
Sparsest cut

Sparsest cut problem:
Given graph G=(V, E) , c: E → R+

Pairs of nodes s1t1, s2t2, ..., sktk
Each pair siti has a demand dem(i) > 0

For E’ ⊆ E, let c(E’) = ∑e ∈ E’ c(e)

let dem(E’) = ∑i, siti separated by E’ dem(i) where siti is 
separated by E’ if they are not connected in G[E\E’]
let sparsity(E’) = c(E’)/dem(E’)
Goal: find a cut E’ of minimum sparsity (sparsest cut) 
(problem is NP-hard)



Sparsest cut

Sparsest cut has many applications that we will discuss 
later on

Observation: if G is connected there always exists a 
sparsest cut E’ where G[E\E’] consists of two connected 
components S, V\S

Proof: exercise

For this reason sometimes
sparsest cut is defined as
find S ⊂ V to minimize c(δ(S))/dem(δ(S))

S V\S



Uniform vs Non-uniform

A special case of the sparsest cut problem is the
following:
k = n(n-1)/2 and every pair of vertices uv is a commodity
with dem(uv) = 1
Most interesting applications of sparsest cut are for this 

special case. Sometimes this is called the uniform case 
of the sparsest cut problem. The non-uniform case 
refers to the general problem.



Maximum concurrent flow

For most cut problems there is usually a flow problem that 
is dual to it. 

For sparsest cut, it is  the maximum concurrent flow
problem: given 

G=(V,E), c: E → R+ (now interpret c as edge capacities)

Pairs of nodes s1t1, s2t2, ..., sktk
Each pair siti has a demand dem(i) > 0
Goal: maximize λ s.t each pair siti can concurrently send 

flow of λ dem(i)



Maximum concurrent flow

Let λ* be the optimum value for the maximum concurrent 
flow problem

First we observe that for each S ⊂ V
λ∗ ≤ c(δ(S))/dem(δ(S))

because the demand crossing S (λ* dem(δ(S)) cannot 
exceed the capacity of the cut δ(S)

Therefore λ* ≤ minS c(δ(S))/dem(δ(S)) and hence λ* is a 
lower bound on the minimum sparsity

Note that for k=1, (single pair) λ* = min sparsity from 
maxflow-mincut theorem (do you see why?)



Flow-cut gap

For k = 2, λ* = min sparsity (this Hu’s two-commodity flow 
theorem)

However for k > 3 we can have λ* < min sparsity. Here is 
an example

Natural question is whether λ* ≥ α (min sparsity) for some 
α < 1. Would also allow us to get an 1/α approximation 
for min sparsity since λ* can be computed via an LP

Graph is in black edges. Red 
edges are the demand pairs. 
Capacities/demands are all 1



LP for λ*

We can write a straight forward LP for computing λ*

We use exponential # of variables but a compact 
formulation can easily be derived

Pi: set of paths from si to ti, P = ∪i Pi

f(p) variable for flow on path p
max λ
s.t

∑p ∈ Pi
f(p) ≥ λ dem(i)    1≤ i ≤ k

∑ p: e ∈ p f(p) ≤ c(e)      e ∈ E
f(p) ≥ 0



Dual of LP

The dual of the LP can be seen as a meaningful relaxation 
for sparsest cut

Variables for dual:
de for each e ∈ E (interpret as distance/length of e)
di for 1≤ i ≤ k (interpret as distance from si to ti)
min ∑e ∈ E c(e) d(e)

s.t
∑i dem(i) di ≥ 1
∑ e ∈ p de ≥ di for all p ∈ Pi

de ≥ 0
di ≥ 0



Interpretation of the dual 

The dual assigns distances to edges which induce shortest 
path distances on all vertices

The dual is nothing but the following (why?)
mind is a semi-metric ∑uv ∈ E c(uv) d(uv) /  ∑i=1

k dem(i) d(siti)

where d(uv) is the distance between u and v 
Since we cannot use ratios in LPs the denominator is 

normalized to a constraint which says
∑ι=1

k dem(i) d(siti) ≥ 1

and the  numerator is minimized. Note that scaling does 
not affect the ratio



Interpretation of the dual 

We can interpret the dual directly as a relaxation of the 
sparsest cut problem.

