        | geofile  | Classify1 | water     | 1           | 1.00    | 1.00   | 1.00   | 0.99   | 1.01   | 0.01  |
| FH7062 | SlopeLT2  | 20      | 10         | 7062     | Wetter herb            |     | 31        | geofile  | Classify1 | herb      | 1           | 2.00    | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |
| FH7062 | Hygric    | 20      | 10         | 7062     | Wetter herb            |     | 32        | geofile  | Classify1 | shrub     | 1           | 3.00    | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |
| FH7062 | herb      | 30      | 10         | 7062     | Wetter herb            |     | 33        | geofile  | Classify1 | barren    | 1           | 4.00    | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |
| FH7063 | water     | 80      | 11         | 7063     | water                  |     |           |          |           |           |             |         |        |        |        |        |       |

### Appendix 1m. Predictive Ecosystem Mapping Rules for ESSFwcp Zone File 7500

|        |           | FUZZY CLA | SS TABLE (CRUL | ES)    |                     |
|--------|-----------|-----------|----------------|--------|---------------------|
| F_NAME | FUZATTR   | ATTRWT    | FACET_NO       | F_CODE | PREDICTING          |
| FH7511 | Mesic     | 20        | 1              | 7511   | Mesic forest/treed  |
| FH7521 | Submesic  | 20        | 2              | 7521   | Drier forest/treed  |
| FH7521 | SlopeGT50 | 20        | 2              | 7521   | Drier forest/treed  |
| FH7523 | Subxeric  | 20        | 3              | 7523   | Drier forest/treed  |
| FH7551 | Subhygric | 20        | 4              | 7551   | Wetter forest/treed |
| FH7551 | SlopeLT30 | 20        | 4              | 7551   | Wetter forest/treed |
| FH7552 | Subhygric | 20        | 5              | 7552   | Mesic forest/treed  |
| FH7552 | SlopeGT30 | 20        | 5              | 7552   | Mesic forest/treed  |
| FH7553 | Hygric    | 20        | 6              | 7553   | Wetter forest/treed |
| FH7554 | Submesic  | 20        | 7              | 7554   | Mesic forest/treed  |
| FH7554 | SlopeLT50 | 20        | 7              | 7554   | Mesic forest/treed  |

|           |          |           | FUZZ      | Y ATTRIBUTE TAI | BLE (ARULES | )      |        |        |        |       |
|-----------|----------|-----------|-----------|-----------------|-------------|--------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO        | В           | B_LOW  | B_HI   | B1     | B2     | D     |
| 1         | formfile | LNQAREA   | LnC2UM    | 5               | 7.50        | 7.50   | 7.50   | 0.00   | 7.60   | 0.10  |
| 2         | formfile | LNQAREA   | LnUM2L    | 1               | 8.60        | 8.60   | 8.60   | 7.50   | 9.70   | 1.10  |
| 3         | formfile | LNQAREA   | LnM2L     | 1               | 9.00        | 9.00   | 9.00   | 8.00   | 10.00  | 1.00  |
| 4         | formfile | LNQAREA   | LnML2T    | 1               | 9.75        | 9.75   | 9.75   | 9.00   | 10.50  | 0.75  |
| 5         | formfile | LNQAREA   | LnL2T     | 1               | 10.50       | 10.50  | 10.50  | 10.00  | 11.00  | 0.50  |
| 6         | formfile | LNQAREA   | LnV       | 4               | 11.00       | 11.00  | 11.00  | 10.00  | 16.79  | 1.00  |
| 7         | formfile | LNQAREA   | LnUM2T    | 1               | 9.45        | 9.45   | 9.45   | 7.50   | 11.40  | 1.95  |
| 8         | formfile | QWETI     | Subxeric  | 5               | 4.50        | 4.50   | 4.50   | 0.00   | 4.51   | 0.01  |
| 9         | formfile | QWETI     | Submesic  | 1               | 5.00        | 5.00   | 5.00   | 4.50   | 5.50   | 0.50  |
| 10        | formfile | QWETI     | SubM2Mes  | 1               | 6.50        | 6.50   | 6.50   | 4.50   | 8.50   | 2.00  |
| 11        | formfile | QWETI     | Mesic     | 1               | 6.65        | 6.65   | 6.65   | 5.50   | 7.80   | 1.15  |
| 12        | formfile | QWETI     | Subhygric | 1               | 8.90        | 8.90   | 8.90   | 7.80   | 10.00  | 1.10  |
| 13        | formfile | QWETI     | Hygric    | 4               | 10.00       | 10.00  | 10.00  | 9.00   | 26.00  | 1.00  |
| 14        | formfile | PROF      | Prof_cv   | 5               | -20.00      | -20.00 | -20.00 | -86.00 | -19.00 | 1.00  |
| 15        | formfile | PROF      | Prof_st   | 1               | 1.75        | 1.75   | 1.75   | -5.50  | 9.00   | 7.25  |
| 16        | formfile | PROF      | Prof_cx   | 4               | 30.00       | 30.00  | 30.00  | 29.00  | 86.00  | 1.00  |
| 17        | formfile | SLOPE     | Steep     | 4               | 40.00       | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| 18        | formfile | NEW_ASP   | NE_Aspect | 1               | 90.00       | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| 19        | formfile | NEW_ASP   | SW_Aspect | 1               | 270.00      | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
| 20        | formfile | SLOPE     | SlopeLT10 | 5               | 10.00       | 10.00  | 10.00  | 0.00   | 10.50  | 0.50  |
| 21        | formfile | SLOPE     | SlopeGT10 | 4               | 11.00       | 11.00  | 11.00  | 10.00  | 100.00 | 1.00  |
| 22        | formfile | SLOPE     | SlopeLT20 | 5               | 20.00       | 20.00  | 20.00  | 0.00   | 20.50  | 0.50  |
| 23        | formfile | SLOPE     | SlopeGT20 | 4               | 21.00       | 21.00  | 21.00  | 20.00  | 100.00 | 1.00  |
| 24        | formfile | SLOPE     | SlopeLT30 | 5               | 30.00       | 30.00  | 30.00  | 0.00   | 30.50  | 0.50  |
| 25        | formfile | SLOPE     | SlopeGT30 | 4               | 31.00       | 31.00  | 31.00  | 30.00  | 100.00 | 1.00  |
| 26        | formfile | SLOPE     | SlopeLT50 | 5               | 50.00       | 50.00  | 50.00  | 0.00   | 50.50  | 0.50  |
| 27        | formfile | SLOPE     | SlopeGT50 | 4               | 51.00       | 51.00  | 51.00  | 50.00  | 100.00 | 1.00  |
| 28        | formfile | SLOPE     | SlopeLT2  | 5               | 2.00        | 2.00   | 2.00   | 0.00   | 2.50   | 0.50  |
| 29        | formfile | SLOPE     | SlopeGT2  | 4               | 3.00        | 3.00   | 3.00   | 2.00   | 100.00 | 1.00  |
| 30        | geofile  | Classify1 | conifer   | 1               | 5.00        | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |
| 31        | geofile  | Classify1 | deciduous | 1               | 7.00        | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |

# Appendix 1n. Predictive Ecosystem Mapping Rules for ESSFwk2 Zone File 8000

|        | FUZATTO    | ATTOWT | EACET NO |        | Dradicting |
|--------|------------|--------|----------|--------|------------|
| F_NAME | FULATIK    | 20     | FACEI_NU | F_CODE | redicting  |
|        | Dry        | 30     | 1        | 0UZ1   | 02         |
| FHOUZI | shrub      | 30     | I        | 6UZ I  | 02         |
| FH8022 | Dry        | 30     | 2        | 8022   | 02 herb    |
| FH8022 | herb       | 30     | 2        | 8022   | 02 herb    |
|        |            |        |          |        |            |
| FH8011 | Mesic      | 30     | 3        | 8011   | 01/03      |
| FH8011 | shrub      | 30     | 3        | 8011   | 01/03      |
|        |            |        |          |        |            |
| FH8012 | Mesic      | 30     | 4        | 8012   | 01/03 herb |
| FH8012 | herb       | 30     | 4        | 8012   | 01/03 herb |
| EU8041 | Moist2Wot  | 20     | 5        | 80/1   | 04         |
| FH8041 | shrub      | 30     | 5        | 8041   | 04         |
| FU9041 | Sinub      | 20     | J<br>F   | 9041   | 04         |
| FH0041 | SlopeCT20  | 20     | J        | 0041   | 04         |
| FH0041 | Stoped 130 | 20     | 5        | 0041   | 04         |
| FH8042 | Moist2Wet  | 30     | 6        | 8042   | 04 herb    |
| FH8042 | herb       | 30     | 6        | 8042   | 04 herb    |
| FH8042 | SlopeLT40  | 20     | 6        | 8042   | 04 herb    |
| FH8042 | SlopeGT30  | 20     | 6        | 8042   | 04 herb    |
|        |            |        |          |        |            |
| FH8051 | Moist2Wet  | 30     | 7        | 8051   | 05         |
| FH8051 | shrub      | 30     | 7        | 8051   | 05         |
| FH8051 | SlopeLT20  | 20     | 7        | 8051   | 05         |
|        |            |        |          |        |            |
| FH8052 | Moist2Wet  | 30     | 8        | 8052   | 05 herb    |
| FH8052 | herb       | 30     | 8        | 8052   | 05 herb    |
| FH8052 | SlopeLT20  | 20     | 8        | 8052   | 05 herb    |
| FH8061 | Wet        | 30     | 9        | 8061   | 06         |
| FH8061 | shrub      | 30     | 9        | 8061   | 06         |
| FH8061 | SlopeLT30  | 20     | 9        | 8061   | 06         |
| FH8061 | SlopeGT10  | 20     | 9        | 8061   | 06         |
| FH8061 | prof cv    | 30     | 9        | 8061   | 06         |
|        | . –        |        |          |        |            |
| FH8062 | Wet        | 30     | 10       | 8062   | 06 herb    |
| FH8062 | herb       | 30     | 10       | 8062   | 06 herb    |
| FH8062 | SlopeLT30  | 20     | 10       | 8062   | 06 herb    |
| FH8062 | SlopeGT10  | 20     | 10       | 8062   | 06 herb    |
| FH8062 | prof_lev   | 20     | 10       | 8062   | 06 herb    |
| FH8062 | prof_cv    | 30     | 10       | 8062   | 06 herb    |
| FH8062 | plan_lev   | 20     | 10       | 8062   | 06 herb    |
| FH8062 | plan_cv    | 20     | 10       | 8062   | 06 herb    |
|        |            |        |          |        |            |
| FH8053 | Moist2Wet  | 30     | 11       | 8053   | 05         |
| FH8053 | shrub      | 30     | 11       | 8053   | 05         |
|        |            |        |          |        |            |

|        |           | FUZZY CLASS | TABLE (CRULES) |        |            |
|--------|-----------|-------------|----------------|--------|------------|
| F_NAME | FUZATTR   | ATTRWT      | FACET_NO       | F_CODE | Predicting |
| FH8053 | prof_cv   | 20          | 11             | 8053   | 05         |
| FH8054 | Moist2Wet | 30          | 12             | 8054   | 05 herb    |
| FH8054 | herb      | 30          | 12             | 8054   | 05 herb    |
| FH8054 | prof_cv   | 20          | 12             | 8054   | 05 herb    |
| FH8013 | Moist2Wet | 30          | 13             | 8013   | 01/03      |
| FH8013 | shrub     | 30          | 13             | 8013   | 01/03      |
| FH8013 | SlopeGT40 | 20          | 13             | 8013   | 01/03      |
| FH8014 | Moist2Wet | 30          | 14             | 8014   | 01/03 herb |
| FH8014 | herb      | 30          | 14             | 8014   | 01/03 herb |
| FH8014 | SlopeGT40 | 20          | 14             | 8014   | 01/03 herb |
| FH8001 | barren    | 80          | 11             | 8001   | Barren     |
| FH8002 | water     | 80          | 12             | 8002   | water      |

|           |          |           | FUZZY AT  | TRIBUTE TABLE ( | ARULES) |        |        |        |        |       |
|-----------|----------|-----------|-----------|-----------------|---------|--------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO        | В       | B_LOW  | B_HI   | B1     | B2     | D     |
| 1         | formfile | PROF      | prof_cx   | 5               | -16.00  | -16.00 | -16.00 | -85.00 | -16.10 | 0.10  |
| 2         | formfile | PROF      | prof_lev  | 1               | 4.50    | 4.50   | 4.50   | -16.00 | 16.00  | 20.50 |
| 3         | formfile | PROF      | prof_cv   | 4               | 16.00   | 16.00  | 16.00  | 15.00  | 86.00  | 1.00  |
| 4         | formfile | QWETI     | Dry       | 5               | 4.20    | 4.20   | 4.20   | 1.43   | 4.10   | 0.10  |
| 5         | formfile | QWETI     | Mesic     | 1               | 5.60    | 5.60   | 5.60   | 4.20   | 7.00   | 1.40  |
| 6         | formfile | QWETI     | Moist2Wet | 1               | 8.00    | 8.00   | 8.00   | 7.00   | 9.00   | 1.00  |
| 7         | formfile | QWETI     | Wet       | 4               | 9.00    | 9.00   | 9.00   | 8.00   | 26.00  | 1.00  |
| 8         | formfile | SLOPE     | Steep     | 4               | 40.00   | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| 9         | formfile | NEW_ASP   | NE_Aspect | 1               | 90.00   | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| 10        | formfile | NEW_ASP   | SW_Aspect | 1               | 270.00  | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
| 11        | geofile  | Classify1 | conifer   | 1               | 5.00    | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |
| 12        | geofile  | Classify1 | deciduous | 1               | 7.00    | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |
| 13        | formfile | SLOPE     | SlopeLT30 | 5               | 30.00   | 30.00  | 30.00  | 0.00   | 30.10  | 0.10  |
| 14        | formfile | SLOPE     | SlopeGT30 | 4               | 31.00   | 31.00  | 31.00  | 30.00  | 252.00 | 1.00  |
| 15        | formfile | SLOPE     | SlopeLT5  | 5               | 5.00    | 5.00   | 5.00   | 0.00   | 5.10   | 0.10  |
| 16        | formfile | SLOPE     | SlopeGT5  | 4               | 6.00    | 6.00   | 6.00   | 5.00   | 252.00 | 1.00  |
| 17        | formfile | SLOPE     | SlopeLT10 | 5               | 10.00   | 10.00  | 10.00  | 0.00   | 10.10  | 0.10  |
| 18        | formfile | SLOPE     | SlopeGT10 | 4               | 11.00   | 11.00  | 11.00  | 10.00  | 252.00 | 1.00  |
| 19        | formfile | SLOPE     | SlopeLT40 | 5               | 40.00   | 40.00  | 40.00  | 0.00   | 40.10  | 0.10  |
| 20        | formfile | SLOPE     | SlopeLT20 | 5               | 20.00   | 20.00  | 20.00  | 0.00   | 20.10  | 0.10  |
| 21        | formfile | SLOPE     | SlopeGT20 | 4               | 21.00   | 21.00  | 21.00  | 20.00  | 252.00 | 1.00  |
| 22        | formfile | PLAN      | plan_cx   | 5               | -16.00  | -16.00 | -16.00 | -85.00 | -16.10 | 0.10  |
| 23        | formfile | PLAN      | plan_lev  | 1               | 4.50    | 4.50   | 4.50   | -16.00 | 16.00  | 20.50 |
| 24        | formfile | PLAN      | plan_cv   | 4               | 16.00   | 16.00  | 16.00  | 15.00  | 86.00  | 1.00  |
| 25        | formfile | SLOPE     | SlopeGT40 | 4               | 41.00   | 41.00  | 41.00  | 40.00  | 252.00 | 1.00  |
| 26        | geofile  | Classify1 | water     | 1               | 1.00    | 1.00   | 1.00   | 0.99   | 51.01  | 0.01  |
| 27        | geofile  | Classify1 | herb      | 1               | 2.00    | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |
| 28        | geofile  | Classify1 | shrub     | 1               | 3.00    | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |
| 29        | geofile  | Classify1 | barren    | 1               | 4.00    | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |

### Appendix 1o. Predictive Ecosystem Mapping Rules for ESSFwk2 Zone File 8500

Г

| BEC.UNIL     F.JAME     FUZTTR     ATTRWT     FACET_NO     F_CODE     Predicting     Sant       ESSFW42     FH8521     conifer     30     1     8521     02     Conifer       ESSFW42     FH8521     conifer     30     1     8521     02     Deciduous       ESSFW42     FH8522     deciduous     30     2     8522     02     Deciduous       ESSFW42     FH8511     Mesic     30     3     8511     01/03     Conifer       ESSFW42     FH8511     Mesic     30     3     8511     01/03     Deciduous       ESSFW42     FH8512     Mesic     30     4     8512     01/03     Deciduous       ESSFW42     FH8512     Mesic     30     5     8541     04     Conifer       ESSFW42     FH8512     Mesic     30     6     8542     04     Conifer       ESSFW42     FH8513     SlopeT40     20     5     8541     04     Conifer       ESSFW                                                                                                                            |          |        |             | FUZZY CLA | SS TABLE (CRULE | S)     |            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------------|-----------|-----------------|--------|------------|-----------|
| ESEFwidz     PH8521     Dry     30     1     8521     02     Conffer       ESSFWidz     PH8521     conifer     30     1     8521     02     Conifer       ESSFWidz     PH8522     deciduous     30     2     8522     02     Deciduous       ESSFwidz     PH8511     Mesic     30     3     8511     01/03     Conifer       ESSFwidz     PH8511     Mesic     30     3     8511     01/03     Deciduous       ESSFwidz     PH8512     Mesic     30     4     8512     01/03     Deciduous       ESSFwidz     PH8514     Molt2Wet     30     5     8541     04     Conifer       ESSFwidz     PH8541     Molt2Wet     30     5     8541     04     Conifer       ESSFwidz     PH8541     Molt2Wet     30     6     8542     04     Deciduous       ESSFwidz     PH8542     SlopeCT30     20     6     8542     04     Deciduous       ESSFwid                                                                                                                            | BEC unit | F_NAME | FUZATTR     | ATTRWT    | FACET_NO        | F_CODE | Predicting | Stand     |
| ESSF-Wa2     PH8521     conifer     30     1     8521     02     Conifer       ESSF-Wa2     PH8522     Dry     30     2     8522     02     Decidious       ESSF-Wa2     PH8511     Mesic     30     3     8511     01/03     Conifer       ESSF-Wa2     PH8511     Conifer     30     3     8511     01/03     Conifer       ESSF-Wa2     PH8512     Mesic     30     4     8512     01/03     Deciduous       ESSF-Wa2     PH8514     conifer     30     5     8541     04     Conifer       ESSF-Wa2     PH8541     SlopeGT30     20     5     8541     04     Conifer       ESSF-Wa2     PH8541     SlopeGT30     20     5     8541     04     Conifer       ESSF-Wa2     PH8542     SlopeGT30     20     6     8542     04     Deciduous       ESSF-Wa2     PH8542     SlopeGT30     20     7     8551     05     Conifer       ESSF-Wa2                                                                                                                            | ESSFwk2  |        | Dry         | 30        | 1               | 8521   | 02         | Conifer   |
| ESSFWA2     PH8522     Dry     30     2     8522     02     Deciduous       ESSFWA2     FH8511     Mesic     30     3     8511     01/03     Conifer       ESSFWA2     FH8511     Mesic     30     3     8511     01/03     Conifer       ESSFWA2     FH8512     Mesic     30     4     8512     01/03     Deciduous       ESSFWA2     FH8512     Mesic     30     4     8512     01/03     Deciduous       ESSFWA2     FH8541     Moist2Wet     30     5     8541     04     Conifer       ESSFWA2     FH8541     SlopeLT40     20     5     8541     04     Conifer       ESSFWA2     FH8542     SlopeLT40     20     5     8541     04     Conifer       ESSFWA2     FH8542     SlopeLT40     20     6     8542     04     Deciduous       ESSFWA2     FH8542     SlopeLT40     20     6     8542     04     Deciduous       ESSFWA2                                                                                                                                  | ESSFwk2  | FH8521 | conifer     | 30        | 1               | 8521   | 02         | Conifer   |
| ESSF-Wa     FH8522     Dry     30     2     8522     02     Deciduous       ESSF-Wa     FH8512     deciduous     30     2     8522     02     Deciduous       ESSF-Wa     FH8511     Confer     30     3     8511     01/03     Confer       ESSF-Wa     FH8512     Mesic     30     4     8512     01/03     Deciduous       ESSF-Wa     FH8512     deciduous     30     4     8512     01/03     Deciduous       ESSF-Wa     FH8514     Moist2Wet     30     5     8541     04     Confer       ESSF-Wa     FH8541     StopeT40     20     5     8541     04     Confer       ESSF-Wa     FH8542     Moist2Wet     30     6     8542     04     Deciduous       ESSF-Wa     FH854     StopeT40     20     6     8542     04     Deciduous       ESSF-Wa     FH854     StopeT30     20     6     8542     04     Deciduous       ESSF-Wa <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                |          |        |             |           |                 |        |            |           |
| ESSFwk2     FH8522     deciduous     30     2     8522     02     Deciduous       ESSFwk2     FH8511     Conffer     30     3     8511     01/03     Conffer       ESSFwk2     FH8511     Aesic     30     4     8512     01/03     Deciduous       ESSFwk2     FH8512     deciduous     30     4     8512     01/03     Deciduous       ESSFwk2     FH8541     Mois2Wet     30     5     8541     04     Conffer       ESSFwk2     FH8541     SlopeIT30     20     5     8541     04     Conffer       ESSFwk2     FH8542     MoistZWet     30     6     8542     04     Deciduous       ESSFwk2     FH8542     SlopeIT30     20     6     8542     04     Deciduous       ESSFwk2     FH8551     SlopeIT30     20     7     8551     05     Conffer       ESSFwk2     FH8551     SlopeIT30     20     7     8551     05     Conffer       E                                                                                                                            | ESSFwk2  | FH8522 | Dry         | 30        | 2               | 8522   | 02         | Deciduous |
| ESSFwik2     FH8511     Mesic     30     3     8511     01/03     Conifer       ESSFwik2     FH8512     Mesic     30     4     8512     01/03     Decidiouus       ESSFwik2     FH8512     Mesic     30     4     8512     01/03     Decidiouus       ESSFwik2     FH8511     Mosit2/Wet     30     5     8541     04     Conifer       ESSFwik2     FH8541     SlopeLT40     20     5     8541     04     Conifer       ESSFwik2     FH8541     SlopeLT40     20     5     8541     04     Conifer       ESSFwik2     FH8542     Moist2/Wet     30     6     8542     04     Decidiouus       ESSFwik2     FH8542     SlopeLT40     20     6     8542     04     Decidiouus       ESSFwik2     FH8542     SlopeLT20     20     7     8551     05     Conifer       ESSFwik2     FH8551     SlopeLT20     20     7     8551     05     Conifer                                                                                                                           | ESSFwk2  | FH8522 | deciduous   | 30        | 2               | 8522   | 02         | Deciduous |
| ESSFWA2     FHBS11     Mesic     30     3     8511     01/03     Conter       ESSFWA2     FHBS12     Mesic     30     3     8511     01/03     Conter       ESSFWA2     FHBS12     Mesic     30     4     8512     01/03     Deciduous       ESSFWA2     FHBS11     conter     30     5     8541     04     Conter       ESSFWA2     FHB541     StopeCT30     20     5     8541     04     Conter       ESSFWA2     FHB541     StopeCT30     20     5     8541     04     Conter       ESSFWA2     FHB542     Moist2Wet     30     6     8542     04     Deciduous       ESSFWA2     FHB542     StopeCT30     20     6     8542     04     Deciduous       ESSFWA2     FHB542     StopeCT30     20     6     8542     04     Deciduous       ESSFWA2     FHB551     Moist2Wet     30     7     8551     05     Conter       ESSFWA2                                                                                                                                      |          |        |             |           |                 |        |            | Conifor   |
| ESEFwik2     FH8511     conifer     30     3     8511     01/03     Conifer       ESSFwik2     FH8512     Mesic     30     4     8512     01/03     Decidious       ESSFwik2     FH8511     decidious     30     4     8512     01/03     Decidious       ESSFwik2     FH8541     StopeLT40     20     5     8541     04     Conifer       ESSFwik2     FH8541     StopeLT40     20     5     8541     04     Conifer       ESSFwik2     FH8541     StopeLT40     20     5     8541     04     Conifer       ESSFwik2     FH8542     StopeLT40     20     6     8542     04     Decidious       ESSFwik2     FH8542     StopeLT40     20     6     8542     04     Decidious       ESSFwik2     FH8542     StopeLT30     20     7     8551     05     Conifer       ESSFwik2     FH8551     StopeLT20     20     7     8551     05     Conifer                                                                                                                           | ESSEwkZ  | FH8511 | Mesic       | 30        | 3               | 8511   | 01/03      | Conifer   |
| ESSF-WA2     FH8512     Mesic     30     4     8512     01/03     Decidious       ESSF-WA2     FH8512     deciduous     30     4     8512     01/03     Decidious       ESSF-WA2     FH8541     Moist2Wet     30     5     8541     04     Conifer       ESSF-WA2     FH8541     StopeCT30     20     5     8541     04     Conifer       ESSF-WA2     FH8541     StopeCT30     20     5     8541     04     Conifer       ESSF-WA2     FH8542     Moist2Wet     30     6     8542     04     Deciduous       ESSF-WA2     FH8542     StopeCT30     20     6     8542     04     Deciduous       ESSF-WA2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSF-WA2     FH8551     StopeLT20     20     7     8551     05     Conifer       ESSF-WA2     FH8551     StopeLT20     20     7     8551     05     Deciduous                                                                                                                          | ESSFwk2  | FH8511 | conifer     | 30        | 3               | 8511   | 01/03      | Contrer   |
| ESSF-wk2     FH8512     deciduous     30     4     8512     01/03     Deciduous       ESSF-wk2     FH8541     Conifer     30     5     8541     04     Conifer       ESSF-wk2     FH8541     StopeGT30     20     5     8541     04     Conifer       ESSF-wk2     FH8541     StopeGT30     20     5     8541     04     Conifer       ESSF-wk2     FH8542     MoistZWet     30     6     8542     04     Deciduous       ESSF-wk2     FH8542     StopeGT30     20     6     8542     04     Deciduous       ESSF-wk2     FH8542     deciduous     30     7     8551     05     Conifer       ESSF-wk2     FH8551     StopeLT20     20     7     8551     05     Conifer       ESSF-wk2     FH8551     StopeLT20     20     7     8551     05     Deciduous       ESSF-wk2     FH8552     deciduous     30     8     8552     05     Deciduous                                                                                                                           | ESSFwk2  | FH8512 | Mesic       | 30        | 4               | 8512   | 01/03      | Deciduous |
| ESSFWA2     FH8541     Moist2Wet     30     5     8541     04     Conifer       ESSFWA2     FH8541     SiopeLT40     20     5     8541     04     Conifer       ESSFWA2     FH8541     SiopeLT40     20     5     8541     04     Conifer       ESSFWA2     FH8541     SiopeLT40     20     5     8541     04     Conifer       ESSFWA2     FH8542     Moist2Wet     30     6     8542     04     Deciduous       ESSFWA2     FH8542     SiopeLT40     20     6     8542     04     Deciduous       ESSFWA2     FH8542     SiopeLT40     20     6     8542     04     Deciduous       ESSFWA2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSFWA2     FH8551     SiopeLT20     20     7     8551     05     Deciduous       ESSFWA2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESS                                                                                                                            | ESSFwk2  | FH8512 | deciduous   | 30        | 4               | 8512   | 01/03      | Deciduous |
| ESSFwik2     FH8541     Moist2Wet     30     5     8541     04     Conifer       ESSFwik2     FH8541     SlopeGT30     20     5     8541     04     Conifer       ESSFwik2     FH8541     SlopeGT30     20     5     8541     04     Conifer       ESSFwik2     FH8542     SlopeGT30     20     5     8541     04     Conifer       ESSFwik2     FH8542     SlopeGT30     20     6     8542     04     Deciduous       ESSFwik2     FH8542     SlopeGT30     20     6     8542     04     Deciduous       ESSFwik2     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwik2     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwik2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwik2     FH8551     SlopeLT20     20     8     8552     05     Deciduous                                                                                                                              |          |        |             |           |                 |        |            |           |
| ESSFwk2     FH8541     SopelT40     20     5     8541     04     Conifer       ESSFwk2     FH8541     SlopeLT40     20     5     8541     04     Conifer       ESSFwk2     FH8541     SlopeLT40     20     5     8541     04     Conifer       ESSFwk2     FH8542     deciduous     30     6     8542     04     Deciduous       ESSFwk2     FH8542     deciduous     30     6     8542     04     Deciduous       ESSFwk2     FH8542     deciduous     30     7     8551     05     Conifer       ESSFwk2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSFwk2     FH8551     SlopeLT20     20     7     8551     05     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8551     SlopeLT30     20     9     8561     06     Conifer       ESSFwk                                                                                                                            | ESSFwk2  | FH8541 | Moist2Wet   | 30        | 5               | 8541   | 04         | Conifer   |
| ESSFwk2     FH8541     SlopeLT40     20     5     8541     04     Conifer       ESSFwk2     FH8541     SlopeGT30     20     5     8541     04     Conifer       ESSFwk2     FH8542     Moist2Wet     30     6     8542     04     Deciduous       ESSFwk2     FH8542     SlopeGT30     20     6     8542     04     Deciduous       ESSFwk2     FH8542     SlopeGT30     20     6     8542     04     Deciduous       ESSFwk2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSFwk2     FH8551     conifer     30     7     8551     05     Conifer       ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2 <td>ESSFwk2</td> <td>FH8541</td> <td>conifer</td> <td>30</td> <td>5</td> <td>8541</td> <td>04</td> <td>Conifer</td>            | ESSFwk2  | FH8541 | conifer     | 30        | 5               | 8541   | 04         | Conifer   |
| ESSFwk2     FH8541     SlopeGT30     20     5     8541     04     Conffer       ESSFwk2     FH8542     Moist2Wet     30     6     8542     04     Deciduous       ESSFwk2     FH8542     deciduous     30     6     8542     04     Deciduous       ESSFwk2     FH8542     deciduous     30     6     8542     04     Deciduous       ESSFwk2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSFwk2     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8552     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     conifer     30     9     8561     06     Conifer       ESS                                                                                                                            | ESSFwk2  | FH8541 | SlopeLT40   | 20        | 5               | 8541   | 04         | Conifer   |
| ESSFwk2     FH8542     Moist2Wet     30     6     8542     04     Deciduous       ESSFwk2     FH8542     StopeT140     20     6     8542     04     Deciduous       ESSFwk2     FH8542     StopeGT30     20     6     8542     04     Deciduous       ESSFwk2     FH8551     StopeGT30     20     6     8542     04     Deciduous       ESSFwk2     FH8551     StopeGT30     20     6     8542     04     Deciduous       ESSFwk2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8561     conifer     30     9     8561     06     Conifer       ESSFwk2     FH8561     StopeT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     StopeT10     20     9     8561     06     Conifer       ESSFw                                                                                                                            | ESSFwk2  | FH8541 | SlopeGT30   | 20        | 5               | 8541   | 04         | Conifer   |
| Lash Ma     FHBS42     dociduous     30     6     B542     04     Deciduous       ESSFwk2     FH8542     SlopeLT40     20     6     B542     04     Deciduous       ESSFwk2     FH8542     SlopeGT30     20     6     B542     04     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     6     B542     04     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     7     B551     05     Conifer       ESSFwk2     FH8551     SlopeLT20     20     7     B551     05     Conifer       ESSFwk2     FH8552     SlopeLT20     20     8     B552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2 </td <td>FSSFwk2</td> <td>FH8547</td> <td>Moist2Wet</td> <td>30</td> <td>6</td> <td>8547</td> <td>04</td> <td>Deciduous</td> | FSSFwk2  | FH8547 | Moist2Wet   | 30        | 6               | 8547   | 04         | Deciduous |
| L31 NL2     FH8542     SlopeLTA0     20     6     8542     04     Deciduous       ESSFwk2     FH8542     SlopeGT30     20     6     8542     04     Deciduous       ESSFwk2     FH8542     SlopeLTA0     20     6     8542     04     Deciduous       ESSFwk2     FH8551     Conifer     30     7     8551     05     Conifer       ESSFwk2     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     conifer     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2                                                                                                                            | ESSEW/2  | EU8542 | dociduous   | 30        | 6               | 8542   | 04         | Deciduous |
| ESSFWAZ     FHB542     SlopeGT30     20     6     8542     04     Deciduous       ESSFwkZ     FH8551     Molst2Wet     30     7     8551     05     Conifer       ESSFwkZ     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwkZ     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwkZ     FH8552     Molst2Wet     30     8     8552     05     Deciduous       ESSFwkZ     FH8552     deciduous     30     8     8552     05     Deciduous       ESSFwkZ     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT30     20     9     8561     06     Conifer       ESSFwk2                                                                                                                                  | ESSEWIKZ | FH0J4Z | Class T40   | 30        | 6               | 0342   | 04         | Deciduous |
| ESEPWR2     PH8542     StopeC130     20     6     SH2     04     Declauous       ESSFwk2     FH8551     conifer     30     7     8551     05     Conifer       ESSFwk2     FH8551     conifer     30     7     8551     05     Conifer       ESSFwk2     FH8551     StopeLT20     20     7     8551     05     Conifer       ESSFwk2     FH8552     deciduous     30     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     StopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     StopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     StopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2                                                                                                                                          | ESSEWKZ  | FH604Z | SlopeL140   | 20        | 6               | 6542   | 04         | Dociduous |
| ESSFwk2     FH8551     Moist2Wet     30     7     8551     05     Conifer       ESSFwk2     FH8551     conifer     30     7     8551     05     Conifer       ESSFwk2     FH8551     conifer     30     7     8551     05     Conifer       ESSFwk2     FH8552     deciduous     30     8     8552     05     Deciduous       ESSFwk2     FH8552     deciduous     30     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2                                                                                                                                              | ESSEWKZ  | FH8542 | StopeG130   | 20        | 6               | 8542   | 04         | Deciduous |
| ESSFwk2     FH8551     conifer     30     7     8551     05     Conifer       ESSFwk2     FH8551     SlopeLT20     20     7     8551     05     Conifer       ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8552     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     conifer     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     gordT10     20     10     8562     06     Deciduous       ESSFwk2                                                                                                                                          | ESSFwk2  | FH8551 | Moist2Wet   | 30        | 7               | 8551   | 05         | Conifer   |
| ESSFwk2     FH8551     StopeLT20     20     7     8551     05     Conifer       ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8552     deciduous     30     8     8552     05     Deciduous       ESSFwk2     FH8552     StopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     StopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     StopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     StopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     StopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     StopeGT10     20     10     8562     06     Deciduous       ES                                                                                                                            | ESSFwk2  | FH8551 | conifer     | 30        | 7               | 8551   | 05         | Conifer   |
| ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8552     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8551     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2                                                                                                                                 | ESSFwk2  | FH8551 | SlopeLT20   | 20        | 7               | 8551   | 05         | Conifer   |
| ESSFwk2     FH8552     Moist2Wet     30     8     8552     05     Deciduous       ESSFwk2     FH8552     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8552     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeCT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeCT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2                                                                                                                                   |          |        |             |           |                 |        |            |           |
| ESSFwk2     FH8552     deciduous     30     8     8552     05     Deciduous       ESSFwk2     FH8552     StopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     StopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     StopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     StopeCT10     20     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     deciduous     30     10     8562     06     Deciduous       ESSFwk2     FH8562     StopeLT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2 <td>ESSFwk2</td> <td>FH8552</td> <td>Moist2Wet</td> <td>30</td> <td>8</td> <td>8552</td> <td>05</td> <td>Deciduous</td>        | ESSFwk2  | FH8552 | Moist2Wet   | 30        | 8               | 8552   | 05         | Deciduous |
| ESSFwk2     FH8552     SlopeLT20     20     8     8552     05     Deciduous       ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeCT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeCT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     slopeCT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2                                                                                                                                      | ESSFwk2  | FH8552 | deciduous   | 30        | 8               | 8552   | 05         | Deciduous |
| ESSFwk2     FH8561     Wet     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     11     8553     05     Conifer       ESSFwk2                                                                                                                                       | ESSFwk2  | FH8552 | SlopeLT20   | 20        | 8               | 8552   | 05         | Deciduous |
| Lish Miz     Hibbit     Hitcl     30     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeLT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeCT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeCT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeLT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeLT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2                                                                                                                                  | FSSFwk2  | FH8561 | Wet         | 30        | 9               | 8561   | 06         | Conifer   |
| L31 Mi2     FH8561     SlopeIT30     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     SlopeGT10     20     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     grof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2 <td>ESSEW/2</td> <td>EU8561</td> <td>conifor</td> <td>30</td> <td>,<br/>0</td> <td>8561</td> <td>06</td> <td>Conifer</td>      | ESSEW/2  | EU8561 | conifor     | 30        | ,<br>0          | 8561   | 06         | Conifer   |
| LSPWAZ     FH8561     SlopeC110     20     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     deciduous     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeCT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2                                                                                                                                 | ESSEW12  | FU9541 | Clonel T20  | 30        | ,               | 9541   | 00         | Conifer   |
| ESSFWAZ     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwkZ     FH8561     prof_cv     30     9     8561     06     Conifer       ESSFwkZ     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwkZ     FH8562     SlopeLT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2<                                                                                                                            | ESSEWIC  | FH0301 | SlopeCT10   | 20        | 3               | 8561   | 06         | Conifer   |
| ESSPWA2     FH8561     project     30     9     8561     06     Connert       ESSFwk2     FH8561     deciduous     30     10     8562     06     Deciduous       ESSFwk2     FH8562     deciduous     30     10     8562     06     Deciduous       ESSFwk2     FH8562     StopeCT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     StopeCT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_ev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous  ESSFwk2<                                                                                                                    | ESSEWIKZ | FH0301 | stoped 110  | 20        | 9               | 8561   | 06         | Conifer   |
| ESSFwk2     FH8562     Wet     30     10     8562     06     Deciduous       ESSFwk2     FH8562     deciduous     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeLT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8554     dociduous     30     12     8554     05     Deciduous <td< td=""><td>ESSEMKZ</td><td>FH6301</td><td>prot_cv</td><td>30</td><td>9</td><td>0001</td><td>06</td><td>conner</td></td<>     | ESSEMKZ  | FH6301 | prot_cv     | 30        | 9               | 0001   | 06         | conner    |
| ESSFwk2     FH8562     deciduous     30     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeCIT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeCIT0     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_Lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_Lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_Lev     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous                                                                                                                          | ESSFwk2  | FH8562 | Wet         | 30        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8562     SlopeLT30     20     10     8562     06     Deciduous       ESSFwk2     FH8562     SlopeCT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_ev     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous                                                                                                                               | ESSFwk2  | FH8562 | deciduous   | 30        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8562     SlopeGT10     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer                                                                                                                           | ESSFwk2  | FH8562 | SlopeLT30   | 20        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8562     prof_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer                                                                                                                               | ESSFwk2  | FH8562 | SlopeGT10   | 20        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8562     prof_cv     30     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8563     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer                                                                                                                               | ESSFwk2  | FH8562 | prof_lev    | 20        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8562     plan_lev     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     Koist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     13     8513     01/03     Conifer                                                                                                                          | ESSFwk2  | FH8562 | prof_cv     | 30        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8562     plan_cv     20     10     8562     06     Deciduous       ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous                                                                                                                           | ESSFwk2  | FH8562 | plan lev    | 20        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous                                                                                                                      | ESSFwk2  | FH8562 | plan_cv     | 20        | 10              | 8562   | 06         | Deciduous |
| ESSFwk2     FH8553     Moist2Wet     30     11     8553     05     Conifer       ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                            |          |        |             |           |                 |        |            |           |
| ESSFwk2     FH8553     conifer     30     11     8553     05     Conifer       ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conifer       ESSFwk2     FH8553     moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     conifer     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous  <                                                                                                                | ESSFwk2  | FH8553 | Moist2Wet   | 30        | 11              | 8553   | 05         | Conifer   |
| ESSFwk2     FH8553     prof_cv     20     11     8553     05     Conffer       ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8513     conifer     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                             | ESSFwk2  | FH8553 | conifer     | 30        | 11              | 8553   | 05         | Conifer   |
| ESSFwk2     FH8554     Moist2Wet     30     12     8554     05     Deciduous       ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                           | ESSFwk2  | FH8553 | prof_cv     | 20        | 11              | 8553   | 05         | Conifer   |
| ESSFwk2     FH8554     deciduous     30     12     8554     05     Deciduous       ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     conifer     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                          | ESSFwk2  | FH8554 | Moist2Wet   | 30        | 12              | 8554   | 05         | Deciduous |
| ESSFwk2     FH8554     prof_cv     20     12     8554     05     Deciduous       ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     conifer     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                                                                                                             | ESSFwk2  | FH8554 | deciduous   | 30        | 12              | 8554   | 05         | Deciduous |
| ESSFwk2     FH8513     Moist2Wet     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     conifer     30     13     8513     01/03     Conifer       ESSFwk2     FH8513     SlopeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                                                                                                                                                                                              | ESSFwk2  | FH8554 | prof_cv     | 20        | 12              | 8554   | 05         | Deciduous |
| Control     FH8513     Control     So     13     6013     01/03     Control       ESSFwk2     FH8513     Control     20     13     8513     01/03     Control       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                                                                                                                                                                                              | FSSEWPO  | FH2512 | Moist2Wot   | 20        | 12              | 8513   | 01/02      | Conifer   |
| LSh WA2     FH8513     StoppeGT40     20     13     6015     01/03     Conner       ESSFwk2     FH8513     StoppeGT40     20     13     8513     01/03     Conifer       ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     StopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ESSEW1/2 | EU9512 | conifor     | 30        | 13              | 8512   | 01/03      | Conifer   |
| ESSFwk2 FH8514 Moist2Wet 30 14 8514 01/03 Deciduous<br>ESSFwk2 FH8514 deciduous 30 14 8514 01/03 Deciduous<br>ESSFwk2 FH8514 deciduous 30 14 8514 01/03 Deciduous<br>ESSFwk2 FH8514 SlopeGT40 20 14 8514 01/03 Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESSEWIN2 | FH0313 | Class CT 10 | 30        | 13              | 0313   | 01/03      | Conifer   |
| ESSFwk2     FH8514     Moist2Wet     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     deciduous     30     14     8514     01/03     Deciduous       ESSFwk2     FH8514     SlopeGT40     20     14     8514     01/03     Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOOPWKZ  | FH6313 | 310peG 140  | 20        | 13              | 0213   | 01/03      | conner    |
| ESSFwk2 FH8514 deciduous 30 14 8514 01/03 Deciduous<br>ESSFwk2 FH8514 SlopeGT40 20 14 8514 01/03 Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ESSFwk2  | FH8514 | Moist2Wet   | 30        | 14              | 8514   | 01/03      | Deciduous |
| ESSFwk2 FH8514 SlopeGT40 20 14 8514 01/03 Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESSFwk2  | FH8514 | deciduous   | 30        | 14              | 8514   | 01/03      | Deciduous |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESSFwk2  | FH8514 | SlopeGT40   | 20        | 14              | 8514   | 01/03      | Deciduous |

