Sparsest cut

Sparsest cut problem:
Given graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}: \mathrm{E} \rightarrow \mathcal{R}^{+}$
Pairs of nodes $\mathrm{s}_{1} \mathrm{t}_{1}, \mathrm{~s}_{2} \mathrm{t}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}} \mathrm{t}_{k}$
Each pair $\mathrm{s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}$ has a demand dem(i)>0
For $E^{\prime} \subseteq E$, let $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$
let $\operatorname{dem}\left(E^{\prime}\right)=\sum_{i, ~ s s_{i}, ~ s e p a r a t e d ~ b y ~}^{E^{\prime}}$ dem((i) where $s_{i} t_{i}$ is separated by E^{\prime} if they are not connected in G[E\E'] let sparsity $\left(E^{\prime}\right)=C\left(E^{\prime}\right) / d e m\left(E^{\prime}\right)$
Goal: find a cut E' of minimum sparsity (sparsest cut) (problem is NP-hard)

Sparsest cut

Sparsest cut has many applications that we will discuss later on

Observation: if G is connected there always exists a sparsest cut E' where $G\left[E \backslash E^{\prime}\right]$ consists of two connected components S, WS
Proof: exercise

For this reason sometimes

sparsest cut is defined as
find $\mathrm{S} \subset \mathrm{V}$ to minimize $\mathrm{c}(\delta(\mathrm{S})) / \operatorname{dem}(\delta(\mathrm{S}))$

Uniform vs Non-uniform

A special case of the sparsest cut problem is the following:
$\mathrm{k}=\mathrm{n}(\mathrm{n}-1) / 2$ and every pair of vertices uv is a commodity with dem(uv) $=1$
Most interesting applications of sparsest cut are for this special case. Sometimes this is called the uniform case of the sparsest cut problem. The non-uniform case refers to the general problem.

Maximum concurrent flow

For most cut problems there is usually a flow problem that is dual to it.

For sparsest cut, it is the maximum concurrent flow problem: given
$\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}: \mathrm{E} \rightarrow \mathcal{R}^{+}$(now interpret c as edge capacities)
Pairs of nodes $s_{1} t_{1}, s_{2} t_{2}, \ldots, s_{k} t_{k}$
Each pair $s_{i} t_{i}$ has a demand dem(i) >0
Goal: maximize λ s.t each pair $s_{i} t_{i}$ can concurrently send flow of λ dem(i)

Maximum concurrent flow

Let λ^{*} be the optimum value for the maximum concurrent flow problem
First we observe that for each $\mathrm{S} \subset \mathrm{V}$
$\lambda^{*} \leq \mathrm{c}(\delta(\mathrm{S})) / \operatorname{dem}(\delta(\mathrm{S}))$
because the demand crossing $S\left(\lambda^{*} \operatorname{dem}(\delta(\mathrm{~S}))\right.$ cannot exceed the capacity of the cut $\delta(\mathrm{S})$

Therefore $\lambda^{*} \leq \min _{\mathrm{S}} \mathrm{c}(\delta(\mathrm{S})) / \operatorname{dem}(\delta(\mathrm{S}))$ and hence λ^{*} is a lower bound on the minimum sparsity
Note that for $\mathrm{k}=1$, (single pair) $\lambda^{*}=$ min sparsity from maxflow-mincut theorem (do you see why?)

Flow-cut gap

For $k=2, \lambda^{*}=$ min sparsity (this Hu's two-commodity flow theorem)
However for $k>3$ we can have $\lambda^{*}<$ min sparsity. Here is an example

Graph is in black edges. Red edges are the demand pairs. Capacities/demands are all 1

Natural question is whether $\lambda^{*} \geq \alpha$ (min sparsity) for some
$\alpha<1$. Would also allow us to get an $1 / \alpha$ approximation for min sparsity since λ^{*} can be computed via an LP

