

11.2 Nomenclature

- Alkynes are named in the same general way that alkenes are named.
- In the IUPAC system, change the *-ane* ending of the parent alkane name to the suffix *-yne*.
- Choose the longest continuous chain that contains both atoms of the triple bond and number the chain to give the triple bond the lower number.
- Compounds with two triple bonds are named as diynes, those with three are named as triynes and so forth.
- Compounds both a double and triple bond are named as enynes. The chain is numbered to give the first site of unsaturation (either C=C or C=C) the lower number.
- The simplest alkyne, H-C=C-H, named in the IUPAC system as ethyne, is more often called acetylene, its common name.
- The two-carbon alkyl group derived from acetylene is called an ethynyl group.

6

11.4 Interesting Alkynes

- Acetylene (H-C≡C-H) is a colorless gas that burns in oxygen to form CO₂ and H₂O. The combustion of acetylene releases more energy per mole of product formed than any other hydrocarbons. It burns with a very hot flame and is an excellent fuel.
- Ethynylestradiol and norethindrone are two components of oral contraceptives that contain a carbon-carbon triple bond.
 - Both molecules are synthetic analogues of the naturally occurring female sex hormones estradiol and progesterone, but are more potent so they can be administered in lower doses.
 - Most oral contraceptives contain both of these synthetic hormones.
 - They act by artificially elevating hormone levels in a woman, thereby preventing pregnancy.

9

How 1	Develop a Retrosynthetic Analysis
Step [1]	Compare the carbon skeletons of the starting material and product. • If the product has more carbon a choice a band that the starting material, the sumbasis must farm one or more $C = C$
	 If the product has more values (call b) call by a bolic solution in the starting material, the synthesis must form one of more call bolic solution of the starting material with those in the product, to see where new C-C bonds must be added or where functional groups must be changed.
Step [2]	Concentrate on the functional groups in the starting material and product and ask:
	What methods introduce the functional groups in the product? What kind of reactions does the starting material undergo?
Step [3]	Work backwards from the product and forwards from the starting material.
	 Ask: What is the immediate precursor of the product? Compare each precursor to the starting material to determine if there is a one-step reaction that converts one to the other. Continue this process until the starting material is reached. Always generate simpler precursors when working backwards.
	 Use fewer steps when multiple routes are possible. Keep in mind that you may need to evaluate several different precursors for a given compound.
Step [4]	Check the synthesis by writing it in the synthetic direction.
	 To check a retrosynthetic analysis, write out the steps beginning with the starting material, indicating all necessary reagents.