|           |          |           | FU        | ZZY ATTRIBUTE T | ABLE (ARULE | S)     |        |        |        |       |
|-----------|----------|-----------|-----------|-----------------|-------------|--------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO        | В           | B_LOW  | B_HI   | B1     | B2     | D     |
| 1         | formfile | PROF      | prof_cx   | 5               | -16.00      | -16.00 | -16.00 | -85.00 | -16.10 | 0.10  |
| 2         | formfile | PROF      | prof_lev  | 1               | 4.50        | 4.50   | 4.50   | -16.00 | 16.00  | 20.50 |
| 3         | formfile | PROF      | prof_cv   | 4               | 16.00       | 16.00  | 16.00  | 15.00  | 86.00  | 1.00  |
| 4         | formfile | QWETI     | Dry       | 5               | 4.20        | 4.20   | 4.20   | 1.43   | 4.10   | 0.10  |
| 5         | formfile | QWETI     | Mesic     | 1               | 5.60        | 5.60   | 5.60   | 4.20   | 7.00   | 1.40  |
| 6         | formfile | QWETI     | Moist2Wet | 1               | 8.00        | 8.00   | 8.00   | 7.00   | 9.00   | 1.00  |
| 7         | formfile | QWETI     | Wet       | 4               | 9.00        | 9.00   | 9.00   | 8.00   | 26.00  | 1.00  |
| 8         | formfile | SLOPE     | Steep     | 4               | 40.00       | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |
| 9         | formfile | NEW_ASP   | NE_Aspect | 1               | 90.00       | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |
| 10        | formfile | NEW_ASP   | SW_Aspect | 1               | 270.00      | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |
| 11        | geofile  | Classify1 | conifer   | 1               | 5.00        | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |
| 12        | geofile  | Classify1 | deciduous | 1               | 7.00        | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |
| 13        | formfile | SLOPE     | SlopeLT30 | 5               | 30.00       | 30.00  | 30.00  | 0.00   | 30.10  | 0.10  |
| 14        | formfile | SLOPE     | SlopeGT30 | 4               | 31.00       | 31.00  | 31.00  | 30.00  | 252.00 | 1.00  |
| 15        | formfile | SLOPE     | SlopeLT5  | 5               | 5.00        | 5.00   | 5.00   | 0.00   | 5.10   | 0.10  |
| 16        | formfile | SLOPE     | SlopeGT5  | 4               | 6.00        | 6.00   | 6.00   | 5.00   | 252.00 | 1.00  |
| 17        | formfile | SLOPE     | SlopeLT10 | 5               | 10.00       | 10.00  | 10.00  | 0.00   | 10.10  | 0.10  |
| 18        | formfile | SLOPE     | SlopeGT10 | 4               | 11.00       | 11.00  | 11.00  | 10.00  | 252.00 | 1.00  |
| 19        | formfile | SLOPE     | SlopeLT40 | 5               | 40.00       | 40.00  | 40.00  | 0.00   | 40.10  | 0.10  |
| 20        | formfile | SLOPE     | SlopeLT20 | 5               | 20.00       | 20.00  | 20.00  | 0.00   | 20.10  | 0.10  |
| 21        | formfile | SLOPE     | SlopeGT20 | 4               | 21.00       | 21.00  | 21.00  | 20.00  | 252.00 | 1.00  |
| 22        | formfile | PLAN      | plan_cx   | 5               | -16.00      | -16.00 | -16.00 | -85.00 | -16.10 | 0.10  |
| 23        | formfile | PLAN      | plan_lev  | 1               | 4.50        | 4.50   | 4.50   | -16.00 | 16.00  | 20.50 |
| 24        | formfile | PLAN      | plan_cv   | 4               | 16.00       | 16.00  | 16.00  | 15.00  | 86.00  | 1.00  |
| 25        | formfile | SLOPE     | SlopeGT40 | 4               | 41.00       | 41.00  | 41.00  | 40.00  | 252.00 | 1.00  |

### Appendix 1p. Predictive Ecosystem Mapping Rules for SBSwk2 Zone File 9000

|        |           | FUZZY CL | ASS TABLE (CR | ULES)  |                    |
|--------|-----------|----------|---------------|--------|--------------------|
| F_NAME | FUZATTR   | ATTRWT   | FACET_NO      | F_CODE | Predicting         |
| FH9001 | shrub     | 30       | 1             | 9001   | Wetland Shrub/Herb |
| FH9001 | SlopeLT5  | 40       | 1             | 9001   | Wetland Shrub/Herb |
| FH9001 | flat      | 40       | 1             | 9001   | Wetland Shrub/Herb |
| FH9002 | herb      | 30       | 2             | 9002   | Wetland herb       |
| FH9002 | SlopeLT5  | 40       | 2             | 9002   | Wetland herb       |
| FH9002 | flat      | 40       | 2             | 9002   | Wetland herb       |
| FH9003 | barren    | 80       | 3             | 9003   | Barren             |
| FH9004 | water     | 80       | 4             | 9004   | water              |
| FH9021 | Dry       | 40       | 5             | 9021   | 02 shrub           |
| FH9021 | shrub     | 30       | 5             | 9021   | 02 shrub           |
| FH9022 | Dry       | 40       | 6             | 9022   | 02 herb            |
| FH9022 | herb      | 30       | 6             | 9022   | 02 herb            |
| FH9011 | Mesic     | 30       | 7             | 9011   | 01 shrub           |
| FH9011 | shrub     | 30       | 7             | 9011   | 01 shrub           |
| FH9011 | SlopeGT5  | 20       | 7             | 9011   | 01 shrub           |
| FH9012 | Mesic     | 30       | 8             | 9012   | 01 herb            |
| FH9012 | herb      | 30       | 8             | 9012   | 01 herb            |
| FH9012 | SlopeGT5  | 20       | 8             | 9012   | 01 herb            |
| FH9031 | submesic  | 30       | 9             | 9031   | 03 shrub           |
| FH9031 | shrub     | 30       | 9             | 9031   | 03 shrub           |
| FH9031 | SlopeLT75 | 20       | 9             | 9031   | 03 shrub           |
| FH9032 | submesic  | 30       | 10            | 9032   | 03 herb            |
| FH9032 | herb      | 30       | 10            | 9032   | 03 herb            |
| FH9032 | SlopeLT75 | 20       | 10            | 9032   | 03 herb            |
| FH9041 | Mesic     | 30       | 11            | 9041   | 04 shrub           |
| FH9041 | shrub     | 30       | 11            | 9041   | 04 shrub           |
| FH9041 | SlopeLT30 | 20       | 11            | 9041   | 04 shrub           |
| FH9041 | NE_Aspect | 20       | 11            | 9041   | 04 shrub           |
| FH9042 | Mesic     | 30       | 12            | 9042   | 04 herb            |
| FH9042 | herb      | 30       | 12            | 9042   | 04 herb            |
| FH9042 | SlopeLT5  | 20       | 12            | 9042   | 04 herb            |
| FH9043 | Mesic     | 30       | 13            | 9043   | 04 shrub           |
| FH9043 | shrub     | 30       | 13            | 9043   | 04 shrub           |
| FH9043 | SlopeLT5  | 20       | 13            | 9043   | 04 shrub           |
| FH9044 | Mesic     | 30       | 14            | 9044   | 04 herb            |
| FH9044 | herb      | 30       | 14            | 9044   | 04 herb            |
| FH9044 | SlopeLT30 | 20       | 14            | 9044   | 04 herb            |
| FH9044 | NE_Aspect | 20       | 14            | 9044   | 04 herb            |

|        |           | FUZZY CL | ASS TABLE (CRUI | ES)    |                       |
|--------|-----------|----------|-----------------|--------|-----------------------|
| F_NAME | FUZATTR   | ATTRWT   | FACET_NO        | F_CODE | Predicting            |
| FH9051 | subhygric | 30       | 15              | 9051   | 05 shrub              |
| FH9051 | shrub     | 30       | 15              | 9051   | 05 shrub              |
| FH9051 | SlopeGT5  | 20       | 15              | 9051   | 05 shrub              |
| FH9051 | SlopeLT35 | 20       | 15              | 9051   | 05 shrub              |
| FH9052 | subhygric | 30       | 16              | 9052   | 05 herb               |
| FH9052 | herb      | 30       | 16              | 9052   | 05 herb               |
| FH9052 | SlopeGT5  | 20       | 16              | 9052   | 05 herb               |
| FH9052 | SlopeLT35 | 20       | 16              | 9052   | 05 herb               |
| FH9005 | Organic   | 50       | 17              | 9005   | Organic wetland (fen) |
| FH9005 | shrub     | 30       | 17              | 9005   | Organic wetland (fen) |
| FH9006 | Organic   | 50       | 18              | 9006   | Organic wetland (fen) |
| FH9006 | herb      | 30       | 18              | 9006   | Organic wetland (fen) |

|           |          |           | CL 102 OUT |          |        | B 1 014 |        |        |        |       |
|-----------|----------|-----------|------------|----------|--------|---------|--------|--------|--------|-------|
| SORTORDER | FILE_IN  | ATTR_IN   | CLASS_OUT  | MODEL_NO | В      | B_LOW   | B_HI   | B1     | BZ     | D     |
| 1         | formfile | QWETI     | Dry        | 5        | 4.40   | 4.40    | 4.40   | 1.43   | 4.50   | 0.10  |
| 2         | formfile | QWETI     | submesic   | 1        | 5.20   | 5.20    | 5.20   | 4.40   | 6.00   | 0.80  |
| 3         | formfile | QWETI     | Mesic      | 1        | 7.00   | 7.00    | 7.00   | 6.00   | 8.00   | 1.00  |
| 4         | formfile | QWETI     | subhygric  | 1        | 10.50  | 10.50   | 10.50  | 8.00   | 13.00  | 2.50  |
| 5         | formfile | QWETI     | wet        | 4        | 13.00  | 13.00   | 13.00  | 12.00  | 26.00  | 1.00  |
| 6         | formfile | SLOPE     | SlopeLT15  | 5        | 15.00  | 15.00   | 15.00  | 0.00   | 15.10  | 0.10  |
| 7         | formfile | SLOPE     | SlopeGT5   | 4        | 5.00   | 5.00    | 5.00   | 4.00   | 100.00 | 1.00  |
| 8         | formfile | SLOPE     | SlopeLT30  | 5        | 30.00  | 30.00   | 30.00  | 0.00   | 30.10  | 0.10  |
| 9         | formfile | SLOPE     | SlopeLT35  | 5        | 35.00  | 35.00   | 35.00  | 0.00   | 35.10  | 0.10  |
| 10        | formfile | SLOPE     | SlopeLT75  | 5        | 75.00  | 75.00   | 75.00  | 0.00   | 75.10  | 0.10  |
| 11        | formfile | SLOPE     | SlopeLT10  | 5        | 10.00  | 10.00   | 10.00  | 0.00   | 10.10  | 0.10  |
| 12        | formfile | SLOPE     | SlopeLT5   | 5        | 5.00   | 5.00    | 5.00   | 0.00   | 5.10   | 0.10  |
| 13        | formfile | SLOPE     | Steep      | 4        | 40.00  | 40.00   | 40.00  | 35.00  | 100.00 | 5.00  |
| 14        | formfile | NEW_ASP   | NE_Aspect  | 1        | 90.00  | 90.00   | 90.00  | 0.00   | 180.00 | 45.00 |
| 15        | formfile | NEW_ASP   | SW_Aspect  | 1        | 270.00 | 270.00  | 270.00 | 180.00 | 360.00 | 45.00 |
| 16        | geofile  | Classify1 | water      | 1        | 1.00   | 1.00    | 1.00   | 0.99   | 1.01   | 0.01  |
| 17        | geofile  | Classify1 | herb       | 1        | 2.00   | 2.00    | 2.00   | 1.99   | 2.01   | 0.01  |
| 18        | geofile  | Classify1 | shrub      | 1        | 3.00   | 3.00    | 3.00   | 2.99   | 3.01   | 0.01  |
| 19        | geofile  | Classify1 | barren     | 1        | 4.00   | 4.00    | 4.00   | 3.99   | 4.01   | 0.01  |
| 20        | relzfile | Z2PIT     | puddle     | 5        | 1.50   | 1.50    | 1.50   | 0.00   | 1.51   | 0.10  |
| 21        | relzfile | Z2PIT     | flat       | 1        | 2.50   | 2.50    | 2.50   | 1.50   | 3.50   | 1.00  |
| 22        | geofile  | Terrain   | Bedrock    | 1        | 1.00   | 1.00    | 1.00   | 0.99   | 1.01   | 0.01  |
| 23        | geofile  | Terrain   | Colluv     | 1        | 2.00   | 2.00    | 2.00   | 1.99   | 2.01   | 0.01  |
| 24        | geofile  | Terrain   | Fluvial    | 1        | 3.00   | 3.00    | 3.00   | 2.99   | 3.01   | 0.01  |
| 25        | geofile  | Terrain   | FG         | 1        | 4.00   | 4.00    | 4.00   | 3.99   | 4.01   | 0.01  |
| 26        | geofile  | Terrain   | Lacust     | 1        | 5.00   | 5.00    | 5.00   | 4.99   | 5.01   | 0.01  |
| 27        | geofile  | Terrain   | GlacLac    | 1        | 6.00   | 6.00    | 6.00   | 5.99   | 6.01   | 0.01  |
| 28        | geofile  | Terrain   | Organic    | 1        | 7.00   | 7.00    | 7.00   | 6.99   | 7.01   | 0.01  |
| 29        | geofile  | Terrain   | Moraine    | 1        | 8.00   | 8.00    | 8.00   | 7.99   | 8.01   | 0.01  |
| 30        | geofile  | Terrain   | Other      | 1        | 9.00   | 9.00    | 9.00   | 8.99   | 9.01   | 0.01  |

### Appendix 1q. Predictive Ecosystem Mapping Rules for SBSwk2 Zone File 9500

|        |            | ATTDW/T | EACET NO | E CODE        | Prodicting | Stand     |
|--------|------------|---------|----------|---------------|------------|-----------|
| NAME   | FUZALIR    | ATTRWI  | FALEI_NO | F_CODE        | Predicting | Conifer   |
| H9521  | Dry        | 40      | 1        | 9521          | 02         | Conifer   |
| H9521  | conifer    | 30      | 1        | 9521          | 02         | conner    |
| H9522  | Drv        | 40      | 2        | 9522          | 02         | Deciduous |
| H9522  | deciduous  | 30      | 2        | 9522          | 02         | Deciduous |
|        | acciduous  | 50      | -        | /011          |            |           |
| H9511  | Mesic      | 30      | 3        | 9511          | 01         | Conifer   |
| -H9511 | conifer    | 30      | 3        | 9511          | 01         | Conifer   |
| H9511  | SlopeGT5   | 20      | 3        | 9511          | 01         | Conifer   |
| 10512  | Magia      | 20      | 4        | 0513          | 01         | Deciduous |
| H0512  | deciduous  | 20      | 4        | 7J12<br>0512  | 01         | Deciduous |
| 119312 |            | 30      | 4        | 9512          | 01         | Deciduous |
| N9312  | StopeG15   | 20      | 4        | 9012          | 01         | Deciduous |
| H9531  | submesic   | 30      | 5        | 9531          | 03         | Conifer   |
| H9531  | conifer    | 30      | 5        | 9531          | 03         | Conifer   |
| H9531  | SlopeLT75  | 20      | 5        | 9531          | 03         | Conifer   |
|        |            |         |          |               |            |           |
| H9532  | submesic   | 30      | 6        | 9532          | 03         | Deciduous |
| H9532  | deciduous  | 30      | 6        | 9532          | 03         | Deciduous |
| H9532  | SlopeLT75  | 20      | 6        | 9532          | 03         | Deciduous |
|        |            |         |          |               |            | Conter    |
| H9541  | Mesic      | 30      | 7        | 9541          | 04         | Conifer   |
| H9541  | conifer    | 30      | 7        | 9541          | 04         | Conifer   |
| H9541  | SlopeLT30  | 20      | 7        | 9541          | 04         | Coniter   |
| H9541  | NE_Aspect  | 20      | 7        | 9541          | 04         | Coniter   |
| H9547  | Mosic      | 30      | Q        | 9542          | 04         | Conifer   |
| 117342 | deciduour  | 30      | o<br>g   | 7J42<br>05/2  | 04         | Conifer   |
| H0542  |            | 20      | o<br>Q   | 7J42<br>Q5/17 | 04         | Conifer   |
| 117342 | Sicheria   | 20      | o        | 7,142         | 04         | 20        |
| H9543  | Mesic      | 30      | 9        | 9543          | 04         | Deciduous |
| H9543  | conifer    | 30      | 9        | 9543          | 04         | Deciduous |
| H9543  | SlopeLT5   | 20      | 9        | 9543          | 04         | Deciduous |
|        |            |         |          |               |            | Desides   |
| H9544  | Mesic      | 30      | 10       | 9544          | 04         | Deciduous |
| H9544  | deciduous  | 30      | 10       | 9544          | 04         | Deciduous |
| H9544  | SlopeLT30  | 20      | 10       | 9544          | 04         | Deciduous |
| H9544  | NE_Aspect  | 20      | 10       | 9544          | 04         | Deciduous |
| H0551  | subhygric  | 30      | 11       | 9551          | 05         | Conifer   |
| -H9551 | conifor    | 30      | 11       | 9551          | 05         | Conifer   |
| -H9551 | SloneGT5   | 20      | 11       | 9551          | 05         | Conifer   |
|        | Clanel T25 | 20      | 11       | 7551          | 05         | Conifer   |

| FUZZY CLASS TABLE (CRULES) |           |        |          |        |            |           |  |  |  |
|----------------------------|-----------|--------|----------|--------|------------|-----------|--|--|--|
| F_NAME                     | FUZATTR   | ATTRWT | FACET_NO | F_CODE | Predicting | Stand     |  |  |  |
| FH9552                     | subhygric | 30     | 12       | 9552   | 05         | Deciduous |  |  |  |
| FH9552                     | deciduous | 30     | 12       | 9552   | 05         | Deciduous |  |  |  |
| FH9552                     | SlopeGT5  | 20     | 12       | 9552   | 05         | Deciduous |  |  |  |
| FH9552                     | SlopeLT35 | 20     | 12       | 9552   | 05         | Deciduous |  |  |  |
| FH9561                     | wet       | 30     | 13       | 9561   | 06 (Ws07)  | Not used  |  |  |  |
| FH9561                     | SlopeLT10 | 20     | 13       | 9561   | 06 (Ws07)  | Not used  |  |  |  |
| FH9561                     | flat      | 50     | 13       | 9561   | 06 (Ws07)  | Not used  |  |  |  |
| FH9571                     | wet       | 30     | 14       | 9571   | 07 (Wb06)  | Not used  |  |  |  |
| FH9571                     | SlopeLT10 | 20     | 14       | 9571   | 07 (Wb06)  | Not used  |  |  |  |
| FH9571                     | puddle    | 50     | 14       | 9571   | 07 (Wb06)  | Not used  |  |  |  |
| FH9600                     | Organic   | 60     | 15       | 9600   | 07 (Wb06)  | Not used  |  |  |  |
|                            |           |        |          |        |            |           |  |  |  |

|    | FUZZY ATTRIBUTE TABLE (ARULES) |          |           |           |          |        |        |        |        |        |       |  |
|----|--------------------------------|----------|-----------|-----------|----------|--------|--------|--------|--------|--------|-------|--|
| SO | RTORDER                        | FILE_IN  | ATTR_IN   | CLASS_OUT | MODEL_NO | В      | B_LOW  | B_HI   | B1     | B2     | D     |  |
| 1  |                                | formfile | QWETI     | Dry       | 5        | 4.20   | 4.20   | 4.20   | 1.43   | 4.30   | 0.10  |  |
| 2  |                                | formfile | QWETI     | submesic  | 1        | 5.20   | 5.20   | 5.20   | 4.40   | 6.00   | 0.80  |  |
| 3  |                                | formfile | QWETI     | Mesic     | 1        | 7.00   | 7.00   | 7.00   | 6.00   | 8.00   | 1.00  |  |
| 4  |                                | formfile | QWETI     | subhygric | 1        | 10.50  | 10.50  | 10.50  | 8.00   | 13.00  | 2.50  |  |
| 5  |                                | formfile | QWETI     | wet       | 4        | 13.00  | 13.00  | 13.00  | 12.00  | 26.00  | 1.00  |  |
| 6  |                                | formfile | SLOPE     | SlopeLT15 | 5        | 15.00  | 15.00  | 15.00  | 0.00   | 15.10  | 0.10  |  |
| 7  |                                | formfile | SLOPE     | SlopeGT5  | 4        | 5.00   | 5.00   | 5.00   | 4.00   | 100.00 | 1.00  |  |
| 8  |                                | formfile | SLOPE     | SlopeLT30 | 5        | 30.00  | 30.00  | 30.00  | 0.00   | 30.10  | 0.10  |  |
| 9  |                                | formfile | SLOPE     | SlopeLT35 | 5        | 35.00  | 35.00  | 35.00  | 0.00   | 35.10  | 0.10  |  |
| 10 |                                | formfile | SLOPE     | SlopeLT75 | 5        | 75.00  | 75.00  | 75.00  | 0.00   | 75.10  | 0.10  |  |
| 11 |                                | formfile | SLOPE     | SlopeLT10 | 5        | 10.00  | 10.00  | 10.00  | 0.00   | 10.10  | 0.10  |  |
| 12 |                                | formfile | SLOPE     | SlopeLT5  | 5        | 5.00   | 5.00   | 5.00   | 0.00   | 5.10   | 0.10  |  |
| 13 |                                | formfile | SLOPE     | Steep     | 4        | 40.00  | 40.00  | 40.00  | 35.00  | 100.00 | 5.00  |  |
| 14 |                                | formfile | NEW_ASP   | NE_Aspect | 1        | 90.00  | 90.00  | 90.00  | 0.00   | 180.00 | 45.00 |  |
| 15 |                                | formfile | NEW_ASP   | SW_Aspect | 1        | 270.00 | 270.00 | 270.00 | 180.00 | 360.00 | 45.00 |  |
| 16 |                                | geofile  | Classify1 | conifer   | 1        | 5.00   | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |  |
| 17 |                                | geofile  | Classify1 | deciduous | 1        | 7.00   | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |  |
| 18 |                                | relzfile | Z2PIT     | puddle    | 5        | 1.50   | 1.50   | 1.50   | 0.00   | 1.51   | 0.10  |  |
| 19 |                                | relzfile | Z2PIT     | flat      | 1        | 2.50   | 2.50   | 2.50   | 1.50   | 3.50   | 1.00  |  |
| 20 |                                | geofile  | Terrain   | Bedrock   | 1        | 1.00   | 1.00   | 1.00   | 0.99   | 1.01   | 0.01  |  |
| 21 |                                | geofile  | Terrain   | Colluv    | 1        | 2.00   | 2.00   | 2.00   | 1.99   | 2.01   | 0.01  |  |
| 22 |                                | geofile  | Terrain   | Fluvial   | 1        | 3.00   | 3.00   | 3.00   | 2.99   | 3.01   | 0.01  |  |
| 23 |                                | geofile  | Terrain   | FG        | 1        | 4.00   | 4.00   | 4.00   | 3.99   | 4.01   | 0.01  |  |
| 24 |                                | geofile  | Terrain   | Lacust    | 1        | 5.00   | 5.00   | 5.00   | 4.99   | 5.01   | 0.01  |  |
| 25 |                                | geofile  | Terrain   | GlacLac   | 1        | 6.00   | 6.00   | 6.00   | 5.99   | 6.01   | 0.01  |  |
| 26 |                                | geofile  | Terrain   | Organic   | 1        | 7.00   | 7.00   | 7.00   | 6.99   | 7.01   | 0.01  |  |
| 27 |                                | geofile  | Terrain   | Moraine   | 1        | 8.00   | 8.00   | 8.00   | 7.99   | 8.01   | 0.01  |  |
| 28 |                                | geofile  | Terrain   | Other     | 1        | 9.00   | 9.00   | 9.00   | 8.99   | 9.01   | 0.01  |  |

# Appendix 2

British Columbia Conservation Data Centre Listed Ecosystems in the Peace Forest District


