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Abstract

Heisenberg exchange spin coupling between metal centers is essential for describing

and understanding the electronic structure of many molecular catalysts, metalloenzymes,

and molecular magnets for potential application in information technology. We explore

the machine-learnability of exchange spin coupling, which has not been studied yet. We

employ Gaussian process regression since it can potentially deal with small training sets

(as likely associated with the rather complex molecular structures required for explor-

ing spin coupling) and since it provides uncertainty estimates (“error bars”) along with

predicted values. We compare a range of descriptors and kernels for 257 small dicopper

complexes and find that a simple descriptor based on chemical intuition, consisting only

of copper–bridge angles and copper–copper distances, clearly outperforms several more

sophisticated descriptors when it comes to extrapolating towards larger experimentally

relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability,

while learning dipole moments is much harder. The strength of the sophisticated descrip-

tors lies in their ability to linearize structure–property relationships, to the point that a

simple linear ridge regression performs just as well as the kernel-based machine-learning

model for our small dicopper data set. The superior extrapolation performance of the sim-

ple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing

a suitable descriptor, and highlighting the interesting question of the role of chemical in-

tuition vs. systematic or automated selection of features for machine learning in chemistry

and material science.
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1 Introduction

Interactions between unpaired electrons localized on metal centers are an important feature

of the active sites of many metalloenzymes1, artificial catalysts2, and molecular magnets with

possible applications such as data storage, quantum computing or magnetic materials3–11. Such

interactions are usually not mediated directly by magnetic interactions due to the distance

between the spin centers, but rather via a combination of Coulomb interaction and exchange

interactions resulting from the Pauli exclusion principle. If the interactions are mediated by

(formally) closed-shell ligands, they are referred to as superexchange12,13. The low-energy

spectrum of (super-)exchange-coupled systems with two local spins is often described via a

Heisenberg–Dirac–van-Vleck Hamiltonian14,

Ĥ = −2JŜ1 · Ŝ2, (1)

where Ŝ1 and Ŝ2 denote the local spin vectors and J is the Heisenberg exchange coupling

constant. J is positive if the two spins are ferromagnetically (F) coupled, i.e., aligned, and

negative if they are antiferromagnetically (AF) coupled, i.e. antialigned in the ground state.

The magnitude of J expresses the strength of the interaction, i.e., the energy difference between

the F and the AF coupled statesa.

Our goal is to predict J for transition metal complexes. This is most often done by combining

Kohn–Sham (KS) density functional theory (DFT) with a broken-symmetry approach to model

the AF state15–21, or by employing multireference wave function methods18,22–26. The latter is

computationally demanding, and requires efforts towards avoiding artefacts resulting from too

inflexible wave function expressions27–30. DFT is feasible for many complexes of interest for

the research areas mentioned above in full atomistic detail, but still computationally expensive

for applications in tasks such as screening, and also for routine evaluations of spin coupling in

aThere are different definitions of Ĥ, in particular the factor of 2 and the minus sign may be missing, resulting
in a scaling and sign change of J .
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more complex structures as relevant in molecular spintronics or nanostructured materials3.

A possible solution to this problem are machine-learning (ML) approaches31,32, which have seen

an enormous gain in popularity and development in the past few years in the chemistry, mate-

rials science and solid-state physics communities33–53, and which may save orders of magnitude

in computing time compared to DFT, and often comparable or even better accuracy. ML has

proven successful for spin-dependent molecular properties, in particular for spin-state energies

in spin crossover complexes35,36,54–57, magnetic moments and magnetic anisotropy58,59, and also

for properties closely related60,61,61–68 to exchange spin coupling such as charge transfer69–71

and excitation energy transfer71,72. The capability of ML for exchange spin coupling has not

been explored yet.

When making predictions with ML for molecular structures outside of the training set, it is

desirable to have a measure for how reliable those predictions are, i.e., an error or uncertainty

estimate. Such estimates have been implemented in chemistry-related ML frameworks73, e.g.

based on a latent space distance metric for artificial neural networks74 or employing resampling

techniques such as bootstrapping or subsampling75.

Gaussian process regression (GPR)76 provides a natural access to error bars / uncertainty es-

timates. Experience so far shows that it is suitable for rather small training sets, which is

a favorable property given that reference data for J are relatively costly to generate. GPR

has been used in chemistry for, e.g., fitting repulsive potentials in tight-binding DFT77, for

correcting empirical dispersion models78, for evaluating work functions79, for calculating vibra-

tional Raman spectra80, for transition-state81 and molecular-structure optimization82–85, for

fitting potential-energy surfaces86,87, and for the error-controlled exploration of reaction net-

works88,89. We will employ GPR here for asking to what extent it is possible to machine-learn

J , as compared with other molecular properties.
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Figure 1: Overview of machine learning via Gaussian Process Regression, illustrating the central
importance of for molecular descriptors / representations and kernels for GPR.