LP for λ^{*}

We can write a straight forward LP for computing λ^{*}
We use exponential \# of variables but a compact formulation can easily be derived
P_{i} : set of paths from s_{i} to $t_{i,} P=\cup_{i} P_{i}$
$f(p)$ variable for flow on path p
$\max \lambda$
s.t

$$
\begin{aligned}
& \sum_{p \in P_{i}} f(p) \geq \lambda \operatorname{dem}(i) \quad 1 \leq i \leq k \\
& \sum_{p: e \in p} f(p) \leq c(e) \quad e \in E \\
& f(p) \geq 0
\end{aligned}
$$

Dual of LP

The dual of the LP can be seen as a meaningful relaxation for sparsest cut
Variables for dual:
d_{e} for each $e \in E$ (interpret as distance/length of e)
d_{i} for $1 \leq \mathrm{i} \leq \mathrm{k}$ (interpret as distance from s_{i} to t_{i})
$\min \sum_{e \in E} C(e) d(e)$
s.t
$\sum_{i} \operatorname{dem}(i) d_{i} \geq 1$
$\sum_{e \in p} d_{e} \geq d_{i} \quad$ for all $p \in P_{i}$
$d_{e} \geq 0$
$\mathrm{d}_{\mathrm{i}} \geq 0$

I nterpretation of the dual

The dual assigns distances to edges which induce shortest path distances on all vertices
The dual is nothing but the following (why?)
$\min _{\mathrm{d} \text { is a semi-metric }} \sum_{\mathrm{uv} \in \mathrm{E}} \mathrm{C}(\mathrm{uv}) \mathrm{d}(\mathrm{uv}) / \sum_{\mathrm{i}=1}{ }^{\mathrm{k}}$ dem(i) $\mathrm{d}\left(\mathrm{s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)$
where $d(u v)$ is the distance between u and v
Since we cannot use ratios in LPs the denominator is normalized to a constraint which says
$\sum_{\mathrm{l}=1}{ }^{\mathrm{k}} \operatorname{dem}(\mathrm{i}) \mathrm{d}\left(\mathrm{s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right) \geq 1$
and the numerator is minimized. Note that scaling does not affect the ratio

Interpretation of the dual

We can interpret the dual directly as a relaxation of the sparsest cut problem.
Note that each cut $E^{\prime} \subseteq E$ induces a semi-metric $d_{E^{\prime}}$ on the vertices where $d_{E^{\prime}}(u v)=1$ if u, v are separated by E^{\prime} and $\mathrm{d}_{\mathrm{E}^{\prime}}$ (uv) $=0$ otherwise
Thus the sparsest cut problem is asking precisely for the following:
$\min _{E^{\prime} \subseteq E} \sum_{u v \in E} C(u v) d_{E^{\prime}}(u v) / \sum_{i=1}^{k} \operatorname{dem}(i) d_{E^{\prime}}\left(s_{i} t_{i}\right)$
We cannot solve above so instead of minimizing over cutmetrics we minimize over all metrics which turns out to be a linear program and hence solvable

Rounding the dual

We give two ways to round the dual.
The first uses a relatively simple reduction to the multicut problem but illustrates the relationship between the two cut problems and a general technique. The ratio one obtains is not optimal.

The second uses a sophisticated connection to embedding metric spaces into real normed spaces and how that leads to an optimum ratio

Rounding via multicut relationship

Recall the minimum multicut problem.
We are given graph G and pairs $s_{1} t_{1}, s_{2} t_{2}, \ldots, s_{k} t_{k}$ but the pairs had no demands
The goal was to separate al/ pairs at minimum cost

In sparsest cut we want to separate only a subset of the pairs but the measure is the cost of cut to demand that is separated. If somehow we knew which pairs to separate, then we could use the multicut algorithm to separate those pairs!
We will see that we can use the LP solution to guide us in this process.