### Appendix 2. British Columbia Conservation Data Centre Listed Ecosystems in the Peace Forest District

|                                                           |                                                                                              | Global | Prov       |         |                                |         |                              |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------|------------|---------|--------------------------------|---------|------------------------------|
| English Name                                              | Scientific Name                                                                              | Status | Status     | BC List | Ecosystem Group                | Endemic | Murray River BEC/Site Series |
| (balsam poplar, black cottonwood) - spruces / red-osier   | Populus balsamifera (ssp. balsamifera , ssp. trichocarpa ) - Picea spp. / Cornus stolonifera | GNR    | S2?        | Red     | Riparian, Forest               |         | Fm02; BWBSmw/112             |
| arctic rush - Nuttall's alkaligrass - seablite            | Juncus arcticus - Puccinellia nuttalliana - Suaeda calceoliformis                            | G3?    | S1         | Red     | Herbaceous, Wetland            |         | BWBSmw/00                    |
| black spruce / common horsetail / peat-mosses             | Picea mariana / Equisetum arvense / Sphagnum spp.                                            | GNR    | S3S4       | Blue    | Forest, Wetland                |         | Wb09                         |
| black spruce / lingonberry / peat-mosses                  | Picea mariana / Vaccinium vitis-idaea / Sphagnum spp.                                        | GNR    | S3         | Blue    | Wetland, Forest                |         | Wb03                         |
| common cattail Marsh                                      | Typha latifolia Marsh                                                                        | G5     | \$3        | Blue    | Wetland, Herbaceous            |         | Wm05                         |
| lodgepole pine / black huckleberry / reindeer lichens     | Pinus contorta / Vaccinium membranaceum / Cladina spp.                                       | G3     | S3         | Blue    | Woodland, Forest               | Y       | SBSwk2/02                    |
| lodgepole pine / few-flowered sedge / peat-mosses         | Pinus contorta / Carex pauciflora / Sphagnum spp.                                            | G2G3   | S2S3       | Blue    | Wetland, Forest, Woodland      | Y       | Wb10                         |
| mat muhly - arctic rush - Nevada bluegrass                | Muhlenbergia richardsonis - Juncus arcticus - Poa secunda ssp. juncifolia                    | GNR    | S1         | Red     | Herbaceous, Wetland, Grassland |         | BWBSmw/00                    |
| narrow-leaf willow Shrubland                              | Salix exigua Shrubland                                                                       | G5     | S2         | Red     | Wetland, Riparian, Shrub       | Ν       | none                         |
| narrow-leaved cotton-grass - shore sedge                  | Eriophorum angustifolium - Carex limosa                                                      | G3     | \$3        | Blue    | Wetland, Herbaceous            | Y       | Wf13                         |
| Pacific willow / red-osier dogwood / horsetails           | Salix lucida ssp. lasiandra / Cornus stolonifera / Equisetum spp.                            | G2     | S2         | Red     | Riparian, Shrub, Herbaceous    | Y       | none                         |
| scrub birch / water sedge                                 | Betula nana / Carex aquatilis                                                                | G4     | S3         | Blue    | Wetland, Shrub                 | Y       | Wf02                         |
| shore sedge - buckbean / hook-mosses                      | Carex limosa - Menyanthes trifoliata / Drepanocladus spp.                                    | G3     | \$3        | Blue    | Wetland, Herbaceous            | Y       | Wf08                         |
| slender sedge / common hook-moss                          | Carex lasiocarpa / Drepanocladus aduncus                                                     | G3     | <b>S</b> 3 | Blue    | Wetland, Herbaceous            | Y       | Wf05                         |
| subalpine fir / alders / horsetails                       | Abies lasiocarpa / Alnus spp. / Equisetum spp.                                               | GNR    | S3         | Blue    | Forest                         |         | ESSFmv2/06                   |
| swamp horsetail - beaked sedge                            | Equisetum fluviatile - Carex utriculata                                                      | G4     | S3         | Blue    | Wetland, Herbaceous            |         | Wm02                         |
| tamarack / buckbean - shore sedge                         | Larix laricina / Menyanthes trifoliata - Carex limosa                                        | GNR    | \$3?       | Blue    | Forest, Wetland                |         | Wf18                         |
| tamarack / water sedge / golden fuzzy fen moss            | Larix laricina / Carex aquatilis / Tomentypnum nitens                                        | GNR    | <b>S</b> 3 | Blue    | Wetland, Forest                |         | Wb06                         |
| tufted clubrush / golden star-moss                        | Trichophorum cespitosum / Campylium stellatum                                                | G2G3   | S2S3       | Blue    | Wetland, Herbaceous            | Y       | Wf11                         |
| white spruce - black spruce / labrador tea / glow moss    | Picea glauca - Picea mariana / Ledum groenlandicum / Aulacomnium palustre                    | GNR    | \$3        | Blue    | Forest, Wetland                |         | Ws15                         |
| white spruce - lodgepole pine / soopolallie / showy aster | Picea glauca - Pinus contorta / Shepherdia canadensis / Aster conspicuus                     | GNR    | \$3        | Blue    | Forest                         |         | BWBSwk1/103                  |
| white spruce / oak fern - wild sarsaparilla               | Picea glauca / Gymnocarpium dryopteris - Aralia nudicaulis                                   | G3     | S3         | Blue    | Forest, Riparian               |         | BWBSmw/110                   |
| white spruce / red swamp currant / horsetails             | Picea glauca / Ribes triste / Equisetum spp.                                                 | G4     | S2S3       | Blue    | Forest, Riparian               |         | BWBSmw/111;BWBSwk1/110       |
| white spruce / red swamp currant / tall bluebells         | Picea glauca / Ribes triste / Mertensia paniculata                                           | G3     | S3         | Blue    | Forest, Riparian               |         | none                         |

British Columbia Conservation Data Centre Listed Plants in the Peace Forest District



| Appendix 3. | British Columbia | <b>Conservation Data</b> | Centre Listed | Plants in the | Peace Forest District |
|-------------|------------------|--------------------------|---------------|---------------|-----------------------|
|-------------|------------------|--------------------------|---------------|---------------|-----------------------|

| Scientific Name                             | English Name             | RISC Code | GlobalStatus | ProvStatus | BCList | SARA Listed | NationalGS           | Category          | Habitat Type                               |
|---------------------------------------------|--------------------------|-----------|--------------|------------|--------|-------------|----------------------|-------------------|--------------------------------------------|
| Amblyodon dealbatus                         |                          | AMBLDEA   | G3G5         | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Amblystegium tenax                          |                          | HYGRTEN   | G5           | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Anemone canadensis                          | Canada anemone           | ANEMCAN   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Arnica chamissonis ssp. incana              | meadow arnica            | ARNICHA3  | G5T3T5       | S2S3       | Blue   | No          |                      | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Astragalus vexilliflexus var. vexilliflexus | bent-flowered milk-vetch | ASTRVEX1  | G4T4         | S2S3       | Blue   | No          |                      | Vascular Plant    | TERRESTRIAL                                |
| Botrychium crenulatum                       | dainty moonwort          | BOTRCRE   | G3           | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | PALUSTRINE;RIVERINE;TERRESTRIAL            |
| Botrychium simplex                          | least moonwort           | BOTRSIM   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | PALUSTRINE;RIVERINE;TERRESTRIAL            |
| Brachythecium groenlandicum                 |                          | BRACGRO   | G3G5         | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Bryobrittonia longipes                      |                          | BRYOLON   | G3           | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Bryum stenotrichum                          |                          | BRYUAMB   | GNR          | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Calamagrostis montanensis                   | plains reedgrass         | CALAMON   | G5           | \$3        | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Calliergon richardsonii                     |                          | CALLRIC   | G4           | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Carex bicolor                               | two-coloured sedge       | CAREBIC   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | LACUSTRINE;PALUSTRINE;TERRESTRIAL          |
| Carex fuliginosa ssp. misandra              | short-leaved sedge       |           | G5           | S2S3       | Blue   | No          |                      | Vascular Plant    | TERRESTRIAL                                |
| Carex lenticularis var. dolia               | Enander's sedge          | CARELEN1  | G5T3         | S2S3       | Blue   | No          |                      | Vascular Plant    | LACUSTRINE;PALUSTRINE;RIVERINE;TERRESTRIAL |
| Carex scoparia                              | pointed broom sedge      | CARESCO   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | LACUSTRINE;PALUSTRINE;TERRESTRIAL          |
| Carex tenera                                | tender sedge             | CARETEE   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | LACUSTRINE;PALUSTRINE;TERRESTRIAL          |
| Carex torreyi                               | Torrey's sedge           | CARETOR   | G4           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Chrysosplenium iowense                      | lowa golden-saxifrage    | CHRYIOW   | G3?          | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | PALUSTRINE                                 |
| Cicuta virosa                               | European water-hemlock   | CICUVIR   | G4G5         | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | LACUSTRINE;PALUSTRINE;TERRESTRIAL          |
| Didymodon subandreaeoides                   |                          | DIDYSUB   | GU           | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Draba alpina                                | alpine draba             | DRABALP   | G4G5         | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Draba fladnizensis                          | Austrian draba           | DRABFLA   | G4           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Draba glabella var. glabella                | smooth draba             | DRABGLA1  | G4G5T4       | S2S3       | Blue   | No          |                      | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Draba lactea                                | milky draba              | DRABLAC   | G4           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | RIVERINE; TERRESTRIAL                      |
| Draba porsildii                             | Porsild's draba          | DRABPOR   | G3G4         | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | TERRESTRIAL                                |
| Drepanocladus capillifolius                 |                          | DREPLON   | GU           | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Epilobium hornemannii ssp. behringianum     | Hornemann's willowherb   | EPILHOR1  | G5T4         | S2S3       | Blue   | No          |                      | Vascular Plant    | PALUSTRINE; RIVERINE; TERRESTRIAL          |
| Epilobium leptocarpum                       | small-fruited willowherb | EPILLEP   | G5           | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | PALUSTRINE;RIVERINE;TERRESTRIAL            |
| Galium labradoricum                         | northern bog bedstraw    | GALILAB   | G5           | <b>S</b> 3 | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | PALUSTRINE                                 |
| Glyceria pulchella                          | slender mannagrass       | GLYCPUL   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | LACUSTRINE; PALUSTRINE                     |
| Helictotrichon hookeri                      | spike-oat                | HELIHOO   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Hypnum plicatulum                           |                          | HYPNPLI   | G5           | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Hypnum procerrimum                          |                          | HYPNPRO   | G3G4         | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Juncus arcticus ssp. alaskanus              | arctic rush              | JUNCARC1  | G5T4T5       | S2S3       | Blue   | No          |                      | Vascular Plant    | LACUSTRINE;PALUSTRINE;RIVERINE;TERRESTRIAL |
| Lomatogonium rotatum                        | marsh felwort            | LOMAROT   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Luzula confusa                              | northern wood-rush       | LUZUCON   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Luzula nivalis                              | arctic wood-rush         | LUZUNIV   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Luzula rufescens                            | rusty wood-rush          | LUZURUF   | G5           | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Meesia longiseta                            |                          | MEESLON   | G4?          | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Minuartia austromontana                     | Rocky Mountain sandwort  | MINUAUS   | G4           | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | TERRESTRIAL                                |
| Minuartia elegans                           | northern sandwort        | MINUELE   | G4G5         | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | TERRESTRIAL                                |
| Orthotrichum alpestre                       |                          | ORTHALP   | G4G5         | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Orthotrichum speciosum var. elegans         |                          | ORTHSPE1  | G5T5         | S2S3       | Blue   | No          |                      | Nonvascular Plant |                                            |
| Oxytropis campestris var. davisii           | Davis' locoweed          | OXYTJOR1  | G5T3         | S3         | Blue   | No          |                      | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Oxytropis nigrescens var. uniflora          | one-flower oxytrope      | OXYTNIG2  | G5TNR        | S2S3       | Blue   | No          |                      | Vascular Plant    | TERRESTRIAL                                |
| Packera plattensis                          | plains butterweed        | PACKPLA   | G5           | S2S3       | Blue   | No          | 3 - Sensitive (2010) | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Pedicularis parviflora ssp. parviflora      | small-flowered lousewort | PEDIPAR1  | G4T4         | S3         | Blue   | No          |                      | Vascular Plant    | PALUSTRINE;RIVERINE;TERRESTRIAL            |
| Pinguicula villosa                          | hairy butterwort         | PINGVIL   | G4           | S2S3       | Blue   | No          | 4 - Secure (2010)    | Vascular Plant    | PALUSTRINE;RIVERINE;TERRESTRIAL            |

| Appendix 5. Diffish columbia conservation bata centre Listed Flants in the reace rolest bisting | Appendix 3. | British Columbia | <b>Conservation Data</b> | Centre Listed Plants | in the Peace | <b>Forest District</b> |
|-------------------------------------------------------------------------------------------------|-------------|------------------|--------------------------|----------------------|--------------|------------------------|
|-------------------------------------------------------------------------------------------------|-------------|------------------|--------------------------|----------------------|--------------|------------------------|

| Scientific Name                           | English Name                 | RISC Code | GlobalStatus | ProvStatus | BCList | SARA Listed | NationalGS                | Category          | Habitat Type                               |
|-------------------------------------------|------------------------------|-----------|--------------|------------|--------|-------------|---------------------------|-------------------|--------------------------------------------|
| Pohlia vexans                             |                              | POHLVEX   | G3G5         | S2S3       | Blue   | No          |                           | Nonvascular Plant |                                            |
| Polemonium boreale                        | northern Jacob's-ladder      | POLEBOR   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Polemonium occidentale ssp. occidentale   | western Jacob's-ladder       | POLEOCC1  | G5?T5?       | S2S3       | Blue   | No          |                           | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Pyrola elliptica                          | white wintergreen            | PYROELL   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Ranunculus pedatifidus ssp. affinis       | birdfoot buttercup           | RANUPED1  | G5T5         | S2S3       | Blue   | No          |                           | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Rosa arkansana var. arkansana             | Arkansas rose                | ROSAARK1  | G5T4T5       | S2S3       | Blue   | No          |                           | Vascular Plant    | PALUSTRINE; RIVERINE; TERRESTRIAL          |
| Rumex arcticus                            | arctic dock                  | RUMEARC   | G5           | \$3        | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | LACUSTRINE;PALUSTRINE;TERRESTRIAL          |
| Salix petiolaris                          | meadow willow                | SALIPET   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | PALUSTRINE                                 |
| Salix serissima                           | autumn willow                | SALISER   | G4           | S2S3       | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | PALUSTRINE                                 |
| Sarracenia purpurea ssp. gibbosa          | common pitcher-plant         | SARRPUR2  | G5T5         | S2S3       | Blue   | No          |                           | Vascular Plant    | PALUSTRINE                                 |
| Scorpidium turgescens                     |                              | PSEUTUR   | G3G5         | S2S3       | Blue   | No          |                           | Nonvascular Plant |                                            |
| Senecio sheldonensis                      | Mount Sheldon butterweed     | SENESHE   | G2G3         | S2S3       | Blue   | No          | 3 - Sensitive (2010)      | Vascular Plant    | PALUSTRINE;RIVERINE;TERRESTRIAL            |
| Silene involucrata ssp. involucrata       | arctic campion               | SILEINV1  | G5T5         | S2S3       | Blue   | No          |                           | Vascular Plant    | TERRESTRIAL                                |
| Sphagnum wulfianum                        |                              | SPHAWUL   | G5           | S2S3       | Blue   | No          |                           | Nonvascular Plant |                                            |
| Sphenopholis intermedia                   | slender wedgegrass           | SPHEINT   | G5           | \$3        | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | LACUSTRINE;PALUSTRINE;RIVERINE;TERRESTRIAL |
| Stuckenia vaginata                        | sheathing pondweed           | STUCVAG   | G5           | S2S3       | Blue   | No          | 4 - Secure (2010)         | Vascular Plant    | LACUSTRINE; RIVERINE                       |
| Symphyotrichum puniceum var. puniceum     | purple-stemmed aster         | ASTEPUN1  | G5T5         | S2S3       | Blue   | No          |                           | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Tetraplodon angustatus                    |                              | TETRANG   | G4           | S2S3       | Blue   | No          |                           | Nonvascular Plant |                                            |
| Tomentypnum falcifolium                   |                              | TOMEFAL   | G3G5         | S2S3       | Blue   | No          |                           | Nonvascular Plant |                                            |
| Utricularia ochroleuca                    | ochroleucous bladderwort     | UTRIOCH   | G4?          | S2S3       | Blue   | No          | 3 - Sensitive (2010)      | Vascular Plant    | LACUSTRINE                                 |
| Alopecurus alpinus                        | alpine meadow-foxtail        | ALOPALP   | G5           | S1S3       | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Anemone virginiana var. cylindroidea      | riverbank anemone            | ANEMVIR3  | G5T4T5       | S1         | Red    | No          |                           | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Arabis sparsiflora                        | sickle-pod rockcress         | ARABSPA   | G5           | S1         | Red    | No          | 2 - May be at risk (2010) | Vascular Plant    | TERRESTRIAL                                |
| Artemisia longifolia                      | long-leaved mugwort          | ARTELON   | G5           | S2         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Atriplex gardneri var. gardneri           | Gardner's sagebrush          | ATRIGAR1  | G5T5         | S1         | Red    | No          |                           | Vascular Plant    | TERRESTRIAL                                |
| Botrychium ascendens                      | upswept moonwort             | BOTRASC   | G2G3         | S2         | Red    | No          | 2 - May be at risk (2010) | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Botrychium spathulatum                    | spoon-shaped moonwort        | BOTRSPA   | G3           | S1         | Red    | No          | 3 - Sensitive (2010)      | Vascular Plant    | PALUSTRINE; TERRESTRIAL                    |
| Bryum uliginosum                          |                              | BRYUULI   | G3G5         | S1S3       | Red    | No          |                           | Nonvascular Plant |                                            |
| Carex xerantica                           | dry-land sedge               | CAREXER   | G5           | S2         | Red    | No          | 3 - Sensitive (2010)      | Vascular Plant    | TERRESTRIAL                                |
| Chenopodium hians                         | gaping goosefoot             | CHENHIA   | G5           | S2         | Red    | No          | 2 - May be at risk (2010) | Vascular Plant    | TERRESTRIAL                                |
| Cirsium drummondii                        | Drummond's thistle           | CIRSDRU   | G5           | S1         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Erigeron trifidus                         | three-lobed daisy            | ERIGTRI   | G2G3Q        | S2         | Red    | No          | 3 - Sensitive (2010)      | Vascular Plant    | TERRESTRIAL                                |
| Helianthus nuttallii ssp. rydbergii       | Nuttall's sunflower          | HELINUT   | G5T5         | S1         | Red    | No          |                           | Vascular Plant    | PALUSTRINE;TERRESTRIAL                     |
| Hesperostipa spartea                      | porcupinegrass               | HESPSPA   | G5           | S2         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Lomatium foeniculaceum var. foeniculaceum | fennel-leaved desert-parsley | LOMAFOE2  | G5T5         | S1         | Red    | No          |                           | Vascular Plant    | TERRESTRIAL                                |
| Penstemon gracilis                        | slender penstemon            | PENSGRA   | G5           | S2         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Polygala senega                           | Seneca-snakeroot             | POLYSEN   | G4G5         | SH         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Polypodium sibiricum                      | Siberian polypody            | POLYSIB   | G5?          | SH         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Prenanthes racemosa                       | purple rattlesnake-root      | PRENRAC1  | G5           | SH         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Ranunculus cardiophyllus                  | heart-leaved buttercup       | RANUCAR   | G4G5         | S1         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Ranunculus rhomboideus                    | prairie buttercup            | RANURHO   | G5           | S1         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Rhizomnium punctatum                      |                              | RHIZPUN   | G5           | S1S3       | Red    | No          |                           | Nonvascular Plant |                                            |
| Schistidium pulchrum                      |                              | SCHIPUL   | GNR          | S1S3       | Red    | No          |                           | Nonvascular Plant |                                            |
| Selaginella rupestris                     | rock selaginella             | SELARUP   | G5           | S1         | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | TERRESTRIAL                                |
| Sphagnum nitidum                          |                              | SPHANIT   | GNR          | S1S3       | Red    | No          |                           | Nonvascular Plant |                                            |
| Sphagnum platyphyllum                     |                              | SPHAPLA   | G5           | S1S3       | Red    | No          |                           | Nonvascular Plant |                                            |
| Splachnum rubrum                          |                              | SPLARUB   | G3           | S1S3       | Red    | No          |                           | Nonvascular Plant |                                            |
| Tephroseris palustris                     | marsh fleabane               | SENECON   | G5           | S1S3       | Red    | No          | 4 - Secure (2010)         | Vascular Plant    | LACUSTRINE; PALUSTRINE                     |



| BEC Unit         | Site Series            | Map Code       | Ecosystem Unit         | Name                                                                                                                | Description                                                                                                                                                                                                                                                           | General Ecosystem Type                         | Typical SMR                      |
|------------------|------------------------|----------------|------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|
| BAFAun           | 00                     | BA             | BA                     | Barren                                                                                                              | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                               | Barren                                         | N/A                              |
| BAFAun           | 00                     | FM             | FM                     | Wetter herb                                                                                                         | High elev herb meadow. Forb species dominate, e.g. Veratrum viride, Senecio triangularis, and<br>Valeriana sitchensis. Some mapped areas may have dwarf shrubs, e.g. Cassiope mertensia &<br>Empetrum nigrum. Or graminoid dominated but could not map separate.      | Moist to Wet Herb                              | Subhygric to hygric              |
| BAFAun           | 00                     | HE             | HE                     | Herb                                                                                                                | High elev herb, most commonly forb dominated but could include mountain heather species (Cassiope sp.). Subxeric to mesic (mesic) moist relative moisture range.                                                                                                      | Dry to Mesic Herb                              | Submesic to mesic                |
| BAFAun           | 00                     | KR             | KR                     | Subalpine fir Krummholtz                                                                                            | Krummholtz subalpine fir (Abies lasiocarpa), with stunted, and often deformed growth and<br>clumped distribution. Between the clumps of trees, white mountain-heather (Cassiope<br>mertensia) and crowberry (Empetrum nigrum) dominate.                               | Dry to Mesic Forest                            | Subxeric to submesic             |
| BAFAun           | 00                     | LA             | LA                     | TRIM Lake/Reservoir                                                                                                 | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                             | Water                                          | N/A                              |
| BAFAun           | 00                     | WE             | WE                     | TRIM Wetland                                                                                                        | TRIM wetland that is herb dominated.                                                                                                                                                                                                                                  | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 00                     | BA             | BA                     | Barren                                                                                                              | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                               | Barren                                         | N/A                              |
| BWBSmw           | 00                     | LA             | LA                     | TRIM Lake/Reservoir                                                                                                 | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                             | Water                                          | N/A                              |
| BWBSmw           | 00                     | MA             | MA                     | TRIM Marsh                                                                                                          | TRIM marsh; semi-permanently to seasonally flooded mineral wetland dominated by emergent vegetation                                                                                                                                                                   | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 00                     | RI             | RI                     | TRIM River                                                                                                          | TRIM River                                                                                                                                                                                                                                                            | Water                                          | N/A                              |
| BWBSmw           | 00                     | SA             | SA                     | TRIM Swamp                                                                                                          | TRIM swamp (generic); likely mineral soil                                                                                                                                                                                                                             | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 00                     | WA             | WA                     | Water                                                                                                               | Water from image classification                                                                                                                                                                                                                                       | Water                                          | N/A                              |
| BWBSmw           | 00                     | WB             | WB                     | Wetland Bog                                                                                                         | wetland that is organic soil and dominated by shrub or tree species                                                                                                                                                                                                   | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 00                     | WE             | WE                     | TRIM Wetland                                                                                                        | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                         | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 00                     | WF             | WF                     | Wetland Fen                                                                                                         | wetland that is organic soil and herb dominated                                                                                                                                                                                                                       | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 00                     | WH             | WH                     | Wetland Herb                                                                                                        | Herb dominated wetland; unknown if mineral or organic soil type                                                                                                                                                                                                       | Wetland                                        | subhygric to hydric              |
| BWBSmw           | 101                    | ХА             | 101                    | Sw - Trailing raspberry - Step moss                                                                                 | occur on gentle to moderate slopes (< 20%); mid to level positions, but also upper and lower; soil<br>texture variable; range of parent materials; coarse fragment content is generally less than 20%;<br>canopy dominated by white spruce.                           | Mesic Forest                                   | (sub)mesic-(subhygric)           |
| BWBSmw           | 101\$                  | XG             | 101\$                  | At - Rose - Creamy peavine                                                                                          | generally occur on gentle to moderate slopes (< 20%) in level to upper slope positions; soils often<br>fine to medium textured, derived from various parent materials; coarse fragment content<br>generally less than 20%; canopy dominated by trembling aspen.       | Mesic Forest                                   | submesic-subhygric               |
| BWBSmw           | 102                    | ХВ             | 102                    | Pl - Kinnikinnick - Lingonberry                                                                                     | occur along the top or face of coarse-textured (glacio) fluvial terraces but can occur in other situations where compensating factors result in a xeric to subxeric moisture regime; lodgepole pine canopy.                                                           | Moderately Dry Forest                          | xeric-subxeric                   |
| BWBSmw           | 102\$                  | ХН             | 102\$                  | At - Soopolallie - Kinnikinnick                                                                                     | generally occur on coarse-textured (glacio) fluvial material, typically veneer over another<br>parent material or deeper blanket;occur on the steep sides of fluvial terraces; canopy<br>dominated by trembling aspen.                                                | Moderately Dry Forest                          | xeric-subxeric                   |
| BWBSmw           | 103                    | XC             | 103                    | SwPl - Soopolallie - Wildrye                                                                                        | often occur on warm slopes but slope gradient and slope position range widely; soils variable but<br>most commonly from (glacio) fluvial parent material; soil textures generally medium to coarse;<br>white spruce and lodgepole pine canopy.                        | Moderately Dry Forest                          | submesic                         |
| BWBSmw           | 103\$                  | XI             | 103\$                  | At - Rose - Fuzzy-spiked wildrye                                                                                    | gentle to level slopes or on steeper warm aspects; soil texture moderately fine to medium in<br>texture from lacustrine or morainal parent materials, but coarser texture where derived from<br>(glacio) fluvial parent material; canopy dominated by trembling aspen | Moderately Dry Forest                          | submesic                         |
| BWBSmw<br>BWBSmw | 103\$/102\$<br>103/102 | XI/XH<br>XC/XB | 103\$/102\$<br>103/102 | At - Rose - Fuzzy-spiked wildrye/At - Soopolallie -<br>SwPl - Soopolallie - Wildrye/Pl - Kinnikinnick - Lingonberry | could be either 103\$ or 102\$ site series (see respective descriptions), but more likely to be 103\$ could be either 103 or 102 site series (see respective descriptions), but more likely to be 103                                                                 | Moderately Dry Forest<br>Moderately Dry Forest | xeric-submesic<br>xeric-submesic |
| BWBSmw           | 104                    | XD             | 104                    | Sb - Lingonberry - Step moss                                                                                        | generally on gentle slopes (< 10%) but may occur on steep cool slopes; soils from a range of<br>parent materials, but generally medium to fine textured; rooting often restricted to < 30 cm;<br>canopy dominated by lodgepole pine and/or black spruce.              | Slightly Dry to Moist Forest                   | submesic-hygric                  |
| BWBSmw           | 104\$                  | XJ             | 104\$                  | At - Labrador tea - Lingonberry                                                                                     | primarily level to gently sloping with little relief. Soils are fine to medium in texture and are derived from a range of parent materials; canopy dominated by trembling aspen.                                                                                      | Slightly Dry to Moist Forest                   | submesic-subhygric               |

| BEC Unit | Site Series | Map Code | Ecosystem Unit | Name                                                             | Description                                                                                                                                                                                                                                                           | General Ecosystem Type            | Typical SMR            |
|----------|-------------|----------|----------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|
| BWBSmw   | 110         | XE       | 110            | Sw - Oak fern - Sarsaparilla                                     | generally occur on gentle lower slopes or steeper cool aspects; soil texture variable; range of                                                                                                                                                                       | Moist Forest                      | mesic-subhygric        |
|          |             |          |                |                                                                  | parent materials; white spruce dominated canopy.                                                                                                                                                                                                                      |                                   |                        |
| BWBSmw   | 110\$       | ХК       | 110\$          | At - Highbush-cranberry - Oak fern                               | occur in a range of positions on gentle slopes or steeper cool aspects; soils medium to fine<br>textured and generally derived from morainal or fluvial parent materials; canopy dominated by<br>trembling aspen.                                                     | Moist Forest                      | mesic-subhygric        |
| BWBSmw   | 111         | XF       | 111            | Sw - Currant - Horsetail                                         | restricted to wet sites; occur on the floodplains of smaller watercourses, on gentle lower slopes<br>or steeper cool aspects. Soils are variable in texture but are generally derived from fluvial or<br>lacustrine parent materials; white spruce dominated canopy.  | Moist Forest                      | subhygric-hygric       |
| BWBSmw   | 111\$       | XL       | 111\$          | At - Cow-parsnip - Meadowrue                                     | occur along smaller watercourses, and level to lower slopes, or mid-slope on steeper cool<br>aspects; soils from med. to fine texture on M and L; coarser on F parent material; canopy<br>dominated by balsam poplar and/or trembling aspen.                          | Moist Forest                      | subhygric-hygric       |
| BWBSmw   | 111\$/112   | XL/XM    | 111\$/112      | At - Cow-parsnip - Meadowrue/AcbSw - Mountain alder -<br>Dogwood | 111\$ or 112; see 111\$ description for more info; 112:restricted to the middlebench floodplains<br>along major watercourses. They occur on level sites with coarse to medium-textured fl uvial<br>soils. Mixed balsam poplar and white spruce canopy.                | Moist Forest/Mid Bench Floodplain | subhygric-hygric       |
| BWBSwk1  | 00          | BA       | BA             | Barren                                                           | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                               | Barren                            | N/A                    |
| BWBSwk1  | 00          | LA       | LA             | TRIM Lake/Reservoir                                              | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                             | Water                             | N/A                    |
| BWBSwk1  | 00          | MA       | MA             | TRIM Marsh                                                       | TRIM marsh; semi-permanently to seasonally flooded mineral wetland dominated by emergent vegetation                                                                                                                                                                   | Wetland                           | subhygric to hydric    |
| BWBSwk1  | 00          | RI       | RI             | TRIM River                                                       | TRIM River                                                                                                                                                                                                                                                            | Water                             | N/A                    |
| BWBSwk1  | 00          | SA       | SA             | TRIM Swamp                                                       | TRIM swamp (generic); likely mineral soil                                                                                                                                                                                                                             | Wetland                           | subhygric to hydric    |
| BWBSwk1  | 00          | WA       | WA             | Water                                                            | Water from image classification                                                                                                                                                                                                                                       | Water                             | N/A                    |
| BWBSwk1  | 00          | WB       | WB             | Wetland Bog                                                      | wetland that is organic soil and dominated by shrub or tree species                                                                                                                                                                                                   | Wetland                           | subhygric to hydric    |
| BWBSwk1  | 00          | WE       | WE             | TRIM Wetland                                                     | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                         | Wetland                           | subhygric to hydric    |
| BWBSwk1  | 00          | WS       | WS             | Wetland Swamp                                                    | Wetland Swamp, mineral soil, shrub or tree species dominated                                                                                                                                                                                                          | Wetland                           | subhygric to hydric    |
| BWBSwk1  | 101         | YA       | 101            | SwBl - Huckleberry - Feathermoss                                 | mid to upper slope positions, occasionally on level sites. Soils are generally medium to fine<br>textured, primarily from morainal and glaciofluvial parent materials; dominated by lodgepole<br>pine                                                                 | Mesic Forest                      | (submesic)-mesic       |
| BWBSwk1  | 101\$       | YG       | 101\$          | At - Birch-leaved spiraea - Huckleberry                          | areas with recent (< 100 years) disturbance history; occur on gentle to moderate slopes (< 30%);<br>upper to mid-slope positions or on level sites; Soils range in texture; morainal or glaciofluvial<br>parent materials; trembling aspen canopy dominated.          | Mesic Forest                      | (submesic)-mesic       |
| BWBSwk1  | 102         | YB       | 102            | Pl - Lingonberry - Reindeer lichen                               | generally along moderately coarse- to medium-textured (glacio) fluvial ridges or terraces, or on<br>thin soils over bedrock. Lodgepole pine forms a sparse to open canopy; black spruce occasionally<br>present.                                                      | Moderately Dry Forest             | xeric-subxeric         |
| BWBSwk1  | 102\$       | YH       | 102\$          | At - Kinnikinnick - Fuzzy-spiked wildrye                         | based on limited data, occurs on moderately coarse- to coarse-textured warm slopes, but could<br>also occur in other situations where soils are coarse and/or shallow. Limited data indicate that<br>trembling aspen forms a sparse canopy.                           | Moderately Dry Forest             | xeric-subxeric         |
| BWBSwk1  | 103         | YC       | 103            | SwPl - Soopolallie - Showy aster                                 | warm aspects; mid to upper slope positions; moderately coarse- to coarse-textured soils from<br>morainal or glaciofluvial parent materials. Canopy is dominated by lodgepole pine.                                                                                    | Moderately Dry Forest             | submesic               |
| BWBSwk1  | 103\$       | YI       | 103\$          | At - Rose - Fuzzy-spiked wildrye                                 | generally associated with warm slopes; soils are derived from a range of parent materials but are coarse to medium textured. Dominated by trembling aspen.                                                                                                            | Moderately Dry Forest             | submesic               |
| BWBSwk1  | 104         | YD       | 104            | Sb - Huckleberry - Lingonberry                                   | generally level or gently sloping (< 10%) terrain; restricted to cool aspects in steeper terrain.<br>Soils medium to coarse textured;occasionally finer; typically morainal or glaciofluvial parent<br>materials; Canopy dominated by lodgepole pine or black spruce. | Slightly Dry to Moist Forest      | submesic-subhygric     |
| BWBSwk1  | 104\$       | YJ       | 104\$          | At - Labrador tea - Lingonberry                                  | generally associated with gentle slopes (< 10% slope) on cool aspects; soils derived from a range of parent materials and texture is variable. Canopy dominated by trembling aspen.                                                                                   | Slightly Dry to Moist Forest      | submesic-subhygric     |
| BWBSwk1  | 110\$       | YK       | 110\$          | AcbAt - Cow-parsnip/At - Highbush-cranberry - Oak fern           | M or F parent materials; 6.B1: along small watercourses or on gentle low to toe slopes; soils mod. coarse to med. textured; Act dominated. 6.B2: on gentle, mid to lower slopes or steeper cool aspects; soils med. to fine textured; At dominated.                   | Moist Forest                      | mesic-hygric           |
| BWBSwk1  | 110/111     | YE/YF    | 110/111        | Sw - Currant - Horsetail/Sb - Lingonberry - Horsetail            | 110: floodplains of smaller watercourses, gentle lower slopes, or steeper cool aspects; morainal;<br>Sw canopy OR 111: cool lower slopes or level with imperfect to poor soil drainage; organic,<br>morainal, or thick humified organic over fluvial. Sb dominant.    | Moist Forest                      | mes-hygr/subhyg-hygric |