GPR is a kernel method in which structure–property relationships are inferred from similarities

between molecules. For measuring such similarities, in GPR as in any ML approach in chem-

istry, it is important to choose a unique and information-conserving way of translating molec-

ular structures into ML-accessible format (molecular representations / descriptors)34,49,55,90–97.

Also the choice of kernel will affect the quality of the ML model76,98,99. We will study which

combination of descriptor and kernel works best for evaluating J for a set of model molecular

systems.

We focus on 257 dinuclear copper(II) complexes with halogenide, oxalate, acetate, methanolate

and hydroxide ligands (Figure 2). These [Cu2] systems show distinct structure–property corre-

lations100 for J . They feature only one unpaired-spin electron per metal center, and they are

small and structurally simple enough to allow for straightforward automated construction of all

possible moleculesb. Polynuclear copper complexes can serve as functional and structural mod-

els of multicopper enzymes16,102,103. Dinuclear copper complexes constitute important building

blocks for materials such as metal-organic frameworks104–106, and an important test case for

electronic structure methods16,27–29,107.
bEmploying a more sophisticated approach, systematic enumeration of more complex transition metal com-

plexes has also been demonstrated recently for mononuclear systems101.
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X-: 100 OH-: 27 MeO-: 27

AcO-: 81ox2-: 22

Figure 2: Composition of the [Cu2] data set used in this work. The structures contain all
possible combinations of F, Br, and Cl (green atoms). In total, the data set consists of 257
structures.

For evaluating exchange-coupling constants J , we employ a Green’s function approach108–110.

This approach can estimate J from only the high-spin (ferromagnetically coupled) electronic

structure, which is much easier to converge than the antiferromagnetically coupled one, thus

lending itself to the robust generation of training data in ML.

Due to the lack of published data on modeling J via ML, we first analyze the performance

of selected descriptors within GPR and compare it with linear ridge regression. While not

being as flexible as GPR-derived models, linear ridge regression allows for better interpretation

through the regression coefficients. It may guide researchers in answering the question of why

a certain J is positive (F coupling) or negative (AF coupling). Such insights are hard to obtain

from other ML methods such as kernel ridge regression, neural networks, or GPR. In this
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context it is also studied how the prediction is affected by the kernel function, whose selection

is required in GPR. We then compare the prediction performance for J with other properties

such as the polarizability and the dipole moment. Finally, we study the prediction of J for

experimental structures selected from the literature, to answer the question to what extent

GPR is capable of extrapolating to structures far from the training set.

2 Theory

2.1 Gaussian Process Regression

GPR relies on the assumption that two function values, f(x1) and f(x2), are highly correlated

if their input vectors (molecular respresentations/descriptors), x1 and x2, are similar to each

other, i.e., f(x) is a smooth function. This is a reasonable assumption all over the natural

sciences and beyond, in particular for the relation between molecular structures (which have

to be translated to fixed-size vectors, see Section 2.3) and properties. The questions we seek

to answer are how to measure similarity between molecular structures/representations and

how fast similarity increases/decreases, i.e., how fast the correlation between f(x1) and f(x2)

changes if x2 is changed.

In GPR, the property f(x∗) of a molecular structure of interest— represented by the input

vector x∗— is represented as a normal distribution. Its mean, the predictive function f̄(x∗),

constitutes its most likely value and can be expressed as a linear combination over kernels,

f̄(x∗) =
N∑
i=1

αik(x∗,xi), (2)

where k(x∗,xi) is the kernel (or covariance function or similarity measure) with respect to the

i-th structure of the training set (N training data points in total) and αi is the corresponding

weight. Similarly, the definition of the variance (“squared uncertainty”) of f(x∗), V[f(x∗)],
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involves a linear combination over kernels subtracted from a constant (the self-kernel),

V[f(x∗)] = k(x∗,x∗)−
N∑
i=1

β∗i k(x∗,xi), (3)

with 0 ≤
∑N

i=1 β
∗
i k(x∗,xi) ≤ k(x∗,x∗). Both {αi} and {β∗i } are determined during regression

(see Section A.2 for more details). As a result, with an increasing Euclidean distance between

vector x∗ and the training vectors {xi}, the kernels {k(x∗,xi)} converge toward zero, finally

leading to f̄(x∗) = 0 and V[f(x∗)] = k(x∗,x∗). Hence, with the help of GPR, one can easily

identify explorations into uncharted territory.

2.2 Kernels

Several ways of defining kernels are employed in ML76, and there is at present no general recipe

for how to choose the best performing one111. One option is a Gaussian kernel, also called

radial basis function (RBF) or squared exponential kernel,

kRBF (x1,x2) = σ2
f exp

(
−|x1 − x2|2

2l2

)
, (4)

where σ2
f (signal variance) and l (length scale) are hyperparameters to be optimized (see Section

A.2). The kernel generates a rather smooth predictive function.

