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(Dated: September 26, 2016)

The shandite family of solids, with hexagonal structure and composition A3M 2X 2 (A = Ni, Co,
Rh, Pd, M = Pb, In, Sn, Tl, X = S, Se), has attracted recent research attention due to promising
applications as thermoelectric materials. Herein we discuss the electron and phonon transport
properties of shandite-structured Ni3Sn2S2, based on a combination of density functional theory
(DFT), Boltzmann transport theory, and experimental measurements. Ni3Sn2S2 exhibits a metallic
and non-magnetic groundstate with Ni0 oxidation state and very low charge on Sn and S atoms.
Seebeck coefficients obtained from theoretical calculations are in excellent agreement with those
measured experimentally between 100 and 600 K. From the calculation of the ratio σ/τ between
the electronic conductivity and relaxation time, and the experimental determination of electron
conductivity, we extract the variation of the scattering rate (1/τ) with temperature between 300
and 600 K, which turns out to be almost linear, thus implying that the dominant electron scattering
mechanism in this temperature range is via phonons. The electronic thermal conductivity, which
deviates only slightly from the Wiedemann-Franz law, provides the main contribution to thermal
transport. The small lattice contribution to the thermal conductivity is calculated from the phonon
structure and third-order force constants, and is only ∼2 Wm−1K−1 at 300 K (less than 10% of the
total thermal conductivity), which is confirmed by experimental measurements. Overall, Ni3Sn2S2

is a poor thermoelectric material (ZT ∼ 0.01 at 300 K), principally due to the low absolute value
of the Seebeck coefficient. However, the understanding of its transport properties will be useful for
the rationalization of the thermoelectric behavior of other, more promising members of the shandite
family.

PACS numbers: 72.10.Di 72.15.Jf 72.15.Lh

I. INTRODUCTION

Chalcogenides of general formula A3M 2X 2 (A = Ni,
Co, Rh, Pd; M = Pb, In, Sn, Tl, Bi; X = S, Se) exhibit
interesting electronic and magnetic properties including
superconductivity (Ni3Bi2S2) [1], half-metallic ferromag-
netism (Co3Sn2S2) [2, 3], and metal-insulator transitions
(Co3Sn2−xInxS2) [4]. The latter series has also been re-
cently investigated for its potential for thermoelectric ap-
plications at high temperature [5, 6]. In particular, the
thermoelectric figures of merit reported for this solid so-
lution at 425 K, when 0.8 < x < 0.85, is among the
highest reported for sulfide phases in this temperature
range, suggesting it may have applications in low-grade
waste heat recovery.
The shandite structure, adopted by the

Co3Sn2−xInxS2 series at all compositions (as well
as by most compounds with A3M 2X 2 stoichiometry),
consists of sheets of metal atoms (both A and M ) in the
form of a Kagome-like hexagonal network, capped above
and below by X atoms, and stacked in ABC sequence.
There is a second M site, located between the Kagome
sheets, with trigonal anti-prismatic coordination to the
X atoms (Fig. 1). The distribution of Sn and In over the
two types of M sites has been found to be an important
factor in the explanation of the electronic behavior of
the Co3Sn2−xInxS2 solid solution [6].

∗ r.grau-crespo@reading.ac.uk

The present study focuses on understanding the elec-
tron and phonon transport properties of Ni3Sn2S2, as a
representative of the shandite family. Contrasting with
the magnetic nature of Co shandites, Ni3Sn2S2 has a
non-magnetic ground state, which has been confirmed
by band structure calculations and photoelectron spec-
troscopy [7], as well as by direct magnetic susceptibil-
ity measurements [8]. The presence of spin polarization
and magnetic excitations complicates the calculation of
transport coefficients, and also the theoretical descrip-
tion of electron scattering, as electron-magnon interac-
tions have to be taken into account [9, 10]. The absence
of magnetism in Ni3Sn2S2 thus makes this compound a
convenient starting point for a theoretical investigation
of transport phenomena and thermoelectric behavior in
shandites.