| BEC Unit | Site Series | Map Code   | Ecosystem Unit | Name                                                                                    | Description                                                                                                                                                                                                                                                      | General Ecosystem Type       | Typical SMR                  |
|----------|-------------|------------|----------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|
| ESSFmv2  | 00          | BA         | BA             | Barren                                                                                  | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                          | Barren                       | N/A                          |
| ESSFmv2  | 00          | LA         | LA             | TRIM Lake/Reservoir                                                                     | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                        | Water                        | N/A                          |
| ESSFmv2  | 00          | MA         | MA             | TRIM Marsh                                                                              | TRIM marsh; semi-permanently to seasonally flooded mineral wetland dominated by emergent vegetation                                                                                                                                                              | Wetland                      | subhygric to hydric          |
| ESSFmv2  | 00          | RI         | RI             | TRIM River                                                                              | TRIM River                                                                                                                                                                                                                                                       | Water                        | N/A                          |
| ESSFmv2  | 00          | SA         | SA             | TRIM Swamp                                                                              | TRIM swamp (generic); likely mineral soil                                                                                                                                                                                                                        | Wetland                      | subhygric to hydric          |
| ESSFmv2  | 00          | WB         | WB             | Wetland Bog                                                                             | wetland that is organic soil and dominated by shrub or tree species                                                                                                                                                                                              | Wetland                      | subhygric to hydric          |
| ESSFmv2  | 00          | WE         | WE             | TRIM Wetland                                                                            | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                    | Wetland                      | subhygric to hydric          |
| ESSFmv2  | 00          | WH         | WH             | Wetland Herb                                                                            | Herb dominated wetland                                                                                                                                                                                                                                           | Wetland                      | subhygric to hydric          |
| ESSFmv2  | 00          | WS         | WS             | Wetland Swamp                                                                           | Wetland Swamp, mineral soil, shrub or tree species dominated                                                                                                                                                                                                     | Wetland                      | subhygric to hydric          |
| ESSFmv2  | 01          | FR         | 01             | Bl - Rhododendron - Feathermoss                                                         | gentle slope, deep medium - textured soils                                                                                                                                                                                                                       | Mesic Forest                 | submesic - mesic             |
| ESSFmv2  | 01/03/04    | FR (BT/FO) | 01/03/04       | Bl - Rhododendron - Feathermoss<br>(BISb - Labrador tea/Bl - Oak fern - Knight's plume) | gentle slope, deep medium - textured soils but may also be the conditions of 03 or 04 site series;<br>could not differentiate well                                                                                                                               | Slightly Dry to Moist Forest | submesic - subhygric         |
| ESSFmv2  | 02          | FL         | 02             | Bl - Lingonberry                                                                        | gentle slope to level site; deep coarse-textured soils                                                                                                                                                                                                           | Moderately Dry Forest        | subxeric - submesic          |
| ESSFmv2  | 03          | ВТ         | 03             | BlSb - Labrador tea                                                                     | gently sloping to depressional sites with deep fine-textured soils                                                                                                                                                                                               | Slightly Dry to Moist Forest | submesic - hygric            |
| ESSFmv2  | 04          | FO         | 04             | Bl - Oak fern - Knight's plume                                                          | gentle slope, moisture receiving sites, deep, medium- textured soils                                                                                                                                                                                             | Mesic Forest                 | mesic - subhygric            |
| ESSFmv2  | 05          | FD         | 05             | Bl - Devil's club - Rhododendron                                                        | gentle slope, moisture receiving sites, deep, medium- textured soils                                                                                                                                                                                             | Moist Forest                 | subhygric                    |
| ESSFmv2  | 06          | FH         | 06             | Bl - Alder - Horsetail<br>(Ws08 - Bl - Sitka valerian - Common horsetail)               | level or depressional sites with deep coarse - textured soils                                                                                                                                                                                                    | Wet Forest                   | subhygric - hygric           |
| ESSFmvp  | 00          | BA         | BA             | Barren                                                                                  | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                          | Barren                       | N/A                          |
| ESSFmvp  | 00          | BC         | BC             | Bl - crowberry                                                                          | pen to clumped conifer, Abies lasiocarpa dominant (Picea engelmanni). Trees interspersed with<br>open meadow of heathers, crowberry, or forbs (where seepage btwn C or M veneers. Shrub layer<br>typically Abies lasiocarpa. Typ herb is Empetrum nigrum         | Dry to Mesic Forest          | Subxeric to submesic (mesic) |
| ESSFmvp  | 00          | BC         | BC             | Bl - crowberry                                                                          | pen to clumped conifer, Abies lasiocarpa dominant (Picea engelmanni). Trees interspersed with<br>open meadow of heathers, crowberry, or forbs (where seepage btwn C or M veneers. Shrub layer<br>typically Abies lasiocarpa. Typ herb is Empetrum nigrum         | Dry to Mesic Shrub           | Subxeric to submesic (mesic) |
| ESSFmvp  | 00          | BV         | BV             | Bl - Sitka Valerian                                                                     | Open-clumped conifer, Abies lasiocarpa dominant. Typical shrub is Abies lasiocarpa, with some deciduous sp. Forbs typical, e.g. Veratrum viridis, Lupinus arcticus, Valeriana sitchensis. Typically moisture receiving; many with subsurface seepage.            | Moist to Wet Shrub           | Subhygric to hygric          |
| ESSFmvp  | 00          | BV         | BV             | Bl - Sitka Valerian                                                                     | Open-clumped conifer, Abies lasiocarpa dominant. Typical shrub is Abies lasiocarpa, with some deciduous sp. Forbs typical, e.g. Veratrum viridis, Lupinus arcticus, Valeriana sitchensis. Typically moisture receiving; many with subsurface seepage.            | Wet Forest                   | Subhygric                    |
| ESSFmvp  | 00          | FM         | FM             | Wetter herb                                                                             | High elev herb meadow. Forb species dominate, e.g. Veratrum viride, Senecio triangularis, and<br>Valeriana sitchensis. Some mapped areas may have dwarf shrubs, e.g. Cassiope mertensia &<br>Empetrum nigrum. Or graminoid dominated but could not map separate. | Moist to Wet Herb            | Subhygric to hygric          |
| ESSFmvp  | 00          | HE         | HE             | Herb                                                                                    | High elev herb, most commonly forb dominated but could include mountain heather species (Cassiope sp.). Subxeric to mesic (mesic) moist relative moisture range.                                                                                                 | Dry to Mesic Herb            | Submesic (mesic)             |
| ESSFmvp  | 00          | LA         | LA             | TRIM Lake/Reservoir                                                                     | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                        | Water                        | N/A                          |
| ESSFmvp  | 00          | MA         | MA             | TRIM Marsh                                                                              | TRIM marsh; semi-permanently to seasonally flooded mineral wetland dominated by emergent vegetation                                                                                                                                                              | Wetland                      | subhygric to hydric          |
| ESSFmvp  | 00          | SA         | SA             | TRIM Swamp                                                                              | TRIM swamp (generic); likely mineral soil                                                                                                                                                                                                                        | Wetland                      | subhygric to hydric          |
| ESSFmvp  | 00          | WA         | WA             | Water                                                                                   | Water from image classification                                                                                                                                                                                                                                  | Water                        | N/A                          |
| ESSFmvp  | 00          | WE         | WE             | TRIM Wetland                                                                            | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                    | Wetland                      | subhygric to hydric          |
| ESSFwc3  | 00          | BA         | BA             | Barren                                                                                  | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                          | Barren                       | N/A                          |
| ESSFwc3  | 00          | LA         | LA             | TRIM Lake/Reservoir                                                                     | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                        | Water                        | N/A                          |

| A man a make of A |            | Chauset and station . |        | I load the stand the load | the Dealers |           | A    |
|-------------------|------------|-----------------------|--------|---------------------------|-------------|-----------|------|
|                   | FCOLODICAL | Characteristics (     | л мап  | LIDITS WITDID             | The Regiona | η χτηάν τ | Δrea |
| Appendix 1.       | LCOIOSICUI | character istics (    | or map | 011103 111111             | the Regiono | n scaay / |      |

| BEC Unit | Site Series | Map Code | Ecosystem Unit | Name                                                                            | Description                                                                                                                                                                                                                                                      | General Ecosystem Type | Typical SMR                  |
|----------|-------------|----------|----------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|
| ESSFwc3  | 00          | WE       | WE             | TRIM Wetland                                                                    | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                    | Wetland                | subhygric to hydric          |
| ESSFwc3  | 01          | FR       | 01             | Bl - Rhododendron - Oak fern                                                    | gentle slope; deep, medium-textured soil                                                                                                                                                                                                                         | Mesic Forest           | mesic                        |
| ESSFwc3  | 02          | FQ       | 02             | Bl - Rhododendron - Queen's cup                                                 | gentle slope; shallow soil; crest position                                                                                                                                                                                                                       | Moderately Dry Forest  | xeric-subxeric               |
| ESSFwc3  | 03          | FG       | 03             | Bl - Globeflower - Horsetail (Ws08 - Bl - Sitka valerian -<br>Common horsetail) | moisture receiving lower slope position;gentle slope; deep, medium-textured soil gentle slope; deep, medium-textured soil                                                                                                                                        | Moist Forest           | hygric - subhygric           |
| ESSFwc3  | 03          | FG       | 03             | Bl - Globeflower - Horsetail (Ws08 - Bl - Sitka valerian -<br>Common horsetail) | moisture receiving lower slope position;gentle slope; deep, medium-textured soil gentle slope; deep, medium-textured soil                                                                                                                                        | Moist Forest           | hygric-subhygric             |
| ESSFwc3  | 03          | FG       | 03             | Bl - Globeflower - Horsetail (Ws08 - Bl - Sitka valerian -<br>Common horsetail) | moisture receiving lower slope position;gentle slope; deep, medium-textured soil<br>gentle slope; deep, medium-textured soilentle slope; deep, medium-textured soil<br>gentle slope; deep, medium-textured soil                                                  | Moist Forest           | hygric - subhygric           |
| ESSFwcp  | 00          | BA       | BA             | Barren                                                                          | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                          | Barren                 | N/A                          |
| ESSFwcp  | 00          | BC       | BC             | Bl - crowberry                                                                  | pen to clumped conifer, Abies lasiocarpa dominant (Picea engelmanni). Trees interspersed with<br>open meadow of heathers, crowberry, or forbs (where seepage btwn C or M veneers. Shrub layer<br>typically Abies lasiocarpa. Typ herb is Empetrum nigrum         | Dry to Mesic Forest    | Subxeric to submesic (mesic) |
| ESSFwcp  | 00          | BC       | BC             | Bl - crowberry                                                                  | pen to clumped conifer, Abies lasiocarpa dominant (Picea engelmanni). Trees interspersed with<br>open meadow of heathers, crowberry, or forbs (where seepage btwn C or M veneers. Shrub layer<br>typically Abies lasiocarpa. Typ herb is Empetrum nigrum         | Dry to Mesic Shrub     | Subxeric to submesic (mesic) |
| ESSFwcp  | 00          | BV       | BV             | Bl - Sitka Valerian                                                             | Open-clumped conifer, Abies lasiocarpa dominant. Typical shrub is Abies lasiocarpa, with some deciduous sp. Forbs typical, e.g. Veratrum viridis, Lupinus arcticus, Valeriana sitchensis. Typically moisture receiving; many with subsurface seepage.            | Moist to Wet Shrub     | Subhygric to hygric          |
| ESSFwcp  | 00          | BV       | BV             | Bl - Sitka Valerian                                                             | Open-clumped conifer, Abies lasiocarpa dominant. Typical shrub is Abies lasiocarpa, with some deciduous sp. Forbs typical, e.g. Veratrum viridis, Lupinus arcticus, Valeriana sitchensis. Typically moisture receiving; many with subsurface seepage.            | Wet Forest             | Subhygric                    |
| ESSFwcp  | 00          | FM       | FM             | Wetter herb                                                                     | High elev herb meadow. Forb species dominate, e.g. Veratrum viride, Senecio triangularis, and<br>Valeriana sitchensis. Some mapped areas may have dwarf shrubs, e.g. Cassiope mertensia &<br>Empetrum nigrum. Or graminoid dominated but could not map separate. | Moist to Wet Herb      | Subhygric to hygric          |
| ESSFwcp  | 00          | HE       | HE             | Herb                                                                            | High elev herb, most commonly forb dominated but could include mountain heather species (Cassiope sp.). Subxeric to mesic (mesic) moist relative moisture range.                                                                                                 | Dry to Mesic Herb      | Submesic (mesic)             |
| ESSFwcp  | 00          | LA       | LA             | TRIM Lake/Reservoir                                                             | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                        | Water                  | N/A                          |
| ESSFwcp  | 00          | WE       | WE             | TRIM Wetland                                                                    | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                    | Wetland                | subhygric to hydric          |
| ESSFwk2  | 00          | BA       | BA             | Barren                                                                          | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                          | Barren                 | N/A                          |
| ESSFwk2  | 00          | LA       | LA             | TRIM Lake/Reservoir                                                             | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                        | Water                  | N/A                          |
| ESSFwk2  | 00          | WE       | WE             | TRIM Wetland                                                                    | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                                                                    | Wetland                | subhygric to hydric          |
| ESSFwk2  | 01/03       | FO/FB    | 01/03          | Bl - Oak fern - Knight's plume/Bl - Oak fern - Bluebells                        | gentle slope, deep medium - textured soils; morainal soil; gentle slope; deep medium - textured soils; moist sites                                                                                                                                               | Mesic Forest           | mesic (to subhygric)         |
| ESSFwk2  | 02          | FS       | 02             | Bl - Oak fern - Sarsaparilla                                                    | gentle slopes; deep, coarse - textured soils                                                                                                                                                                                                                     | Moderately Dry Forest  | subxeric - submesic          |
| ESSFwk2  | 04          | FD       | 04             | Bl - Devil's club - Rhododendron                                                | gentle lower slope positions, deep medium - textured soils                                                                                                                                                                                                       | Moist Forest           | subhygric                    |
| ESSFwk2  | 05          | FR       | 05             | Bl - Rhododendron - Lady fern                                                   | gentle lower slope; deep medium - textured soils, seepage common                                                                                                                                                                                                 | Moist Forest           | subhygric                    |
| ESSFwk2  | 06          | FH       | 06             | Bl - Horsetail - Sphagnum                                                       | level to toe slope; deep, fine - textured soils; poorly drained                                                                                                                                                                                                  | Wet Forest             | hygric                       |
| SBSwk2   | 00          | BA       | BA             | Barren                                                                          | Land devoid of vegetation due to extreme climatic or edaphic conditions                                                                                                                                                                                          | Barren                 | N/A                          |
| SBSwk2   | 00          | LA       | LA             | TRIM Lake/Reservoir                                                             | TRIM-identified - A natural or artifical static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark or a human-made structure.                                                                        | Water                  | N/A                          |
| SBSwk2   | 00          | MA       | MA             | TRIM Marsh                                                                      | TRIM marsh; semi-permanently to seasonally flooded mineral wetland dominated by emergent vegetation                                                                                                                                                              | Wetland                | subhygric to hydric          |
| SBSwk2   | 00          | RI       | RI             | TRIM River                                                                      | TRIM River                                                                                                                                                                                                                                                       | Water                  | N/A                          |
| SBSwk2   | 00          | SA       | SA             | TRIM Swamp                                                                      | TRIM swamp (generic); likely mineral soil                                                                                                                                                                                                                        | Wetland                | subhygric to hydric          |
| SBSwk2   | 00          | WA       | WA             | Water                                                                           | Water from image classification                                                                                                                                                                                                                                  | Water                  | N/A                          |

| BEC Unit | Site Series | Map Code | Ecosystem Unit | Name                                                                | Description                                                                                                                                                                                                                | General Ecosystem Type       | Typical SMR         |
|----------|-------------|----------|----------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|
| SBSwk2   | 00          | WE       | WE             | TRIM Wetland                                                        | TRIM wetland that is shrub or herb dominated.                                                                                                                                                                              | Wetland                      | subhygric to hydric |
| SBSwk2   | 00          | WH       | WH             | Wetland Herb                                                        | Herb dominated wetland                                                                                                                                                                                                     | Wetland                      | subhygric to hydric |
| SBSwk2   | 00          | WS       | WS             | Wetland Swamp                                                       | Wetland Swamp, mineral soil, shrub or tree species dominated                                                                                                                                                               | Wetland                      | subhygric to hydric |
| SBSwk2   | 01          | SO       | 01             | Sxw - Oak fern                                                      | gentle slope, deep medium - textured soil                                                                                                                                                                                  | Mesic Forest                 | mesic               |
| SBSwk2   | 02          | LH       | 02             | Pl - Huckleberry - Cladina                                          | gentle slope to level site; deep coarse-textured soils                                                                                                                                                                     | Moderately Dry Forest        | subxeric            |
| SBSwk2   | 03          | SC       | 03             | Sxw - Huckleberry - Highbush-cranberry                              | significant slope, warm aspects; deep, coarse-textured soil                                                                                                                                                                | Moderately Dry Forest        | submesic            |
| SBSwk2   | 04          | BF       | 04             | SbPl - Feathermoss                                                  | gentle slope, cool site, deep, coarse - textured soils; poor nutrient regime                                                                                                                                               | Slightly Dry to Moist Forest | submesic - mesic    |
| SBSwk2   | 05          | SD       | 05             | Sxw - Devil's club                                                  | gentle slope, moisture receiving sites; deep, medium - textured soil                                                                                                                                                       | Moist Forest                 | subhygric           |
| SBSwk2   | 06          | Ws07     | 06             | Sxw - Horsetail (Ws07 - Common horsetail - Leafy moss)              | poorly-drained; lower to toe slopes and wetland margins; deep coarse- textured soils; medium to rich soil nutrient regime.                                                                                                 | Wetland                      | subhygric-hygric    |
| SBSwk2   | 07          | Wb06     | 07             | Lt - Water sedge - Fen Moss (Wb06 - Lt - Water sedge -<br>Fen Moss) | bog / poor soil nutrients regime; gentle slopes and depressions with poor drainage; typically<br>dominated by black spruce; occurs on deep, peaty Sphagnum soils, typically with very poor to<br>poor soil nutrient regime | Wetland                      | subhydric           |

Ecological Characteristics of Map Units within the Local Study Area



| Unit    | Site Series | Map Code | Site Series Name                                          | Assumed Situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Site<br>Modifier a | Site<br>Modifier b | Site<br>Modifier c | Typical SMR | StructuralStage |
|---------|-------------|----------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|-------------|-----------------|
| BWBSmw  | 101         |          | Sw - Trailing raspberry - Step moss                       | occur on gentle to moderate slopes (< 20%); mid to level positions, but also upper and lower; soil texture variable; range of<br>parent materials; coarse fragment content is generally less than 20%; canony dominated by white spruce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 101\$       |          | At - Rose - Creamy peavine                                | generally occur on genetic to moderate science (> 20%) in level to upper science yours of some spotter fine to moderate science (> 20%) in level to upper science yours (> solid often fine to moderate science) (> solid often fine fine to moder |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 102         |          | Pl - Kinnikinnick - Lingonberry                           | occur along the top or face of coarse-textured (glacio) fluvial terraces but can occur in other situations where compensating<br>factors result in a xeric to subxeric moisture regime; lodgepole pine canopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 103         |          | SwPl - Soopolallie - Wildrye                              | often occur on warm slopes but slope gradient and slope position range widely; soils variable but most commonly from (glacio)<br>fluvial parent material; soil textures generally medium to coarse; white spruce and lodgepole pine canopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 103\$       |          | At - Rose - Fuzzy-spiked wildrye                          | gentle to level slopes or on steeper warm aspects; soil texture moderately fine to medium in texture from lacustrine or morainal<br>parent materials, but coarser texture where derived from (glacio) fluvial parent material; canopy dominated by trembling aspen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 104         |          | Sb - Lingonberry - Step moss                              | generally on gentle slopes (< 10%) but may occur on steep cool slopes; soils from a range of parent materials, but generally<br>medium to fine textured; rooting often restricted to < 30 cm; canopy dominated by lodgepole pine and/or black spruce.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 104\$       |          | At - Labrador tea - Lingonberry                           | primarily level to gently sloping with little relief. Soils are fine to medium in texture and are derived from a range of parent materials; canopy dominated by trembling aspen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 110         |          | Sw - Oak fern - Sarsaparilla                              | generally occur on gentle lower slopes or steeper cool aspects; soil texture variable; range of parent materials; white spruce dominated canopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 110\$       |          | At - Highbush-cranberry - Oak fern                        | occur in a range of positions on gentle slopes or steeper cool aspects; soils medium to fine textured and generally derived from morainal or fluvial parent materials; canopy dominated by trembling aspen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 111         |          | Sw - Currant - Horsetail                                  | restricted to wet sites; occur on the floodplains of smaller watercourses, on gentle lower slopes or steeper cool aspects. Soils are<br>variable in texture but are generally derived from fluvial or lacustrine parent materials; white spruce dominated canopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 111\$       |          | At - Cow-parsnip - Meadowrue                              | occur along smaller watercourses, and level to lower slopes, or mid-slope on steeper cool aspects; soils from med. to fine texture<br>on M and L: coarser on E parent material: canony dominated by balsam poplar and/or trembling aspen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | 112         |          | AcbSw - Mountain alder - Dogwood                          | restricted to the middlebench floodplains along major watercourses. They occur on level sites with coarse to medium-textured fl<br>uvial soils. Mixed balsam poplar and white spruce canopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l                  |                    |                    |             | 2,3,4,5,6,7     |
| BWBSmw  | Fl05        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Wb05        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Wb06        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Wb08        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Wb09        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Wm01        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Ws04        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSmw  | Ws07        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSwk1 | 101         |          | SwBl - Huckleberry - Feathermoss                          | mid to upper slope positions, occasionally on level sites. Soils are generally medium to fine textured, primarily from morainal<br>and glaciofluvial parent materials; dominated by lodgepole pine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 101\$       |          | At - Birch-leaved spiraea - Huckleberry                   | areas with recent (< 100 years) disturbance history; occur on gentle to moderate slopes (< 30%); upper to mid-slope positions or<br>on level sites; Soils range in texture; morainal or glaciofluvial parent materials; trembling aspen canopy dominated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 102         |          | Pl - Lingonberry - Reindeer lichen                        | generally along moderately coarse- to medium-textured (glacio) fluvial ridges or terraces, or on thin soils over bedrock.<br>Lodgepole pine forms a sparse to open canopy; black spruce occasionally present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 102\$       |          | At - Kinnikinnick - Fuzzy-spiked wildrye                  | based on limited data, occurs on moderately coarse- to coarse-textured warm slopes, but could also occur in other situations where soils are coarse and/or shallow. Limited data indicate that trembling aspen forms a sparse canopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 103         |          | SwPl - Soopolallie - Showy aster                          | warm aspects; mid to upper slope positions; moderately coarse- to coarse-textured soils from morainal or glaciofluvial parent<br>materials. Canopy is dominated by lodgepole pine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 103\$       |          | At - Rose - Fuzzy-spiked wildrye                          | generally associated with warm slopes; soils are derived from a range of parent materials but are coarse to medium textured. Dominated by trembling aspen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 104         |          | Sb - Huckleberry - Lingonberry                            | generally level or gently sloping (< 10%) terrain; restricted to cool aspects in steeper terrain. Soils medium to coarse<br>textured;occasionally finer; typically morainal or glaciofluvial parent materials; Canopy dominated by lodgepole pine or black<br>spruce.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 104\$       |          | At - Labrador tea - Lingonberry                           | generally associated with gentle slopes (< 10% slope) on cool aspects; soils derived from a range of parent materials and texture<br>is variable. Canopy dominated by trembling aspen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 110         |          | Sw - Currant - Horsetail                                  | 110: floodplains of smaller watercourses, gentle lower slopes, or steeper cool aspects; morainal; Sw canopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 110\$       |          | AcbAt - Cow-parsnip/At - Highbush-cranberry -<br>Oak fern | M or F parent materials; 6.B1: along small watercourses or on gentle low to toe slopes; soils mod. coarse to med. textured; Act<br>dominated. 6.B2: on gentle, mid to lower slopes or steeper cool aspects; soils med. to fine textured; At dominated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | 111         |          | /Sb - Lingonberry - Horsetail                             | OR 111: cool lower slopes or level with imperfect to poor soil drainage; organic, morainal, or thick humified organic over fluvial.<br>Sb dominant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                    |                    |             | 2,3,4,5,6,7     |
| BWBSwk1 | Wb07        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSwk1 | Wf04        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |
| BWBSwk1 | Ws04        |          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                    |             |                 |

|         |             |          |                                                                           |                                                                              | Site       | Site       | Site       |                     |                 |
|---------|-------------|----------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|------------|------------|---------------------|-----------------|
| Unit    | Site Series | Map Code | Site Series Name                                                          | Assumed Situation                                                            | Modifier a | Modifier b | Modifier c | Typical SMR         | StructuralStage |
| ESSFmv2 | 03          | BT       | BISb - Labrador tea                                                       | gently sloping to depressional sites with deep fine-textured soils           | d          | f          | j          | submesic - hygric   | 2,3,4,5,6,7     |
| ESSFmv2 | 05          | FD       | Bl - Devil's club - Rhododendron                                          | gentle slope, moisture receiving sites, deep, medium- textured soils         | d          | j          | m          | subhygric           | 2,3,4,5,6,7     |
| ESSFmv2 | 06          | FH       | Bl - Alder - Horsetail (Ws08 - Bl - Sitka valerian -<br>Common horsetail) | level or depressional sites with deep coarse - textured soils                | с          | d          | j          | subhygric - hygric  | 2,3,4,5,6,7     |
| ESSFmv2 | 02          | FL       | Bl - Lingonberry                                                          | gentle slope to level site; deep coarse-textured soils                       | с          | d          | j          | subxeric - submesic | 2,3,4,5,6,7     |
| ESSFmv2 | 04          | FO       | Bl - Oak fern - Knight's plume                                            | gentle slope, moisture receiving sites, deep, medium- textured soils         | d          | j          | m          | mesic - subhygric   | 2,3,4,5,6,7     |
| ESSFmv2 | 01          | FR       | Bl - Rhododendron - Feathermoss                                           | gentle slope, deep medium - textured soils                                   | d          | j          | m          | submesic - mesic    | 2,3,4,5,6,7     |
| ESSFmv2 | Wb06        |          |                                                                           |                                                                              |            |            |            |                     |                 |
| ESSFmv2 | Wm01        |          |                                                                           |                                                                              |            |            |            |                     |                 |
| ESSFmv2 | Ws04        |          |                                                                           |                                                                              |            |            |            |                     |                 |
| ESSFmv2 | Ws07        |          |                                                                           |                                                                              |            |            |            |                     |                 |
| ESSFmv2 | 07          |          |                                                                           |                                                                              |            |            |            |                     |                 |
| SBSwk2  | 04          | BF       | SbPl - Feathermoss                                                        | gentle slope, cool site, deep, coarse - textured soils; poor nutrient regime | с          | d          | j          | submesic - mesic    | 2,3,4,5,6,7     |
| SBSwk2  | 02          | LH       | Pl - Huckleberry - Cladina                                                | gentle slope to level site; deep coarse-textured soils                       | с          | d          | j          | subxeric            | 2,3,4,5,6,7     |
| SBSwk2  | 03          | SC       | Sxw - Huckleberry - Highbush-cranberry                                    | significant slope, warm aspects; deep, coarse-textured soil                  | с          | d          | w          | submesic            | 2,3,4,5,6,7     |
| SBSwk2  | 05          | SD       | Sxw - Devil's club                                                        | gentle slope, moisture receiving sites; deep, medium - textured soil         | d          | j          | m          | subhygric           | 2,3,4,5,6,7     |
| SBSwk2  | 06          | SH       | Sxw - Horsetail (Ws07 - Common horsetail - Leafy<br>moss)                 | flat to depression; coarse - textured soil                                   | с          | j          |            | hygric              | 2,3,4,5,6,7     |
| SBSwk2  | 01          | SO       | Sxw - Oak fern                                                            | gentle slope, deep medium - textured soil                                    | d          | j          | m          | mesic               | 2,3,4,5,6,7     |

| Code | Restricted<br>Unit Name | Common Modifiers | Structural Stage | Definition                                                                                                                                                                                                                                                         | Old Code |
|------|-------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| CL   | Cliff                   | q, z             | 1                | A steep, vertical or overhanging rock face.3                                                                                                                                                                                                                       |          |
| ES   | Exposed Soil            | k, r, w          | 1                | Any area of exposed soil that is not included in any of the other definitions. It includes areas of recent disturbance, such as mud<br>slides, debris torrents, avalanches, and human-made disturbances (e.g., pipeline rights-of-way) where vegetation cover is l |          |
| GP   | Gravel Pit              |                  |                  |                                                                                                                                                                                                                                                                    |          |
| LA   | Lake                    | not applicable   | not applicable   | A naturally occurring static body of water, greater than 2 m deep in some portion. The boundary for the lake is the natural high water mark.2                                                                                                                      |          |
| MI   | Mine                    | not applicable   | 1                | An unvegetated area used for the extrac-tion of mineral ore and other materials.1                                                                                                                                                                                  |          |
| мZ   | Rubbly Mine<br>Spoils   | not applicable   | 1                | Discarded overburden or waste rock moved so that ore can be extracted in a mining operation.2                                                                                                                                                                      | MS       |
| ow   | Shallow Open<br>Water   | not applicable   | not applicable   | A wetland composed of permanent shallow open water and lacking extensive emergent plant cover. The water is less than 2 m deep. (If vegetated, these units should developed into site series groups for interpretation.)                                           |          |
| PD   | Pond                    | not applicable   | not applicable   | A small body of water greater than 2 m deep, but not large enough to be classified as a lake (e.g., less than 50 ha).                                                                                                                                              |          |
| RI   | River                   | not applicable   | not applicable   | A watercourse formed when water flows between continuous, definable banks. The flow may be intermittent or perennial. An<br>area that has an ephemeral flow and no channel with definable banks is not considered a river.2                                        |          |
| RN   | Railway<br>Surface      | not applicable   | not applicable   | A roadbed with fixed rails for possibly single or multiple rail lines.2                                                                                                                                                                                            |          |
| RU   | Rubble                  | k, r, w          | 1                | Rubble is common on the ground surface in and adjacent to alpine areas, on ridgetops, gentle slopes and flat areas due to the effects of frost heaving.2, 4                                                                                                        |          |
| RY   | Reclaimed<br>Mine       | k, r, w          | 1, 2, 3          | A mined area that has plant communities composed of a mixture of agronomic or native grasses, forbs, and shrubs.                                                                                                                                                   | RM       |
| RZ   | Road Surface            | not applicable   | not applicable   | An area cleared and compacted for the purpose of transporting goods and services by vehicles.2                                                                                                                                                                     | RP       |
| ТА   | Talus                   | k, r, w          | 1                | Angular rock fragments of any size accumulated at the foot of steep rock slopes as a result of successive rock falls. It is a type of colluvium.2, 4                                                                                                               |          |
| ΤZ   | Mine Tailings           | not applicable   | 1                | Solid waste materials directly produced in the mining and milling of ore.2                                                                                                                                                                                         | TS       |
| UR   | Urban/<br>Suburban      | not applicable   | not applicable   | An area in which residences and other human developments form an almost continuous covering of the landscape. These areas include<br>cities and towns, subdivisions, commercial and industrial parks, and similar developments both inside and outside city limits |          |

Note: Map codes were used within the RSA and LSA.