Note that each cut E’ ⊆ E induces a semi-metric dE’ on the 

vertices where dE’(uv) = 1 if u,v are separated by E’ and 
dE’(uv) = 0 otherwise

Thus the sparsest cut problem is asking precisely for the 
following:

minE’ ⊆ E ∑uv ∈ E c(uv) dE’(uv)/ ∑i=1
k dem(i) dE’(siti)

We cannot solve above so instead of minimizing over cut-
metrics we minimize over all metrics which turns out to 
be a linear program and hence solvable



Rounding the dual

We give two ways to round the dual. 
The first uses a relatively simple reduction to the multicut 

problem but illustrates the relationship between the two 
cut problems and a general technique. The ratio one 
obtains is not optimal.

The second uses a sophisticated connection to embedding 
metric spaces into real normed spaces and how that 
leads to an optimum ratio



Rounding via multicut relationship

Recall the minimum multicut problem.
We are given graph G and pairs s1t1,s2t2,...,sktk but the 

pairs had no demands
The goal was to separate all pairs at minimum cost

In sparsest cut we want to separate only a subset of the 
pairs but the measure is the cost of cut to demand that 
is separated. If somehow we knew which pairs to 
separate, then we could use the multicut algorithm to 
separate those pairs!

We will see that we can use the LP solution to guide us in 
this process.



Rounding via multicut relationship

Recall the LP for sparsest cut
min ∑e ∈ E c(e) d(e)

s.t
∑i dem(i) di ≥ 1
∑ e ∈ p de ≥ di for all p ∈ Pi

de ≥ 0
di ≥ 0

Let dmax = maxi=1
k di



Rounding via multicut relationship

Let dmax = maxi=1
k di

For l ≥ 0, let Al = { i |   dmax/2l+1 < di ≤ dmax/2l }

let D = ∑i=1
k dem(i) where dem(i) are integers

let dem(Al) = ∑i ∈ Al
dem(i)

Lemma: There exists h such that
dem(Ah) dmax/2h+1 ≥ 1/(8 log D) 

Note that ∑i=1
k dem(i) di ≥ 1

We derive the lemma from this.



Rounding via multicut relationship

Note that A0, A1, ..., are disjoint
Therefore
∑i=1

k dem(i) di = ∑l ≥ 0 ∑i ∈ Al
dem(i) d_i ≥ 1

∑i ∈ Al
dem(i) d_i ≤ (1/2) ∑i ∈ Al

dmax/2l+1

since i ∈ Al implies di ∈ (dmax/2l+1, dmax/2l]

therefore ∑l ≥ 0 dem(Al) dmax/2l+1 ≥ 1/2

let t = 2 log D-1
∑l ≥ 0 dem(Al) dmax/2l+1 

= ∑l ≤ t dem(Al) dmax/2l+1 + ∑l > t dem(Al) dmax/2l+1



Rounding via multicut relationship

∑l > t dem(Al) dmax/2l+1 \leq \sum_{l > t} dem(A_l)/D2

since 2t ≥ D2 and dmax ≤ 1

therefore
∑l > t dem(Al) dmax/2l+1 ≤ (∑l > t dem(Al))/D2 ≤ 1/D since 

∑l > t dem(Al) ≤ D 
We can assume wlog that D ≥ 4 for otherwise we can get 

a simple D approximation
therefore ∑l ≤ t dem(Al) dmax/2l+1 ≥ 1/2 - 1/D ≥ 1/4

since the lhs is a sum of 2log D terms, one of them must 
be at least 1/(8log D) which proves the lemma



Rounding via multicut relationship

Lemma: There exists h such that ∑i ∈ Ah
di ≥ 1/(8 log D)

We solve a multicut problem for the set Ah,
that is we separate all pairs siti with i ∈ Ah

How do we argue that this is would lead to a good 
solution?

Let us write down the LP for multicut problem on Ah

min ∑e c(e) l(e)
s.t
∑ e ∈ p l(e) ≥ 1 for all i ∈ Pi, i ∈ Ah

l(e) ≥ 0



Rounding via multicut relationship

Let us write down the LP for multicut problem on Ah

min ∑e c(e) l(e)
s.t
∑ e ∈ p l(e) ≥ 1 for all i ∈ Pi, i ∈ Ah

l(e) ≥ 0

Recall that we showed that if l is a feasible solution to 
above LP then we can find a cut that separates all pairs
in Ah with cost O(log k) ∑e c(e) l(e)



Rounding via multicut relationship

We obtain a feasible solution for the LP using the values 
from the sparsest cut LP.