Rounding via multicut relationship

Recall the LP for sparsest cut $\min \sum_{e \in E} C(e) d(e)$
s.t
$\sum_{i} \operatorname{dem}(\mathrm{i}) \mathrm{d}_{\mathrm{i}} \geq 1$
$\sum_{e \in p} d_{e} \geq d_{i} \quad$ for all $p \in P_{i}$
$d_{e} \geq 0$
$\mathrm{d}_{\mathrm{i}} \geq 0$

Let dmax $=\max _{i=1}{ }^{k} d_{i}$

Rounding via multicut relationship

Let dmax $=\max _{i=1}{ }^{k} d_{i}$
For $\mathrm{I} \geq 0$, let $\mathrm{A}_{1}=\left\{\mathrm{i} \mid \quad\right.$ dmax $\left./ 2^{1+1}<\mathrm{d}_{\mathrm{i}} \leq \operatorname{dmax} / 2^{\prime}\right\}$ let $D=\sum_{i=1}{ }^{k} \operatorname{dem}(i)$ where dem(i) are integers let $\operatorname{dem}\left(A_{l}\right)=\sum_{i \in A_{l}} \operatorname{dem}(i)$

Lemma: There exists h such that $\operatorname{dem}\left(A_{h}\right) d m a x / 2^{h+1} \geq 1 /(8 \log D)$

Note that $\sum_{i=1}{ }^{k}$ dem(i) $d_{i} \geq 1$
We derive the lemma from this.

Rounding via multicut relationship

Note that $\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots$, are disjoint
Therefore
$\sum_{i=1}{ }^{\mathrm{k}}$ dem(i$) \mathrm{d}_{\mathrm{i}}=\sum_{1 \geq 0} \sum_{\mathrm{i} \in \mathrm{A}_{\mathrm{I}}}$ dem(i) $\mathrm{d}_{-} \mathrm{i} \geq 1$
$\sum_{i \in A_{1}}$ dem(i) $d_{-} i \leq(1 / 2) \sum_{i \in A_{1}} d m a x / 2^{1+1}$ since $i \in A_{1}$ implies $d_{i} \in\left(d m a x / 2^{1+1}, d m a x / 2^{1}\right]$
therefore $\sum_{1 \geq 0} \operatorname{dem}\left(A_{1}\right) \operatorname{dmax} / 2^{1+1} \geq 1 / 2$
let $t=2 \log D-1$
$\Sigma_{l \geq 0} \operatorname{dem}\left(A_{1}\right) \operatorname{dmax} / 2^{1+1}$
$=\Sigma_{1 \leq t} \operatorname{dem}\left(\mathrm{~A}_{\mathrm{l}}\right) \operatorname{dmax} / 2^{1+1}+\Sigma_{1>\mathrm{t}} \operatorname{dem}\left(\mathrm{A}_{\mathrm{l}}\right) \mathrm{dmax} / 2^{1+1}$

Rounding via multicut relationship

$\sum_{1>t} \operatorname{dem}\left(A_{1}\right) \operatorname{dmax} / 2^{1+1}$ leq \backslash sum_ $\{1>t\} \operatorname{dem}\left(A_{-}\right) / D^{2}$ since $2^{\mathrm{t}} \geq \mathrm{D}^{2}$ and dmax ≤ 1
therefore
$\sum_{1>t} \operatorname{dem}\left(A_{1}\right) \operatorname{dmax} / 2^{1+1} \leq\left(\Sigma_{1>t} \operatorname{dem}\left(A_{1}\right)\right) / D^{2} \leq 1 / D$ since $\Sigma_{1>t} \operatorname{dem}\left(A_{1}\right) \leq \mathrm{D}$
We can assume wlog that $\mathrm{D} \geq 4$ for otherwise we can get a simple D approximation
therefore $\Sigma_{1 \leq t} \operatorname{dem}\left(A_{l}\right) \operatorname{dmax} / 2^{1+1} \geq 1 / 2-1 / D \geq 1 / 4$
since the lhs is a sum of $2 \log D$ terms, one of them must be at least $1 /(8 \log \mathrm{D})$ which proves the lemma

Rounding via multicut relationship

Lemma: There exists h such that $\sum_{i \in A_{h}} d_{i} \geq 1 /(8 \log D)$

We solve a multicut problem for the set A_{h}, that is we separate all pairs $s_{i} t_{i}$ with $i \in A_{h}$
How do we argue that this is would lead to a good solution?
Let us write down the LP for multicut problem on A_{h} $\min \sum_{e} c(e) I(e)$
s.t
$\sum_{e \in p} I(e) \geq 1$ for all $i \in P_{i}, i \in A_{h}$
$I(e) \geq 0$