In addition to the results of electronic and phonon
structure calculations, we present here theoretical pre-
dictions as well as experimental measurements of all the
transport coefficients contributing to the thermoelectric
figure of merit:

ZT =
σS2T

κel + κlatt
(1)

i.e, the Seebeck coefficient S, the electrical conductiv-
ity σ, and the electronic (κel) and lattice (κlatt) contribu-
tions to the thermal conductivity. We will examine the
variation with temperature (T ) of each of the coefficients
and discuss the physical mechanisms responsible for the
transport behavior.
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FIG. 1. Hexagonal (a) and rhombohedral (b) unit cell of
shandite-structured Ni3Sn2S2.

II. METHODOLOGY

A. Computational techniques

1. Density functional theory calculations

The crystal structure of Ni3Sn2S2 was optimised using
periodic density functional theory (DFT) calculations as
implemented in the Vienna Ab initio Simulation Pack-
age (VASP) [11, 12]. The projector augmented wave
(PAW) method was used [13, 14], with electron levels
up to Ni 3p, Sn 4p and S 2p kept frozen at their refer-
ence atomic state. The exchange-correlation functional
of Perdew-Burke-Ernzerhof (PBE) [15], based on the gen-
eralized gradient approximation (GGA), was employed.
The number of plane waves was determined using a ki-
netic energy cutoff of 350 eV. Reciprocal space integra-
tions were performed on a Γ-centered grid of k-points
with the smallest permitted spacing between them of 0.3

Å
−1

, which corresponds to a 7× 7× 7 grid on the recip-
rocal lattice of the primitive cell. Spin-polarized calcula-
tions were performed with different initializations of the
magnetic moments but the calculations always converged
to a non-magnetic groundstate, as expected from previ-
ous research [7]. The ionic positions were relaxed until

the forces were less than 0.01 eVÅ
−1

on each atom. A
Bader analysis [16] of the charge density from VASP was
performed using the code by Henkelman et al. [17, 18].

2. Electron transport calculations

As a starting point for the electronic transport calcu-
lations, we re-determined the band structure using the
WIEN2k code [19]. For this calculation, the Brillouin
zone was sampled with a fine k-mesh of 50×50×50 points.
For the basis set expansions we used the cutoff parame-

ters lmax = 10 and RmtKmax = 7, while for the charge
density Fourier expansion we used the cutoff Gmax = 12;
all these parameters were checked for convergence of the
total energy. The radii of the muffin-tin spheres were set
at the default values of 2.26, 2.50 and 1.85 bohrs for Ni,
Sn, and S, respectively. The transport coefficients were
then obtained from the bands by solving the linearized
Boltzmann transport equation using the BoltZTraP code
[20], which interfaces with the WIEN2k output. BoltZ-
TraP uses the relaxation time approximation and a “rigid
band” approach to obtain the transport coefficients as
functions of the electron chemical potential and tem-
perature. Both the electrical conductivity (σ) and the
electronic contribution to the thermal conductivity are
calculated relative to the relaxation time (τ), which is
assumed to be isotropic and constant in the reciprocal
space at each temperature. The Seebeck coefficient can
be calculated on an absolute scale, i.e. it is independent
of τ . The temperature variation of τ is discussed based on
the comparison with experimental measurements of the
electrical conductivity. At each temperature, we use the
equilibrium value of the chemical potential corresponding
to the undoped system, which deviates only slightly from
the Fermi level. However, we also consider the effects of
(dilute) doping by evaluating the transport coefficients
and ZT at different chemical potentials corresponding to
different concentrations of electron/hole doping.