Terrestrial Ecosystem Map





Ecosystem Mapping Field Survey Data



| Appendi        | x 7. Ecosy | stem M       | apping      | Field Surve  | y Data                     |          |                    |                  |                        |                          |                    |                    |                    |                     |              |
|----------------|------------|--------------|-------------|--------------|----------------------------|----------|--------------------|------------------|------------------------|--------------------------|--------------------|--------------------|--------------------|---------------------|--------------|
| Plot<br>Number | Region     | Zone         | Sub<br>Zone | Site Series  | Status                     | UTM Zone | UTM<br>Northing    | UTM Easting      | Date                   | Site Surveyor            | Photo<br>Number    | Moisture<br>Regime | Nutrient<br>Regime | Structural<br>Stage | Elevation    |
| 001            | PG         | BWBS         | mw          | 101          | Status                     | 10       | 6095378            | 628790           | 7/1/2010               | NB, TG                   | 493-495            | 5                  | D                  | 6                   | 976          |
| 002            | PG         | BWBS         | mw          | 103          |                            | 10       | 6095063            | 628764           | 7/1/2010               | NB, TG                   | 496-498            | 4                  | D                  | 6/tm                | 992          |
| 003            | PG         | BWBS         | mw<br>wk1   | 101Ş<br>RY   |                            | 10       | 6095268            | 628548<br>627564 | 7/1/2010               | NB, IG<br>NG TG RD       | 503-506<br>514-519 | 4                  | E<br>C             | 5/b<br>2a           | 998          |
| 005            | PG         | BWBS         | wk1         | RY           |                            | 10       | 6093991            | 627581           | 7/2/2010               | NB, TG, RD               | 519-522            | 3                  | c                  | 2a                  | 1034         |
| 006            | PG         | BWBS         | wk1         | 102          |                            | 10       | 6093836            | 627847           | 7/2/2010               | NB, TG, RD               | 523-527            | 2                  | В                  | 5/c                 | 1050         |
| 007            | PG         | BWBS         | wk1<br>wk1  | 101<br>Ws00  | Wetland Sensitive          | 10<br>10 | 6093093<br>6092954 | 627184<br>627094 | 7/2/2010               | NB, TG, RD<br>NB, TG, RD | 535-538<br>539-542 | 4                  | D                  | 4/c<br>3b           | 1095         |
| 009            | PG         | BWBS         | mw          | 101          |                            | 10       | 6095378            | 628790           | 7/3/2010               | NB, TG, RD               | 543-551            | 5                  | c                  | 3a                  | 976          |
| 010            | PG         | BWBS         | mw          | 101          |                            | 10       | 6097872            | 627098           | 7/3/2010               | NB, TG, RD               | 552-555            | 4                  | с                  | 3a                  | 805          |
| 011<br>012     | PG<br>PG   | BWBS         | mw          | 101\$        |                            | 10<br>10 | 6098031<br>6097639 | 627046<br>626443 | 7/3/2010               | NB, TG, RD<br>NB, TG, RD | 556-558<br>559-563 | 4                  | B                  | 6/tb<br>4/c         | 791<br>776   |
| 013            | PG         | BWBS         | mw          | 102          |                            | 10       | 6097638            | 625904           | 7/3/2010               | NB, TG, RD               | 566-570            | 2                  | В                  | 4/c                 | 798          |
| 014            | PG         | BWBS         | mw          | Ws07         | Wetland Sensitive          | 10       | 6097465            | 625746           | 7/3/2010               | NB, TG, RD               | 491-502            | VM                 | D                  | 7/c                 | 765          |
| 015            | PG         | BWBS         | mw          | 110          | Blue Listed                | 10       | 6099652            | 626090           | 7/4/2010               | NB, TG, RD<br>NB, TG, RD | 582-586            | 4                  | D                  | 7/tc                | 739<br>804   |
| 017            | PG         | BWBS         | mw          | 101          |                            | 10       | 6099342            | 625617           | 7/4/2010               | NB, TG, RD               | 587-590            | 4                  | В                  | 5/c                 | 866          |
| 018            | PG         | BWBS         | mw          | 101          |                            | 10       | 6098711<br>6098681 | 625811<br>626218 | 7/4/2010               | NB, TG, DJ               | 591<br>595-597     | 4                  | B                  | 7/tc<br>6/tc        | 866<br>796   |
| 020            | PG         | BWBS         | mw          | 101          |                            | 10       | 6098556            | 626617           | 7/5/2010               | NB, TG, RD               | 598-602            | 5                  | c                  | 7/mm                | 763          |
| 021            | PG         | BWBS         | mw          | 104          |                            | 10       | 6098557            | 626340           | 7/5/2010               | NB, TG, RD               | 603-604            | 4                  | В                  | 5/sm                | 767          |
| 022            | PG         | BWBS         | mw          | 1035         |                            | 10<br>10 | 6098278<br>6098220 | 626037<br>626282 | 7/5/2010               | NB, TG, RD               | 605-608<br>609-611 | 4                  | C<br>C             | 4/tc<br>7/tm        | 801<br>782   |
| 024            | PG         | BWBS         | mw          | WT           |                            | 10       | 6098002            | 626268           | 7/5/2010               | NB, TG, RD               | 612-619            | not described      | not described      | 3b                  | 768          |
| 025            | PG         | BWBS         | mw          | 101          |                            | 10       | 6098059            | 626213           | 7/5/2010               | NB, TG, RD               | 620-622            | 4                  | D                  | 7/tc                | 782          |
| 026<br>027     | PG<br>PG   | BWBS         | mw          | 1105         |                            | 10<br>10 | 6098876<br>6098807 | 625043<br>625201 | 7/6/2010               | NB, TG, RD<br>NB, TG, RD | 630-635<br>636-643 | 4                  | B                  | 6/tb<br>4/sm        | 908<br>944   |
| 028            | PG         | BWBS         | mw          | 103          |                            | 10       | 6098667            | 625075           | 7/6/2010               | NB, TG, RD               | 644-648            | 4                  | с                  | 7/mb                | 914          |
| 029            | PG         | BWBS         | mw          | 102          |                            | 10       | 6099181            | 625015           | 7/6/2010               | NB, TG, RD               | 657661             | 3                  | B                  | 5/tc                | 884          |
| 030            | PG         | BWBS         | mw<br>mw    | 101<br>101   |                            | 10<br>10 | 6098090            | 625115           | 7/7/2010               | ND, TG, RD<br>NB, TG, RD | 004-068<br>669-674 | 5<br>4             | C                  | o/tm<br>6/tm        | 884<br>845   |
| 032            | PG         | BWBS         | mw          | 102          |                            | 10       | 6097894            | 625655           | 7/7/2010               | NB, TG, RD               | 675-680            | 3                  | В                  | 5/tc                | 831          |
| 033            | PG         | BWBS         | mw          | 103          |                            | 10       | 6097655            | 625453           | 7/7/2010               | NB, TG, RD               | 685-689            | 3                  | C                  | 6/mc                | 799          |
| 034            | PG         | BWBS         | mw          | 103          |                            | 10       | 6097070            | 625668           | 7/8/2010               | NB, TG, RD<br>NB, TG, RD | 767-775            | 2                  | В                  | 4/sc                | 820          |
| 039            | PG         | BWBS         | mw          | 101          | _                          | 10       | 6097230            | 625749           | 7/8/2010               | NB, TG, RD               | 786-791            | 4                  | С                  | 4/sc                | 821          |
| 040            | PG         | BWBS         | mw          | 110          | Blue Listed                | 10       | 6097185            | 625948           | 7/8/2010               | NB, TG, RD               | 792-797            | 5                  | E                  | 6/c<br>5/tc         | 769          |
| 042            | PG         | BWBS         | mw          | 101          |                            | 10       | 6096410            | 626131           | 7/9/2010               | NB, TG                   | 813-818            | 4                  | c                  | 5/c                 | 816          |
| 044            | PG         | BWBS         | mw          | AN           |                            | 10       | 6096091            | 626048           | 7/9/2010               | NB, TG                   | 846-857            | n/a                | n/a                | 3b                  | 770          |
| 046<br>047     | PG<br>PG   | BWBS         | mw<br>mw    | 111<br>102   | Blue Listed                | 10<br>10 | 6095399<br>6095427 | 625121<br>624905 | 7/10/2010              | NB, TG, RD<br>NB, TG, RD | 899-906<br>910-917 | 5                  | D<br>B             | 6/sc<br>6/mc        | 768<br>794   |
| 048            | PG         | BWBS         | mw          | 101\$        |                            | 10       | 6095645            | 624751           | 7/10/2010              | NB, TG, RD               | 918-923            | 5                  | c                  | 5/sb                | 805          |
| 049            | PG         | BWBS         | mw          | 101          | Plue Listed                | 10       | 6097441            | 624867           | 7/10/2010              | NB, TG, RD               | 945-961            | 3                  | D                  | 6/tm                | 811          |
| 050            | PG<br>PG   | BWBS         | mw          | 110<br>103   | blue Listed                | 10<br>10 | 6097663<br>6097790 | 624680<br>624761 | 7/10/2010              | NB, TG, RD<br>NB, TG, RD | 968-972<br>989-995 | 5                  | C                  | 5/tm<br>5/tm        | 847          |
| 052            | PG         | BWBS         | mw          | 103          |                            | 10       | 6097694            | 625019           | 7/11/2010              | NB, TG, RD               | 1011-1016          | 3                  | В                  | 5/tm                | 830          |
| 055            | PG         | BWBS         | wk1         | 101          |                            | 10       | 6098851            | 624211           | 7/11/2010              | NB, TG, RD               | 1044-1050          | 4                  | В                  | 4/sc                | 918          |
| 056            | PG         | BWBS         | mw          | 101          |                            | 10       | 6098972            | 624222           | 7/11/2010              | NB, TG, RD<br>NB, TG, RD | 1052-1062          | 4                  | В                  | 4/c<br>5/tc         | 904<br>935   |
| 058            | PG         | BWBS         | wk1         | 101          |                            | 10       | 6098620            | 623637           | 7/12/2010              | NB, TG, RD               | 1073-1083          | 4                  | с                  | 6/mm                | 964          |
| 059            | PG         | BWBS         | wk1         | 101          |                            | 10       | 6099484            | 623230           | 7/12/2010              | NB, TG, RD               | 1085-1091          | 5                  | C                  | 5/tc                | 1016         |
| 060            | PG         | BWBS         | wk1         | WS           | Wetland Sensitive          | 10       | 6099281            | 622626           | 7/12/2010              | NB, TG, RD               | 1108-1120          | 7                  | D                  | 4/3C<br>5/c         | 10/3         |
| 062            | PG         | BWBS         | mw          | 103          | _                          | 10       | 6099475            | 621489           | 7/12/2010              | NB, TG, RD               | 1123-1128          | 5                  | В                  | 5/mc                | 1095         |
| 063<br>0638    | PG         | ESSF         | mv2         | 06           | Blue Listed<br>Blue Listed | 10       | 6099256            | 620625<br>620575 | 7/13/2010              | NB, TG, RD               | 135, 1141-115      | 6                  | D                  | 6/mc                | 1169         |
| 064            | PG         | BWBS         | mw          | GP           |                            | 10       | 6096302            | 625258           | 7/13/2010              | NB, TG, RD               | 1154-1160          | n/a                | n/a                | 1                   | 770          |
| 065            | PG         | BWBS         | mw          | 103\$        |                            | 10       | 6096543            | 625402           | 7/13/2010              | NB, TG, RD               | 1161-1170          | 3                  | В                  | 5/mb                | 775          |
| 066            | PG         | BWBS         | wk1<br>wk1  | 101          |                            | 10<br>10 | 6101078<br>6100840 | 623676           | 8/24/2010 8/24/2010    | RD, TG, DG<br>RD, TG, DG | 5-9<br>13-18       | 4                  | 0                  | 5/sm<br>5/tb        | 1198         |
| 068            | PG         | BWBS         | wk1         | 101          |                            | 10       | 6100965            | 622650           | 8/24/2010              | RD, TG, DG               | 23-27              | 4                  | D                  | 5/im                | 1113         |
| 069            | PG         | BWBS         | wk1         | 110          | Blue Listed                | 10       | 6100526            | 622605           | 8/24/2010              | RD, TG, DG               | 35-41              | 6                  | D                  | 6/im                | 1072         |
| 070            | PG         | BWBS         | wk1         | 101          | Blue Listed                | 10       | 6099884            | 622046           | 8/24/2010              | RD, TG, DG<br>RD, TG, DG | 43-47              | 4                  | c                  | 5/im                | 1065         |
| 072            | PG         | ESSF         | mv2         | 01           |                            | 10       | 6101869            | 621996           | 8/25/2010              | RD, TG, DG               | 69-72              | 4                  | c                  | 5/sc                | 1256         |
| 073            | PG         | ESSF         | mv2         | SA           |                            | 10       | 6101444            | 621626           | 8/25/2010              | RD, TG, DG               | 81-85              | 3                  | C                  | 3b                  | 1239         |
| 074            | PG         | BWBS         | wk1         | 110          | Blue Listed                | 10       | 6100599            | 621258           | 8/25/2010              | RD, TG, DG<br>RD, TG, DG | 100-105            | 5                  | D                  | 6/im                | 1203         |
| 076            | PG         | BWBS         | wk1         | 103          | Blue Listed                | 10       | 6100401            | 621214           | 8/25/2010              | RD,TG, DG                | 109-113            | 4                  | В                  | 5/sc                | 1098         |
| 077<br>078     | PG         | BWBS<br>BWRS | wk1<br>wk1  | WS<br>101    | wettanu Sensitive          | 10<br>10 | 6100057<br>6099703 | 621229           | 8/25/2010<br>8/25/2010 | RD, TG, DG               | 115-120<br>124-128 | 6<br>4             | Ē                  | 5/ic<br>5/im        | 1065         |
| 089            | PG         | ESSF         | mv2         | 01           |                            | 10       | 6102265            | 619939           | 8/27/2010              | RD, TG, DG               | 307-311            | 4                  | c                  | 5/im                | 1152         |
| 079            | PG         | ESSF         | mv2         | 01           | Blue Listed                | 10       | 6101290            | 620990           | 8/26/2010              | RD, TG, DG               | 185-189            | 4                  | c                  | 5/tm                | 1143         |
| 080<br>081     | PG<br>PG   | ESSF         | mv2<br>mv2  | WDU6<br>Ws04 | Wetland Sensitive          | 10<br>10 | 6101652<br>6101809 | 621116<br>620984 | 6/26/2010<br>8/26/2010 | RD, TG, DG<br>RD, TG. DG | 191-196<br>206-210 | 8                  | C                  | 5/1C<br>3a          | 1143<br>1129 |
| 082            | PG         | ESSF         | mv2         | 01           |                            | 10       | 6101582            | 620818           | 8/26/2010              | RD, TG, DG               | 218-222            | 4                  | c                  | 5/tc                | 1147         |
| 083            | PG         | ESSF         | mv2         | Ws04         | Wetland Sensitive          | 10       | 6101536            | 620448           | 8/26/2010              | RD, TG, DG               | 229-235            | 7                  | D                  | 5/ic                | 1098         |
| 085            | PG         | ESSF         | mv2         | 03           |                            | 10       | 61014/8            | 620260           | 8/26/2010              | RD, TG, DG<br>RD, TG, DG | 241-246<br>251-254 | 3                  | B                  | 5/sb                | 1008         |
| 086            | PG         | SBS          | wk2         | 06           |                            | 10       | 6102859            | 620389           | 8/27/2010              | RD, TG, DG               | 278-281            | 5                  | С                  | 6/ib                | 1102         |
| 087<br>088     | PG         | SBS          | wk2         | Ws04         | wetland Sensitive          | 10       | 6102803            | 620348           | 8/27/2010              | RD, TG, DG               | 294-299            | 8                  | D                  | 2b<br>4/c           | 1094         |
| 090            | PG         | SBS          | wk2         | Wb06         | Blue Listed                | 10       | 6102371            | 620180           | 8/27/2010              | RD, TG, DG               | 312-318            | 7                  | В                  | 3b                  | 1104         |
| 091            | PG         | ESSF         | mv2         | Wb06         | Blue Listed                | 10       | 6102029            | 620247           | 8/27/2010              | RD, TG, DG               | 320-323            | 7                  | В                  | 3/b                 | 1103         |
| 092<br>093     | PG         | ESSF         | mv2<br>mv7  | Wb00<br>02   | mettariti sensitive        | 10<br>10 | 6101918<br>6101941 | 620380<br>620170 | 8/27/2010<br>8/27/2010 | RD, TG, DG               | 325-328<br>330-334 | 7                  | B                  | 3b<br>5/sc          | 1107<br>1117 |
| 094            | PG         | ESSF         | mv2         | 02           |                            | 10       | 6100718            | 619880           | 8/28/2010              | RD, TG, DG               | 335-339            | 3                  | В                  | 5/sc                | 1195         |
| 095            | PG         | ESSF         | mv2         | 06           | Blue Listed                | 10       | 6100547            | 620007           | 8/28/2010              | RD, TG, DG               | 341-344            | 5                  | C                  | 5/im                | 1175         |
| U96<br>097     | PG<br>PG   | ESSF         | mv2<br>mv2  | Ws04<br>04   | wettanu sensitive          | 10<br>10 | 6100452<br>6100309 | 620022           | 8/28/2010<br>8/28/2010 | RD, TG, DG<br>RD, TG, DG | 351-354<br>356-359 | 7                  | D<br>B             | 3b<br>3a            | 1163<br>1165 |
| 098            | PG         | ESSF         | mv2         | 06           | Blue Listed                | 10       | 6100544            | 620243           | 8/28/2010              | RD, TG, DG               | 361-364            | 5                  | D                  | 6/ic                | 1151         |
| 099            | PG         | ESSF         | mv2         | 04           |                            | 10       | 6100681            | 620254           | 8/28/2010              | RD, TG, DG               | 366-370            | 5                  | c                  | 5/sc                | 1164         |
| 100            | PG         | ESSF         | mv2<br>mv2  | 04<br>01     |                            | 10<br>10 | 6100927            | 620120           | 8/28/2010<br>8/28/2010 | RD, TG, DG<br>RD, TG, DG | 372-375<br>377-381 | 4                  | B                  | 3/SC<br>4/C         | 1164<br>1180 |
| 105            | PG         | BWBS         | mw          | 103          |                            | 10       | 6099222            | 627074           | 8/30/2010              | RD, TG, DG               | 525-529            | 4                  | C                  | 5/tc                | 776          |
| 106            | PG         | BWBS         | mw          | 111          | Blue Listed                | 10       | 6099413            | 627229           | 8/30/2010              | RD, TG, DG               | 537-542            | 6                  | D                  | 6/ic                | 774          |
| 102            | PG         | SBS          | wk2         | Wm02         | Blue Listed                | 10       | 6093419            | 623733           | 8/27/2010              | RD, TG, DG               | 388-396            | 8                  | D                  | 2b                  | 770          |

| Appendix     | C /. Ecosy | stem M        | apping    | Field Surve  | ey Data              |          | IITM      |             |                     |                  | Photo     | Moisture  | Nutrient  | Structural  |            |
|--------------|------------|---------------|-----------|--------------|----------------------|----------|-----------|-------------|---------------------|------------------|-----------|-----------|-----------|-------------|------------|
| Number       | Region     | Zone          | Zone      | Site Series  | Status               | UTM Zone | Northing  | UTM Easting | Date                | Site Surveyor    | Number    | Regime    | Regime    | Stage       | Elevation  |
| 103          | PG         | BWBS          | mw        | HW           | Wetland Sensitive    | 10       | 6104371   | 628619      | 8/30/2010           | RD, TG, DG       | 501-508   | 8         | С         | 2b          | 885        |
| 104          | PG         | BWBS          | mw        | Wb09         | Blue Listed          | 10       | 6099200   | 627189      | 8/30/2010           | RD, TG, DG       | 517-520   | 7         | В         | 5/ic        | 775        |
| 035          | PG         | BWBS          | mw        | Wb00         | Wetland Sensitive    | 10       | 6097285   | 625513      |                     | NB, TG, RD       | 785-719   | 6         | В         | 4/sc        | 776        |
| 036          | PG         | BWBS          | mw        | Wm01         | Wetland Sensitive    | 10       | 6097534   | 625395      | 7/8/2010            | NB, TG, RD       | 724-736   | 7         | C         | 3           | 775        |
| 043          | PG         | BWBS          | mw        | Wm01         | Wetland Sensitive    | 10       | 6096402   | 626022      | 7/9/2010            | NB, TG, KD       | 819-838   | w         | D         | 2C<br>2b    | 765        |
| 045          | PG         | BWBS          | mw        | Ws00         | Wetland Sensitive    | 10       | 6095612   | 625731      | 7/9/2010            | NB, TG           | 045 (1-6) | 7         | E         | 6/c         | 766        |
| 053          | PG         | BWBS          | mw        | Wb09         | Blue Listed          | 10       | 6098123   | 624641      | 7/11/2010           | NB, TG, RD       | 1017-1036 |           | В         | 4/c         | 867        |
| 054          | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6097980   | 624696      | 7/11/2010           | NB, TG           | 1038-1043 | 6         | D         | 6/mm        | 863        |
| 200v         | PG         | BWBS          | mw        | 110          | Blue Listed          | 10       | 6103712   | 627291      | 8/15/2011           | NB, TG           |           |           |           | 5/tm        | 787        |
| 201v         | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6103700   | 627247      | 8/15/2011           | NB, TG           |           |           |           | 5/tm        | 794        |
| 202v         | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6103700   | 627232      | 8/15/2011           | NB, TG           |           |           |           | 5/tm        | 785        |
| 285          | PG         | BWBS          | mw        | 104          |                      | 10       | 6103521   | 627791      | 8/15/2011           | DM, NB           |           | 4         | C         | 5/tc        | 851        |
| 204v<br>205v | PG         | BWBS          | mw        | 1015         |                      | 10       | 6103724   | 627504      | 8/15/2011           | NB, TG           |           |           |           | 4/D<br>5/tm | 760<br>825 |
| 2051<br>206v | PG         | BWBS          | mw        | 110          | Blue Listed          | 10       | 6096929   | 624179      | 8/15/2011           | NB, TG           |           | 5         | D         | 6/tm        | 920        |
| 207v         | PG         | BWBS          | mw        | 110          | Blue Listed          | 10       | 6096805   | 624113      | 8/16/2011           | NB, TG           |           |           |           | 6/hm        | 908        |
| 208v         | PG         | BWBS          | mw        | 101          |                      | 10       | 6096323   | 624089      | 8/16/2011           | NB, TG           |           |           |           |             | 944        |
| 209v         | PG         | BWBS          | wk1       | 101\$        |                      | 10       | 6096213   | 624039      | 8/16/2011           | NB, TG           |           | 4         | C         | 5/sb        | 987        |
| 210v         | PG         | BWBS          | wk1       | 104          |                      | 10       | 6096068   | 624010      | 8/16/2011           | NB, TG           |           | 3         | В         | 5/sc        | 1009       |
| 211v<br>212v | PG         | BWBS          | mw        | TP           |                      | 10       | 6095606   | 623932      | 8/16/2011           | NB, TG           |           | 2         | D         | 5/1C        | 936        |
| 213v         | PG         | BWBS          | mw        | 110          | Blue Listed          | 10       | 6095353   | 623857      | 8/16/2011           | NB, TG           |           |           |           | 0,100       | 876        |
| 214v         | PG         | BWBS          | mw        | 101          |                      | 10       | 6095154   | 623815      | 8/16/2011           | NB, TG           |           | 4         | В         | 5/tc        | 871        |
| 215v         | PG         | BWBS          | mw        | TP           |                      | 10       | 6095043   | 623777      | 8/16/2011           | NB, TG           |           |           |           | 6/mc        |            |
| 216v         | PG         | BWBS          | mw        | Ws07         | Wetland Sensitive    | 10       | 6095011   | 623878      | 8/16/2011           | NB, TG           |           | 7         | D         | 6/mc        | 850        |
| 219v         | PG         | BWBS          | mw        | 101          | Ruo Listod           | 10       | 6094613   | 624212      | 8/16/2011           | NB, TG           |           | ,         |           |             | 777        |
| 220V<br>221v | PG         | BWBS          | mw        | 101 WDU9     | blue Listed          | 10       | 6102692   | 628509      | 8/17/2011 8/17/2011 | NB, TG<br>NB, TG |           | 6         | в         | 3a          | 875        |
| 221V<br>222v | PG         | BWBS          | mw        | 103          |                      | 10       | 6102413   | 628133      | 8/17/2011           | NB, TG           |           |           |           | 3a          | 874        |
| 223v         | PG         | BWBS          | mw        | 101          |                      | 10       | 6102504   | 627888      | 8/17/2011           | NB, TG           |           |           |           | 3a          | 869        |
| 224v         | PG         | BWBS          | mw        | 103          |                      | 10       | 6102419   | 627721      | 8/17/2011           | NB, TG           |           |           |           | 5/mm        | 828        |
| 225v         | PG         | BWBS          | mw        | 101          |                      | 10       | 6102313   | 627632      | 8/17/2011           | NB, TG           |           |           |           | 5/mm        | 779        |
| 226V         | PG         | BWBS          | mw        | CD           |                      | 10       | 6102245   | 627685      | 8/17/2011           | NB, TG           |           |           |           | 5/tb        | 803        |
| 22/v<br>228v | PG         | BWBS<br>BW/PC | mw        | 101<br>NN    |                      | 10       | 6102177   | 62/752      | 8/17/2011           | NB, TG           |           |           | n         | 5/mc        | 817<br>820 |
| 220v<br>229v | PG         | BWBS          | mw        | 1115         |                      | 10       | 6101988   | 627827      | 8/17/2011           | NB, TG           |           |           | U         | 5/sb        | 820        |
| 230v         | PG         | BWBS          | mw        | NN           |                      | 10       | 6100630   | 627688      | 8/19/2011           | NB, TG           |           |           |           | 4/sb        | 802        |
| 231v         | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6100531   | 627651      | 8/19/2011           | NB, TG           |           | 6         | В         | 4/sc        | 810        |
| 232v         | PG         | BWBS          | mw        | 101          |                      | 10       | 6100637   | 627442      | 8/19/2011           | NB, TG           |           | 4         | C         | 5/tc        | 788        |
| 233v         | PG         | BWBS          | mw        | 103          |                      | 10       | 6100654   | 627541      | 8/19/2011           | NB, TG           |           | 4         |           | 5/c         | 781        |
| 234v         | PG         | BWBS          | mw        | NN           |                      | 10       | 6100849   | 627845      | 8/19/2011           | NB, TG           |           |           |           | 4           | 810        |
| 235V<br>236v | PG         | BWBS          | mw        | Ws07         | Wetland Sensitive    | 10       | 6099997   | 679184      | 8/19/2011           | NB, TG           |           | 7         | в         | 5a<br>6/sc  | 881        |
| 237v         | PG         | BWBS          | mw        | 103          |                      | 10       | 6099268   | 629608      | 8/19/2011           | NB, TG           |           | ,         |           | 4/sc        | 892        |
| 238          | PG         | BWBS          | mw        | 103          |                      | 10       | 6099150   | 629628      | 8/19/2011           | NB, TG           |           | 3         | В         | 5/sc        | 900        |
| 239v         | PG         | BWBS          | mw        | NN           |                      | 10       | 6096946   | 624793      | 8/20/2011           | NB, TG           |           |           |           |             | 814        |
| 240v         | PG         | BWBS          | mw        | NN           |                      | 10       | 6097037   | 624462      | 8/20/2011           | NB, TG           |           |           |           |             | 849        |
| 241v<br>242v | PG         | BWBS          | mw        | 1015         |                      | 10       | 609/1/3   | 624283      | 8/20/2011           | NB, IG           |           | ,         |           | 6/+=        | 8/6        |
| 242v<br>245v | PG         | BWBS          | mw        | 1115         |                      | 10       | 6097240   | 674131      | 8/20/2011           | NB, TG           |           | 3         | ь         | 36          | 900        |
| 246v         | PG         | BWBS          | mw        | WS           | Wetland Sensitive    | 10       | 6097288   | 624171      | 8/20/2011           | NB, TG           |           |           |           | 55          | 895        |
| 247v         | PG         | BWBS          | mw        | 101\$        |                      | 10       | 6097241   | 624232      | 8/20/2011           | NB, TG           |           |           |           | 6/sb        | 895        |
| 248v         | PG         | BWBS          | mw        | 103          |                      | 10       | 6096489   | 625369      | 8/20/2011           | NB, TG           |           |           |           | 6/tc        | 770        |
| 249v         | PG         | BWBS          | mw        | Ws07         | Wetland Sensitive    | 10       | 6096502   | 625485      | 8/20/2011           | NB, TG           |           |           |           | 3b          | 760        |
| 250V<br>251v | PG         | BWBS          | mw        | WSUU<br>1175 | Red Listed           | 10       | 6096483   | 625513      | 8/20/2011           | NB, TG           |           | 6         | F         | 6/1C        | 764<br>758 |
| 252v         | PG         | BWBS          | mw        | NN           |                      | 10       | 6096877   | 625170      | 8/20/2011           | NB, TG           |           | Ŭ         | -         | 0/10        | 774        |
| 253v         | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6096625   | 625571      | 8/20/2011           | NB, TG           |           |           |           | 6/tm        | 766        |
| 271v         | PG         | BWBS          | wk1       | 101\$        |                      | 10       | 6101846   | 625566      | 8/21/2011           | NB, TG           |           |           |           | 5/sb        | 1010       |
| 272v         | PG         | BWBS          | wk1       | 101\$        |                      | 10       | 6101871   | 625693      | 8/21/2011           | NB, TG           |           |           |           | 5/sb        | 983        |
| 274v         | PG         | BWBS          | mw        | 103\$        |                      | 10       | 6101989   | 625934      | 8/21/2011           | NB, TG           |           |           |           | 6/tb        | 920        |
| 275v<br>276v | PG         | BWBS          | mw        | 1035         |                      | 10       | 6102025   | 626067      | 8/21/2011           | NB, TG           |           |           |           | 6/tb        | 903        |
| 277v         | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6102116   | 626118      | 8/21/2011           | NB, TG           |           | 6         | D         | 6/tc        | 828        |
| 278v         | PG         | BWBS          | mw        | 101          |                      | 10       | 6102146   | 626239      | 8/21/2011           | NB, TG           |           | 3         |           | 4/sc        | 813        |
| 286          | PG         | BWBS          | mw        | 103          |                      | 10       | 6103825   | 627449      | 8/15/2011           | NB, TG, DM, RD   |           |           |           | 5/sb        | 819        |
| 287          | PG         | BWBS          | mw        | 111          | Blue Listed          | 10       | 6103740   | 627200      | 8/15/2011           | NB, TG, DM       |           | 6         | D         | 5/sb        | 778        |
| SZ1<br>S32   | PG         | BWBS          | mw        | 103          |                      | 10       | 6100764   | 62/974      | 8/19/2011           | NB, IG, DM       |           | 3         | c         | 5/tc        | 833<br>802 |
| \$33         | PG         | BWBS          | mw        | 103          |                      | 10       | 6100100   | 629157      | 8/19/2011           | NB, TG. RD       |           | 3<br>4    | c         | 2a          | 881        |
| S42          | PG         | BWBS          | mw        | 110          | Blue Listed          | 10       | 6096637   | 624212      | 8/16/2011           | NB, TG, RD       |           | 5         | D         | 6/tc        | 894        |
| S43          | PG         | BWBS          | mw        | 101\$        |                      | 10       | 6095923   | 623970      | 8/16/2011           | NB, TG, RD       |           | 4         | В         | 5/tb        | 975        |
| S44          | PG         | BWBS          | mw        | Ws00         | Wetland Sensitive    | 10       | 6095007   | 623918      | 8/16/2011           | NB, TG, RD       |           | 7         | D         | 6           | 847        |
| S19          | PG         | BWBS          | mw        | 101\$        | Watland Consitivo    | 10       | 6102962   | 627948      | 8/17/2011           | NB, TG, RD       |           | 4         | C         | 5/sb        | 850        |
| S22          | PG         | BWBS          | mw<br>wk1 | Ws07         | Blue Listed          | 10       | 6100554   | 627493      | 8/19/2011           | TG, NB, RD       |           | 7         | D         | 5/sc        | 790        |
| 243          | PG         | BWBS          | mw        | 110          | Blue Listed          | 10       | 6097275   | 623384      | 8/20/2011           | NB, TG RD        |           | 4         | C D       | 6/fic       | 999        |
| 254          | PG         | BWBS          | mw        | 112          | Red Listed           | 10       | 6096512   | 625716      | 8/20/2011           | NB, RD, DM, WE   |           | 5         | D         | 5/tb        | 758        |
| 270          | PG         | BWBS          | mw        | 101\$        |                      | 10       | 6101869   | 625504      | 8/21/2011           | NB, TG, RD       |           | 4         | с         | 6/tb        | 1031       |
| 273          | PG         | BWBS          | mw        | 101\$        |                      | 10       | 6101975   | 625891      | 8/21/2011           | NB, TG, RD       |           | 3         | C         | 6/tb        | 925        |
| 279          | PG         | BWBS          | mw        | 101          | Ded List-d           | 10       | 6102161   | 626289      | 8/21/2011           | NB, TG, RD       |           | 3         | В         | 5/tc        | 799        |
| 280          | PG         | BWBS          | mw        | 112          | Keu LISTEO           | 10       | 6102288   | 626492      | 8/21/2011           | NB, TG           |           | 5         | D<br>n/-  |             | /60        |
| 282          | PG         | BWBS          | mw        | 101          |                      | 10       | 6093744   | 624620      | 8/21/2011           | NB, TG, RD       |           | 11/d<br>4 | 11/a<br>C | 6/tm        | 776        |
| S17          | PG         | BWBS          | mw        | 101          |                      | 10       | 6102299   | 627629      | 8/17/2011           | NB, TG           |           | 4         | c         | 5/tm        | 792        |
| S18          | PG         | BWBS          | mw        | 101          |                      | 10       | 6102561   | 627840      | 8/17/2011           | NB, TG, DM       |           | 4         | с         | 5/mm        | 860        |
| P-26         | PG         | BWBS          | mw        | Wb03         | Blue Listed          | 10       | 6099800   | 627073      | 8/18/2011           | TG,RD,NB         |           | 7         | В         |             | 764        |
| S-25         | PG         | BWBS          | mw        | Ws02         | Wetland Sensitive    | 10       | 6099656   | 626791      | 8/18/2011           | TG,RD            |           | 7         | c         |             | 756        |
| 5-24<br>c 17 | PG         | BWBS          | mw        | 111          | DIDE LISTED          | 10       | 6099655   | 626549      | 8/18/2011           | TC DD            |           | 5         | C n       | 6           | /67        |
| S-14         | PG         | BWBS          | mw        | FP           | Floodplain Sensitive | 10       | 6103720   | 627198      | 8/17/2011           | TG.RD            |           | 4         | D         | 3           | 700<br>795 |
| DM001        | PG         | SBS           | wk2       | 03           |                      | 10       | 6081270   | 612901      | 8/16/2011           | DM               |           | 4         | с         | 3b          | 829        |
| DM002        | PG         | SBS           | wk2       | 01           |                      | 10       | 6082268   | 612901      | 8/16/2011           | DM               |           |           |           | 5/tc        | 827        |
| DM003        | PG         | SBS           | wk2       | 02           | Blue Listed          | 10       | 6084538   | 613962      | 8/16/2011           | DM               |           |           |           | 5/m         | 770        |
| DM004        | PG         | SBS           | wk2       | Ws00         | wetland Sensitive    | 10       | 6084698   | 613552      | 8/16/2011           | DM               | 3074 2029 |           |           | 3/b         | 770        |
| DM005        | PG<br>pC   | SBC           | WKZ       | 00           |                      | 10       | 000035084 | 613870      | 8/16/2011           | DW               | 3720-3928 |           |           | 5/c         | 788        |
| 2            | 1.0        | 202           | ****      | 05           |                      | 10       | 5505731   | 0100/0      | 0, 10, 2011         | D.W.             |           |           |           | 5/10        | 100        |