Rounding via multicut relationship

Let us write down the LP for multicut problem on A_{h}
$\min \sum_{e} C(e) I(e)$
s.t
$\sum_{e \in p} I(e) \geq 1$ for all $i \in P_{i}, i \in A_{h}$
$I(e) \geq 0$

Recall that we showed that if I is a feasible solution to above LP then we can find a cut that separates all pairs in A_{h} with cost O (log k) $\sum_{e} C(e) I(e)$

Rounding via multicut relationship

We obtain a feasible solution for the LP using the values from the sparsest cut LP.
Let $\alpha=2^{h+1} / d m a x$
Set $I^{\prime}(e)=\alpha d(e)$
We claim that l^{\prime} is feasible for the multicut LP on A_{h} (recall that $d_{i} \geq$ dmax $/ 2^{h+1}$ for $i \in A_{h}$)
Note that for i in A_{h} and $p \in P_{i}$
$\sum_{e \in p} d(e) \geq d_{i} \geq d m a x / 2^{h+1}$
therefore
$\sum_{e \in p} l^{\prime}(\mathrm{e}) \geq 1$ for $p \in P_{i}$

Rounding via multicut relationship

Therefore, we can find a multicut $\mathrm{E}^{\prime} \subseteq \mathrm{E}$ of cost
$O(\log k) \sum_{e} c(e) l^{\prime}(e)$ that separates all pairs in A_{h}

What is sparsity of E^{\prime} ?
sparisty $\left(E^{\prime}\right) \leq \mathrm{c}\left(\mathrm{E}^{\prime}\right) / \sum_{\mathrm{i} \in \mathrm{A}_{\mathrm{h}}} \operatorname{dem}(\mathrm{i})$

```
\leqO(log k) 汭 C(e) l'(e) / dem(A ( 
```



```
SO(log k) }\mp@subsup{\sum}{\textrm{e}}{\textrm{C}}\textrm{C}(\textrm{e})\textrm{d}(\textrm{e})/(\operatorname{dem}(\mp@subsup{A}{h}{})/\alpha
```

By lemma, $\operatorname{dem}\left(A_{h}\right) / \alpha=\operatorname{dem}\left(A_{h}\right) \operatorname{dmax} / 2^{h+1} \geq 1 /(8 \log D)$ hence sparsity $\left(\mathrm{E}^{\prime}\right) \leq \mathrm{O}(\log \mathrm{k} \log \mathrm{D}) \sum_{\mathrm{e}} \mathrm{c}(\mathrm{e}) \mathrm{d}(\mathrm{e})$

Rounding via multicut relationship

hence sparsity $\left(E^{\prime}\right) \leq \mathrm{O}(\log \mathrm{k} \log \mathrm{D}) \sum_{\mathrm{e}} \mathrm{c}(\mathrm{e}) \mathrm{d}(\mathrm{e})$
Note that $\mathrm{OPT}_{\mathrm{LP}}=\sum_{\mathrm{e}} \mathrm{C}(\mathrm{e}) \mathrm{d}(\mathrm{e}) \leq$ min sparsity
therefore
sparsity(E') $\leq \mathrm{O}$ (log k log D) (min sparsity)
Thus we obtain an $O(\log k \log D)$ approximation.
The dependence of the ratio on D is in general undesirable and in fact a sophisticated argument can be used to reduce the ratio to $\mathrm{O}\left(\log ^{2} \mathrm{k}\right)$

Rounding via I_{1} embeddings

We now present a sophisticated rounding method that yields an $\mathrm{O}(\log \mathrm{k})$ approximation via metric embeddings

Metric embeddings are a powerful tool in a variety of settings and they got their impetus in computer science with the application to sparsest cut

Metric embeddings

In metric embeddings we study when one metric space can be embedded (mapped) into another metric space such that distances of the points are distorted as little as possible.