3. Phonon transport calculations

In order to calculate the lattice contribution κlatt to
the thermal conductivity, we solved the phonon Boltz-
mann transport equation using the method implemented
in the ShengBTE code [21, 22], which goes beyond the
relaxation time approximation (RTA) to provide a full
iterative solution. The method requires the calculation
of both second-order (harmonic) and third-order (an-
harmonic) force constants, which were obtained by the
finite-displacement method, using energies from VASP
calculations in a 3× 3× 3 supercell of the primitive cell.
The phonon dispersion curves and heat capacity were
obtained from the second-order force constants using the
Phonopy code [23]. For the efficient calculation of the
anharmonic force constants, harnessing the crystal sym-
metry, we use the thirdorder.py script [24]. This required
the evaluation of the DFT energies of 364 configurations
of atom displacements. The ShengBTE calculations were
performed using a q-point grid of 13×13×13, which was
tested for convergence.

B. Experimental techniques

1. Sample preparation

Ni3Sn2S2 was synthesized by the sealed tube method
at high temperatures. Mixtures of elemental nickel (Alfa,
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powder, 99.9%), tin (Aldrich, powder, 99%), and sulphur
(flakes, Aldrich, 99.99%) were ground using an agate pes-
tle and mortar. The resulting powders were sealed un-
der vacuum (between 10−3-10−4 mbar) into a fused silica
tube, and the mixture fired for two periods of 48 h at
500 ◦C and 700 ◦C with an intermediate regrinding. A
heating and cooling rate of 0.5 ◦C min−1 was used.

2. Powder X-ray Diffraction

The structural characterization was carried out by
powder X-ray diffraction (XRD) using a Bruker D8 Ad-
vance diffractometer (Ge-monochromated Cu Kα1, λ =
1.5406 Å and a LynxEye linear detector. Rietveld refine-
ment of lattice, atomic, thermal and profile parameters
was carried out using the GSAS software package [25].

3. Measurement of transport properties

The densification of the powdered sample was carried
out using a hot press manufactured in-house. After ball
milling at 350 rpm for 1 hour, a sample with a mass of
about 1.8 g was loaded between two graphite dies in a
graphite mold. Hot-pressing under a N2 atmosphere, at
60 bar and 995 K for 25 min, led to a pellet with a density
of 99.6% relative to the bulk material. The density of the
resulting pellets was measured by the buoyancy method.
Thermal diffusivity measurements at high temperatures
300 ≤ T(K) ≤ 525 were conducted using an LFA 447
Nanoflash Netzsch instrument, and the determination of
the specific heat carried out via the comparison method.
Pyroceram 9606 was used as the reference sample. The
electrical resistivity and Seebeck coefficient were mea-
sured at high temperatures (300 - 670 K) using a Linseis
LSR3-800 instrument. Low-temperature (100 - 300 K)
Seebeck coefficient measurements were conducted in 10
K steps using an in-house instrument equipped with a
close-cycle refrigerator.

III. RESULTS AND DISCUSSION

4. Crystal structure

The XRD analysis confirms that Ni3Sn2S2 crystallizes
in the rhombohedral R3̄m space group, as reported by
Range et al [26]. The lattice parameters obtained from
the DFT optimization were in good agreement with ex-
periment, and with literature values [26] (Table I). The
small overestimation of the lattice parameters is typi-
cal of GGA-PBE calculations of metallic systems [27].
Another source of discrepancy is that the DFT results
are obtained by minimization of the total energy at zero
temperature (or more precisely, without considering vi-
brational effects, as zero-point effects were not included
either), while the reported experimental parameters were

measured near room temperature (293 K in this work and
297 K in Ref. [26]). Still, the discrepancies are very small
(+1.4% for a and +0.15% for c).

5. Electronic structure

The electronic band structure between high-symmetry
points is shown in Fig. 2. Ni3Sn2S2 has a non-magnetic
metallic groundstate with a low density of states at the
Fermi level. The projection of the density of states on the
Ni 3d -orbitals shows that these contributions are almost
completely below the Fermi level, which indicates a Ni0

formal oxidation state with a 3d10 configuration. The
4s orbitals are about 5 eV above the Fermi level. The
3d10 configuration is typical of Ni0 in inorganic molecular
compounds like Ni(CO)4 [28, 29]. The neutral state of
Ni is consistent with the Bader analysis which is shown
in Table II. The Ni0 valence state and the nature of the
groundstate are also in agreement with the findings in
Ref. [7].