Let α = 2h+1/dmax
Set l’(e) = α d(e)
We claim that l’ is feasible for the multicut LP on Ah
(recall that di ≥ dmax/2h+1 for i ∈ Ah)
Note that for i in Ah and p ∈ Pi

∑ e ∈ p d(e) ≥ di ≥ dmax/2h+1

therefore 
∑ e ∈ p l’(e) ≥ 1   for p ∈ Pi



Rounding via multicut relationship

Therefore, we can find a multicut E’ ⊆ E of cost 

O(log k) ∑e c(e) l’(e) that separates all pairs in Ah

What is sparsity of E’?
sparisty(E’) ≤ c(E’)/∑i ∈ Ah

dem(i)
≤O(log k) ∑e c(e) l’(e)  / dem(Ah)
≤O(log k) α ∑e c(e) d(e) / dem(Ah)
≤O(log k) ∑e c(e) d(e)/ (dem(Ah) /α)

By lemma, dem(Ah)/α = dem(Ah)dmax/2h+1 ≥ 1/(8log D)
hence sparsity(E’) ≤ O(log k log D) ∑e c(e)d(e)



Rounding via multicut relationship

hence sparsity(E’) ≤ O(log k log D) ∑e c(e)d(e)
Note that OPTLP = ∑e c(e)d(e) ≤ min sparsity

therefore
sparsity(E’) ≤ O(log k log D) (min sparsity)

Thus we obtain an O(log k log D) approximation.
The dependence of the ratio on D is in general undesirable 

and in fact a sophisticated argument can be used to 
reduce the ratio to O(log2 k)



Rounding via l1 embeddings

We now present a sophisticated rounding method that 
yields an O(log k) approximation via metric embeddings

Metric embeddings are a powerful tool in a variety of 
settings and they got their impetus in computer science 
with the application to sparsest cut



Metric embeddings

In metric embeddings we study when one metric space 
can be embedded (mapped) into another metric space 
such that distances of the points are distorted  as little 
as possible.

Formally let (V, d) and (V’, d’) be two metric spaces.
An embedding of (V, d) into (V’, d’) is a 1-1 map f: V → V’

f is an expansion if forall u,v ∈ V, d’(f(u),f(v)) ≥ d(uv)
f is a contraction if forall u,v ∈ V, d’(f(u),f(v)) ≤ d(uv)



Metric embeddings

The distortion of f , dist(f) is defined to be
maxu,v ∈ V max { d’(f(u),f(v))/d(u,v),  d(u,v)/d’(f(u),f(v)) }

The above is a bit messy because f in general need not be 
an expansion or a contraction

If f is an expansion then 
dist(f) = maxu,v ∈ V d’(f(u),f(v))/d(u,v)

If f is a contraction then
dist(f) =  maxu,v ∈ V d(u,v)/d’(f(u),f(v))
Note that dist(f) ≥ 1

If dist(f) =1 then f is called an isometric embedding



Embeddings into normed spaces

Of particular interest to us are embeddings of finite metric 
spaces (generated by graphs) into normed Euclidean 
spaces, Rh (for some dimension h) equipped with some
lp norm, p ≥ 1

For two points x, y ∈ Rh, the distance defined by
d(x,y) = |x-y|p = (∑i=1

h |xi - yi|p)1/p is a metric for p ≥ 1

In particular the norms l1, l2 are of much interest in 
applications



l1 embeddings

We focus on l1 embeddings of finite metrics for their 
application to sparsest cut. That is, we wish to embed a 
finite metric (V, d) into Rh for some h to minimize 
distortion.

We will prove Bourgain’s theorem 
Theorem (Bourgain): A finite metric on n points can be 

embedded into RO(log2 n) with distortion O(log n)

and apply the theorem to get an O(log k) approximation 
for sparsest cut



Cut-metrics and l1 embeddings

The connection between sparsest cut and l1 embeddings is 
seen from the characterization of l1 embeddings

Given a set V and a set S ⊆ V, the cut-semi-metric dS on V

induced by S is given by
dS(u,v) = 1 if |S Å {u,v}| = 1

dS(u,v) = 0 otherwise

Note that dS is an l1 metric in R1. The embedding is given 
by f(u) = 0 if u ∈ S and f(u) = 1 if u ∉ S