Formally let (V, d) and ($\mathrm{V}^{\prime}, \mathrm{d}^{\prime}$) be two metric spaces. An embedding of (V, d) into ($\mathrm{V}^{\prime}, \mathrm{d}^{\prime}$) is a 1-1 map $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$
f is an expansion if forall $\mathrm{u}, \mathrm{v} \in \mathrm{V}, \mathrm{d}^{\prime}(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v})) \geq \mathrm{d}(\mathrm{uv})$
f is a contraction if forall $\mathrm{u}, \mathrm{v} \in \mathrm{V}, \mathrm{d}^{\prime}(\mathrm{f}(\mathrm{u}), \mathrm{f}(\mathrm{v})) \leq \mathrm{d}(\mathrm{uv})$

Metric embeddings

The distortion of $\mathrm{f}, \operatorname{dist}(\mathrm{f})$ is defined to be $\max _{u, v \in v} \max \left\{d^{\prime}(f(u), f(v)) / d(u, v), d(u, v) / d^{\prime}(f(u), f(v))\right\}$

The above is a bit messy because f in general need not be an expansion or a contraction
If f is an expansion then $\operatorname{dist}(f)=\max _{u, v \in v} d^{\prime}(f(u), f(v)) / d(u, v)$
If f is a contraction then
$\operatorname{dist}(f)=\max _{u, v \in v} d(u, v) / d^{\prime}(f(u), f(v))$
Note that $\operatorname{dist}(\mathrm{f}) \geq 1$
If dist(f) $=1$ then f is called an isometric embedding

Embeddings into normed spaces

Of particular interest to us are embeddings of finite metric spaces (generated by graphs) into normed Euclidean spaces, R^{h} (for some dimension h) equipped with some I_{p} norm, $\mathrm{p} \geq 1$

For two points $x, y \in R^{h}$, the distance defined by
$d(x, y)=|x-y|_{p}=\left(\sum_{i=1}{ }^{h}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$ is a metric for $p \geq 1$

In particular the norms I_{1}, I_{2} are of much interest in applications

I_{1} embeddings

We focus on I_{1} embeddings of finite metrics for their application to sparsest cut. That is, we wish to embed a finite metric (V, d) into R^{h} for some h to minimize distortion.

We will prove Bourgain's theorem
Theorem (Bourgain): A finite metric on n points can be embedded into $\mathrm{R}^{\mathrm{O}\left(\log ^{2} n\right)}$ with distortion $\mathrm{O}(\log n)$
and apply the theorem to get an $\mathrm{O}(\log \mathrm{k})$ approximation for sparsest cut

Cut-metrics and I_{1} embeddings

The connection between sparsest cut and I_{1} embeddings is seen from the characterization of I_{1} embeddings

Given a set V and a set $\mathrm{S} \subseteq \mathrm{V}$, the cut-semi-metric d_{S} on V induced by S is given by
$d_{s}(u, v)=1$ if $|S \AA\{u, v\}|=1$
$d_{s}(u, v)=0$ otherwise

Note that d_{S} is an I_{1} metric in R^{1}. The embedding is given by $f(u)=0$ if $u \in S$ and $f(u)=1$ if $u \notin S$

Cut-metrics and I_{1} embeddings

Theorem: A metric (V, d) is isometrically embeddable in I_{1} (dimension can be arbitrary) iff there exists $\lambda: 2^{V} \rightarrow \mathcal{R}^{+}$ such that $d(u v)=\sum_{S} \lambda(S) d_{s}(u v)$ for all $u, v \in V$

Proof:

if $d(u v)=\sum_{s} \lambda(S) d_{S}(u v)$ then we can embed d into I_{1} in R^{h} where h is the number of S with $\lambda(\mathrm{S})>0$ as follows:
Let $S_{1}, S_{2}, \ldots, S_{h}$ be the sets. Then the embedding is given by
$\mathrm{f}(\mathrm{u})=\left(\lambda\left(\mathrm{S}_{1}\right) \mathrm{I}_{\mathrm{S}_{1}}(\mathrm{u}),\left.\lambda\left(\mathrm{S}_{1}\right)\right|_{\mathrm{S}_{1}}(\mathrm{u}), \ldots,\left.\lambda\left(\mathrm{S}_{\mathrm{h}}\right)\right|_{\mathrm{S}_{\mathrm{h}}}(\mathrm{u})\right)$
where $I_{S}(u)=0$ if $u \in S$ and $I_{S}(u)=1$ if $u \notin S$