The magnitudes of the charges associated with the Sn
and S atoms (±0.6-0.7) are also well below what would
be expected from formal oxidation states, but still sig-
nificantly different from zero: they are in between those
found for SnS (polar covalent compound) and SnSb (in-
termetallic compound).

It is interesting to compare the electronic structure of
Ni3Sn2S2 with that of Co3Sn2S2. The latter has a fer-
romagnetic groundstate with half-metallic character, ex-
hibiting a gap of ca. 0.3 eV for the minority spin chan-
nel [30]. Despite that fundamental difference, the total
charge density distribution over the atoms is very similar
for both compounds. In Co3Sn2S2, Co is found to be
zero-valent, while the atomic charges for Sn/S are also
very close to those found for Ni3Sn2S2 [6].

6. Seebeck coefficient

Within the constant relaxation time approximation
(τ(k) = τ) in Boltzmann’s transport theory, the See-
beck coefficient can be fully predicted from the DFT band
structure, without introducing any empirical parameters.

TABLE I. Comparison of theoretical and experimentally de-
termined crystal parameters of Ni3Sn2S2. z[S] is the z frac-
tional coordinate of the S atom in special position 6c (0, 0, z)
of space group R3̄m.

This work Ref [26]
Parameter DFT Experiment Experiment

a (Å) 5.540 5.46771(7) 5.4606(2)
c (Å) 13.208 13.1922(2) 13.188(1)

V (Å
3
) 351.06 341.55 340.56

z [S] 0.2792 0.2820(2) 0.2820(2)
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Therefore the Seebeck coefficient constitutes a good test
to the quality of the theoretical model.
The calculations provide the components of the See-

beck coefficient tensor, but we find very little anisotropy
(e.g. Szz/Sxx = 0.992 at 300 K). Since the layered
crystal structure of shandites is clearly anisotropic, this
result might seem a bit surprising, but we note that
nearly isotropic Seebeck coefficients have been reported
for other anisotropic crystals including Bi2Te3 [31] and
SnSe2 [32], at specific ranges of temperatures and doping
levels. This behaviour probably results from cancella-
tions of different contributions to the anisotropy. It is
worth noting here that in our calculations we have as-
sumed that the relaxation time is fully isotropic. How-
ever, in some cases, the differences in scattering rates
in different directions may be an additional source of
anisotropy [33], which we have ignored. Since there are
no experimental data on single crystals to confirm the
presence/absence of anisotropy, we will focus here on the
calculated spherical average of the Seebeck coefficient,
which can be compared to the experimental measure-
ments in the polycrystalline material.
The comparison between experimental and theoretical

results is shown in Fig. 3. Two sets of experimental

FIG. 2. a) First Brillouin zone of Ni3Sn2S2 (rhombohedral
setting), showing the high-symmetry k-points Γ (0,0,0), Z
(0.5,0.5,0.5), F (0,0.5,0.5) and L (0,0.5,0) used to plot the
band structure. b) Calculated band-structure along high-
symmetry paths and the corresponding density of states (both
total and projected on the Ni 3d states).

results are reported, which were obtained using two dif-
ferent instruments (one for measurements below and the
other for measurements above room temperature). The
discontinuity at room temperature arises from the use
of different instruments, and not from physical effects.
For the whole range of temperatures there is excellent
agreement between theory and experiment.

100 200 300 400 500 600
-35

-30

-25

-20

-15

-10

-5

0
 Theory (DFT + BTE)
 Low-T Experiment (In-house instrument)
 High-T Experiment (Linseis LSR3-800)

S 
(µ

V/
K)

T (K)

FIG. 3. Experimental and theoretical Seebeck coefficients as
functions of temperature.