The RBF kernel can be defined as a kernel of Matérn(ν) type with ν →∞. A Matérn(ν) kernel

can be considered an interpolation between Gaussian (squared exponential) and Laplacian

(exponential) kernels, with ν = 1/2 as lower bound representing the Laplacian kernel,

kν=1/2 (x1,x2) = σ2
f exp

(
−|x1 − x2|

l

)
, (5)

resulting in a rough predictive function.

8



We also consider a kernel in between the two, with ν = 3/2,

kν=3/2 (x1,x2) = σ2
f

(
1 +

√
3 |x1 − x2|

l

)
exp

(
−
√

3 |x1 − x2|
l

)
. (6)

We choose this family of kernels because it allows for generating a variety of correlation patterns,

but this does not exclude the possibility that there may be other types of kernels equally (or

even better) suited for our type of ML problem76. We will ask below how ML performance

depends on this choice of kernel, and to what extent this depends on the choice of descriptor

and molecular property.

2.3 Molecular Representations

Molecular representations or descriptors (here, in fixed-size vectorial form) are well-established

in organic chemistry112. For transition-metal systems, there is far less experience. For the spin

state energetics in spincrossover compounds, revised two-dimensional autocorrelation functions

combined with feature selection algorithms have proven as very successful, both with kernel

ridge regression and with artificial neural networks57. For learning magnetic anisotropy in

single-ion molecular magnets, bispectrum components combined with ridge regression were

shown to be a good choice59. As a first step towards exploring the machine-learnability of

J , we will focus on a selection of descriptors which have proven successful for a variety of

properties and structures, and which are inexpensive to evaluate computationally: Smooth

overlap of atomic positions (SOAP)113, many-body tensor representation (MBTR), and many-

body interaction descriptors114 (F2B and F3B). In addition, we study how Cu–Cu distances

and Cu–bridge–Cu angles perform as intuition-driven descriptors, which we call Ang+Dist

throughout this work. Since it is known that small changes in bond distances (specifically

between the central metal atoms) and angles can delicately affect J , and for the reason that

such structural variations can not be encoded sufficiently in two-dimensional autocorrelation
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functions55, we decided to omit this descriptor from our study, despite the good performance

for spincrossover complexes57.

2.3.1 Smooth Overlap of Atomic Positions (SOAP)

In the SOAP approach, the molecular structure is expressed in terms of the local electron

density around a selected atom113,

ρ(r) =
∑
nml

cnmlgn(r)Yml(r), (7)

where gn are radial basis functions, Yml are spherical harmonics, and cnml coefficients. Ro-

tationally invariant quantities can be constructed as a power spectrum or bispectrum. This

descriptor, along with MBTR as introduced below, is presented in an appealing visual form in

Ref. 97.

2.3.2 Many-Body Tensor Representation (MBTR)

In the many-body tensor representation, sums over broadened k-body terms mk are sorted

according to element types97,115, where for k = 1, mk corresponds to atomic charge numbers,

for k = 2 to interatomic distances, and for k = 3 to angles between three atoms (or the cosine

of that angle),

fk(r, Z1, Z2, . . . , Zk) =
∑

i1,i2,...,ik

ωk(i)N (r|mk(i))
k∏
j=1

δZiZj
, (8)

which is discretized in practice. N (r|mk) is a normal distribution with mean mk evaluated at

r, ωk a weighting function reducing the importance of terms involving far-apart atoms, and Zi

denotes an atomic charge number.

See Refs. 97, 116 for a visual representation and Refs. 115, 116 for further details on this

descriptor.
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2.3.3 Many-Body Interaction (FMB) Descriptors

The FMB approach114 to engineering descriptors is based on grouping interactions according to

the element types of the atoms involved. The parameter M represents the type of interaction

(e.g., M = 2 and M = 3 stand for pairwise and three-body interactions, respectively). Inde-

pendent of the value of M , the set An = {Zi}ni=1 with Zi 6= Zj ∀ i, j ∈ {1, 2, · · · , n} is defined,

which holds all atomic numbers (element types) that occur in a data set under consideration

(n in total). In the following, we will focus exclusively on pairwise and three-body interactions.

The set S2B comprises all element pairs (Zi, Zj) with Zi ≤ Zj and Zi, Zj ∈ An. By analogy,

the set S3B comprises all element triples (Zi, Zj, Zk) with Zi ≤ Zj ≤ Zk and Zi, Zj, Zk ∈ An.

Given a pair (Zi, Zj) ∈ S2B and an order index m ∈ {1, 2, · · · , 15}, the corresponding element

of the F2B descriptor reads

F i,j,m
2B =

N∑
a,b=1
b>a

δZi,min(Z(a),Z(b)) · δZj ,max(Z(a),Z(b))

rmab
(9)

Here, a and b refer to the a-th and b-th atoms, respectively, of an N -atom system separated

by Euclidean distance rab. The corresponding atomic numbers are denoted Z(a) and Z(b),

respectively. The Kronecker delta, δ, ensures that only atom pairs matching with the queried

pair (Zi, Zj) are taken into account.

