Sparsest cut

Sparsest cut problem: Given graph G=(V, E), c: $E \rightarrow \mathcal{R}^+$ Pairs of nodes s_1t_1 , s_2t_2 , ..., s_kt_k Each pair s_it_i has a demand dem(i) > 0

For $E' \subseteq E$, let $c(E') = \sum_{e \in E'} c(e)$

let dem(E') = $\sum_{i, s_i t_i \text{ separated by } E'} \text{dem(i)}$ where $s_i t_i$ is separated by E' if they are not connected in G[E\E'] let sparsity(E') = c(E')/dem(E')Goal: find a cut E' of *minimum* sparsity (sparsest cut) (problem is NP-hard)

Sparsest cut

Sparsest cut has many applications that we will discuss later on

Observation: if G is connected there always exists a sparsest cut E' where G[E\E'] consists of two connected components S, V\S

Proof: exercise

S V\S

For this reason sometimes S sparsest cut is defined as find $S \subset V$ to minimize $c(\delta(S))/dem(\delta(S))$

Uniform vs Non-uniform

A special case of the sparsest cut problem is the following:

k = n(n-1)/2 and every pair of vertices uv is a commodity with dem(uv) = 1

Most interesting applications of sparsest cut are for this special case. Sometimes this is called the *uniform* case of the sparsest cut problem. The *non-uniform* case refers to the general problem.

Maximum concurrent flow

- For most cut problems there is usually a flow problem that is dual to it.
- For sparsest cut, it is the *maximum concurrent flow* problem: given

G=(V,E), c: $E \rightarrow \mathcal{R}^+$ (now interpret c as edge capacities)

Pairs of nodes s_1t_1 , s_2t_2 , ..., s_kt_k

Each pair $s_i t_i$ has a demand dem(i) > 0

Goal: maximize λ s.t each pair $s_i t_i$ can *concurrently* send flow of λ dem(i)

Maximum concurrent flow

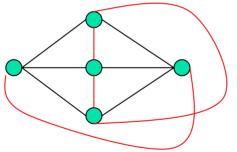
Let λ^* be the optimum value for the maximum concurrent flow problem First we observe that for each $S \subset V$ $\lambda^* \leq c(\delta(S))/dem(\delta(S))$

because the demand crossing S ($\lambda^* \text{ dem}(\delta(S))$ cannot exceed the capacity of the cut $\delta(S)$

Therefore $\lambda^* \leq \min_{s} c(\delta(s))/dem(\delta(s))$ and hence λ^* is a lower bound on the *minimum sparsity* Note that for k=1, (single pair) $\lambda^* = \min$ sparsity from maxflow-mincut theorem (do you see why?)

Flow-cut gap

- For k = 2, $\lambda^* = min sparsity$ (this Hu's two-commodity flow theorem)
- However for k > 3 we can have $\lambda^* < \min$ sparsity. Here is an example



Graph is in black edges. Red edges are the demand pairs. Capacities/demands are all 1

Natural question is whether $\lambda^* \ge \alpha$ (min sparsity) for some

 α < 1. Would also allow us to get an 1/ α approximation for min sparsity since λ^* can be computed via an LP

LP for λ^*

We can write a straight forward LP for computing λ^* We use exponential # of variables but a compact formulation can easily be derived P_i: set of paths from s_i to t_i P = $\bigcup_i P_i$

f(p) variable for flow on path p max λ

$$\begin{split} \text{s.t} \\ & \sum_{p \,\in\, \mathsf{P}_i} f(p) \geq \lambda \text{ dem}(i) \quad 1 \leq i \leq k \\ & \sum_{p: \, e \,\in\, p} f(p) \leq c(e) \quad e \in E \\ & f(p) \geq 0 \end{split}$$

Dual of LP

The dual of the LP can be seen as a meaningful relaxation for sparsest cut Variables for dual: d_{e} for each $e \in E$ (interpret as distance/length of e) d_i for $1 \le i \le k$ (interpret as distance from s_i to t_i) min $\sum_{e \in F} c(e) d(e)$ s.t \sum_{i} dem(i) d_i \geq 1 $\sum_{e \in p} d_e \geq d_i$ for all $p \in P_i$ $d_{e} \geq 0$ $d_i \ge 0$

Interpretation of the dual

The dual assigns distances to edges which induce shortest path distances on all vertices

The dual is nothing but the following (why?) $\min_{d \text{ is a semi-metric}} \sum_{uv \in E} c(uv) d(uv) / \sum_{i=1}^{k} dem(i) d(s_it_i)$

where d(uv) is the distance between u and v

Since we cannot use ratios in LPs the denominator is normalized to a constraint which says $\sum_{i=1}^{k} dem(i) d(s_i t_i) \ge 1$

and the numerator is minimized. Note that scaling does not affect the ratio

Interpretation of the dual

We can interpret the dual directly as a relaxation of the sparsest cut problem.