| Appendix       | 7. Ecosy | stem N       | apping    | Field Surve | y Data               |          |                    |                  |                     |               |         |          |          |              |              |
|----------------|----------|--------------|-----------|-------------|----------------------|----------|--------------------|------------------|---------------------|---------------|---------|----------|----------|--------------|--------------|
| Plot           |          |              | Sub       |             |                      |          | UTM                |                  |                     |               | Photo   | Moisture | Nutrient | Structural   |              |
| Number         | Region   | Zone         | Zone      | Site Series | Status               | UTM Zone | Northing           | UTM Easting      | Date                | Site Surveyor | Number  | Regime   | Regime   | Stage        | Elevation    |
| DM009          | PG       | SBS          | wk2       | NN          |                      | 10       | 6087648            | 612495           | 8/16/2011           | DM            |         |          |          |              | 987          |
| DM010          | PG       | SBS          | wk2       | 01          |                      | 10       | 6087665            | 614278           | 8/16/2011           | DM            | 3939    |          |          | 5/b          | 780          |
| DM012          | PG       | SBS          | wk2       | 01          |                      | 10       | 6089706            | 615684           | 8/16/2011           | DM            |         |          |          | 6/t          | 790          |
| DM013          | PG       | SBS          | wk2       | NN          |                      | 10       | 6090589            | 615882           | 8/16/2011           | DM            |         |          |          |              | 790          |
| DM014          | PG       | SBS          | wk2       | NN<br>104   |                      | 10       | 6090934            | 618425           | 8/16/2011           | DM            | 3941-43 |          |          | E/mc         | 792          |
| DM015          | PG       | BWBS         | wk1       | Wb00        | Wetland Sensitive    | 10       | 6112390            | 631981           | 8/16/2011           | DM            | 3744-40 |          |          | 4/c          | 960          |
| DM018          | PG       | BWBS         | wk1       | 101         |                      | 10       | 6108688            | 633848           | 8/16/2011           | DM            |         |          |          | 5/tc         | 1063         |
| WP328          | PG       | BAFA         | un        | AM          | Alpine Sensitive     | 10       | 6084925            | 609129           | 8/18/2011           | DM            |         |          |          | 2a           | 1736         |
| WP329          | PG       | BAFA         | un        | KH          | Alpine Sensitive     | 10       | 6084921            | 609049           | 8/18/2011           | DM            |         |          |          | 3a           | 1759         |
| WP330<br>WP331 | PG       | BAFA         | un        | AN          | Alpine Sensitive     | 10       | 6084843            | 608810           | 8/18/2011           | DM            |         |          |          | 20<br>2a     | 1/6/         |
| WP332          | PG       | BAFA         | un        | AM          | Alpine Sensitive     | 10       | 6084909            | 608820           | 8/18/2011           | DM            |         |          |          | 2b           | 1827         |
| WP333          | PG       | BAFA         | un        | KW          | Alpine Sensitive     | 10       | 6084774            | 609116           | 8/18/2011           | DM            |         |          |          | 3a           | 1758         |
| WP334          | PG       | BAFA         | un        | AM          | Alpine Sensitive     | 10       | 6085009            | 609088           | 8/18/2011           | DM            |         |          |          | Za           | 1738         |
| WP336          | PG       | BAFA         | un        | AF          | Alpine Sensitive     | 10       | 6084892            | 605/91           | 8/18/2011           | DM            |         |          |          | 2d           | 1/85         |
| WP338          | PG       | ESSF         | mvp       | WM          |                      | 10       | 6085203            | 605947           | 8/18/2011           | DM            |         |          |          | 20<br>2a     | 1654         |
| WP339          | PG       | ESSF         | mvp       | KH          |                      | 10       | 6085306            | 605976           | 8/18/2011           | DM            |         |          |          | 3            | 1606         |
| WP340          | PG       | ESSF         | mv2       | WM          |                      | 10       | 6085411            | 605998           | 8/18/2011           | DM            |         |          |          | 2            | 1569         |
| WP341          | PG       | ESSF         | mv2       | NN          |                      | 10       | 6085524            | 606106           | 8/18/2011           | DM            |         |          |          | 3b           | 1551         |
| WP344<br>WP352 | PG       | ESSE         | mv2       | NN          |                      | 10       | 6093325            | 596293           | 8/18/2011           | DM            |         |          |          | 20           | 1683         |
| WP353          | PG       | ESSF         | mv2       | CC          |                      | 10       | 6093570            | 597146           | 8/18/2011           | DM            |         |          |          | 3            | 1667         |
| WP354          | PG       | ESSF         | mv2       | Wf01        | Wetland Sensitive    |          | 6096180            | 598415           | 8/18/2011           |               |         |          |          | 2            | 1591         |
| WP355          | PG       | ESSF         | mv2       | NN          |                      | 10       | 6096992            | 599398           | 8/18/2011           |               |         |          |          | 3b           | 1635         |
| WP356          | PG       | ESSF<br>BAEA | mv2       | NN          |                      | 10       | 6097479            | 599048           | 8/18/2011           | DW            |         |          |          | 3b<br>20     | 1669         |
| WP358          | PG       | BAFA         | un        | NN          |                      | 10       | 6099058            | 597667           | 8/18/2011           | DM            |         |          |          | ∠a<br>2a     | 1902         |
| WP359          | PG       | BAFA         | un        | AT          | Alpine Sensitive     | 10       | 6099615            | 597543           | 8/18/2011           | DM            |         |          |          | 2d           | 1917         |
| WP360          | PG       | BAFA         | un        | RO          |                      | 10       | 6099842            | 597752           | 8/18/2011           | DM            |         |          |          | 1            | 1961         |
| WP361          | PG       | BAFA         | un        | NN          |                      | 10       | 6100094            | 598017           | 8/18/2011           | P             |         |          |          | 2d           | 2000         |
| WP362<br>WP363 | PG       | BAFA         | un        | NN          |                      | 10       | 6101549            | 599313<br>600445 | 8/18/2011 8/18/2011 | DM            |         |          |          | 2a<br>3b     | 2087         |
| WP364          | PG       | ESSF         | mvp       | WM          |                      | 10       | 6103090            | 600950           | 8/18/2011           | DM            |         |          |          | 2a           | 2005         |
| WP365          | PG       | ESSF         | mvp       | NN          |                      | 10       | 6103504            | 601242           | 8/18/2011           | DM            |         |          |          | 3b           | 2021         |
| WP366          | PG       | ESSF         | mvp       | WM          |                      | 10       | 6103480            | 602346           | 8/18/2011           | DM            |         |          |          |              | 1971         |
| WP367          | PG       | ESSF         | mvp       | NN          |                      | 10       | 6102580            | 603901           | 8/18/2011           | DM            |         |          |          | 4            | 1955         |
| WP368<br>WP369 | PG       | ESSE         | mv2       | NN          |                      | 10       | 6102166            | 605605           | 8/18/2011           | DM            |         |          |          | 4/c          | 1925         |
| WP370          | PG       | ESSF         | mvp       | NN          |                      | 10       | 6103595            | 605858           | 8/18/2011           |               |         |          |          | 5/c          | 1855         |
| WP371          | PG       | ESSF         | mv2       | NN          |                      | 10       | 6104134            | 609216           | 8/18/2011           | DM            |         |          |          | 5/c          | 1756         |
| WP372          | PG       | ESSF         | mv2       | 01          |                      | 10       | 6103436            | 609966           | 8/18/2011           | DM            |         |          |          | 4/c          | 1718         |
| WP373          | PG       | ESSF         | mv2       | 01          |                      | 10       | 6103120            | 610312           | 8/18/2011           | DM            |         |          |          | 3b<br>4/c    | 1712         |
| WP376          | PG       | BWBS         | wk1       | NN          |                      | 10       | 6108465            | 613009           | 8/18/2011           | DM            |         |          |          | 4/C<br>3a    | 1631         |
| WP378          | PG       | ESSF         | mv2       | NN          |                      | 10       | 6105471            | 619520           | 8/18/2011           | DM            |         |          |          | 4/c          | 1549         |
| WP379          | PG       | ESSF         | mv2       | NN          |                      | 10       | 6104411            | 621605           | 8/18/2011           | DM            |         |          |          | 4/c          | 1538         |
| WP380          | PG       | ESSF         | mv2       | NN          |                      | 10       | 6104183            | 622282           | 8/18/2011           | DM            |         |          |          | 6/tc         | 1528         |
| WP381<br>WP387 | PG       | ESSF<br>RWRS | mvz<br>mw | NN          |                      | 10       | 6103614            | 623630           | 8/18/2011 8/18/2011 | DM            |         |          |          | 6/tC<br>5/tm | 1505         |
| WP383          | PG       | BWBS         | mw        | CC          |                      | 10       | 6103903            | 628409           | 8/18/2011           | DM            |         |          |          | 3            | 1211         |
| WP384          | PG       | BWBS         | mw        | Wb00        | Wetland Sensitive    | 10       | 6104712            | 629032           | 8/18/2011           | DM            |         |          |          |              | 1152         |
| WP385          | PG       | BWBS         | mw        | NN          |                      | 10       | 6103856            | 629061           | 8/18/2011           | DM            |         |          |          | 4/c          | 1112         |
| WP386          | PG       | BWBS         | mw<br>wk1 | CC          |                      | 10       | 6102646            | 630091           | 8/18/2011           | DM            |         | 5        | <i>c</i> | 3a           | 1140         |
| WP390          | PG       | BWBS         | wk1       | Ws07        | Wetland Sensitive    | 10       | 6084212            | 649609           | 8/19/2011           | DM            |         | 6        | D        | 3b           | 1099         |
| WP391          | PG       | BWBS         | wk1       | Wm01        | Wetland Sensitive    | 10       | 6085072            | 649195           | 8/19/2011           | DM            |         |          |          | 2b           | 1088         |
| WP392          | PG       | BWBS         | wk1       | SLW         | Wetland Sensitive    | 10       | 6085737            | 648833           | 8/19/2011           | DM            |         |          |          | 4/c          | 1096         |
| WP393          | PG       | BWBS         | wk1       | 101         | Westerned Consistent | 10       | 6087359            | 647478           | 8/19/2011           | DM            |         |          |          | 5/tc         | 1112         |
| WP394<br>WP395 | PG       | BWBS         | wk1       | Wm01<br>101 | wettand sensitive    | 10       | 6087180            | 64/409<br>647227 | 8/19/2011           | DM            |         |          |          | Zb<br>6/tc   | 1090         |
| WP396          | PG       | BWBS         | wk1       | 110         | Blue Listed          | 10       | 6088503            | 646101           | 8/19/2011           | DM            |         | 6        | D        | 6/tc         | 1078         |
| WP397          | PG       | BWBS         | mw        | 111         | Blue Listed          | 10       | 6088760            | 644318           | 8/19/2011           | DM            |         | 5        | с        | 5/c          | 963          |
| WP398          | PG       | BWBS         | mw        | Wm01        | Wetland Sensitive    | 10       | 6088506            | 644167           | 8/19/2011           | DM            |         |          |          | 2b           | 960          |
| WP399          | PG       | BWBS         | mw        | 101         | Blue Listed          | 10       | 6088669            | 644203           | 8/19/2011           | DW            |         | 5        | n        | 6/tc         | 960<br>10.47 |
| WP401          | PG       | BWBS         | wk1       | 103         | Blue Listed          | 10       | 6102383            | 645149           | 8/19/2011           | DM            |         | J        | υ        | 4/c          | 1106         |
| WP402          | PG       | BWBS         | wk1       | 103         | Blue Listed          | 10       | 6102079            | 644501           | 8/19/2011           | DM            |         |          |          | 4/c          | 1123         |
| WP403          | PG       | BWBS         | wk1       | Wm01        | Wetland Sensitive    |          | 6101273            | 643189           | 8/19/2011           | DM            |         |          |          | 2            | 1141         |
| WP404          | PG       | BWBS         | wk1       | 103         | Blue Listed          | 10       | 6101810            | 642972           | 8/19/2011           | DM            |         |          |          | 4/c          | 1157         |
| WP405<br>WP406 | PG<br>PG | BWB5         | Wk1       | 107         | Blue Listed          | 10       | 6102420<br>6103012 | 642569<br>641989 | 8/19/2011           | DW<br>DW      |         |          |          | 3D<br>4/c    | 1133         |
| WP407          | PG       | BWBS         | wk1       | 103         |                      | 10       | 6103906            | 640587           | 8/19/2011           | DM            |         |          |          | 3b           | 1056         |
| WP408          | PG       | BWBS         | wk1       | 101         |                      | 10       | 6104633            | 640389           | 8/19/2011           | DM            |         | 5        | с        | 5/tc         | 1019         |
| WP409          | PG       | BWBS         | mw        | Wm01        | Wetland Sensitive    | 10       | 6104901            | 640311           | 8/19/2011           | DM            |         |          |          | 2b           | 987          |
| WP410          | PG       | BWBS         | wk1       | 101         | Blue Listed          | 10       | 6104870            | 639206           | 8/19/2011           | DM            |         | 5        | с        | 6/tc         | 1044         |
| WP411<br>WP412 | PG<br>PC | BWBS         | wk1       | 110         | Dide Listed          | 10       | 6105463            | 638482           | 8/19/2011           | DW            |         |          |          | 6/tc<br>35   | 1072         |
| WP413          | PG       | BWBS         | wk1       | 110         | Blue Listed          | 10       | 6107817            | 635406           | 8/19/2011           | DM            |         |          |          | 3b           | 1117         |
| 12-401         | PG       | BWBS         | mw        | Wb06        | Blue Listed          | 10       | 6099606            | 628337           | 9/13/2012           | TG, WB        |         | 6        | В        | 3a           | 955          |
| 12-402         | PG       | BWBS         | mw        | 104         |                      | 10       | 6099553            | 628113           | 9/13/2012           | TG, WB        |         | 5+       | c        | 5/sC         | 949          |
| 12-403         | PG       | BWBS         | mw        | Wb06        | Blue Listed          | 10       | 6099348            | 628268           | 9/13/2012           | TG, WB        |         | 4        | B+       | 5            | 974          |
| 12-404         | PG<br>PG | DWBS<br>BWRS | mw        | 103 (101)   | Blue Listed          | 10       | 6099347            | 628542<br>6284FP | 9/13/2012           | TG WR         |         | 2        | A<br>(+  | 5D<br>6      | 1002<br>854  |
| 12-406         | PG       | BWBS         | mw        | 111         | Blue Listed          | 10       | 6099175            | 628178           | 9/14/2012           | TG, WB        |         | 6        | D        | 6            | 825          |
| 12-407         | PG       | BWBS         | mw        | Wb09        | Blue Listed          | 10       | 6099108            | 627980           | 9/14/2012           | TG, WB        |         | 7        | А        | 4            | 819          |
| 12-408         | PG       | BWBS         | mw        | 101         |                      | 10       | 6098831            | 627938           | 9/14/2012           | TG, WB        |         | 4        | с        | 6            | 813          |
| 12-409         | PG       | BWBS         | mw        | 101         |                      | 10       | 6098645            | 627985           | 9/14/2012           | TG, WB        |         | 4        | c        | 3-           | 818          |
| 12-410         | PG       | BWBS         | mw        | 1015        |                      | 10       | 6099239            | 627805           | 9/15/2012           | TG, WB        |         | 4        | с<br>(+  | ja<br>5      | 818<br>806   |
| 12-412         | PG       | BWBS         | mw        | 101 (104)   |                      | 10       | 6098920            | 627566           | 9/15/2012           | TG, WB        |         | 4        | D        | 6            | 804          |
| 12-413         | PG       | BWBS         | mw        | 111         | Blue Listed          | 10       | 6098375            | 627430           | 9/15/2012           | TG, WB        |         | 6        | D        |              | 802          |

| Plot<br>Number    | Slope    | Aspect     | Meso Slope<br>Position | Strata Cover | Strata Cover Noss    | Strata Cover | Strata Cover | Terrain<br>Surficial | Terrain<br>Underwing | Terrain |
|-------------------|----------|------------|------------------------|--------------|----------------------|--------------|--------------|----------------------|----------------------|---------|
| 001               | 3        | 334        | MD                     | 60           | 3                    | 15           | 45           | sFGu                 | ondertying           | Flocess |
| 002               | 4        | 328        | MD                     | 15           | 3                    | 15           | 65           | kFGv                 | Mj                   |         |
| 003               | 8        | 356        | MD                     | 60           | т                    | 75           | 20           | zsFGv                | Mj                   |         |
| 004               | 6        | 105        | MD                     | 55           | 0                    | 0            | 0            | gkAj                 |                      |         |
| 005               | 6        | 358        | UP                     | 22           | 0                    | 20           | 10           | gkan<br>kxMr         |                      |         |
| 007               | 22       | 55         | MD                     | 65           | 10                   | 15           | 40           | kMa                  |                      |         |
| 008               | 0        | 999        | DP                     | 60           | 65                   | 65           | т            | uOv                  | cF                   | U       |
| 009               | 3        | 334        | MD                     | 20           | 0.001                | 15           |              | sFGj                 |                      |         |
| 010               | 12       | 264        | MD                     | 9            | .001                 | 15           | 45           | bMj                  |                      |         |
| 017               | 9<br>11  | 370        | MD                     | 5            | 60                   | 35           | 15           | øFk                  |                      |         |
| 013               | 21       | 170        | MD                     | 5            | 3                    | 8            | 30           | xMk                  |                      |         |
| 014               | 0        | 999        | DP                     | 70           | 45                   | 10           | 25           | uOb                  |                      |         |
| 015               | 5        | 270        | MD                     | 85           | 5                    | 20           | 40           | hOv                  | scFj                 |         |
| 016               | 12       | 80E<br>38  | LW                     | /0           | 45                   | 45           | 20           | zcsFGj<br>czsMi      |                      |         |
| 018               | 9        | 110        | MD                     | 75           | 40                   | 40           | 30           | zsFGj                | Mj                   |         |
| 019               | 56       | 84         | MD                     | 40           | 0.001                | 55           | 18           | zsFGa                | -                    |         |
| 020               | 0        | 999        | LV                     | 85           | 8                    | 50           | 18           | szcFp                |                      |         |
| 021               | 2        | 54         | LV                     | 35           | 80                   | 20           | 30           | csgFp                |                      |         |
| 022               | 04       | 999        | IV                     | 50           | .001                 | 30<br>40     | 40           | sgkrGC               |                      | u       |
| 024               | 4        | 140        | то                     | 10           | 0                    | 45           | 0            | sgkF                 |                      |         |
| 025               | 0        | 999        | LV                     | 65           | 5                    | 45           | 15           | szcFd                |                      |         |
| 026               | 52       | 320        | MD                     | 95           | 6                    | 35           | 30           | zgsCk                |                      |         |
| U27<br>028        | 4        | 40         | UP                     | 65<br>50     | 40                   | 30<br>30     | 25           | zsgMj                |                      |         |
| 029               | 2        | 185        | LV                     | 30           | 90                   | 25           | 20           | zseFGn               |                      |         |
| 030               | 2        | 40         | LV                     | 35           | 8                    | 35           | 45           | ckgFGp               |                      |         |
| 031               | 0        | 999        | LV                     | 45           | 15                   | 35           | 40           | zsFGr                | м                    |         |
| 032               | 0        | 999        | LV                     | 45           | 70                   | 60           | 35           | zsFGp                | м                    | -       |
| 034               | 50<br>N  | 14U<br>999 | UP                     | 25           | 0.001                | 35<br>65     | 18<br>20     | ZSFGK<br>SZCED       |                      | F       |
| 038               | 9        | 210        | UP                     | 30           | 15                   | 5            | 40           | czrMh                |                      |         |
| 039               | 85       | 350        | MD                     | 4            | 95                   | 7            | 51           | rzsCs                |                      | FR      |
| 040               | 0        | 999        | LV                     | 55           |                      | 55           | 30           | sczFj                |                      | U       |
| 041               | 2        | 230        | LV                     | 50           | 70                   | 40           | 15           | zskFGp               |                      | -       |
| 042               | 0        | 200        | IV                     | 9<br>45      | 20                   | 60           | 60           | Zġspick<br>zska      |                      | r       |
| 046               | 0        | 999        | CR                     | 75           | 5                    | 60           | 15           | zsF                  |                      | U       |
| 047               | 12       | 310        | UP                     | 30           | 75                   | 25           | 30           | gksFGj               |                      |         |
| 048               | 22       | 160        | MD                     | 70           | 20                   | 45           | 40           | zsFGj                |                      | F       |
| 049               | 10       | 170        | LW                     | 75           | 45                   | 55           | 30           | gksFGj               |                      | DEV     |
| 050               | 90       | 30<br>190  | LW                     | 50           | 45<br><5             | 43           | 20<br>45     | zsgcs<br>czsMi       |                      | KF V    |
| 052               | 15       | 160        |                        | 45           | 10                   | 60           | 30           | zgsFGv               | Mr                   |         |
| 055               | 8        | 30         | MD                     | 5            | 50                   | 10           | 55           | zcrMv                | Ru                   |         |
| 056               | 55       | 280        | LW                     | 8            | 95+                  | 12           | 50           | zcrMm                | R                    | F       |
| 057               | 5        | 40<br>50   | CR                     | 15           | 80                   | 45           | 40           | zsrMh                | R                    |         |
| 058               | 11       | 90         | MD                     | 40           | 80                   | 20           | 60           | zcMu                 |                      |         |
| 060               | 0        | 999        | LV                     | 20           | 75                   | 5            | 60           | rMu                  |                      |         |
| 061               | 0        | 999        | LV                     | 50           | 60                   | 45           | 15           | Omb                  |                      | U       |
| 062               | 12       | 355        | MD                     | 40           | 70                   | 45           | 30           | zcM                  |                      |         |
| 063B              | 11       | 30         | MD<br>LIP              | 55           | 40                   | 20           | 40           | ZCV<br>SZCMU         | Mu                   | U       |
| 064               | 2        |            | MD                     | 15           | 0                    | 30           | 0            | kgFp                 |                      |         |
| 065               | 3        | 90E        | UP                     | 70           | 10                   | 35           |              | zsgFk                |                      |         |
| 066               | 20       | 200        | LW                     | 40           | 0.1                  | 65           | 15           | czsMbjm              |                      |         |
| 067               | 5        | 160        | LV                     | 50           | 0.1                  | 60           | 25           | czsMbpj<br>czsMuui   |                      |         |
| 069               | 10       | 110        | MD                     | 40           | 0.1                  | 75           | 10           | ehOv                 | zcMiv                | L       |
| 070               | 12       | 130        | MD                     | 45           | 15                   | 50           | 25           | czMj                 |                      |         |
| 071               | 25       | 160        | MD                     | 60           | 10                   | 60           | 15           | czMva                |                      |         |
| 072               | 6        | 180        | DP                     | 40           | 90                   | 65           | 20           | czMwmj               |                      |         |
| 073               | 16<br>0  | 160        | UP<br>CD               | 45           | U.1<br>50            | 80<br>50     | U<br>10      | zcgMbmj              |                      |         |
| 075               | 27       | 200        | LW                     | 80           | 0.1                  | 35           | 15           | zcMtwj               |                      |         |
| 076               | 3        | 140        | LV                     | 50           | 50                   | 80           | 10           | zcMbp                |                      |         |
| 077               | 6        | 120        | LV                     | 80           | 15                   | 50           | 3            | hOv                  | cMj                  |         |
| 0/8               | 0        | 999        | CR                     | 5            | 0.1                  | 80           | 2            | zcgMwuj              |                      | VE      |
| 079               | 30<br>42 | 230        | MD                     | 30<br>40     | 0.1                  | 65           | 10           | ∠kg⊂wa<br>zcgMba     |                      | ٧F      |
| 080               | 0        | 999        | DP                     | 50           | 80                   | 60           | 5            | uObp                 |                      |         |
| 081               | 0        | 999        | DP                     | 60           | 10                   | 15           | 0            | hObd                 |                      |         |
| 082               | 10       | 057        | MD                     | 50           | 40                   | 50           | 15           | czgMwj               |                      |         |
| 084               | 0        | 999        | LV                     | 65           | 35                   | 70           | 5            | hOr                  | szcFlp               | U       |
| 085               | 0        | 999        |                        | 35           | 0.1<br>75            | / D<br>65    | 5            | søFIn                |                      |         |
| 086               | 8        | 250        | то                     | 50           | 5                    | 50           | 10           | gcMv                 |                      | s       |
| 087               | 0        | 999        | DP                     | 80           | 0.1                  | 5            | 0            | hObd                 |                      |         |
| 088               | 25       | 310        | UP                     | 35           | 80                   | 50           | 10           | zcgFGaum             |                      |         |
| 090               | 0        | 999        | LV                     | 45           | 90                   | 60           | 0            | uObph                |                      |         |
| 092               | 0        | 779<br>999 | IV                     | 40<br>40     | <del>9</del> 0<br>90 | 60           | 0            | uOnh                 |                      |         |
| 093               | 3        | 270        | LV                     | 30           | 80                   | 75           | 7            | zsgFGtj              |                      |         |
| 094               | 8        | 210        | UP                     | 25           | 40                   | 50           | 15           | zcgMbam              |                      |         |
| 095               | 10       | 110        | LW                     | 50           | 25                   | 70           | 20           | zgcMvj               |                      |         |
| 096               | 1        | 999        | LV                     | 40           | 30                   | 80           | 0            | hObj                 |                      |         |
| 098               | 13<br>R  | 20<br>45   | MD                     | 5            | 15<br>20             | 3U<br>65     | U<br>10      | zcMbj<br>zcMbi       |                      | 1       |
| 099               | 10       | 70         | MD                     | 80           | 20                   | 65           | 10           | zcMviu               |                      | L       |
| 100               | 70       | 50         | MD                     | 70           | 40                   | 65           | 40           | zcgMva               |                      |         |
| 101               | 52       | 270        | MD                     | 30           | 80                   | 40           | 10           | zcgMk                |                      |         |
| 101               |          | 000        | LW                     | 50           | 75                   | 40           | 15           | zcMvi                |                      |         |
| 105               | 0        | 777        | 11/2                   |              |                      |              | -            |                      |                      |         |
| 101<br>105<br>106 | 0 3 20   | 260        | LW                     | 60           | 35                   | 60           | 5            | uOvh                 | cLj                  | L       |

| Appendix 7   | 7. Ecosyste | m Mapping  | Field Survey Da | ta           |                   |              |              |                |            |         |
|--------------|-------------|------------|-----------------|--------------|-------------------|--------------|--------------|----------------|------------|---------|
| Plot         | Slope       | Arport     | Meso Slope      | Strata Cover | Strata Cover Horr | Strata Cover | Strata Cover | Terrain        | Terrain    | Terrain |
| 103          | 0 adient    | 999        | DP              | Herb         | Strata Cover Moss | 311 00       | liee         | eObn           | ondertying | FIOCESS |
| 103          | 5           | 250        | LW              |              |                   |              |              | eOv            | cFGp       |         |
| 035          | 0           | 999        | DP              |              |                   |              |              | uhOb           | czFp       |         |
| 036          | 0           | 999        | LV              | 45           | 15                | 55           | 15           | eOx            | sFG        | U       |
| 037          | 0           | 999        | DP              | 90<br>20     | 0                 | 10           | 0            | uOb<br>zcl     |            | п       |
| 045          | 0           | 999        | LV              | 85           | 4                 | 35           | 10           | cL             |            | Ŭ       |
| 053          | 2           | 999        | LV              | 60           | 85                | 20           | 15           | uOb            | Mu         |         |
| 054          | 3           | 150        | LV              | 60           | 10                | 40           | 25           | euOv           | cMu        |         |
| 200v         |             |            |                 |              |                   |              |              |                |            |         |
| 201v         |             |            |                 |              |                   |              |              |                |            |         |
| 285          | 6           | 260        | MD              | 20           | 80                | 30           | 40           | szgFGbj        |            | FR      |
| 204v         |             |            |                 |              |                   |              |              |                |            |         |
| 205v         |             |            |                 |              |                   |              |              |                |            |         |
| 206V<br>207v |             |            |                 |              |                   |              |              |                |            |         |
| 208v         |             |            |                 |              |                   |              |              |                |            |         |
| 209v         |             |            |                 |              |                   |              |              |                |            |         |
| 210v         |             |            | CR              |              |                   |              |              |                |            |         |
| 211v<br>212v |             |            |                 |              |                   |              |              |                |            |         |
| 213v         |             |            |                 |              |                   |              |              |                |            |         |
| 214v         |             |            |                 |              |                   |              |              |                |            |         |
| 215v<br>216v |             |            |                 |              |                   |              |              |                |            |         |
| 219v         |             |            |                 |              |                   |              |              |                |            |         |
| 220v         |             |            |                 |              |                   |              |              |                |            |         |
| 221v         |             |            |                 |              |                   |              |              |                |            |         |
| 223v         |             |            |                 |              |                   |              |              |                |            |         |
| 224v         |             |            |                 |              |                   |              |              |                |            |         |
| 225v         |             |            |                 |              |                   |              |              |                |            |         |
| 226V<br>227v |             |            |                 |              |                   |              |              |                |            |         |
| 228v         |             |            |                 |              |                   |              |              | м              |            | RA      |
| 229v         |             |            |                 |              |                   |              |              |                |            |         |
| 230v         |             |            |                 |              |                   |              |              |                |            |         |
| 231v<br>232v |             |            |                 |              |                   |              |              | м              |            |         |
| 233v         |             |            |                 |              |                   |              |              | FGv            | м          |         |
| 234v         |             |            |                 |              |                   |              |              |                |            |         |
| 235v<br>236v |             |            |                 |              |                   |              |              |                |            |         |
| 237v         |             |            |                 |              |                   |              |              |                |            |         |
| 238          |             |            | MD              |              |                   |              | 30           | zsFGx          | zcMu       |         |
| 239v<br>240v |             |            |                 |              |                   |              |              |                |            |         |
| 241v         |             |            |                 |              |                   |              |              |                |            |         |
| 242v         |             |            | CR              |              |                   |              |              |                |            |         |
| 245v         |             |            |                 |              |                   |              |              | 0              |            |         |
| 240v<br>247v |             |            |                 |              |                   |              |              | 0              |            |         |
| 248v         |             |            |                 |              |                   |              |              |                |            |         |
| 249v         |             |            |                 |              |                   |              |              |                |            |         |
| 250v<br>251v |             |            |                 |              |                   |              |              |                |            |         |
| 252v         |             |            |                 |              |                   |              |              |                |            |         |
| 253v         |             |            |                 |              |                   |              |              |                |            |         |
| 271V<br>272v |             |            |                 |              |                   |              |              |                |            |         |
| 274v         |             |            |                 |              |                   |              |              |                |            |         |
| 275v         |             |            |                 |              |                   |              |              |                |            |         |
| 276V<br>277v |             |            |                 |              |                   |              |              | м              |            |         |
| 278v         |             |            |                 |              |                   |              |              |                |            |         |
| 286          | 70          | 310        | MD              | 35           | 1                 | 52           | 35           |                |            |         |
| 287          | 5           | 999        | MD              | 45           | 5                 | 15           | 45           | 70FGb          |            |         |
| \$32         | 10          | 170        | MD              | 9            | 45                | 35           | 30           | zsFGx          | Mu         |         |
| \$33         | 4           | 220        |                 |              |                   |              |              | FG             | м          |         |
| 54Z<br>543   | 37          | 70         | TO              | 50           | 15                | 60<br>30     | 20           | zcsFGbu        |            | v       |
| S44          | 1           | 999        | LV              | 75           | 40                | 40           | 45           | uzcOb          | M          |         |
| S19          | 25          | 278        | MD              | 12           | 4                 | 15           | 35           | zsCv           | cMu        | F       |
| S22          | 0           | 999        | LV              | 70           | 80                | 8            | 20           | uhOb           | gcMj       |         |
| 243<br>244   | 20          | 038        | MD              | 55           | 8<br>4            | 10<br>55     | 40<br>40     | zscCx          | Ma         |         |
| 254          |             |            | LV              | 8            | 75                | 18           | 30           | szFAp          |            |         |
| 270          | 12          | 150        | UP              | 35           | 0.001             | 35           | 25           | gzcMv          | Rj         |         |
| 2/3<br>279   | 40<br>20    | 130<br>110 | MD<br>MD        | 25<br>3      | 6<br>4            | 45<br>15     | 20<br>60     | zgcMv<br>gzcMv | Ra<br>Ra   |         |
| 280          | 20          | 110        | LV              | 45           | 0.001             | 55           | 25           | 52011          | Nu         |         |
| 281          |             |            |                 |              |                   |              |              |                |            |         |
| 282<br>517   | 8           | 330        | LW              | 60<br>30     | 0.001             | 30           | 40<br>25     | gzcF           |            |         |
| S18          | 20          | 270        | MD              | 45           | 5                 | 30           | 20           | kgsFGv         | kgcMx      |         |
| P-26         | 0           | 999        | LV              | -            |                   | -            |              | euOv           | zcLp       |         |
| S-25         |             | 000        | 114             |              |                   |              |              | 5              |            |         |
| 5-24<br>S-17 | 1           | 999<br>270 | LV<br>MD        |              |                   |              |              | zcs⊦p<br>ø7cC× | zcMb       | F       |
| S-14         |             | 2.0        |                 |              |                   |              |              | gsFp           | 2010       |         |
| DM001        |             |            |                 |              |                   |              |              |                |            |         |
| DM002        |             |            |                 |              |                   |              |              |                |            |         |
| DM004        |             |            |                 |              |                   |              |              |                |            |         |
| DM005        |             |            |                 |              |                   |              |              |                |            |         |
| DM006        |             |            |                 |              |                   |              |              | FG             |            |         |

| Appendix 7.      | Ecosyster | n Mapping  | Field Survey Da | ata          |                   |              |              |              |                   |         |
|------------------|-----------|------------|-----------------|--------------|-------------------|--------------|--------------|--------------|-------------------|---------|
| Plot             | Slope     | Acot       | Meso Slope      | Strata Cover | Strata Course Ha  | Strata Cover | Strata Cover | Terrain      | Terrain           | Terrain |
| Number           | Gradient  | Aspect     | Position        | Herb         | Strata Cover Moss | Shrub        | Tree         | Surficial    | Underlying        | Process |
| DM009<br>DM010   |           |            |                 |              |                   |              |              |              |                   |         |
| DM011            |           |            |                 |              |                   |              |              |              |                   |         |
| DM012            |           |            |                 |              |                   |              |              |              |                   |         |
| DM013            |           |            |                 |              |                   |              |              |              |                   |         |
| DM014<br>DM015   |           |            |                 |              |                   |              |              |              |                   |         |
| DM016            |           |            |                 |              |                   |              |              |              |                   |         |
| DM018            |           |            |                 |              |                   |              |              | Mb           |                   |         |
| WP328            |           |            |                 |              |                   |              |              |              |                   |         |
| WP329<br>WP330   |           |            |                 |              |                   |              |              |              |                   |         |
| WP331            |           |            |                 |              |                   |              |              |              |                   |         |
| WP332            |           |            |                 |              |                   |              |              |              |                   |         |
| WP333            |           |            |                 |              |                   |              |              |              |                   |         |
| WP334<br>WP336   |           |            |                 |              |                   |              |              |              |                   |         |
| WP337            |           |            |                 |              |                   |              |              |              |                   |         |
| WP338            |           |            |                 |              |                   |              |              |              |                   |         |
| WP339            |           |            |                 |              |                   |              |              |              |                   |         |
| WP340            |           |            |                 |              |                   |              |              |              |                   |         |
| WP344            |           |            |                 |              |                   |              |              |              |                   |         |
| WP352            |           |            |                 |              |                   |              |              |              |                   |         |
| WP353            |           |            |                 |              |                   |              |              |              |                   |         |
| WP354            |           |            |                 |              |                   |              |              |              |                   |         |
| WP356            |           |            |                 |              |                   |              |              |              |                   |         |
| WP357            |           |            |                 |              |                   |              |              |              |                   |         |
| WP358            |           |            |                 |              |                   |              |              |              |                   |         |
| WP359<br>WP360   |           |            |                 |              |                   |              |              |              |                   |         |
| WP361            |           |            |                 |              |                   |              |              |              |                   |         |
| WP362            |           |            |                 |              |                   |              |              |              |                   |         |
| WP363            |           |            |                 |              |                   |              |              |              |                   |         |
| WP364            |           |            |                 |              |                   |              |              |              |                   |         |
| WP365<br>WP366   |           |            |                 |              |                   |              |              |              |                   |         |
| WP367            |           |            |                 |              |                   |              |              |              |                   |         |
| WP368            |           |            |                 |              |                   |              |              | С            |                   |         |
| WP369            |           |            |                 |              |                   |              |              |              |                   |         |
| WP370<br>WP371   |           |            |                 |              |                   |              |              |              |                   |         |
| WP372            |           |            |                 |              |                   |              |              |              |                   |         |
| WP373            |           |            |                 |              |                   |              |              |              |                   |         |
| WP374            |           |            |                 |              |                   |              |              |              |                   |         |
| WP376<br>WP378   |           |            |                 |              |                   |              |              |              |                   |         |
| WP379            |           |            |                 |              |                   |              |              |              |                   |         |
| WP380            |           |            |                 |              |                   |              |              |              |                   |         |
| WP381            |           |            |                 |              |                   |              |              |              |                   |         |
| WP382<br>WP383   |           |            |                 |              |                   |              |              |              |                   |         |
| WP384            |           |            |                 |              |                   |              |              |              |                   |         |
| WP385            |           |            |                 |              |                   |              |              |              |                   |         |
| WP386            |           |            |                 |              |                   |              |              |              |                   |         |
| WP389            |           |            |                 | 80           |                   | 80           |              | LG           |                   |         |
| WP391            |           |            |                 | 00           |                   | 00           |              |              |                   |         |
| WP392            |           |            |                 |              |                   |              |              | Ov           | LG                |         |
| WP393            |           |            |                 | 50           |                   |              |              |              |                   |         |
| WP394<br>WP395   |           |            |                 |              |                   |              |              | 0v<br>Mb     | LG                |         |
| WP396            |           |            |                 |              |                   |              |              | Ov           |                   |         |
| WP397            |           |            |                 |              |                   |              |              | F            |                   |         |
| WP398            |           |            |                 |              |                   |              |              |              |                   |         |
| WP399<br>WP400   |           |            |                 |              |                   |              |              |              |                   |         |
| WP401            |           |            |                 |              |                   |              |              | м            |                   |         |
| WP402            |           |            |                 |              |                   |              |              |              |                   |         |
| WP403            |           |            |                 |              |                   |              |              |              |                   |         |
| WP404<br>WP405   |           |            |                 |              |                   |              |              | Mb           |                   |         |
| WP406            | 8         | NW         |                 |              |                   |              |              | Mb           |                   |         |
| WP407            |           |            |                 |              |                   |              |              |              |                   |         |
| WP408            |           |            |                 |              |                   |              |              | Mb           |                   |         |
| WP409            |           |            |                 |              |                   |              |              |              |                   |         |
| WP410            |           |            |                 |              |                   |              |              |              |                   |         |
| WP412            |           |            |                 |              |                   |              |              |              |                   |         |
| WP413            |           |            |                 |              |                   |              |              |              |                   |         |
| 12-401           | 6         | 292        | MD              | 2            | 0                 | 0            | 0            | uObj         |                   |         |
| 12-402<br>12-403 | 6<br>10   | 245<br>262 | LWR             | 13<br>45     | 38                | 14<br>6      | 37           | hÔv<br>sEGv  | zsFGv/Mu<br>øszMi | L       |
| 12-404           | 3         | 242        | LVL             | 46           | 45                | 10           | 0            | uObp         | 242113            | -       |
| 12-405           | 2         |            | UP              | 8            | 0                 | 0            | 28           | sFGv         | gszMu             |         |
| 12-406           | 3         | 344        | LVL             | 33           | 5                 | 29           | 20           | gzsFx        | gzcMks            | v       |
| 12-407           | U<br>R    | 296        | LVL<br>MD       | 45<br>15     | 41<br>10          | 20           | 8            | uObp         | gzcMi             |         |
| 12-409           | 6         | 230        | MD              | 51           | 1                 | 25           | 35           | zsFGv        | gscMu             |         |
| 12-410           | 6         | 260        | MD              | 35           | 0.1               | 19           | 0            | gzcMuj       |                   |         |
| 12-411           | 2         | 276        | LWR             | 12           | 41                | 16           | 31           | gscMbj       |                   |         |
| 12-412           | 5         | 262        | MD<br>I WR      | 27           | 6<br>25           | 18           | 19           | zsMbj<br>zEv | cMbui             | 1       |