In the case of three-body interactions, all possible combinations of the order indicesm1,m2,m3 ∈

{1, 2, · · · , 6} that fulfill the constraint m1 6= m2 6= m3 6= m1 are considered. Given a triple

(Zi, Zj, Zk) ∈ S3B and the order indices m1, m2, and m3, the corresponding element of the F3B

descriptor reads
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F i,j,k,m1,m2,m3

3B =
N∑

a,b,c=1
c>b>a

δZi,min(Z(a),Z(b),Z(c)) · δZj ,median(Z(a),Z(b),Z(c)) · δZk,max(Z(a),Z(b),Z(c))

rm1
ab · r

m2
ac · rm3

bc

(10)

The definition of the F3B descriptor is slightly different than the one presented in the original

work by Pronobis et al.114 First, we do not multiply the terms of the sum by a prefactor,

which is zero if at least one atom pair of a triple is separated by more than are threshold

(approximately 1.1 times the average bond length of that element pair) and one otherwise.

This choice increases CPU time but allows us to resolve weak three-body interactions. Second,

we choose the constraint Zi ≤ Zj ≤ Zk instead of Zi ≤ Zk since three-body interactions are not

encoded as bond angles. In addition, this choice leads to a significant reduction of dimensions

and, hence, compensates for the increased CPU cost by dropping the prefactor.

2.3.4 Angle and distances (Ang+Dist)

Hay et al.100 showed that there is a direct correlation between the Cu–ligand–Cu angle and J ,

and that exchange spin coupling is affected via direct exchange interaction through the distance

between the spin centers. Motivated by this work, we study whether one can build a reasonable

model using only Cu–bridge angles and Cu–Cu distances as features for J prediction.

In our case we define the Cu–bridge (θ) as the angle between a copper atom and its bridging

atom (Figure 3), which is the closest atom of the bridge to a copper atom. Note that for

bridging bidentate ligands, the bridging atoms can thus be different for both copper atoms

(e.g., in case of AcO− and ox2−, see Figure 2). This can in principle also be extended to cases

where there is only one bridging atom, or more than two. Together with the Cu–Cu distance,

this leads in our case to a feature size of 5 dimensions in total.
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Cu1 Cu2
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B = bridging atom
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L2
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L = ligand
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Figure 3: Schematic representation of a dicopper complex. θ is the angle between the Cu–
Cu-axis and the bridging atom B. dCu−Cu is the interatomic distance between both copper
atoms.

2.4 Robust Evaluation of Exchange Coupling

When evaluating exchange coupling constants from DFT, often the antiferromagnetic state is

modeled by a broken-symmetry determinant15, and J is evaluated from the energy difference

between that determinant and the one describing the F coupled state. Since convergence

of the self-consistent field algorithm is often tricky for the broken-symmetry determinant, this

method does not lend itself to generating training data sets for machine learning. A more robust

approach is based on the finding that for many spin-coupled systems, the total energy depends

as a cosine function on the angle between the local spin vectors (Figure 4). In that case, it is

possible to estimate the energy difference between ferromagnetically and antiferromagnetically

coupled states from the curvature of the energy with respect to local spin rotation, allowing for

estimating this energy difference from the electronic structure of one spin state only108,110,117–120.

We are employing a variant of this approach based on Green’s functions, which does not take into

account orbital relaxation upon spin rotation, but which is very robust in its application110. For

two coupled local spin-1/2 centers, J is related to the energy difference as J = 1/2(EAF−EF).
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Figure 4: Total energy of a coupled two-spin system as a function of the a angle between
the two local spins, for the frequent case of a cosine dependence. The larger the energy differ-
ence between the ferromagnetically (↑↑) and antiferromagnetically (↑↓) states, the larger the
curvature at either of the two extrema.

In the Green’s function approach, J can be evaluated from the electronic structure of a Slater

determinant describing the F coupled state as

JG = − 1
4SASB

∑
i∈occ
k∈virt

∑
{µ,ν}∈A
{µ′,ν′}∈B

C α
νi

(
Fα
µν − F β

µν

)
C β∗
µk (11)

C α∗
µ′i

(
Fα
µ′ν′ − F β

µ′ν′

)
C β
ν′k

1

εαi − ε
β
k

− 1
4SASB

∑
k∈occ
i∈virt

∑
{µ,ν}∈A
{µ′,ν′}∈B

C α
νi

(
Fα
µν − F β

µν

)
C β∗
µk

C α∗
µ′i

(
Fα
µ′ν′ − F β

µ′ν′

)
C β
ν′k

1

εβk − εαi
,

where F σ
µ′ν′ are the elements of the Fock matrices, C σ

νi the molecular orbital coefficients for a

given spin σ in a Löwdin-transformed single-particle basis, and εσi the molecular orbital energies,

and SA and SB refer to the local spin quantum numbers on the magnetic sites A and B.