Note that each cut $E' \subseteq E$ induces a semi-metric $d_{E'}$ on the

vertices where $d_{E'}(uv) = 1$ if u,v are separated by E' and $d_{E'}(uv) = 0$ otherwise

Thus the sparsest cut problem is asking precisely for the following:

 $min_{E' \subseteq E} \sum_{uv \in E} c(uv) d_{E'}(uv) / \sum_{i=1}^{k} dem(i) d_{E'}(s_it_i)$

We cannot solve above so instead of minimizing over cutmetrics we minimize over all metrics which turns out to be a linear program and hence solvable

Rounding the dual

We give two ways to round the dual.

The first uses a relatively simple reduction to the multicut problem but illustrates the relationship between the two cut problems and a general technique. The ratio one obtains is not optimal.

The second uses a sophisticated connection to embedding metric spaces into real normed spaces and how that leads to an optimum ratio

Recall the minimum multicut problem.

- We are given graph G and pairs $s_1t_1,s_2t_2,\ldots,s_kt_k$ but the pairs had no demands
- The goal was to separate *all* pairs at minimum cost

In sparsest cut we want to separate only a subset of the pairs but the measure is the cost of cut to demand that is separated. If somehow we knew which pairs to separate, then we could use the multicut algorithm to separate those pairs!

We will see that we can use the LP solution to guide us in this process.

```
\begin{array}{l} \mbox{Recall the LP for sparsest cut} \\ \mbox{min } \sum_{e \ \in \ E} \ c(e) \ d(e) \\ \mbox{s.t} \\ \ \sum_i \ dem(i) \ d_i \ \ge 1 \\ \ \sum_{e \ \in \ p} \ d_e \ge d_i \quad \mbox{ for all } p \ \in \ P_i \\ \ d_e \ge 0 \\ \ d_i \ge 0 \end{array}
```

Let dmax = $\max_{i=1}^{k} d_i$

Let dmax = $\max_{i=1}^{k} d_i$ For $I \ge 0$, let $A_I = \{ i \mid dmax/2^{I+1} < d_i \le dmax/2^{I} \}$ let $D = \sum_{i=1}^{k} dem(i)$ where dem(i) are integers let $dem(A_I) = \sum_{i \in A_I} dem(i)$

Lemma: There exists h such that $dem(A_h) dmax/2^{h+1} \ge 1/(8 \log D)$

Note that $\sum_{i=1}^{k} \text{dem}(i) d_i \ge 1$

We derive the lemma from this.

Note that A_0 , A_1 , ..., are disjoint Therefore $\sum_{i=1}^{k} dem(i) d_i = \sum_{l \ge 0} \sum_{i \in A_l} dem(i) d_i \ge 1$

 $\begin{array}{l} \sum_{i \in A_{l}} \text{dem(i) } d_i \leq (1/2) \sum_{i \in A_{l}} \text{dmax}/2^{l+1} \\ \text{since } i \in A_{l} \text{ implies } d_{i} \in (\text{dmax}/2^{l+1}, \, \text{dmax}/2^{l}] \end{array}$

$$\begin{split} & \text{therefore } \sum_{l \,\geq\, 0} \, \text{dem}(A_l) \, \text{dmax}/2^{l+1} \geq 1/2 \\ & \text{let } t \,=\, 2 \, \log \, D\text{-}1 \\ & \sum_{l \,\geq\, 0} \, \text{dem}(A_l) \, \, \text{dmax}/2^{l+1} \\ & =\, \sum_{l \,\leq\, t} \, \text{dem}(A_l) \, \, \text{dmax}/2^{l+1} \,+\, \sum_{l \,>\, t} \, \text{dem}(A_l) \, \, \text{dmax}/2^{l+1} \end{split}$$