Analogous to the Co shandite, Ni3Sn2S2 exhibits a neg-
ative Seebeck coefficient with the absolute value increas-
ing almost linearly with temperature. However, at room
temperature, the Seebeck coefficient of the Ni shandite
is 3 to 4 times smaller than that of the Co analogue (ca.
-50 µV/K [6]). This can be explained by the difference
in the electronic structure of the two compounds. It is
well known that semiconductors generally exhibit much
higher Seebeck coefficients than metals [34]. For half-
metals, the Seebeck coefficient is approximately given by
the two-current model [35, 36], i.e. the conductivity-
weighted average of the Seebeck coefficients of the two
spin channels. Therefore, half-metallic Co3Sn2S2 can be
expected to have a higher Seebeck coefficient than fully
metallic Ni3Sn2S2, as we have observed.

7. Electronic conductivity and scattering rates

In contrast to the Seebeck coefficient, the electronic
conductivity can only be predicted per unit of relaxation

TABLE II. Bader charges for Ni3Sn2S2 and two reference
compounds (SnS and SnSb).

Atom Ni Sn S Sb
Ni3Sn2S2 +0.05 +0.64 -0.71 -
SnS - +0.96 -0.96 -
SnSb - +0.36 - -0.36
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time, i.e. at this level of theory we can only calculate
the ratio σ/τ . There have been some recent methodolog-
ical developments for the calculation of electron-phonon
relaxation times from first principles [37, 38], but the
algorithms are not very mature yet and quite computa-
tionally demanding. We have therefore chosen to com-
bine our calculations with experimental measurements of
electronic conductivity, in order to analyze the behavior
of the effective isotropic relaxation time as a function of
temperature.
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1.8

2.0

300 400 500 600
1.0

1.5

2.0

2.5
0.0

0.4

0.8

1.2

1.6

(c)

(b)

T =100 K
2.7% 

(a)

 /
(1

020
 S

 m
-1

s-1
)

 Experiment
 Theory (  fitted)

 (1
06  S

 m
-1

)

T (K)

 Value to match experiment
 Linear fit

1/
(1

014
 s

-1
)

300 400 500
0.46

0.48

0.50

0.52

0.54

0.56

zz
xx

T (K)

FIG. 4. a) Calculated electronic conductivity per unit of re-
laxation time (σ/τ); b) electron-phonon scattering rates ob-
tained using the experimentally determined σ and the the-
oretically obtained σ/τ , and linear fitting of its temperature
dependence; c) experimental electronic conductivity data and
calculated values using fitted τ(T ). The inset shows the ratio
between the zz and xx components of the conductivity tensor.

The σ/τ ratio has only a weak temperature dependence
(Fig. 4a). For example, increasing the temperature from
400 to 500 K leads to an increase of less than 3% in the
value of σ/τ . In Fig. 4b we show the scattering rates
(1/τ) required to exactly match the experimental con-
ductivities as a function of temperature (Fig. 4c). The
experimental value of σ at room temperature is 2.4×106

Sm−1 and decreases with temperature as expected for a
metallic system.

The scattering rates determined in this way increase
linearly with temperature. This result can be interpreted
in terms of Matthiessen’s rule, according to which the
total scattering rate is the sum of contributions from
electron-electron scattering (proportional to T 2), from
electron-phonon scattering (proportional to T above the
Debye temperature of the material), and from impurity
scattering (approximately independent of T ) [39]. In our
case, given the linearity of the dependence it is clear that
the electron-electron term can be omitted and the varia-
tion can be well fitted with the linear equation:

1

τ
= a0 + a1T (2)

for which we obtain a0=9.82×1011 s−1 and a1=2.19×1011

s−1K−1. The electron-phonon term dominates at the
temperatures of interest here. For example, at 300 K the
impurity contribution represents less than 1.5% of the
total scattering rate, and this reduces to 0.7% at 600K.
The calculated relaxation time of 1.5×10−14 s at 300 K
is reasonable and of the same order as values obtained by
the same procedure in other materials (e.g. for Bi2Te3
[40]).