Cut-metrics and I_{1} embeddings

only if:
suppose f is a mapping of V into R^{h} such that
$d(u, v)=|f(u)-f(v)|_{1}$ for each u, v
Let $u(i)$ be the i'th coordinate of $f(u)$
Then $|f(u)-f(v)|_{1}=\sum_{i}|u(i)-v(i)|$
Define metrics $d_{1}, d_{2}, \ldots, d_{h}$ on V where
$\mathrm{d}_{\mathrm{i}}(\mathrm{u}, \mathrm{v})=|\mathrm{u}(\mathrm{i})-\mathrm{v}(\mathrm{i})|$
To prove that $d=\sum_{S} \lambda(S) d_{S}$ it is sufficient to prove that each $d_{i}=\sum_{S} \lambda_{i}(S) d_{S}$

Cut-metrics and I_{1} embeddings

consider d_{i}

Let $\mathrm{V}=\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$
Wlog assume that $\mathrm{v}_{1}(\mathrm{i}) \leq \mathrm{v}_{2}(\mathrm{i}) \leq \ldots \leq \mathrm{v}_{\mathrm{n}}(\mathrm{i})$
For $\mathrm{j}=1$ to $\mathrm{n}-1$, let $\mathrm{S}_{\mathrm{j}}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{j}}\right\}$
let $\lambda_{i}\left(S_{j}\right)=v_{j+1}(i)-v_{j}(i)$
and let $\lambda_{i}(S)=0$ if S is not one of S_{1}, \ldots, S_{n-1}
It is easy to check that $d_{i}=\sum_{S} \lambda_{i}(S) d_{S}$

Cut-metrics and I_{1} embeddings

Exercise: Prove that any tree metric is I_{1} embeddable

Exercise: Prove that any ring metric is I_{1} embeddable

I_{1} embeddings and sparsest cut

Suppose every n point metric is embeddable into I_{1} with distortion $\alpha(\mathrm{n})$
Then we will show that the integrality gap of the LP relaxation we studied is at most $\alpha(n)$
This is based on the characterization of I_{1} metrics as those expressible as positive sum of cut-metrics
Note however that it does not immediately give a polynomial time algorithm. We will later use the specific embeddings of Bourgain to derive a randomized polynomial time algorithm

I_{1} embeddings and sparsest cut

Recall the LP relaxation was equivalent to
$\min _{\mathrm{d} \text { semi-metric }} \sum_{u v} \mathrm{c}(\mathrm{uv}) \mathrm{d}(\mathrm{uv}) / \sum_{\mathrm{i}} \operatorname{dem}(\mathrm{i}) \mathrm{d}\left(\mathrm{s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)$

Let d^{*} be an optimum solution to above relaxation
By definition d^{*} is embeddable into I_{1} with distortion $\alpha(n)$
Since I_{1} embeddings are positive sums of semi-metrics it implies that there is a $\lambda: 2^{v} \rightarrow \mathcal{R}^{+}$s.t forall $u, v \in V$
$\sum_{\mathrm{S}} \lambda(\mathrm{S}) \mathrm{d}_{\mathrm{S}}(\mathrm{uv}) \leq \mathrm{d}^{*}(\mathrm{u}, \mathrm{v}) \leq \alpha(\mathrm{n}) \sum_{\mathrm{S}} \lambda(\mathrm{S}) \mathrm{d}_{\mathrm{S}}(\mathrm{uv})$
we assume wlog that the embedding is a constraction

I_{1} embeddings and sparsest cut

Now we claim that there is a cut of sparsity at most $\alpha(\mathrm{n})$ $\mathrm{OPT}_{\mathrm{LP}}$