| Appendix<br>Plot | 7. Ecosyste | m Mapping Field Surv   | vey Data              |               | Crown    | EC1 Percent | EC2 Percent | EC3 Percent | EC1 Site   | EC2 Site |
|------------------|-------------|------------------------|-----------------------|---------------|----------|-------------|-------------|-------------|------------|----------|
| Number           | Humus Form  | Root Restricting Depth | Root Restricting Type | Soil Drainage | Closure  | Cover       | Cover       | Cover       | Series     | Series   |
| 001<br>002       | D           | 30<br>60               | C<br>L                | i<br>w        | 45<br>65 |             |             |             |            |          |
| 003              | D           |                        |                       | w             | 20       |             |             |             |            |          |
| 004<br>005       | L           | 18<br>18               | c<br>L                | r<br>w        |          | 100         |             |             | RY         |          |
| 006              | L           |                        |                       | w             | 10       | 100         |             |             | 02         |          |
| 007              | L<br>P      | 20                     | Р                     | w             | 40       | 90          |             |             | 01         |          |
| 009              | L           | 55                     | ·                     | i             |          | 60          | 30          | 10          | 06         | Mine     |
| 010              | L           | 60                     | c                     | m             | 15       |             |             |             |            |          |
| 012              | L           | 30                     |                       | w             | 18       | 100         |             |             | 04         |          |
| 013<br>014       | R           | 18                     |                       | w             | 30       | 100         |             |             | 02         |          |
| 015              | P           |                        |                       | w             | 40       | 100         |             |             | 06         |          |
| 016<br>017       | L           |                        |                       | m<br>w        | 20<br>25 | 40          | 60          |             | 05         | 01       |
| 018              | L           |                        |                       | r             | 25       |             |             |             |            |          |
| 019              | L           |                        |                       | r             | 18<br>18 |             |             |             |            |          |
| 021              | L           |                        |                       | w             | 30       |             |             |             |            |          |
| 022              | L           |                        |                       | w             | 18<br>40 |             | 90          | 10          |            | WS       |
| 023              | N           | 80                     | w                     | r             | 40       | 50          | 40          | 10          | WT         | low FP   |
| 025              | L           |                        |                       | w             | 10       | 100         | 20          | 20          | 06         | 05       |
| 028              | L           |                        |                       | w             | 25       | 100         | 30          | 20          | 02         | 05       |
| 028              | L           |                        |                       | w             | 25       |             |             |             |            |          |
| 029<br>030       | D           | 30                     | Р                     | P             | 20<br>45 | 90          | 10          |             | 01         | 06       |
| 031              | L           |                        |                       | w             | 40       | 90          | 10          |             | 01         | 07       |
| 032              | L           |                        |                       | r<br>w        | 35<br>18 | 60          | 40          |             | 02         | 01       |
| 034              | D           |                        |                       | w             | 20       |             |             |             |            |          |
| 038<br>039       | L           |                        |                       | w             | 40<br>51 | 100<br>100  |             |             | 02         |          |
| 040              | D           |                        |                       | w             |          |             |             |             |            |          |
| 041<br>042       | L           |                        |                       | w             | 15<br>65 | 100<br>80   | 20          |             | 02<br>01   | RY       |
| 044              | N           | 17                     | к                     | w             |          | 40          | 40          | 20          | Wmo1       | Wmo1     |
| 046<br>047       | N           |                        |                       | w             | 15<br>30 | 100         |             |             | 111        |          |
| 048              | L           |                        |                       | m             | 40       |             |             |             |            |          |
| 049              | N           |                        |                       | w             | 30       | 50          | 30          | 20          | 00         | 01       |
| 051              | L           |                        |                       | w             | 45       |             |             |             |            |          |
| 052              | L           | 55                     | к                     | w             | 30       | 100         |             |             | 01         |          |
| 055              | L           | 60                     | L                     | w             | 50       | 80          | 20          |             | 01         | 05       |
| 057              | L           |                        |                       | w             | 40       |             |             |             |            |          |
| 058              | D           |                        |                       | m             | 49<br>60 | 70          | 30          |             | 01         | 05       |
| 060              | L           |                        |                       | w             | 60       | 80          | 20          |             | 03         | 06       |
| 061              | P<br>L      | 25                     | с                     | v<br>m        | 15<br>30 |             |             |             |            |          |
| 063              | D           | 60                     | c                     | i             | 40       |             |             |             |            |          |
| 0636             | N           |                        |                       | x             | 40       | 70          | 30          |             | GP         | GP       |
| 065              | L           |                        |                       | r             | 20       |             |             |             |            |          |
| 067              | D           | 18                     | к                     | i             | 25       | 80          | 20          |             | 05         | 05       |
| 068              | L           |                        |                       | w             | 15       | 80          | 20          |             |            |          |
| 069<br>070       | L           | 56<br>40               | ĸ                     | р<br>m        | 10<br>20 | 60<br>100   | 40          |             | 06         | 05       |
| 071              | L           |                        |                       | w             | 15       |             |             |             |            |          |
| 072<br>073       | L           |                        |                       | w             | 20       |             |             |             |            |          |
| 074              | L           | 25                     | к                     | m             | 10       | 50          | 50          |             | 01         | 03       |
| 075<br>076       | L           | 30                     | P                     | i<br>m        | 15<br>10 |             |             |             |            |          |
| 077              | Р           | 35                     | Р                     | р             | 3        |             |             |             |            |          |
| 078<br>089       | L           |                        |                       | w             | 2        | 90          | 10          |             | 01         | 01       |
| 079              | D           |                        |                       | w             |          |             |             |             |            |          |
| 080<br>081       | P           | 25                     | W                     | v             | 5        |             | 70          | 30          | Ws         | Wm       |
| 082              | L           |                        |                       | w             | 15       |             |             |             |            |          |
| 083              | P           |                        |                       | p             | 5        | 50          | 50          |             | Ws04       | Wb06     |
| 085              | L           |                        |                       | w             | 7        |             |             |             |            |          |
| 086<br>087       | D           | 30                     | к                     | i             | 10       | 30          | 30          | 40          | Ws         | ow       |
| 088              | L           |                        |                       | w             | 10       | 50          | 50          | 10          | 02         | 03       |
| 090<br>091       | P           |                        |                       | v             | O        |             |             |             |            |          |
| 092              | P           |                        |                       | v             | 0        |             |             |             |            |          |
| 093              | L           |                        |                       | w             | 7        |             |             |             |            |          |
| 095              | D           |                        |                       | m             | 20       | 50          | 50          |             | 06         | 04       |
| 096              | P           | 40                     |                       | P             | 0        |             |             |             |            |          |
| 098              | D           | 40<br>30               | ۴<br>C                | ו<br>m        | U        |             |             |             |            |          |
| 099              | L           |                        |                       | i             | 10       |             |             |             |            |          |
| 100<br>101       | L           |                        |                       | w             | 10       |             |             |             |            |          |
| 105              | L           |                        |                       | w             | 15       | 40          | 60          |             | 03         | 06/07    |
| 106<br>107       | PL          |                        |                       | p<br>m        | 5<br>5   | 10<br>10    | 90<br>90    |             | 6iC<br>5iC | 3a<br>3a |
| 102              | N           | 60                     |                       | v             | 5        |             | ,,,         |             |            |          |

| Appendix       | 7. Ecosyste | m Mapping Field Sur    | vey Data              |               |                  |                      |                      |                      |                    |                    |
|----------------|-------------|------------------------|-----------------------|---------------|------------------|----------------------|----------------------|----------------------|--------------------|--------------------|
| Plot<br>Number | Humus Form  | Root Restricting Depth | Root Restricting Type | Soil Drainage | Crown<br>Closure | EC1 Percent<br>Cover | EC2 Percent<br>Cover | EC3 Percent<br>Cover | EC1 Site<br>Series | EC2 Site<br>Series |
| 103            | P           | 55                     | Root Restricting Type | v             | Closure          | cover                | Cover                | cover                | Jeries             | Jeries             |
| 103            | P           | 55                     |                       | v             |                  |                      |                      |                      |                    |                    |
| 035            | Р           | 40                     |                       | v             | 55               |                      |                      |                      |                    |                    |
| 036            | Р           |                        |                       | v             |                  | 70                   | 30                   |                      | OW                 | Wm                 |
| 037            | P           |                        |                       | v             |                  | 80                   | 20                   |                      | 014                | 14/                |
| 045            | R           | 50                     | Р                     | v             |                  | 80                   | 20                   |                      | UW                 | wm                 |
| 053            | P           |                        |                       | v             |                  |                      |                      |                      |                    |                    |
| 054            | Р           |                        |                       | v             | 25               |                      |                      |                      |                    |                    |
| 200v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 201v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 202v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 285<br>204v    |             |                        |                       | w             |                  |                      |                      |                      |                    |                    |
| 204v<br>205v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 206v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 207v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 208v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 209V<br>210v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 211v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 212v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 213v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 214v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 215v<br>216v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 210v<br>219v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 220v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 221v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 222v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 223V<br>224v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 225v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 226V           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 227v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 228v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 229V<br>230v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 231v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 232v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 233v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 234v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 235v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 230v<br>237v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 238            | L           |                        |                       | w             | 35               |                      |                      |                      |                    |                    |
| 239v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 240v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 241V<br>242v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 245v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 246v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 247v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 248v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 249V<br>250v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 251v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 252v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 253v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 271v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 272v<br>274v   |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 275v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 276v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 277v           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 278v<br>286    |             |                        |                       |               | 20               |                      |                      |                      |                    |                    |
| 287            |             |                        |                       |               | 45               |                      |                      |                      | 111                | 112                |
| S21            | L           |                        |                       | r             | 12               |                      |                      |                      |                    |                    |
| S32            | L           |                        | с                     | w             | 30               |                      |                      |                      |                    |                    |
| \$33           |             |                        |                       |               | 25               |                      |                      |                      |                    |                    |
| 542<br>543     | L           |                        |                       | m             | 25               |                      |                      |                      |                    |                    |
| 545<br>S44     |             |                        |                       | v             | 45               |                      |                      |                      |                    |                    |
| S19            |             |                        |                       | w             | 30               |                      |                      |                      |                    |                    |
| S22            |             | 40                     | w                     | v             |                  |                      |                      |                      |                    |                    |
| 243            | L           |                        |                       |               | 45               |                      |                      |                      |                    |                    |
| 244<br>254     | L           |                        |                       | w             | 45               | 40                   | 10                   | 50                   | 1170               | 1170               |
| 270            | к           | 30                     | к                     |               | 25               | <del>4</del> 0       | 10                   | 50                   | 1123               | 1123               |
| 273            |             | 35                     | Ľ                     | r             | 25               |                      |                      |                      |                    |                    |
| 279            | L           |                        |                       | w             | 60               |                      |                      |                      |                    |                    |
| 280            |             |                        |                       |               | 25               |                      |                      |                      |                    |                    |
| 281            |             |                        |                       |               | 20               |                      |                      |                      | 404                |                    |
| 202<br>S17     |             |                        |                       | w             | 30               |                      |                      |                      | 101                |                    |
| S18            | HR          |                        |                       | w             |                  |                      |                      |                      |                    |                    |
| P-26           |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| S-25           |             |                        |                       | р             |                  |                      |                      |                      |                    |                    |
| S-24           | LR          |                        |                       | w             |                  |                      |                      |                      |                    |                    |
| 5-17<br>5-14   |             | <i>A</i> 0             | 147                   |               |                  |                      |                      |                      |                    |                    |
| DM001          |             | 40                     | 11                    | I             |                  |                      |                      |                      |                    |                    |
| DM002          |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| DM003          |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| DM004          |             |                        |                       |               |                  |                      |                      |                      | 00                 |                    |
| DM005          |             |                        |                       |               |                  |                      |                      |                      |                    |                    |
| 00000          |             |                        |                       |               |                  |                      |                      |                      |                    |                    |

| Appendix       | 7. Ecosyste | m Mapping Field Sur    | vey Data              |               |         |             |             |             |          |          |
|----------------|-------------|------------------------|-----------------------|---------------|---------|-------------|-------------|-------------|----------|----------|
| Plot           | Humur Form  | Root Pestricting Do-+- | Poot Pestricting Tre- | Soil Drainac- | Crown   | EC1 Percent | EC2 Percent | EC3 Percent | EC1 Site | EC2 Site |
| Number         | Humus Form  | KOOT RESTRICTING DEPTH | Root Restricting Type | Soli Drainage | Closure | Cover       | Cover       | Cover       | Series   | Series   |
| DM009<br>DM010 |             |                        |                       |               |         |             |             |             |          |          |
| DM011          |             |                        |                       |               |         |             |             |             |          |          |
| DM012          |             |                        |                       |               |         |             |             |             |          |          |
| DM013          |             |                        |                       |               |         |             |             |             |          |          |
| DM014<br>DM015 |             |                        |                       |               |         |             |             |             |          |          |
| DM015          |             |                        |                       |               |         |             |             |             |          |          |
| DM018          |             |                        |                       |               |         |             |             |             |          |          |
| WP328          |             |                        |                       |               |         |             |             |             |          |          |
| WP329          |             |                        |                       |               |         |             |             |             |          |          |
| WP330<br>WP331 |             |                        |                       |               |         |             |             |             |          |          |
| WP332          |             |                        |                       |               |         |             |             |             |          |          |
| WP333          |             |                        |                       |               |         |             |             |             |          |          |
| WP334          |             |                        |                       |               |         |             |             |             |          |          |
| WP336          |             |                        |                       |               |         |             |             |             |          |          |
| WP337<br>WP338 |             |                        |                       |               |         |             |             |             |          |          |
| WP339          |             |                        |                       |               |         |             |             |             |          |          |
| WP340          |             |                        |                       |               |         |             |             |             |          |          |
| WP341          |             |                        |                       |               |         |             |             |             |          |          |
| WP344          |             |                        |                       |               |         |             |             |             |          |          |
| WP352<br>WP353 |             |                        |                       |               |         |             |             |             |          |          |
| WP354          |             |                        |                       |               |         |             |             |             |          |          |
| WP355          |             |                        |                       |               |         |             |             |             |          |          |
| WP356          |             |                        |                       |               |         |             |             |             |          |          |
| WP357          |             |                        |                       |               |         |             |             |             |          |          |
| WP359          |             |                        |                       |               |         |             |             |             | 00       |          |
| WP360          |             |                        |                       |               |         |             |             |             |          |          |
| WP361          |             |                        |                       |               |         |             |             |             |          |          |
| WP362          |             |                        |                       |               |         |             |             |             |          |          |
| WP363<br>WP364 |             |                        |                       |               |         |             |             |             |          |          |
| WP365          |             |                        |                       |               |         |             |             |             |          |          |
| WP366          |             |                        |                       |               |         |             |             |             |          |          |
| WP367          |             |                        |                       |               |         |             |             |             |          |          |
| WP368<br>WP369 |             |                        |                       |               |         |             |             |             |          |          |
| WP370          |             |                        |                       |               |         |             |             |             |          |          |
| WP371          |             |                        |                       |               |         |             |             |             |          |          |
| WP372          |             |                        |                       |               |         |             |             |             | 103      |          |
| WP373<br>WP374 |             |                        |                       |               |         |             |             |             | 103      |          |
| WP376          |             |                        |                       |               |         |             |             |             | 105      |          |
| WP378          |             |                        |                       |               |         |             |             |             |          |          |
| WP379          |             |                        |                       |               |         |             |             |             |          |          |
| WP380<br>WP381 |             |                        |                       |               |         |             |             |             |          |          |
| WP382          |             |                        |                       |               |         |             |             |             |          |          |
| WP383          |             |                        |                       |               |         |             |             |             |          |          |
| WP384          |             |                        |                       |               |         |             |             |             |          |          |
| WP385          |             |                        |                       |               |         |             |             |             |          |          |
| WP380<br>WP389 |             |                        |                       |               |         |             |             |             |          |          |
| WP390          |             |                        |                       |               |         |             |             |             |          |          |
| WP391          |             |                        |                       |               |         |             |             |             |          |          |
| WP392          |             |                        |                       |               |         |             |             |             |          |          |
| WP393<br>WP394 |             |                        |                       |               |         |             |             |             | 101      |          |
| WP395          |             |                        |                       |               |         |             |             |             | 01       |          |
| WP396          |             |                        |                       |               |         |             |             |             |          |          |
| WP397          |             |                        |                       |               |         |             |             |             |          |          |
| WP398<br>WP399 |             |                        |                       |               |         |             |             |             |          |          |
| WP400          |             |                        |                       |               |         |             |             |             |          |          |
| WP401          |             |                        |                       |               |         |             |             |             | 103      |          |
| WP402          |             |                        |                       |               |         |             |             |             | 103      |          |
| WP403          |             | 40                     |                       |               |         |             |             |             |          |          |
| WP405          |             | 40                     |                       |               |         |             |             |             |          |          |
| WP406          |             |                        |                       |               |         |             |             |             |          |          |
| WP407          |             |                        |                       |               |         |             |             |             |          |          |
| WP408          |             |                        |                       |               |         |             |             |             |          |          |
| WP409          |             |                        |                       |               |         |             |             |             |          |          |
| WP411          |             |                        |                       |               |         |             |             |             |          |          |
| WP412          |             |                        |                       |               |         |             |             |             |          |          |
| WP413          | -           |                        |                       |               |         |             |             |             |          |          |
| 12-401         | P           |                        |                       | vp<br>4       |         |             |             |             |          |          |
| 12-403         | R           |                        |                       | w             |         |             |             |             |          |          |
| 12-404         | Р           |                        |                       | vp            |         |             |             |             |          |          |
| 12-405         | R           |                        |                       | w             |         |             |             |             |          |          |
| 12-406         | L           | 50                     | w                     | i<br>         |         |             |             |             |          | Wb03.2   |
| 12-407         | R           |                        |                       | vp<br>w       |         | 70          | 30          |             | 101      | 104      |
| 12-409         | R           |                        |                       | w             |         | -           |             |             |          |          |
| 12-410         | R           |                        |                       | m             |         |             |             |             |          |          |
| 12-411         | R           |                        |                       | m             |         |             |             |             |          |          |
| 12-412         | к<br>L      | - 50                   | -<br>P                | w             |         |             |             |             |          |          |

| Appendix 7. | . Ecosystem | n Mapping F | ield Survey I | Data     |                |                      |                      |
|-------------|-------------|-------------|---------------|----------|----------------|----------------------|----------------------|
| Plot        | EC3 Site    | EC1 Site    | EC2 Site      | EC3 Site | EC1 Structural |                      |                      |
| Number      | Series      | Modifier    | Modifier      | Modifier | Stage          | EC2 Structural Stage | EC3 Structural Stage |
| 001         |             |             |               |          |                |                      |                      |
| 002         |             |             |               |          |                |                      |                      |
| 003         |             |             |               |          |                |                      |                      |
| 004         |             |             |               |          | 2              |                      |                      |
| 005         |             |             |               |          | F-             |                      |                      |
| 005         |             |             |               |          | 50             |                      |                      |
| 007         |             |             |               |          | 40             |                      |                      |
| 008         | 06          |             |               |          | 39             | NA                   | 644                  |
| 009         | 00          |             |               |          | 34             | NA                   | um                   |
| 010         |             |             |               |          |                |                      |                      |
| 012         |             |             |               |          | 4C             |                      |                      |
| 013         |             |             |               |          | 4C             |                      |                      |
| 014         |             |             |               |          |                |                      |                      |
| 015         |             |             |               |          | 7tC            |                      |                      |
| 016         |             |             |               |          | 7tC            | 6M                   |                      |
| 017         |             |             |               |          |                |                      |                      |
| 018         |             |             |               |          |                |                      |                      |
| 019         |             |             |               |          |                |                      |                      |
| 020         |             |             |               |          |                |                      |                      |
| 021         |             |             |               |          |                |                      |                      |
| 022         | 02          |             |               |          |                | 4tC                  | 3C                   |
| 023         |             |             |               |          | 26             | 40                   |                      |
| 024         | Mu          |             |               |          | 3b             | 4B                   | NA                   |
| 025         | 05          |             |               |          | /tC            | (40                  | 760                  |
| 026         | 05          |             |               |          | 6LM            | OLD                  | 710                  |
| 027         |             |             |               |          | 45M            |                      |                      |
| 029         |             |             |               |          |                |                      |                      |
| 030         |             |             |               |          | 6              | 6tM                  |                      |
| 031         |             |             |               |          | 6tM            | 6tM                  |                      |
| 032         |             |             |               |          | 5tC            | 5tC                  |                      |
| 033         |             |             |               |          |                |                      |                      |
| 034         |             |             |               |          |                |                      |                      |
| 038         |             |             |               |          | 4sC            |                      |                      |
| 039         |             |             |               |          | 4sC            |                      |                      |
| 040         |             |             |               |          |                |                      |                      |
| 041         |             |             |               |          | 5tC            |                      |                      |
| 042         |             |             |               |          | 5c             | NA                   |                      |
| 044         | 00          |             |               |          | 3b             | NA                   | 4B                   |
| 046         |             |             |               |          | 6sC            |                      |                      |
| 047         |             |             |               |          |                |                      |                      |
| 048         |             | -           |               |          |                |                      |                      |
| 049         | 06          | IB          |               |          | 6tM            | 6tM                  | 60M                  |
| 050         |             |             |               |          |                |                      |                      |
| 057         |             |             |               |          |                |                      |                      |
| 055         |             |             |               |          | 450            |                      |                      |
| 055         |             |             |               |          | 450            | 6tC                  |                      |
| 057         |             |             |               |          | 150            | 010                  |                      |
| 058         |             |             |               |          |                |                      |                      |
| 059         |             |             |               |          | 5C             | 5C                   |                      |
| 060         |             |             |               |          | 4C             | 5C                   |                      |
| 061         |             |             |               |          |                |                      |                      |
| 062         |             |             |               |          |                |                      |                      |
| 063         |             |             |               |          |                |                      |                      |
| 063B        |             |             |               |          |                |                      |                      |
| 064         |             |             |               |          | NA             | 3                    |                      |
| 065         |             |             |               |          |                |                      |                      |
| 066         |             |             |               |          |                |                      |                      |
| 067         |             | 5tB         | 5tM           |          |                |                      |                      |
| 068         |             | 5iM         | 6iM           |          |                |                      |                      |
| 069         |             | 6iM         | 6iM           |          |                |                      |                      |
| 070         |             | otM         |               |          |                |                      |                      |
| 0/1         |             |             |               |          |                |                      |                      |
| 072         |             |             |               |          |                |                      |                      |
| 074         |             | 5.0         | 5.0           |          |                |                      |                      |
| 075         |             | 530         | بادد          |          |                |                      |                      |
| 076         |             |             |               |          |                |                      |                      |
| 077         |             |             |               |          |                |                      |                      |
| 078         |             | 1/3a        | 5iM           |          |                |                      |                      |
| 089         |             |             |               |          |                |                      |                      |
| 079         |             |             |               |          |                |                      |                      |
| 080         |             |             |               |          |                |                      |                      |
| 081         | OW/PD       |             |               |          | 6iC            | 3a                   | n/a                  |
| 082         |             |             |               |          |                |                      |                      |
| 083         |             | 5iC         | 5iC           |          |                |                      |                      |
| 084         |             |             |               |          |                |                      |                      |
| 085         |             |             |               |          |                |                      |                      |
| 087         | w-          | 25          | 2-            | 25       |                |                      |                      |
| 007         | VVS         | 3D<br>4C    | 2C            | ZD       |                |                      |                      |
| 000         |             | 4L          | 510           |          |                |                      |                      |
| 091         |             |             |               |          |                |                      |                      |
| 092         |             |             |               |          |                |                      |                      |
| 093         |             |             |               |          |                |                      |                      |
| 094         |             |             |               |          |                |                      |                      |
| 095         |             | 5iM         | 5iM           |          |                |                      |                      |
| 096         |             | 5           | 5             |          |                |                      |                      |
| 097         |             |             |               |          |                |                      |                      |
| 098         |             |             |               |          |                |                      |                      |
| 099         |             |             |               |          |                |                      |                      |
| 100         |             |             |               |          |                |                      |                      |
| 101         |             |             |               |          |                |                      |                      |
| 105         |             |             |               |          |                |                      |                      |
| 106         |             | 07          | 07            |          |                |                      |                      |
| 107         |             |             |               |          |                |                      |                      |
| 102         |             |             |               |          |                |                      |                      |

| Appendix 7.      | Ecosystem          | Mapping Fie          | eld Survey L         | Data                 | 564.6                   |                      |                      |
|------------------|--------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|
| Piot I<br>Number | EC3 Site<br>Series | EC1 Site<br>Modifier | EC2 Site<br>Modifier | EC3 Site<br>Modifier | EC1 Structural<br>Stage | EC2 Structural Stage | EC3 Structural Stage |
| 103              |                    |                      |                      |                      | •                       | 5                    | 5                    |
| 104<br>035       |                    |                      |                      |                      |                         |                      |                      |
| 036              |                    |                      |                      |                      | n/a                     | 3b                   |                      |
| 037              |                    |                      |                      |                      |                         | -                    |                      |
| 043<br>045       |                    |                      |                      |                      | N/A                     | 2                    |                      |
| 053              |                    |                      |                      |                      |                         |                      |                      |
| 054              |                    |                      |                      |                      |                         |                      |                      |
| 200v             |                    |                      |                      |                      |                         |                      |                      |
| 201v<br>202v     |                    |                      |                      |                      |                         |                      |                      |
| 285              |                    |                      |                      |                      |                         |                      |                      |
| 204v<br>205v     |                    |                      |                      |                      |                         |                      |                      |
| 206v             |                    |                      |                      |                      |                         |                      |                      |
| 207v             |                    |                      |                      |                      |                         |                      |                      |
| 208V<br>209v     |                    |                      |                      |                      |                         |                      |                      |
| 210v             |                    |                      |                      |                      |                         |                      |                      |
| 211v<br>212v     |                    |                      |                      |                      |                         |                      |                      |
| 212v<br>213v     |                    |                      |                      |                      |                         |                      |                      |
| 214v             |                    |                      |                      |                      |                         |                      |                      |
| 215v<br>216v     |                    |                      |                      |                      |                         |                      |                      |
| 219v             |                    |                      |                      |                      |                         |                      |                      |
| 220v             |                    |                      |                      |                      |                         |                      |                      |
| 221V<br>222V     |                    |                      |                      |                      |                         |                      |                      |
| 223v             |                    |                      |                      |                      |                         |                      |                      |
| 224v<br>225v     |                    |                      |                      |                      |                         |                      |                      |
| 226V             |                    |                      |                      |                      |                         |                      |                      |
| 227v             |                    |                      |                      |                      |                         |                      |                      |
| 228V<br>229v     |                    |                      |                      |                      |                         |                      |                      |
| 230v             |                    |                      |                      |                      |                         |                      |                      |
| 231v<br>232v     |                    |                      |                      |                      |                         |                      |                      |
| 233v             |                    |                      |                      |                      |                         |                      |                      |
| 234v             |                    |                      |                      |                      |                         |                      |                      |
| 235V<br>236v     |                    |                      |                      |                      |                         |                      |                      |
| 237v             |                    |                      |                      |                      |                         |                      |                      |
| 238              |                    |                      |                      |                      |                         |                      |                      |
| 240v             |                    |                      |                      |                      |                         |                      |                      |
| 241v             |                    |                      |                      |                      |                         |                      |                      |
| 242v<br>245v     |                    |                      |                      |                      |                         |                      |                      |
| 246v             |                    |                      |                      |                      |                         |                      |                      |
| 247v             |                    |                      |                      |                      |                         |                      |                      |
| 248v<br>249v     |                    |                      |                      |                      |                         |                      |                      |
| 250v             |                    |                      |                      |                      |                         |                      |                      |
| 251v<br>252v     |                    |                      |                      |                      |                         |                      |                      |
| 253v             |                    |                      |                      |                      |                         |                      |                      |
| 271v             |                    |                      |                      |                      |                         |                      |                      |
| 272v<br>274v     |                    |                      |                      |                      |                         |                      |                      |
| 275v             |                    |                      |                      |                      |                         |                      |                      |
| 276v<br>277v     |                    |                      |                      |                      |                         |                      |                      |
| 278v             |                    |                      |                      |                      |                         |                      |                      |
| 286              |                    |                      | Em02                 |                      | E-D                     | E-P                  |                      |
| S21              |                    |                      | FIIIUZ               |                      | J2D                     | 020                  |                      |
| \$32             |                    |                      |                      |                      |                         |                      |                      |
| 533<br>542       |                    | 111                  | 110                  | 101                  |                         |                      |                      |
| S43              |                    |                      |                      |                      |                         |                      |                      |
| S44              |                    |                      |                      |                      |                         |                      |                      |
| S22              |                    |                      |                      |                      |                         |                      |                      |
| 243              |                    |                      |                      |                      |                         |                      |                      |
| 244<br>254       | FT                 |                      |                      |                      | 5tB                     | 6tB                  | 36                   |
| 270              |                    |                      |                      |                      |                         | 010                  | 35                   |
| 273              |                    |                      |                      |                      |                         |                      |                      |
| 279              |                    |                      |                      |                      |                         |                      |                      |
| 281              |                    |                      |                      |                      |                         |                      |                      |
| 282<br>S17       |                    |                      |                      |                      | 6tM                     |                      |                      |
| S18              |                    |                      |                      |                      |                         |                      |                      |
| P-26             |                    |                      |                      |                      |                         |                      |                      |
| 5-25<br>5-24     |                    |                      |                      |                      |                         |                      |                      |
| S-17             |                    |                      |                      |                      |                         |                      |                      |
| S-14             |                    |                      |                      |                      |                         |                      |                      |
| DM001            |                    |                      |                      |                      |                         |                      |                      |
| DM003            |                    |                      |                      |                      |                         |                      |                      |
| DM004<br>DM005   |                    | WS                   |                      |                      | 3b                      |                      |                      |
| DM006            |                    |                      |                      |                      |                         |                      |                      |