Cut-metrics and l1 embeddings

Theorem: A metric (V, d) is isometrically embeddable in l1(dimension can be arbitrary) iff there exists λ:2V → R+

such that d(uv) = ∑S λ(S) dS(uv) for all u,v ∈ V

Proof:
if d(uv) = ∑S λ(S) dS(uv) then we can embed d into l1 in Rh

where h is the number of S with λ(S) > 0 as follows:
Let S1, S2, ..., Sh be the sets. Then the embedding is given 

by 
f(u) = (λ(S1)IS1

(u), λ(S1)IS1
(u), ..., λ(Sh)ISh

(u))
where IS(u) = 0 if u ∈ S and IS(u) = 1 if u ∉ S



Cut-metrics and l1 embeddings

only if:
suppose f is a mapping of V into Rh such that
d(u,v) = |f(u) - f(v)|1 for each u,v
Let u(i) be the i’th coordinate of f(u)
Then |f(u) - f(v)|1 = ∑i |u(i) - v(i)|
Define metrics d1, d2, ..., dh on V where 
di(u,v) = |u(i)- v(i)|
To prove that d = ∑S λ(S) dS it is sufficient to prove that

each di = ∑S λi(S) dS



Cut-metrics and l1 embeddings

consider di

Let V = v1, v2, ..., vn
Wlog assume that v1(i) ≤ v2(i) ≤ ... ≤ vn(i)

For j = 1 to n-1, let Sj = {v1, v2, ..., vj}

let λi(Sj) = vj+1(i) - vj(i) 
and let λi(S) = 0 if S is not one of S1, ..., Sn-1

It is easy to check that di = ∑S λi(S) dS



Cut-metrics and l1 embeddings

Exercise: Prove that any tree metric is l1 embeddable

Exercise: Prove that any ring metric is l1 embeddable



l1 embeddings and sparsest cut

Suppose every n point metric is embeddable into l1 with 
distortion α(n)

Then we will show that the integrality gap of the LP 
relaxation we studied is at most α(n)

This is based on the characterization of l1 metrics as those 
expressible as positive sum of cut-metrics

Note however that it does not immediately give a 
polynomial time algorithm. We will later use the specific 
embeddings of Bourgain to derive a randomized 
polynomial time algorithm



l1 embeddings and sparsest cut

Recall the LP relaxation was equivalent to
mind semi-metric ∑uv c(uv) d(uv)/∑i dem(i) d(siti)

Let d* be an optimum solution to above relaxation
By definition d* is embeddable into l1 with distortion α(n)
Since l1 embeddings are positive sums of semi-metrics it 

implies that there is a λ: 2V → R+ s.t forall u,v ∈ V
∑S λ(S) dS(uv) ≤d*(u,v) ≤ α(n) ∑S λ(S) dS(uv)

we assume wlog that the embedding is a constraction



l1 embeddings and sparsest cut

Now we claim that there is a cut of sparsity at most α(n) 
OPT

LP

Note that 
OPTLP =  ∑uv c(uv) d*(uv)/∑i dem(i) d*(siti)
Let A = ∑uv c(uv) d*(uv) and B = ∑i dem(i) d*(siti)

A ≥ ∑uv c(uv) ∑S λ(S) dS(uv) 
≥ ∑S λ(S) ∑uv ∈ δ(S) c(uv) ≥ ∑S λ(S) c(δ(S)) 

where we interchanged the order of summation and used 
the fact that dS(uv) = 1 if uv ∈ δ(S) and 0 otherwise



l1 embeddings and sparsest cut

B = ∑i dem(i) d*(siti) 
≤ ∑i dem(i) α(n) ∑S λ(S) dS(siti)

(interchanging order of summation)
≤ α(n) ∑S λ(S) ∑siti ∈ δ(S) dem(i)
≤ α(n) ∑S λ(S) dem(δ(S))

Therefore 
OPTLP = A/B ≥ ∑S λ(S) c(δ(S))/ ∑S α(n) λ(S) dem(δ(S))
or λ(S) c(δ(S))/ ∑S λ(S) dem(δ(S)) ≤ α(n) OPTLP



l1 embeddings and sparsest cut

Therefore 
OPTLP = A/B ≥ ∑S λ(S) c(δ(S))/ ∑S α(n) λ(S) dem(δ(S))
or λ(S) c(δ(S))/ ∑S λ(S) dem(δ(S)) ≤ α(n) OPTLP

Since λ(S) ≥ 0 for all S, it follows that there exists a set S*

such that
c(δ(S*))/dem(δ(S*)) ≤ α(n) OPTLP

This proves the existence of a set of sparsity at most α(n)
times OPTLP

This also shows that the flow-cut gap is at most α(n)
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