The linear dependence of the electron-phonon scatter-
ing rate with temperature is as expected for temperatures
of the order of and above the Debye temperature of the
material [39]. In Section III.9 we provide an estimation
of the Debye temperature of Ni3Sn2S2 based on phonon
calculations, and we obtain TD=278 K, which is consis-
tent with the present analysis. For temperatures above
TD and in the absence of significant impurity contribu-
tions, both σ and τ are roughly inversely proportional to
temperature, which makes the ratio σ/τ almost constant,
as seen in Fig. 4a.

Finally we note that our calculations also provide ac-
cess to individual components of the electronic conduc-
tivity tensor. On the assumption of isotropic relaxation
time, we can obtain the ratio σzz/σxx as a function of
temperature. The inset of Fig. 4c shows that there is
significant anisotropy in this case, with the conductivity
within the Kagome plane (σxx) being around twice the
conductivity in the perpendicular direction (σzz). This is
expected since the Kagome plane contains a 2D network
of zero-valent metal (Ni) atoms which locally increases
the density of electronic states.

8. Electronic thermal conductivity

We discuss here only the theoretical calculation of the
electronic contribution to the thermal conductivity (κel)
(and its connection to the electronic conductivity σ), be-
cause in experiment only the total (electronic + lattice)
thermal conductivity is measured. The discussion of the
experimental total thermal conductivity will be presented
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below (Section III.9), together with results of the lattice
thermal conductivity calculations.
The κel values can also be obtained from the Boltz-

mann transport equation, but as in the case of σ, only
the values relative to the relaxation time (i.e. κel/τ) can
be determined. The relaxation time for electronic heat
transport is not necessarily the same as the relaxation
time considered above for the electronic conductivity,
but for metals in the regime of temperatures of interest
here (similar to or above the Debye temperature) the two
relaxation times can be considered approximately equal
[39]. In this case, it is expected that the ratio σ/τ follows
the Wiedeman-Franz law, i.e. it is simply proportional
to temperature, with the proportionality constant being
the Lorenz number (L0 = 2.44×10−8 WΩK−2). Fig. 5
shows that the calculated transport coefficients follow the
Wiedeman-Franz law to a good approximation, although
there are some deviations at higher temperatures, where
the effective Lorenz number becomes somewhat higher
than L0 (by up to 10% at 600 K).
The predicted absolute value for the electronic thermal

conductivity (using the relaxation time determined from
the experimental σ) does not vary strongly with tem-
perature. This is expected from the Wiedemann-Franz
law and the result in the previous section showing that
σ is roughly inversely proportional to temperature. We
obtain κel values of 20.8 Wm−1K−1 at 300 K and 22.3
Wm−1K−1 at 600 K. The anisotropy of the electronic
thermal conductivity tensor was found to follow a very
similar pattern as that of the electronic conductivity ten-
sor.

0 100 200 300 400 500 600
0.0

5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

 el / (theory)
 L0T

el
 / 

(W
 S

-1
K-1

)

T (K)

FIG. 5. Ratio between the electronic contribution to the ther-
mal conductivity (κel) and the electrical conductivity (σ) as a
function of temperature, in comparison with the expectation
from the Wiedemann-Franz law.

9. Phonon structure and lattice thermal conductivity

We now discuss the phonon behavior in Ni3Sn2S2, as
a starting point for the discussion of the lattice contri-
bution to the thermal conductivity, but also to provide

an estimation of the Debye temperature of the material.
The phonon dispersion curves along the high-symmetry
directions in the Brillouin zone are shown in Fig. 6. Con-
sistent with the primitive cell of 7 atoms there are 21
phonon modes: 3 acoustic and 18 optical branches. The
vibrational density of states is divided in two groups, the
lower one comprises 15 branches and the upper one com-
prises 6 branches, with a gap of of about 10 meV between
the two groups.