 $\sum_{l \ > \ t} dem(A_l) \ dmax/2^{l+1} \ \leq \ sum_{l \ > \ t} \ dem(A_l)/D^2 since \ 2^t \ \ge D^2 \ and \ dmax \ \le \ 1$

therefore

 $\sum_{l \ > \ t} dem(A_l) \ dmax/2^{l+1} \ \leq (\sum_{l \ > \ t} dem(A_l))/D^2 \leq 1/D$ since $\sum_{l \ > \ t} dem(A_l) \leq D$

We can assume wlog that $D \ge 4$ for otherwise we can get

a simple D approximation therefore $\sum_{l < t} \text{dem}(A_l) \text{dmax}/2^{l+1} \ge 1/2 - 1/D \ge 1/4$

since the lhs is a sum of 2log D terms, one of them must be at least 1/(8log D) which proves the lemma

Lemma: There exists h such that $\sum_{i \in A_h} d_i \ge 1/(8 \log D)$

We solve a multicut problem for the set A_h , that is we separate all pairs $s_i t_i$ with $i \in A_h$

How do we argue that this is would lead to a good solution?

Let us write down the LP for multicut problem on A_h min $\sum_e c(e) \ l(e)$

```
 \begin{array}{l} s.t \\ \sum_{e \, \in \, p} \, I(e) \geq 1 \text{ for all } i \in \mathsf{P}_{i'} \, i \in \mathsf{A}_h \\ I(e) \geq 0 \end{array}
```

Let us write down the LP for multicut problem on A_h min $\sum_e c(e) l(e)$ s.t $\sum_{e \in p} l(e) \ge 1$ for all $i \in P_i$, $i \in A_h$ $l(e) \ge 0$

Recall that we showed that if I is a feasible solution to above LP then we can find a cut that separates all pairs in A_h with cost O(log k) $\sum_e c(e) l(e)$

We obtain a feasible solution for the LP using the values from the sparsest cut LP.

Let $\alpha = 2^{h+1}/dmax$

Set I'(e) = α d(e)

We claim that I' is feasible for the multicut LP on A_h (recall that $d_i \ge dmax/2^{h+1}$ for $i \in A_h$)

Note that for i in A_h and $p \in P_i$

 $\sum_{e \in p} d(e) \ge d_i \ge dmax/2^{h+1}$

therefore $\sum_{e \in p} I'(e) \ge 1$ for $p \in P_i$

Therefore, we can find a multicut $E' \subseteq E$ of cost O(log k) $\sum_{e} c(e) l'(e)$ that separates all pairs in A_{h}

What is sparsity of E'? sparisty(E') $\leq c(E')/\sum_{i \in A_h} dem(i)$ $\leq O(\log k) \sum_e c(e) l'(e) / dem(A_h)$ $\leq O(\log k) \alpha \sum_e c(e) d(e) / dem(A_h)$ $\leq O(\log k) \sum_e c(e) d(e) / (dem(A_h) / \alpha)$ By lemma, $dem(A_h)/\alpha = dem(A_h)dmax/2^{h+1} \geq 1/(8\log D)$ hence sparsity(E') $\leq O(\log k \log D) \sum_e c(e)d(e)$

hence sparsity(E') \leq O(log k log D) $\sum_{e} c(e)d(e)$ Note that $OPT_{LP} = \sum_{e} c(e)d(e) \leq min sparsity$

therefore sparsity(E') \leq O(log k log D) (min sparsity)

Thus we obtain an O(log k log D) approximation.

The dependence of the ratio on D is in general undesirable and in fact a sophisticated argument can be used to reduce the ratio to O(log² k)

Rounding via I₁ embeddings

We now present a sophisticated rounding method that yields an O(log k) approximation via metric embeddings

Metric embeddings are a powerful tool in a variety of settings and they got their impetus in computer science with the application to sparsest cut In metric embeddings we study when one metric space can be embedded (mapped) into another metric space such that distances of the points are *distorted* as little as possible.