Reducing the electronic structure to two electrons in two magnetic orbitals and employing

configuration interaction100 allows for a simplified qualitative understanding of J in terms of

the energy splitting Emgap between the two singly occupied molecular orbitals (SOMOs) in the
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F-coupled state (triplet)c,

J = kAB −
1

2

(Emgap)2

πAA − πAB
, (12)

with πAA and πAB are the Coulomb integrals resulting from repulsion between two electrons in

the same and in two different magnetic orbitals (πAA >> πAB), and kAB the exchange integral

between electrons in two magnetic orbitals kAB. The (positive) exchange integral kAB gives fer-

romagnetic contributions, while the second term gives antiferromagnetic contributions. Given

this relation, we will compare machine-learning of Emgap and J , expecting similar performance.

As a third quantity related to spin-dependent properties, we will explore machine learning of

local unpaired electron densities on the copper atoms, which are defined as

N s
A =

(
Nα
A −N

β
A

)
, (13)

where Nσ
A denotes the number of electrons of spin σ assigned to a atom A.

2.5 Error Evaluation

We measure the performance of our models by the mean absolute error (MAE),

MAE =
1

N

N∑
i=1

|yi − ỹi|. (14)

Here, N is the number of samples (test data), yi is the reference value of a given property (in

this work J , α and µ) of test molecule i, and ỹi is the predicted value of i. Because the MAE

alone has to be interpreted with care as a performance estimator121, we use in addition the

coefficient of determination,
cThe magnetic orbitals can be defined as the local orbitals whose linear combination leads to the two SOMOs

in the triplet.
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R2 = 1−
∑

i(yi − ỹi)2∑
i(yi − ȳ)2

, (15)

where ȳ is the mean of all references yi. In the case of perfect predictions and zero uncertainty in

reference data, R2 equals 1. If R2 = 0, the prediction model performs just as well as the average

(arithmetic) reference value. Negative R2-values indicate prediction models that perform even

worse.

3 Methods

3.1 Data Set Construction and First-Principles Calculations

Exchange spin coupling depends systematically on bond angles and interatomic distances14. A

machine-learning algorithm will need to have information on these angles and distances, either

by implicitly learning them along with J from chemical compositions and connectivities, or

by being explicitly provided with this information. In the following we will provide molecular

structures optimized in the high-spin state with DFT (B3LYP). This is a good choice for the

proof-of-principle of machine-learning J we are aiming at and also prevents possible drawbacks

associated with experimental reference data (such as environment and temperature effects). In

future practical applications, machine-learning J only makes sense if the benefit of replacing a

conventional approach by ML is not marginal compared to the overall cost of obtaining molec-

ular structures. Besides the implicit learning of molecular structures mentioned above, efficient

ways of obtaining them could be the extraction from X-ray crystallographic or computational

databases, or structural optimizations via cheap methods such as force-fields or tight-binding

approaches122–126, or explicitly via ML models36,127.

For evaluating the general feasibility and performance of machine-learning J with Gaussian pro-

cess regression, we constructed a data set of [Cu2(µ2-X)2X4]2− and [Cu2(µ2-Y)2X4]2− complexes
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inspired by Ref.100 (Figure 2), comprising all possible combinations of halogens X=F,Br,Cl, and

with bridges Y=acetate (AcO−), oxalate (ox2−), methanolate (MeO−) and hydroxide (OH−).

For these complexes, we generated input structures in an automated fashion and compared

the eigenvalues of the Coulomb matrix to identify chemically similar structures, which were

then removed. Afterwards, the structures were optimized employing Kohn–Sham density func-

tional theory (KS-DFT) in the (ferromagnetically coupled) triplet state with BP86128,129 as

the approximate exchange–correlation functional and def2-SVP130 as the basis set, using the

program package Turbomole 7.1131,132. Convergence criteria were set to 10−6 Hartree for the

self-consistent-field algorithm and to 10−3 a.u. for the gradient in molecular structure optimiza-

tions. For [Cu2(µ2-X)2X4]2−, planar and non-planar structures were generated (motivated by

the fact that both configurations can be obtained experimentally and to gain further structural

diversity). To ensure balance between different structure classes, we drew a random sample of

100 structures of this type to be included in the data set, which from now on we call the [Cu2]

set.

For molecular properties, single-point calculations in the ferromagnetically coupled (high-spin)

state were performed employing KS-DFT with B3LYP133,134 as the approximate exchange–

correlation functional and def-TZVP135 as a basis set, using the program package Gaus-

sian09136. Convergence criteria were set to 10−6 Hartree for the self-consistent-field algorithm.

Exchange coupling constants were evaluated based on a Green’s function approach110 with the

copper atoms defined as spin centers, with ideal local spin quantum numbers of SA = SB = 1/2,

employing our program package Artaios137. Dipole moments µ and polarizabilities α were ex-

tracted from the Gaussian output. Strictly speaking, properties of the antiferromagnetically

coupled complexes should be evaluated in their antiferromagnetically coupled ground state.