0

10

20

30

40

50

0 2 4 6 8              Z               F                              L

 

       Wavevector                              DOS (eV-1)

E 
(m

eV
)

FIG. 6. Phonon dispersion curves of Ni3Sn2S2 along high
symmetry paths in the Brillouin zone, and the corresponding
phonon density of states.

From the phonon structure we can extract the specific
heat capacity of the solid as a function of temperature (ig-
noring for the moment anharmonic contributions), which
is shown in Fig. 7. In the low-temperature limit, Cv is
proportional to T 3 [41]:

Cv ≈ 12π4

5
NkB

(
T

TD

)3

(3)

from where we can calculate the Debye temperature
TD=278 K (inset of Fig. 7).

From the anharmonic displacements we can then calcu-
late the lattice thermal conductivity κlatt, which is shown
in Fig. 8a as a function of temperature. At 300 K it is
ca. 2 Wm−1K−1 and it slowly decreases with temper-
ature down to 1 Wm−1K−1 at 600 K. These values are
very low, well below typical values for crystalline solids,
and similar to what is found for disordered materials like
amorphous silicon dioxide [42]. The origin of the low
κlatt is the very anharmonic nature of the vibrations in
Ni3Sn2S2. This is reflected in a high Grüneisen parame-
ter obtained from our calculations, γ=1.55 (in the high-
temperature limit), which is about three times that of Si
[43].

Our lattice thermal conductivity calculations provide
further useful information, including directional (tenso-
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FIG. 7. Specific heat capacity of Ni3Sn2S2 per mole of formula
units. The limit value at high temperature is 3NR where
N = 7 is the number of atoms per formula unit and R is the
gas constant. The fitting of the low- temperature values of
the heat capacity to a Debye model (inset) is used to obtain
the Debye temperature.

rial) components as well as the contributions from dif-
ferent phonon mean free paths. The κlatt tensor showed
negligible anisotropy at all temperatures above 300 K. On
the other hand, from the mean-free-path analysis we find
that nanostructuring is not a viable strategy for reducing
thermal conductivity as this would require particle sizes
below ∼20 nm to achieve any significant effect (Fig. 8b).
In any case, from a point of view of thermoelectric appli-
cations, it does not make sense to focus on reducing the
lattice thermal conductivity, because the most important
contribution to heat transport comes from electrons.

The total calculated thermal conductivity, as well as
the electronic and lattice contributions, are shown in Fig.
8a, in comparison with experimental measurements (only
for the total thermal conductivity). κlatt contributes just
∼10% of the total thermal conductivity, with the remain-
ing 90% resulting from electronic transport. The experi-
mental total thermal conductivities are in excellent agree-
ment with the theoretical values. However, it should be
noted that the calculation of the electronic contribution
κel involved the use of a fitted relaxation time curve τ(T )
to reproduce the electronic conductivity σ(T ). Because
of the Wiedemann-Franz law, such fitting also guarantees
a good theoretical value for κel. However, it is still re-
markable that the calculated values of κlatt, which were
obtained without any fitting parameters, bring the to-
tal theoretical values of thermal conductivity to perfect
agreement with experiment. Thus, our theoretical lat-
tice thermal conductivity predictions are confirmed by
the experimental measurements.
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FIG. 8. a) Total thermal conductivities from experiment and
theory, and calculated electronic (κel) and lattice (κlatt) con-
tributions versus temperature; b) κlatt at 300 K as a function
of the maximum mean free path.