Formally let (V, d) and (V', d') be two metric spaces. An embedding of (V, d) into (V', d') is a 1-1 map f: V \rightarrow V'

f is an *expansion* if forall $u,v \in V$, $d'(f(u),f(v)) \ge d(uv)$ f is a *contraction* if forall $u,v \in V$, $d'(f(u),f(v)) \le d(uv)$

Metric embeddings

- The *distortion* of f, dist(f) is defined to be $\max_{u,v \in V} \max \{ d'(f(u),f(v))/d(u,v), d(u,v)/d'(f(u),f(v)) \}$
- The above is a bit messy because **f** in general need not be an expansion or a contraction
- If f is an expansion then $dist(f) = max_{u,v \in V} d'(f(u),f(v))/d(u,v)$

 $\begin{array}{ll} \mbox{If f is a contraction then} \\ \mbox{dist(f)} &= & max_{u,v \ \in \ V} \ d(u,v)/d'(f(u),f(v)) \\ \mbox{Note that } \mbox{dist(f)} \geq & 1 \end{array}$

If dist(f) =1 then f is called an *isometric embedding*

Embeddings into normed spaces

Of particular interest to us are embeddings of finite metric spaces (generated by graphs) into normed Euclidean spaces, R^h (for some dimension h) equipped with some I_p norm, $p \ge 1$

For two points x, $y \in \mathbb{R}^{h}$, the distance defined by $d(x,y) = |x-y|_{p} = (\sum_{i=1}^{h} |x_{i} - y_{i}|^{p})^{1/p}$ is a metric for $p \ge 1$

In particular the norms I_1 , I_2 are of much interest in applications

We focus on I₁ embeddings of finite metrics for their application to sparsest cut. That is, we wish to embed a finite metric (V, d) into R^h for some h to minimize distortion.

We will prove Bourgain's theorem Theorem (Bourgain): A finite metric on n points can be embedded into R^{O(log² n)} with distortion O(log n)

and apply the theorem to get an O(log k) approximation for sparsest cut

The connection between sparsest cut and I_1 embeddings is seen from the characterization of I_1 embeddings

Given a set V and a set $S \subseteq V$, the cut-semi-metric d_S on V induced by S is given by $d_S(u,v) = 1$ if $|S \land \{u,v\}| = 1$ $d_S(u,v) = 0$ otherwise

Note that d_s is an I_1 metric in \mathbb{R}^1 . The embedding is given by f(u) = 0 if $u \in S$ and f(u) = 1 if $u \notin S$

Theorem: A metric (V, d) is isometrically embeddable in I₁ (dimension can be arbitrary) iff there exists $\lambda: 2^{V} \to \mathcal{R}^{+}$ such that $d(uv) = \sum_{s} \lambda(s) d_{s}(uv)$ for all $u, v \in V$

Proof:

- if $d(uv) = \sum_{S} \lambda(S) d_{S}(uv)$ then we can embed d into I_1 in R^h where h is the number of S with $\lambda(S) > 0$ as follows:
- Let $S_1, S_2, ..., S_h$ be the sets. Then the embedding is given by
- $\begin{array}{l} f(u) = (\lambda(S_1)I_{S_1}(u), \, \lambda(S_1)I_{S_1}(u), \, ..., \, \lambda(S_h)I_{S_h}(u)) \\ \text{where } I_S(u) = 0 \text{ if } u \in S \text{ and } I_S(u) = 1 \text{ if } u \notin S \end{array}$

only if: suppose f is a mapping of V into R^h such that $d(u,v) = |f(u) - f(v)|_1$ for each u,vLet u(i) be the i'th coordinate of f(u) Then $|f(u) - f(v)|_1 = \sum_i |u(i) - v(i)|_1$ Define metrics d_1, d_2, \dots, d_h on V where $d_i(u,v) = |u(i) - v(i)|$ To prove that $d = \sum_{S} \lambda(S) d_{S}$ it is sufficient to prove that each $d_i = \sum_{s} \lambda_i(s) d_s$

consider d_i

Let $V = v_1, v_2, ..., v_n$ Wlog assume that $v_1(i) \le v_2(i) \le ... \le v_n(i)$ For j = 1 to n-1, let $S_j = \{v_1, v_2, ..., v_j\}$

let $\lambda_i(S_j) = v_{j+1}(i) - v_j(i)$ and let $\lambda_i(S) = 0$ if S is not one of S_1, \dots, S_{n-1}

It is easy to check that $d_i = \sum_{S} \lambda_i(S) d_S$

Cut-metrics and I_1 embeddings

Exercise: Prove that any tree metric is I_1 embeddable

Exercise: Prove that any ring metric is I_1 embeddable

Suppose every n point metric is embeddable into I_1 with distortion $\alpha(n)$

- Then we will show that the integrality gap of the LP relaxation we studied is at most $\alpha(n)$
- This is based on the characterization of I_1 metrics as those expressible as positive sum of cut-metrics

Note however that it does not immediately give a polynomial time algorithm. We will later use the specific embeddings of Bourgain to derive a randomized polynomial time algorithm