Since our goal is to prevent the calculation of the broken-symmetry determinants modeling

those ground states, and since we are interested in a proof-of-principle, we are focusing on the

properties in the high-spin state here. These DFT-generated (B3LYP/TZVP) properties were

used as references.
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The [Cu2] set was then split into a 80% training set (Cu-train) and a 20 % test set (Cu-test),

as documented in the Supporting Information. To this end, all molecules were represented using

the F2B descriptor and then grouped into 25 clusters (via k-means clustering), from which 80 %

of the molecules within each cluster were randomly assigned to the training set. This procedure

ensures that the entire data set is evenly divided.

3.2 Descriptors, Kernels, and Gaussian Process Regression

The molecular descriptors SOAP113 and MBTR97,115 were employed as implemented in the

python module Dscribe116, with spherical Gaussian-type orbitals as radial basis functions

(RBFs) in SOAP. The cutoff around the local region was set to 6.0 Å, the number of RBFs

was set to 8 and the maximum degree of the spherical harmonics was set to 6. For density

expansion, the standard deviations of the Gaussians were kept at the default value of 1.0. In

our case, the SOAP output (the power spectrum) of Dscribe was used as feature vector, which

has been averaged over all atom types. Other input settings were kept as default. For MBTR,

the one-body term (k = 1) contains the atomic species of a molecule represented on a grid

between 0 and 35 (100 points). Pairwise inverse distances were selected for the two-body term

(k = 2), whereas for the three-body term (k = 3) the cosine of the angles between three atoms

is evaluated. For both, k = 2 and k = 3, an exponential weighting function was applied with

a scaling parameter s = 0.5 and a cutoff value of 0.001. For each k term, the output was

normalized such that the length (norm) of each k-vector is one.

Many-body interaction descriptors114 (FMB) were calculated with a Python script developed in

our groups.

GPR and linear ridge regression models were build using the Python package scikit-learn138.

In all GPR cases, the same length-scale parameter was used for all feature dimensions. In this

study, the Matérn (1/2), Matérn (3/2) and the radial basis function (RBF) kernel (=Matérn

(ν → ∞)) are compared, and used as implemented in scikit-learn. Hyperparameters are op-
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timized using the limited-memory Broyden-Fletcher–Goldfarb-Shanno (BFGS) algorithm for

bound constrained optimization as also implemented in scikit-learn. The optimization was

restarted 15 times from different values, to avoid being trapped in a local minimum. The

Python scripts developed for and employed in this work will be made publicly available (see

Supporting Information).

4 Model Building for Regression-Based J Prediction

Whether GPR can make sufficient predictions for J , and whether it performs better compared

to a simple linear ridge regression, shall be analyzed by comparing the errors (MAE and R2)

among the selected models under consideration here for predictions on Cu-test.
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Figure 5: Reference (DFT) and predicted J values for Cu-test, using GPR and linear ridge
regression for the underlying model building/training. For models built with GPR, we exem-
plarily show the Matérn(1/2) kernel function.

Fitting the models using Cu-train and subsequent prediction for Cu-test allows for an eval-

uation of the MAE according to the different types of Cu–Cu-bridges (consider Table 1, and,

for selected models, Figure 5). Such an analysis can become important for judging whether

there is more training data necessary for one bridging type or not, in the sense that outliers in
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the MAE (for one class of molecules) are easier to identify compared to considering the MAE

calculated over the entire test set.

Table 1: MAEs obtained from different GPR models and linear ridge regression for Cu-test
ordered according to bridge types. In addition, MAE and R2 calculated over the entire Cu-
test set are provided. MAE Values in kJ/mol. Color code: yellow: 0.50 < R2 < 0.90, green:
R2 > 0.90.

HAL OH ox MeO AcO MAE R2

linear ridge reg.
F2B 0.02 0.10 0.06 0.11 0.06 0.06 1.00
F2B + F3B 0.05 0.22 0.03 0.24 0.02 0.08 0.99
MBTR 0.08 0.24 0.02 0.71 0.02 0.13 0.95
SOAP 0.12 0.15 0.01 0.06 0.02 0.08 0.99
Ang + Dist 0.62 1.70 0.36 1.11 0.56 0.75 0.65
Matérn(1/2)
F2B 0.12 0.10 0.05 0.25 0.05 0.11 0.99
F2B + F3B 0.12 0.14 0.02 0.32 0.04 0.12 0.98
MBTR 0.12 0.20 0.05 0.28 0.02 0.12 0.99
SOAP 0.11 0.19 0.02 0.24 0.02 0.11 0.99
Ang+Dist 0.07 0.18 0.06 0.17 0.01 0.07 1.00
Matérn(3/2)
F2B 0.10 0.29 0.02 0.19 0.02 0.10 0.98
F2B + F3B 0.04 0.14 0.08 0.27 0.02 0.08 0.99
MBTR 0.04 0.21 0.04 0.23 0.011 0.08 0.99
SOAP 0.06 0.12 0.02 0.10 0.01 0.07 0.99
Ang+Dist 0.13 0.62 0.03 0.18 0.01 0.15 0.97
RBF
F2B 0.12 0.23 0.04 0.15 0.10 0.12 0.99
F2B + F3B 0.06 0.17 0.11 0.38 0.03 0.10 0.99
MBTR 0.03 0.21 0.04 0.23 0.01 0.08 0.99
SOAP 0.06 0.19 0.02 0.10 0.01 0.06 0.99
Ang+Dist 0.35 1.81 0.08 0.29 0.01 0.41 0.72

From Figure 5 and Table 1, it can be seen that with linear ridge regression, one obtains reason-

able predictions with all R2 > 0.9 when F2B + F3B, SOAP or MBTR are used as descriptors.