Note that
OPT $_{\text {LP }}=\sum_{u v} \mathrm{c}(u v) \mathrm{d}^{*}(u v) / \sum_{\mathrm{i}} \operatorname{dem}(\mathrm{i}) \mathrm{d}^{*}\left(\mathrm{~s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)$
Let $A=\sum_{u v} C(u v) d^{*}(u v)$ and $B=\sum_{i} \operatorname{dem}(i) d^{*}\left(s_{i} t_{i}\right)$
$\mathrm{A} \geq \sum_{\mathrm{uv}} \mathrm{c}(\mathrm{uv}) \sum_{\mathrm{s}} \lambda(\mathrm{S}) \mathrm{d}_{\mathrm{s}}(\mathrm{uv})$
$\geq \sum_{\mathrm{S}} \lambda(\mathrm{S}) \sum_{\mathrm{uv} \in \delta(\mathrm{S})} \mathrm{c}(\mathrm{uv}) \geq \sum_{\mathrm{S}} \lambda(\mathrm{S}) \mathrm{c}(\delta(\mathrm{S}))$
where we interchanged the order of summation and used the fact that $d_{S}(u v)=1$ if $u v \in \delta(S)$ and 0 otherwise

I_{1} embeddings and sparsest cut

$$
\begin{aligned}
B & =\sum_{i} \operatorname{dem}(\mathrm{i}) \mathrm{d}^{*}\left(\mathrm{~s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right) \\
& \leq \sum_{\mathrm{i}} \operatorname{dem}(\mathrm{i}) \alpha(\mathrm{n}) \sum_{\mathrm{s}} \lambda(\mathrm{~S}) \mathrm{d}_{\mathrm{s}}\left(\mathrm{~s}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}\right)
\end{aligned}
$$

(interchanging order of summation)

$$
\begin{aligned}
& \leq \alpha(\mathrm{n}) \sum_{\mathrm{S}} \lambda(\mathrm{~S}) \sum_{\mathrm{S}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}} \in \delta(\mathrm{~S})} \operatorname{dem}(\mathrm{i}) \\
& \leq \alpha(\mathrm{n}) \sum_{\mathrm{S}} \lambda(\mathrm{~S}) \operatorname{dem}(\delta(\mathrm{S}))
\end{aligned}
$$

Therefore
$\mathrm{OPT}_{\mathrm{LP}}=\mathrm{A} / \mathrm{B} \geq \sum_{\mathrm{S}} \lambda(\mathrm{S}) \mathrm{c}(\delta(\mathrm{S})) / \sum_{\mathrm{S}} \alpha(\mathrm{n}) \lambda(\mathrm{S}) \operatorname{dem}(\delta(\mathrm{S}))$ or $\lambda(\mathrm{S}) \mathrm{c}(\delta(\mathrm{S})) / \sum_{\mathrm{S}} \lambda(\mathrm{S}) \operatorname{dem}(\delta(\mathrm{S})) \leq \alpha(\mathrm{n}) \mathrm{OPT}_{\mathrm{LP}}$

I_{1} embeddings and sparsest cut

Therefore
$\mathrm{OPT}_{\mathrm{LP}}=\mathrm{A} / \mathrm{B} \geq \sum_{\mathrm{S}} \lambda(\mathrm{S}) \mathrm{c}(\delta(\mathrm{S})) / \sum_{\mathrm{S}} \alpha(\mathrm{n}) \lambda(\mathrm{S}) \operatorname{dem}(\delta(\mathrm{S}))$
or $\lambda(\mathrm{S}) \mathrm{c}(\delta(\mathrm{S})) / \sum_{\mathrm{S}} \lambda(\mathrm{S}) \operatorname{dem}(\delta(\mathrm{S})) \leq \alpha(\mathrm{n}) \mathrm{OPT}_{\mathrm{LP}}$
Since $\lambda(S) \geq 0$ for all S, it follows that there exists a set S^{*}
such that
$\mathrm{c}\left(\delta\left(\mathrm{S}^{*}\right)\right) / \operatorname{dem}\left(\delta\left(\mathrm{S}^{*}\right)\right) \leq \alpha(\mathrm{n})$ OPT $_{\mathrm{LP}}$

This proves the existence of a set of sparsity at most $\alpha(n)$ times OPT ${ }_{\text {LP }}$
This also shows that the flow-cut gap is at most $\alpha(\mathrm{n})$