Recall the LP relaxation was equivalent to $\min_{d \text{ semi-metric}} \sum_{uv} c(uv) d(uv) / \sum_i dem(i) d(s_i t_i)$

Let d^{*} be an optimum solution to above relaxation By definition d^{*} is embeddable into I₁ with distortion $\alpha(n)$ Since I₁ embeddings are positive sums of semi-metrics it implies that there is a $\lambda: 2^{\vee} \rightarrow \mathcal{R}^+$ s.t forall u,v $\in V$ $\sum_{s} \lambda(s) d_s(uv) \leq d^*(u,v) \leq \alpha(n) \sum_{s} \lambda(s) d_s(uv)$

we assume wlog that the embedding is a constraction

Now we claim that there is a cut of sparsity at most $\alpha(n)$ OPT_{LP}

Note that $OPT_{LP} = \sum_{uv} c(uv) d^{*}(uv) / \sum_{i} dem(i) d^{*}(s_{i}t_{i})$ Let $A = \sum_{uv} c(uv) d^{*}(uv)$ and $B = \sum_{i} dem(i) d^{*}(s_{i}t_{i})$

$$\begin{split} \mathsf{A} &\geq \sum_{\mathsf{uv}} \mathsf{c}(\mathsf{uv}) \sum_{\mathsf{S}} \lambda(\mathsf{S}) \mathsf{d}_{\mathsf{S}}(\mathsf{uv}) \\ &\geq \sum_{\mathsf{S}} \lambda(\mathsf{S}) \sum_{\mathsf{uv} \in \delta(\mathsf{S})} \mathsf{c}(\mathsf{uv}) \geq \sum_{\mathsf{S}} \lambda(\mathsf{S}) \mathsf{c}(\delta(\mathsf{S})) \end{split}$$

where we interchanged the order of summation and used the fact that $d_{S}(uv) = 1$ if $uv \in \delta(S)$ and 0 otherwise

 $\begin{array}{l} \mathsf{B} = \sum_{i} \operatorname{dem}(i) \ \mathsf{d}^{*}(\mathsf{s}_{i}\mathsf{t}_{i}) \\ \leq \sum_{i} \operatorname{dem}(i) \ \alpha(\mathsf{n}) \ \sum_{\mathsf{S}} \lambda(\mathsf{S}) \ \mathsf{d}_{\mathsf{S}}(\mathsf{s}_{i}\mathsf{t}_{i}) \end{array}$

 $\begin{array}{l} (\text{interchanging order of summation}) \\ \leq \alpha(n) \; \sum_{S} \; \lambda(S) \; \sum_{s_i t_i \; \in \; \delta(S)} \; \text{dem(i)} \\ \leq \alpha(n) \; \sum_{S} \; \lambda(S) \; \text{dem}(\delta(S)) \end{array}$

Therefore

$$\begin{split} \mathsf{OPT}_{\mathsf{LP}} &= \mathsf{A}/\mathsf{B} \geq \sum_{\mathsf{S}} \lambda(\mathsf{S}) \ \mathsf{c}(\delta(\mathsf{S})) / \sum_{\mathsf{S}} \alpha(\mathsf{n}) \ \lambda(\mathsf{S}) \ \mathsf{dem}(\delta(\mathsf{S})) \\ \text{or } \lambda(\mathsf{S}) \ \mathsf{c}(\delta(\mathsf{S})) / \sum_{\mathsf{S}} \lambda(\mathsf{S}) \ \mathsf{dem}(\delta(\mathsf{S})) \leq \alpha(\mathsf{n}) \ \mathsf{OPT}_{\mathsf{LP}} \end{split}$$

Therefore $OPT_{LP} = A/B \ge \sum_{S} \lambda(S) c(\delta(S)) / \sum_{S} \alpha(n) \lambda(S) dem(\delta(S))$ or $\lambda(S) c(\delta(S)) / \sum_{S} \lambda(S) dem(\delta(S)) \le \alpha(n) OPT_{LP}$

Since $\lambda(S) \ge 0$ for all S, it follows that there exists a set S^{*} such that $c(\delta(S^*))/dem(\delta(S^*)) \le \alpha(n) \text{ OPT}_{LP}$

This proves the existence of a set of sparsity at most $\alpha(n)$ times OPT_{LP}

This also shows that the flow-cut gap is at most $\alpha(n)$