| Plot<br>Number   | EC3 Site<br>Series | EC1 Site<br>Modifier | EC2 Site<br>Modifier | EC3 Site<br>Modifier | EC1 Structural<br>Stage | EC2 Structural Stage | EC3 Structural Stage |
|------------------|--------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|
| DM009            |                    | n/a                  |                      |                      | 50                      |                      |                      |
| DM010            |                    | n/a                  |                      |                      |                         |                      |                      |
| DM011            |                    |                      |                      |                      |                         |                      |                      |
| DM012            |                    |                      |                      |                      |                         |                      |                      |
| DM013            |                    | 103\$                | 101\$                | 110\$                | 5mM                     | 5B                   | 6B                   |
| DM014<br>DM015   |                    | n/a                  |                      |                      |                         |                      |                      |
| DM015            |                    |                      |                      |                      |                         |                      |                      |
| DM018            |                    |                      |                      |                      |                         |                      |                      |
| WP328            |                    |                      |                      |                      |                         |                      |                      |
| WP329            |                    |                      |                      |                      |                         |                      |                      |
| WP330            |                    |                      |                      |                      |                         |                      |                      |
| WP331            |                    |                      |                      |                      |                         |                      |                      |
| WP332            |                    |                      |                      |                      |                         |                      |                      |
| WP333            |                    |                      |                      |                      |                         |                      |                      |
| WP336            |                    |                      |                      |                      |                         |                      |                      |
| WP337            |                    |                      |                      |                      |                         |                      |                      |
| WP338            |                    |                      |                      |                      |                         |                      |                      |
| WP339            |                    |                      |                      |                      |                         |                      |                      |
| WP340            |                    |                      |                      |                      | 2                       | 21                   |                      |
| WP341<br>WP344   |                    |                      |                      |                      | Za                      | 3D                   |                      |
| WP352            |                    | burn                 |                      |                      |                         |                      |                      |
| WP353            |                    | CC                   |                      |                      |                         |                      |                      |
| WP354            |                    | Wf01                 |                      |                      | 2                       |                      |                      |
| WP355            |                    | burn                 | burn                 |                      | 3b                      | 4c                   |                      |
| WP356            |                    | burn                 | burn                 |                      | 3b                      | 4c                   |                      |
| WP357            |                    |                      |                      |                      | 2a                      |                      |                      |
| WP359            |                    |                      | кн                   |                      | 2a<br>2d                |                      |                      |
| WP360            |                    | RO                   | N.I.                 |                      | 1                       |                      |                      |
| WP361            |                    |                      |                      |                      | 2d                      |                      |                      |
| WP362            |                    |                      |                      |                      | 2a                      |                      |                      |
| WP363            |                    |                      |                      |                      | 3b                      |                      |                      |
| WP364            |                    |                      |                      |                      | 2a                      |                      |                      |
| WP365            |                    |                      |                      |                      | 3b                      | 4c                   |                      |
| WP300<br>WP367   |                    |                      |                      |                      | 4a                      |                      |                      |
| WP368            |                    |                      |                      |                      |                         |                      |                      |
| WP369            |                    |                      |                      |                      |                         |                      |                      |
| WP370            |                    |                      |                      |                      |                         |                      |                      |
| WP371            |                    |                      |                      |                      | 5c                      | 4c                   |                      |
| WP372            |                    |                      |                      |                      | 4c                      |                      |                      |
| WP373<br>WP374   |                    |                      |                      |                      | 3D                      |                      |                      |
| WP374<br>WP376   |                    |                      |                      |                      | 40<br>3a                |                      |                      |
| WP378            |                    |                      |                      |                      | 4c                      |                      |                      |
| WP379            |                    |                      |                      |                      |                         |                      |                      |
| WP380            |                    |                      |                      |                      | 6tC                     |                      |                      |
| WP381            |                    |                      |                      |                      | 6tC                     |                      |                      |
| WP382            |                    |                      |                      |                      |                         |                      |                      |
| WP384            |                    | Wb                   |                      |                      |                         |                      |                      |
| WP385            |                    |                      |                      |                      | 4c                      |                      |                      |
| WP386            |                    |                      |                      |                      | 3a/3b                   |                      |                      |
| WP389            |                    |                      |                      |                      |                         |                      |                      |
| WP390            |                    | Ws07                 | wb                   |                      | 3b                      | 3b                   |                      |
| WP391            |                    | Wm01                 | Ws04                 |                      | 2b                      | 3a                   |                      |
| WP392            |                    |                      |                      |                      | 40                      |                      |                      |
| WP394            |                    | Wm01                 | grass                |                      | 2h                      | 2h                   |                      |
| WP395            |                    |                      | 3. 033               |                      | 25                      |                      |                      |
| WP396            |                    |                      |                      |                      |                         |                      |                      |
| WP397            |                    |                      |                      |                      | 6C                      |                      |                      |
| WP398            |                    | Wm01                 | Ws04                 |                      | 2b                      | 3a                   |                      |
| WP399            |                    |                      |                      |                      |                         |                      |                      |
| WP400            |                    |                      |                      |                      |                         |                      |                      |
| WP402            |                    |                      |                      |                      | 4C                      |                      |                      |
| WP403            |                    | Wm01                 |                      |                      |                         |                      |                      |
| WP404            |                    |                      |                      |                      |                         |                      |                      |
| WP405            |                    |                      |                      |                      |                         |                      |                      |
| WP406            |                    |                      |                      |                      |                         |                      |                      |
| WP407<br>WP408   |                    |                      |                      |                      |                         |                      |                      |
| WP409            |                    | Wm01                 | Ws                   |                      | 2b                      | 3b                   |                      |
| WP410            |                    |                      |                      |                      |                         |                      |                      |
| WP411            |                    |                      |                      |                      |                         |                      |                      |
| WP412            |                    |                      |                      |                      |                         |                      |                      |
| WP413            |                    |                      |                      |                      |                         |                      |                      |
| 12-401           |                    |                      |                      |                      |                         |                      |                      |
| 12-402<br>12-403 |                    |                      |                      |                      |                         |                      |                      |
| 12-403           |                    |                      |                      |                      |                         |                      |                      |
| 12-405           |                    |                      |                      |                      |                         |                      |                      |
| 12-406           |                    |                      |                      |                      |                         |                      |                      |
| 12-407           |                    |                      |                      |                      |                         |                      |                      |
| 12-408           |                    |                      |                      |                      |                         |                      |                      |
| 12-409           |                    |                      |                      |                      |                         |                      |                      |
| 12-410           |                    |                      |                      |                      |                         |                      |                      |
| 12-412           |                    |                      |                      |                      |                         |                      |                      |
| 12-413           |                    |                      |                      |                      |                         |                      |                      |
|                  |                    |                      |                      |                      |                         |                      |                      |

Plant Species Identified during Field Surveys



| Common Name              | Scientific Name                      | Synonyms             | Notes  |
|--------------------------|--------------------------------------|----------------------|--------|
|                          | Modicago Sativa                      | Synonyms             | Notes  |
| Allalia                  | Dishasiastrum Alainum                |                      |        |
| Alpine Club-Moss         | Diphasiastrum Alphum                 | A Aleine             |        |
| Appine farrow            | Actinited Sibirica                   | A. Alpina            |        |
|                          | Veronica Americana                   |                      |        |
|                          | vicia Americana                      |                      |        |
| Arctic Bluegrass         | Poa Arctica                          |                      |        |
| Arctic Lupine            | Lupinus Arcticus (?)                 |                      |        |
| Arctic Willow            | Salix Arctica                        |                      |        |
| Arnica                   | Arnica sp.                           |                      |        |
| Arrow-leaved Coltsfoot   | Petasites Sagittatus                 |                      |        |
| Arrow-leaved groundsel   | Senecio Triangularis                 |                      |        |
| Aslike Clover            | Trifolium Hybridum                   |                      | Axotic |
| Aven                     | Geum sp.                             |                      |        |
| Awned Sedge              | Carex Atherodes                      |                      |        |
| Balsam Poplar            | Populus Balsamifera ssp. Balsamifera |                      |        |
| Baltic Rush              | Juncus Balticus                      |                      |        |
| Baneberry                | Actaea Rubra                         |                      |        |
| Barclay's Willow         | Salix Barclayi                       |                      |        |
| Barratt's Willow         | Salix Barrattiana                    |                      |        |
| Beaked Sedge             | Carex Utriculata                     |                      |        |
| Bebb's Willow            | Salix Bebbiana                       |                      |        |
| Bedstraw                 | Galium sp.                           |                      |        |
| Birch-leaved Spirea      | Spiraea Betulifolia                  |                      |        |
| Black Cottonwood         | Populus Balsamifera ssp. Trichocarpa |                      |        |
| Black Gooseberry         | Ribes Lacustre                       |                      |        |
| Black Huckleberry        | Vaccinium Membranaceum               |                      |        |
| Black Medic              | Medicago Lupulina                    |                      | Exotic |
| Black Spruce             | Picea Mariana                        |                      |        |
| Black Twinberry          | Lonicera Involucrata                 |                      |        |
| Blue Clematis            | Clematis Occidentalis                |                      |        |
| Blue Wildrve             | Elvmus Glaucus                       |                      |        |
| Blueberry, Huckleberry   | Vaccinium sp.                        |                      |        |
| Bluegrass                | Poa sp.                              |                      |        |
| Blueioint Reedgrass      | Calamagrostis Canadensis             |                      |        |
| Blunt-leaved Sandwort    | Moehringia Lateriflora               | Arenaria Lateriflora |        |
| Bog Adder's-mouth Orchid | Malaxis Paludosa                     |                      |        |
| Bog Cranberry            | Οχικοροτικο Οχικοροτο                |                      |        |
| Bog Willowherb           | Enilobium Lentophyllum               |                      |        |
| Bog-rosemary             | Andromeda Polifolia                  |                      |        |
| Bracted Lousewort        | Pedicularis Bracteosa                |                      |        |
| Bristle-stalked Sedge    | Carey Lentalea ssn. Lentalea         |                      |        |
| Broad-leaved Willowberb  | Epilobium Latifolium                 |                      |        |
| Broom-moss               | Disrapum Scoparium                   |                      |        |
| Bull Thistle             | Circium Vulgaro                      |                      |        |
| Bunchhorn                | Cirsium Vulgure                      |                      |        |
| Canada Coldonrod         | Collidado Canadoncia                 |                      |        |
|                          | Solidago Canadensis                  |                      |        |
|                          | Astrugatus Canadensis                | Frietle              |        |
| Canada thistle           | Cirsium Arvense                      | EXOLIC               |        |
|                          | viola Canadensis                     |                      |        |
|                          |                                      |                      |        |
| Clasping Twistedstalk    | Streptopus Amplexifolius             |                      |        |
| Claw-moss                | Hypnum sp.                           |                      |        |
| Cloudberry               | Rubus Chamaemorus                    |                      |        |
| Clover                   | Trifolium sp.                        |                      |        |
| Clubmoss                 | Lycopodium sp.                       |                      |        |
| Coltsfoot                | Petasites sp.                        |                      |        |
| Common Brown Peat-moss   | Sphagnum Fuscum                      |                      |        |
| Common Cattail           | Typha Latifolia                      |                      |        |
| Common Dandelion         | Taraxacum Officinale                 |                      |        |
| Common Duckweed          | Lemna Minor                          |                      |        |

| Common Name                | Scientific Name                            | Synonyms | Notes               |
|----------------------------|--------------------------------------------|----------|---------------------|
| common green peat-moss     | Sphagnum Girgensohnii                      |          |                     |
| Common Horsetail           | Equisetum Arvense                          |          |                     |
| Common Juniper             | Juniperus Canadensis                       |          |                     |
| Common Juniper             | Juniperus Communis                         |          |                     |
| Common Leafy Moss          | Plagiomnium Medium                         |          |                     |
| Common Mare's-tail         | Hippuris Vulgaris                          |          |                     |
| Common Mitrewort           | Mitella Nuda                               |          |                     |
| Common Moonwort            | Botrvchium Lunaria                         |          |                     |
| Common Plantain            | Plantago Maior                             |          | Exotic              |
| Common Red Peat-moss       | Sphagnum Capillifolium                     |          |                     |
| Common Snowberry           | Symphoricarpos Albus                       |          |                     |
| Common Tansy               | Tanacetum Vulgare                          |          |                     |
| Coralroot                  | Corallorhiza sp.                           |          |                     |
| Cotton-grass               | Eriophorum sp.                             |          |                     |
| Cow-parsnip                | Heracleum Maximum                          |          |                     |
| Cream-flowered Peavine     | Lathurus Ochroleucus                       |          |                     |
| Creening Bentgrass         | Agrostis Stolonifera                       |          |                     |
|                            | luninerus Horizontalis                     |          |                     |
|                            | Gaultheria Hispidula                       |          |                     |
| Crowberry                  | Empetrum Nigrum                            |          |                     |
| Curled Dock                | RumexCorispus                              |          |                     |
| Curly Heron's-bill Moss    | Dicranum Euscessens                        |          |                     |
| Current or Goosphorry      | Pibes sp                                   |          |                     |
|                            | Anomono Multifida                          |          |                     |
| Dainty Machwort            | Anemone Mattijida<br>Botruchium Cronulatum |          | Plue Listed Species |
|                            | Doltigora Pritannica                       |          | blue Listed species |
| Devide Club                | Pettigera Britannica                       |          |                     |
| Devits Club                | Optopulax Horridas                         |          |                     |
|                            | Potentilla Diversifolia                    |          |                     |
| Dog Pelt                   | Pettigera Canina                           |          |                     |
| Douglas water-nemlock      |                                            |          |                     |
| Drummond's willow          | Salix Drummonalana                         |          |                     |
| Dwart Blueberry            | vaccinium Caespitosum                      |          |                     |
| Dwarf Nagoonberry          | Rubus Arcticus                             |          |                     |
| Dwarf Rattlesnake Orchid   | Goodyera Repens                            |          |                     |
| Dwarf Red Raspberry        | Rubus Pubescens                            |          |                     |
| Dwarf Scouring-rush        | Equisetum Scirpoides                       |          |                     |
| Early Blue Violet          | Viola Adunca var. Adunca                   |          |                     |
| Enchanter's-nightshade     | Circaea Alpina                             |          |                     |
| Eurasian Watermilfoil      | Myriophyllum Spicatum                      |          |                     |
| Eyed Foam                  | Stereocaulon Tomentosum                    |          |                     |
| False Solomon's-seal       | Maianthemum Racemosum                      |          |                     |
| False Solomon's-seal       | Smilacina Racemosa                         |          |                     |
| False Toadflax             | Geocaulon Lividum                          |          |                     |
| Fescue                     | Festuca sp.                                |          |                     |
| Field Chickweed            | Cerastium Arvense                          |          |                     |
| Field Locoweed             | Oxytropis Campestris                       |          |                     |
| Fireweed                   | Epilobium Angustifolium                    |          |                     |
| Five-leaved Bramble        | Rubus Pedatus                              |          |                     |
| Five-stamened Mitrewort    | Mitella Pentandra                          |          |                     |
| Fleabane                   | Erigeron sp.                               |          |                     |
| Foam Lichens               | Stereocaulon sp.                           |          |                     |
| Fowl Bluegrass             | Poa Palustris                              |          |                     |
| Fragrant White Rein Orchid | Platanthera Dilatata                       |          |                     |
| Freckle Pelt               | Peltigera Aphthosa                         |          |                     |
| Fuzzy-spiked Wildrye       | Elymus Innovatus                           |          |                     |
| Fuzzy-spiked Wildrye       | Leymus Innovatus                           |          |                     |
| Gentian                    | Gentiana sp.                               |          |                     |
| Glow Moss                  | Aulacomnium Palustre                       |          |                     |
| Goatsbeard                 | Aruncus Dioicus                            |          |                     |
| Golden Carpet              | Chrysosplenium Tetrandrum                  |          |                     |

| Common Name                    | Scientific Name                   | Synonyms               | Notes |
|--------------------------------|-----------------------------------|------------------------|-------|
| Golden Ragged-moss             | Brachythecium Salebrosum          |                        |       |
| Golden Sedge                   | Carex Aurea                       |                        |       |
| Graceful Mountain Sedge        | Carex Podocarpa                   |                        |       |
| Great Northern Aster           | Canadanthus Modestus              |                        |       |
| Green Alder                    | Alnus Virdis ssp. Crispa          |                        |       |
| Green Wintergreen              | Pyrola Chlorantha                 |                        |       |
| Grey Reindeer                  | Cladina Rangiferina               |                        |       |
| Grey-leaved Willow             | Salix Glauca                      |                        |       |
| Ground-cedar                   | Diphasiastrum Complanatum         | Lycopodium Complanatum |       |
| Ground-pine                    | Lycopodium Dendroideum            | L. Obscurum            |       |
| Haircap Moss                   | Polytrichum sp.                   |                        |       |
| Hawkweed                       | Hieracium sp.                     |                        |       |
| Heart-leaved Arnica            | Arnica Cordifolia                 |                        |       |
| Heart-leaved Twayblade         | Listera Cordata                   |                        |       |
| Heron's-bill Moss              | Dicranum sp.                      |                        |       |
| Highbush Cranberry             | Viburnum Edule                    |                        |       |
| Honeysuckle                    | Lonicera sp.                      |                        |       |
| Hooker's Fairybells            | Disporum Hookeri                  |                        |       |
| Horsetail                      | Equisetum sp.                     |                        |       |
| Hybird White Spruce            | Picea Engelmannii X Glauca        |                        |       |
| Indian Hellebore               | Veratrum Viride                   |                        |       |
| Ivy-leaved Duckweed            | Lemna Trisulca                    |                        |       |
| Juniper Haircap Moss           | Polytrichum Juniperinum           |                        |       |
| Keloggs' sedge                 | Carex Lenticularis var. Lipocarpa |                        |       |
| Kidney-leaved Buttercup        | Ranunculus Abortivus              |                        |       |
| Kinnikinnick                   | Arctostaphylos Uva-ursi           |                        |       |
| Kneeling Angelica              | Angelica Genuflexa                |                        |       |
| knight's plume                 | Ptilium Crista-castrensis         |                        |       |
| Labrador Tea                   | Rhododendron Groenlandicum        | Ledum Groenlandicum    |       |
| Lady Fern                      | Athyrium Filix-femina             |                        |       |
| Large Round-leaved Rein Orchid | Platanthera Orbiculata            | Habenaria Orbiculata   |       |
| Large-leaved Avens             | Geum Macrophyllum                 |                        |       |
| Leafy Moss                     | Mnium sp.                         |                        |       |
| Leafy Moss                     | Plagiomnium sp.                   |                        |       |
| Leafy Moss                     | Rhizomnium sp.                    |                        |       |
| Lesser Wintergreen             | Pyrola Minor                      |                        |       |
| Lesser-panicled Sedge          | Carex Diandra                     |                        |       |
| Lindley's Aster                | Symphyotrichum Ciliolatum         |                        |       |
| Lingonberry                    | Vaccinium Vitis-idaea             |                        |       |
| Lodgepole Pine                 | Pinus Contorta                    |                        |       |
| Longbract Frog Orchid          | Habeharia Viriais                 |                        |       |
| Long-bracted Flog Orchid       |                                   |                        |       |
| Lyre-leaved Rockcress          | Arabis Lyrata                     | Detentille Delustris   |       |
| Marsh Skullcap                 | Colliar ann Palastre              | Potentilla Palustris   |       |
| Marsh Violot                   | Viola Palustris                   |                        |       |
| Majsii Violet                  | Fauisatum Pratansa                |                        |       |
| Mint                           | Mentha sp                         |                        |       |
| Mitrewort                      | Mitella sp.                       |                        |       |
| Mountain Alder                 | Alpus Incana ssp. Tenuifolia      |                        |       |
| Mountain Arnica                | Arnica Latifolia                  |                        |       |
| Mountain Heron's-bill Moss     | Dicranum Montanum                 |                        |       |
| Mountain Leafy Liverwort       | Barbilophozia Floerkei            |                        |       |
| Mountain Sweet-cicely          | Osmorhiza Berteroi                | Osmorhiza Chilensis    |       |
| Nagoonberry                    | Rubus Arcticus                    | estimate entensis      |       |
| Narrow-leaved Hawkweed         | Hieracium Umbellatum              |                        |       |
| Net-veined Willow              | Salix Reticulata                  |                        |       |
| Norther Lady's-slipper         | Cypripedium Passerinum            |                        |       |
| Northern Anemone               | Anemone Parviflora                |                        |       |
| Northern Bedstraw              | Galium Boreale                    |                        |       |

| Common Name                 | Scientific Name                     | Synonyms             | Notes  |
|-----------------------------|-------------------------------------|----------------------|--------|
| Northern Blackcurrant       | Ribes Hudsonianum                   |                      |        |
| Northern Crane's-bill       | Geranium Erianthum                  |                      |        |
| Northern Goldenrod          | Solidago Multiradiata               |                      |        |
| Northern Gooseberry         | Ribes Oxyacanthoides                |                      |        |
| Northern Grass-of-Parnassus | Parnassia Palustris                 |                      |        |
| Northern Green Orchid       | Platanthera Hyperborea              | Habenaria Hyperborea |        |
| Northern Hedysarum          | Hedysarum Boreale                   |                      |        |
| Northern Scouring Rush      | Equisetum Variegatum                |                      |        |
| Northern Starwort           | Stellaria Calycantha                |                      |        |
| Northern Twayblade          | Listera Borealis                    |                      |        |
| Nuttall's Alkaligrass       | Puccinellia Nuttalliana             |                      |        |
| Oak Fern                    | Gymnocarpium Dryopteris             |                      |        |
| One-leaved Foamflower       | Tiarella Trifoliata var. Unifoliata |                      |        |
| One-leaved Rien Orchid      | Platanthera Obtusata ssp. Obtusata  | Habenaria Obtusata   |        |
| One-sided Wintergreen       | Orthilia Secunda                    |                      |        |
| Orange Hawkweed             | Hieracium Aurantiacum               |                      |        |
| Pacific Willow              | Salix Lucida ssp. Lasiandra         | Salix lasiandra      |        |
| Palmate Coltsfoot           | Petasites Frigidus var. Palmatus    |                      |        |
| Paper Birch                 | Betula Papyrifera                   |                      |        |
| Pearly Everlasting          | Anaphalis Margaritacea              |                      |        |
| Peat-moss                   | Sphagnum sp.                        |                      |        |
| Peavine                     | Lathyrus sp.                        |                      |        |
| Pebbled Pixie-cup           | Cladonia Pyxidata                   |                      |        |
| Pendant-pod Locoweed        | Oxytropis Deflexa                   |                      |        |
| Pennsylvanian Bitter-cress  | Cardamine Pensylvanica              |                      |        |
| Perennial Sow-thistle       | Sonchus Arvensis                    |                      |        |
| Pink Mountain-heather       | Phyllodoce Empetriformis            |                      |        |
| Pink Wintergreen            | Pyrola Asarifolia                   |                      |        |
| Pink Wintergreen            | Pyrola Asarifolia                   |                      |        |
| Plane-leaved Willow         | Salix Planifolia                    |                      |        |
| Prairie Rose                | Rosa Woodsii                        |                      |        |
| Prickly Rose                | Rosa Acicularis                     |                      |        |
| Prince's-pine               | Chimaphila Umbellata                |                      |        |
| Purple Meadowrue            | Thalictrum Dasycarpum               |                      |        |
| Purple Peavine              | Lathyrus Venosus                    |                      |        |
| Purple-leaved Willowherb    | Epilobium Ciliatum                  |                      |        |
| Pussy Willow                | Salix Discolor                      |                      |        |
| Racemose Pussytoes          | Antennaria Racemosa                 |                      |        |
| Ragged-moss                 | Brachythecium sp.                   |                      |        |
| Rattlesnake Fern            | Botrychium Virginianum              |                      |        |
| Rattlesnake-plantain        | Goodyera Oblongifolia               |                      |        |
| Rayless Mountain Butterweed | Senecio Indecorus                   |                      |        |
| Red Clover                  | Trifolium Pratense                  |                      | Exotic |
| Red Elderberry              | Sambucus Racemosa                   |                      |        |
| Red Raspberry               | Rubus Idaeus                        |                      |        |
| Red Swamp Currant           | Ribes Triste                        |                      |        |
| Red Swamp Current           | Ribes Triste                        |                      |        |
| Red-osier DogwoodS          | Cornus Stolonifera                  |                      |        |
| Red-stemmed Feathermoss     | Pleurozium Schreberi                |                      |        |
| Reedgrass                   | Clading on                          |                      |        |
| Reindeer Lichens            | Claaina sp.                         |                      |        |
| Rocky Mountain rescue       | Pose sp                             |                      |        |
| Ross' Sodro                 | Rosa sp.                            |                      |        |
| Rosy Twistedstall           | Curex ROSSII<br>Streptopus Posous   |                      |        |
| Rugh-fruited Esinghalls     | Disporum Trachycarnum               |                      |        |
| Roundleaf Orchid            | Amerorchis Rotundifalia (2)         |                      |        |
| Running Club-moss           | Ivcopodium Clavatum                 |                      |        |
| Rush                        |                                     |                      |        |
| Rush Aster                  | Symphotrichum Boreale (?)           | Aster Borealis       |        |

| Common Name                        | Scientific Name                   | Synonyms            | Notes  |
|------------------------------------|-----------------------------------|---------------------|--------|
| Saskatoon                          | Amelanchier Alnifolia             |                     |        |
| Scarlet Paintbrush                 | Castilleja Miniata                |                     |        |
| Scentless Chamomile                | Tripleurospermum Inodorum         | Matricaria Maritima | Exotic |
| Scouler's Willow                   | Salix Scouleriana                 |                     |        |
| Scrub Birch                        | Betula Nana                       |                     |        |
| Sedge                              | Carex sp.                         |                     |        |
| Self-heal                          | Prunella Vulgaris                 |                     |        |
| Shepard's Purse                    | Capsella Bursa-pastoris           |                     | Exotic |
| Shining Willow                     | Salix Lucida                      |                     |        |
| Shiny Liverwort                    | Pellia Neesiana                   |                     |        |
| Shore Sedge                        | Carex Limosa                      |                     |        |
| Showy Aster                        | Eurybia Conspicua                 | Aster Conspicuus    |        |
| Showy Locoweed                     | Oxytropis Splendens               |                     |        |
| Single Delight                     | Moneses Uniflora                  |                     |        |
| Sitka Burnet                       | Sanguisorba Canadensis            |                     |        |
| Sitka Columbine                    | Aauilegia Formosa                 |                     |        |
| Sitka Mountain-ash                 | Sorbus Sitchensis                 |                     |        |
| Sitka Valerian                     | Valeriana Sitchensis              |                     |        |
| Sitka Willow                       | Salix Sitchensis                  |                     |        |
| Skunk Current                      | Ribes Glandulosum                 |                     |        |
| Slender Hawkweed                   | Hieracium Gracile                 |                     |        |
| Small Bedstraw                     | GaliumTtrifidum                   |                     |        |
| Small Twistedstalk                 | Streptopus Streptopoides          |                     |        |
| Small Yellow Water-buttercup       | Ranunculus Gmelinii               |                     |        |
| Small-coloured Paintbrush          | Castilleia Parviflora             |                     |        |
| Small-flowered Penstemon           | Penstemon Procerus                |                     |        |
| Smallflowered Woodrush             | Luzula Parviflora                 |                     |        |
| Smooth Brome                       | Bromus Inermis ssp. Inermis       |                     |        |
| Smooth-stemmed Sedge               | Carex Laeviculmis                 |                     |        |
| Soft-leaved Sedge                  | Carex Disperma                    |                     |        |
| Soopolallie                        | Shepherdia Canadensis             |                     |        |
| Soopolallie                        | Shepherdia Canadensis             |                     |        |
| Sparse-flowered Sedge              | Carex Tenuiflora                  |                     |        |
| Spiny Wood Fern                    | Drvopteris Expansa                |                     |        |
| Spotted Coarlroot                  | Corallorhiza Maculata             |                     |        |
| Spreading Dogbane                  | Apocynum Androsaemifolium         |                     |        |
| Spreading-pod Rockcress            | Arabis Divaricarpa                |                     |        |
| Spruce                             | Picea sp.                         |                     |        |
| Star-flowered False Solomon's-seal | Smilacina Stellata                |                     |        |
| Step Moss                          | Hylocomium Splendens              |                     |        |
| Stiff Club-moss                    | Lycopodium Annotinum              |                     |        |
| Stinging Nettle                    | Urtica Dioica                     |                     |        |
| Strawberry                         | Fragaria sp.                      |                     |        |
| Striped Coarlroot                  | Corallorhiza Striata var. Striata |                     |        |
| Subalpine Fir                      | Abies Lasiocarpa                  |                     |        |
| Swamp Horsetail                    | Equisetum Fluviatile              |                     |        |
| Sweet Coltsfoot                    | Petasites Frigidus                |                     |        |
| Sweet-scented Bedstraw             | Galium Triflorum                  |                     |        |
| Swollen Beaked Sedge               | Carex Rostrata                    |                     |        |
| Tall Bluebells                     | Mertensia Paniculata              |                     |        |
| Tall Larkspur                      | Delphinium Glaucum                |                     |        |
| Tamarack                           | Larix Laricina                    |                     |        |
| Thimbleberry                       | Rubus Parviflorus                 |                     |        |
| Three-leaved False Solomon's-seal  | Maianthemum Trifolium             |                     |        |
| Three-leaved Foamflower            | Tiarella Trifoliata               |                     |        |
| Timothy                            | Phleum Pratense                   |                     |        |
| Toad Pelt                          | Peltigera Scabrosa                |                     |        |
| Touch-me-not                       | Impatiens sp.                     |                     |        |
| Trailing Black Currant             | Ribes Laxiflorum                  |                     |        |
| Trailing Raspberry                 | Rubus Pubescens                   |                     |        |

| Common Name                 | Scientific Name               | Synonyms                       | Notes                    |
|-----------------------------|-------------------------------|--------------------------------|--------------------------|
| Traper's Tea                | Rhododendron Neoglandulosum   | Ledum Glandulosum              |                          |
| Trembling Aspen             | Populus Tremuloides           |                                |                          |
| Twinflower                  | Linnaea Borealis              |                                |                          |
| Twistedstalk                | Streptopus sp.                |                                |                          |
| Veiny Meadowrue             | Thalictrum Venulosum          |                                |                          |
| Velveleaf Huckleberry       | Vaccinium Myrtilloides        |                                |                          |
| Violet                      | Viola sp.                     |                                |                          |
| Water Avens                 | Geum Rivale                   |                                |                          |
| Water Sedge                 | Carex Aquatilis               |                                |                          |
| Water Speedwell             | Veronica Anggallis-aquatica   |                                | Exotic                   |
| Water-moss                  | Calliargon sp                 |                                | Exotic                   |
| Wostorn Blue Flax           | Linum Lowisii subsp. Lowisii  |                                | Exotic                   |
| Western Dock                | Ellium Lewish subsp. Lewish   | P. Aquaticus var. Eopostratus  | LXULIC                   |
| Western Meadowrug           | Thelistrum Oscidentale        | R. Aquaticus var. Fellestratus |                          |
| Western Mountain ash        | Corbus Coopuling              |                                |                          |
| Western Mountain-asn        | Sorbus Scopulina              |                                |                          |
| white Clover                | Trifolium Repens              |                                |                          |
| white Hawkweed              | Hieracium Albiflorum          |                                |                          |
| White Pussytoes             | Antennaria Microphylla        |                                |                          |
| White Rhododendron          | Rhododendron Albiflorum       |                                |                          |
| white spruce                | Picea Glauca                  |                                |                          |
| White Sweet-clover          | Melilotus Alba                |                                | Exotic                   |
| White Water-buttercup       | Ranunculus Aquatilis          |                                |                          |
| White-flowered Rhododendron | Rhododendron Albiflorum       |                                |                          |
| Wild Lily-of-the-valley     | Maianthemum Canadense         |                                |                          |
| Wild Sarsaparilla           | Aralia Nudicaulis             |                                |                          |
| Wild Strawberry             | Fragaria Virginiana           |                                |                          |
| Wildrye                     | Elymus sp.                    |                                |                          |
| Willow                      | Salix sp.                     |                                |                          |
| Willowherb                  | Epilobium sp.                 |                                |                          |
| Wintergreen                 | Pyrola sp.                    |                                |                          |
| Wood Horsetail              | Equisetum Sylvaticum          |                                |                          |
| Wood Strawberry             | Fragaria Vesca                |                                |                          |
| Wood-moss                   | Hvlocomium sp.                |                                |                          |
| Wormseed Mustard            | Ervsimum Cheiranthoides       |                                |                          |
| Wormwood                    | Artemisia sp                  |                                |                          |
| Yarrow                      | Achillea Millefolium          |                                |                          |
| Yellow Avens                | Geum Alennicum                |                                |                          |
| Vellow Bog Sedge            | Carex Gypocrates              |                                |                          |
| Vollow Coarlroot            | Corallorbiza Trifida          |                                |                          |
| Yellow Monkoy-flower        | Mimulus Guttatus              |                                |                          |
| Yellow Mountain Avens       |                               |                                |                          |
| Yellow Mountain Avens       | Di yas Di ummonam             |                                |                          |
|                             | Rhinanchus Minor              |                                | E                        |
| Yellow Sweet-clover         | Melilotus Officinalis         |                                | EXOTIC                   |
|                             | Antennaria sp.                |                                |                          |
|                             | Anthemis sp.                  |                                |                          |
|                             | Arabis sp.                    |                                |                          |
|                             | Aster spp.                    |                                |                          |
|                             | Astragalus sp.                |                                |                          |
|                             | Barbilophozia sp.             |                                |                          |
|                             | Bromus sp.                    |                                |                          |
|                             | Carex Lenticularis (variety?) |                                | Potential Listed Species |
|                             | Carex spp.                    |                                |                          |
|                             | Castilleja sp.                |                                |                          |
|                             | Cladonia Cornuta              |                                |                          |
|                             | Cladonia Ecmocyna             |                                |                          |
|                             | Dryas sp.                     |                                |                          |
|                             | Elymus sp.                    |                                |                          |
|                             | Epilobium sp.                 |                                |                          |
|                             | Erigeron sp.                  |                                |                          |

Appendix 8. Plant Species Identified during Field Surveys

| Common Name | Scientific Name       | Synonyms | Notes                  |
|-------------|-----------------------|----------|------------------------|
|             | Galium sp.            |          | Potential for Multiple |
|             |                       |          | Additional Species     |
|             | Gaultheria sp.        |          |                        |
|             | Geranium sp.          |          |                        |
|             | Geum spp.             |          |                        |
|             | Hieracium sp.         |          |                        |
|             | Juncus spp.           |          |                        |
|             | Lupinus sp.           |          |                        |
|             | Luzula sp.            |          |                        |
|             | Melilotus sp.         |          | Exotic                 |
|             | Mimulus sp.           |          |                        |
|             | Plagiochasma sp.      |          |                        |
|             | Ptilidium sp.         |          |                        |
|             | Ranunculus sp.        |          |                        |
|             | Rosa sp.              |          |                        |
|             | Rubus sp.             |          |                        |
|             | Rumex sp.             |          |                        |
|             | Salix spp.            |          |                        |
|             | Sedum sp.             |          |                        |
|             | Senecio sp.           |          |                        |
|             | Silene sp.            |          |                        |
|             | Solidago sp.          |          |                        |
|             | Sparganium sp.        |          |                        |
|             | Sparganium sp.        |          |                        |
|             | Spiraea sp.           |          |                        |
|             | Stellaria sp.         |          |                        |
|             | Taraxacum sp.         |          |                        |
|             | Vaccinium Vitis-idaea |          |                        |
|             | Vicia sp.             |          |                        |
|             | Viola sp.             |          |                        |