10. Thermoelectic figure of merit ZT

In order to summarize the thermoelectric behavior of
Ni3Sn2S2, we have calculated the thermoelectric figure
of merit ZT of the material as a a function of tempera-
ture, using both theoretical and experimental data (Fig.
9a). Two theoretical ZT curves are given, one excluding
and the other including the lattice thermal conductivity
term. In the former case, the prediction is fully ab ini-
tio, because the relaxation time cancels out, and Eq. (1)
becomes:

ZT ≈ σS2T

κel
≈ S2

L0
(4)

In fact, since κlatt contributes only around 10% to the
total thermal conductivity, its effect on ZT is very small,
as can be seen in Fig. 9a. The calculation of ZT tak-
ing into account the lattice contribution to κ is not fully
predictive, as it involved fitting of the relaxation times.
In any case, the theoretical prediction agrees well with
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experiment, showing an increase with temperature that
is approximately quadratic (because S has an approxi-
mately linear variation with temperature).
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FIG. 9. a) Thermoelectric figure of merit (ZT ) of Ni3Sn2S2

from experimental and from theoretical data. b) Effect of
dilute doping on ZT (the inset shows the correspondence be-
tween the doping charge density and the chemical potential
within the rigid band approximation).

The values of ZT in Ni3Sn2S2 are too small for thermo-
electric applications, which, as Eq. 4 indicates, is mainly
due to the low Seebeck coefficient. A possible strategy
to improve the Seebeck coefficient and ZT is via dop-
ing. We therefore consider here the response of ZT to
dilute doping, with either excess or deficiency of elec-
trons, within a rigid band approach. Fig. 9b shows the
dependence of ZT on the concentration of doped charge
carriers, which can be studied by varying the chemical

potential, as shown in the figure inset. ZT is predicted
to increase with small concentrations of electron doping
(negative doping charge density), although the magni-
tude of the increase is still modest. Clearly, a wider range
of doping concentrations must be considered in trying to
achieve a significant increase in ZT . However, the theo-
retical investigation of heavily doped Ni3Sn2S2 is beyond
the scope of the present study, as it cannot be rigorously
done within the rigid band approach; it would instead
require to include the dopant atoms explicitly in the su-
percell (e.g. [44, 45]).

IV. CONCLUSIONS

We have reported a full theoretical and experimental
study of the electronic, phonon structure and transport
behavior of the shandite-type Ni3Sn2S2. The theoretical
results, in particular the Seebeck coefficient and lattice
thermal conductivities, which are predicted without any
fitting parameters, are in excellent agreement with exper-
iment. The dominant electron scattering mechanism is
via phonons, and from the comparison of theoretical and
experimental results we have obtained the temperature
dependence of the electron scattering rate.

Pure Ni3Sn2S2 is not a good thermoelectric mate-
rial, as it has a very low thermoelectric figure of merit
(ZT ∼ 10−2 at room temperature). Its lattice thermal
conductivity is very low, and contributes only ∼ 10% of
the total thermal conductivity. Therefore, for this mate-
rial very little can be gained by nanostructuring or other
strategies aimed at reducing heat transport by phonons.
In fact, for this metallic shandite, ZT is mainly a func-
tion of the Seebeck coefficient. In order to improve ZT ,
a dramatic change in the Seebeck coefficient would be
needed, which we show it cannot be achieved by dilute
doping. The effort in finding thermoelectric shandites
should clearly focus on the half-metallic or semiconduc-
tor systems, where the Seebeck coefficients can be engi-
neered to much higher values.
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[38] S. Poncé, E. Margine, C. Verdi, and F. Giustino, Com-
put. Phys. Commun. (2016), preprint at http://arxiv.
org/abs/1604.03525.

[39] J. Singleton, Band Theory and Electronic Properties of
Solids (Oxford University Press, 2001) pp. 122–125.

[40] B. Y. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn,
Phys. Rev. B 84, 165208 (2011).

[41] C. Kittel, Introduction to solid State Physics (Wiley, New
Jersey, 2005).

[42] K. E. Goodson, Science 315, 342 (2007).
[43] A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544

(1998).
[44] Y. Suzuki and H. Nakamura, Phys. Chem. Chem. Phys.

17, 29647 (2015).
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