The observation that a linear model (such as employed in ridge regression) results in reason-

able predictions for Cu-test may be caused by the highly engineered descriptors which encode

structural features in a nonlinear fashion. In case of our intuition-driven descriptor (Ang+Dist),
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which in its generation contains no further (non-linear) transformations, one gets rather poor

predictions of J for Cu-test. This suggests that although J depends systematically on bond

angles and distances between the spin-centers, there is no linear structure–property relationship

between J and these structural parameters. Note, however, that the Ang+Dist descriptor will

be identified below as the considerably best performing one for extrapolation to experimental

structures outside of our dataset (Section 6).

Within GPR, all combinations of the descriptors SOAP, MBTR, F2B and F3B with all kernel

functions under study result in R2 values of 0.98 to 0.99 and MAEs of 0.06 kJ/mol to 0.12

kJ/mol, from which one would conclude that there is only little effort needed for selecting a

proper GPR model for J prediction when these descriptors are used. For the Ang+Dist descrip-

tor, the results depend significantly on the choice of kernel function. For RBF → Matérn(3/2)

→ Matérn(1/2) the MAE decreases from 0.41 kJ/mol to 0.07 kJ/mol (at the same time the R2

increases from 0.72 to 1.00), suggesting that when Ang+Dist is selected as descriptor the best

model can be obtained using Matérn(1/2).

The observations so far suggest that in principle a linear model is sufficient for J prediction, at

least for the Cu-test molecules when a proper descriptor is selected to featurize the molecules.

It was already shown in Ref. 114 that for a certain property, and a suitable choice of a de-

scriptor, linear models show reasonable prediction quality compared to more sophisticated ML

techniques, such as kernel-ridge-regression (KRR). In that work, the prediction of atomization

energies using linear ridge regression results in comparable MAEs (and RMSEs) as with KRR,

whereas the overall best results are obtained with the F2B+F3B descriptor. In our case, the best

linear model is obtained when ridge regression is used in combination with the F2B descriptor,

which performs slightly better than when F2B and F3B are used. This can probably come from

the fact that the addition of F3B significantly increases the feature space, which can lead to

worse results when only a small number of samples (molecules in the training set) is available.
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5 Comparison with Other Molecular Properties

In Section 4, it was shown that for the [Cu2] set it is possible to train proper prediction models

using GPR and linear ridge regression. In this part, we study whether this is also possible

for properties intensively used in the literature to benchmark ML methods such as the dipole

moment µ or the polarizability α of the [Cu2] set, and how these models behave in comparison

to J prediction. Such a comparison is important to ensure that our findings are not specific to

exchange spin coupling. To this end, prediction models were built in analogy to J using α and

µ as obtained from B3LYP/TZVP as references.

Considering the R2 values (Table 2) as obtained from predictions for Cu-test, it becomes clear

that for the polarizabilty all GPR models under study here, except for MBTR and Ang+Dist as

descriptors, work similarly well (as also observed for J), as all values are close to 1. For linear

ridge regression, it turns out that SOAP, F2B and F2B+F3B gives results that are as good as

those obtained with GPR. Thus, with linear models and GPR, the predictions of the properties

J and α behave very similarly, except that the descriptor (Dist+Ang) generated from chemical

intuition for J behaves poorly for α prediction.

For the dipole moment, the prediction based on linear ridge regression works only when the

F2B descriptor is used. One obtains a MAE of 0.64 D with an R2 value of 0.74. Interestingly,

with all other descriptors under study, the R2 value is close to zero or negative, suggesting that

no satisfying prediction for Cu-test is possible. Using GPR, it turns out that all models which

are not built with Ang+Dist as descriptor yield a positive R2, but significantly lower than 1.

In the case of F2B/RBF, the value of R2 is as low as 0.03, which indicates that for µ prediction,

one cannot rely on this model. The Ang+Dist descriptor is, again, not designed to make any

predictions for µ, which is why it is not surprising that it fails for µ.
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Table 2: MAE (R2) for J , α and µ prediction for Cu-test, after training on Cu-train. Color
code: red: R2 < 0.0, orange: 0 < R2 < 0.50, yellow: 0.50 < R2 < 0.90, green: R2 > 0.90.

J [kJ/mol] α [Bohr3] µ [D]
linear ridge reg.
F2B 0.06 (1.00) 1.26 (0.97) 0.64 (0.74)
F2B + F3B 0.08 (0.99) 1.34 (0.98) 1.07 (0.15)
MBTR 0.13 (0.95) 578 (−1·104) 1971 (−7.6 ·107)
SOAP 0.08 (0.99) 2.70 (0.96) 0.86 (0.48)
Ang+Dist 0.75 (0.65) 19.2 (0.49) 1.30 (0.03)
Matérn(1/2)
F2B 0.11 (0.99) 2.57 (0.96) 0.83 (0.53)
F2B + F3B 0.12 (0.98) 3.49 (0.95) 0.91 (0.50)
MBTR 0.11 (0.99) 6.76 (0.54) 1.02 (0.37)
SOAP 0.11 (0.99) 2.40 (0.96) 0.75 (0.68)
Ang+Dist 0.07 (1.00) 13.1 (0.70) 1.17 (0.22)
Matérn(3/2)
F2B 0.10 (0.98) 2.30 (0.97) 0.95 (0.37)
F2B + F3B 0.08 (0.99) 1.67 (0.98) 0.84 (0.54)
MBTR 0.08 (0.99) 5.95 (0.56) 0.99 (0.39)
SOAP 0.07 (0.99) 1.36 (0.97) 0.70 (0.72)
Ang+Dist 0.15 (0.97) 17.0 (0.51) 1.42 (−0.23)
RBF
F2B 0.12 (0.99) 2.50 (0.96) 1.12 (0.03)
F2B + F3B 0.10 (0.99) 1.38 (0.98) 0.84 (0.50)
MBTR 0.08 (0.99) 6.11 (0.56) 1.03 (0.37)
SOAP 0.06 (0.99) 1.64 (0.97) 0.80 (0.63)
Ang+Dist 0.41 (0.72) 28.2 (−0.28) 2.14 (−1.53)
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Figure 6: Reference versus predicted values for J , α and µ for the Cu-test set. Predictions
were done with models trained from linear ridge regression and GPR. For the latter we only
show the results obtained from the Matérn(1/2) kernel.

Furthermore, it is noticeable that for all kernel functions, the SOAP descriptor performs best

for predicting µ, which when combined with Matérn(3/2) yields the overall best performance
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(MAE: 0.70 kJ/mol, R2: 0.72) using GPR in our case. Yet, it is slightly worse than when

linear ridge regression is used with F2B as a descriptor (MAE: 0.64 kJ/mol, R2: 0.74), which

is an interesting observation, because when a proper descriptor is selected, a linear model can

perform similarly well as the more sophisticated GPR.

Among the different properties, the prediction of µ seems to work in general worse than for

J and α, which is reflected in the lower R2 values and when considering the predicted versus

reference values (see Fig 6). This difference between α and µ is in good agreement with results

from other data sets studied in the literature (e.g., see Figure 6 of Ref. 114). This suggests that

our conclusions are not specific for our choice of data set.

To explore this aspect further, we applied the same strategy as for α and µ to train linear and

GPR models for the quite popular data set of 6095 constitutional isomers of C7H10O2 published

by Ramakrishnan et al.139. Here we also found that the prediction of α works better than for

µ, and is less sensitive to the selected kernel function for the underlying GPR (though the RBF

kernel seems to perform worse for this data set as compared to Matérn(1/2) and Matérn(3/2).

Furthermore, it is also observed that for µ prediction with a suitable choice of the descriptor

(F2B+F3B), the overall best result is obtained with linear ridge regression, which matches with

the findings for the [Cu2] set in the sense that a linear model can perform as well as GPR for µ

prediction. A more detailed analysis of our data for the 6095 constitutional isomers of C7H10O2

can be found in the Supporting Information.

6 Extrapolation to Experimental Structures

Our discussion so far would suggest that simple linear ridge regression is sufficient for predicting

J , rather than requiring a more complex GPR model. This may be related to the unknown

structures (Cu-test) being similar to those used during fitting (which is ensured when the

data set is split in a non-biased way). In the following, it shall thus be studied how well the

25



different models work when extrapolating to experimentally observed structures that are not

closely resembling any structures in Cu-train.

To this end, we selected the dinuclear Cu complexes [Cu(teen)OH]2+2 (teen), [Cu(EAEP)OH]2+2

(EAEP) and [Cu(bipy)OH]2+2 (bipy), Clinoatacamite (Clino) and Tolbachite (Tolba) ( Figure

7)d, whose properties were investigated in experiment and theory in previous studies100,140–144.

For all experimental molecules, predictions were made in their DFT-optimized molecular struc-

tures with all trained models. Since we found that in general the choice of the kernel function

is only important for the Ang+Dist descriptor, and since Matérn(1/2) performs best for this

descriptor, we limit the discussion to this kernel (the results of the remaining kernel functions

are provided in the Supporting Information).
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Figure 7: Schematic illustration of experimentally studied dinuclear copper complexes (or cut-
outs from mineral structures) used in this study to evaluate the extrapolation performance of
GPR and linear ridge regression. The DFT-optimized molecular structures can be found in the
Supporting Information.

dNote that we neglected the out-of-plane Cu ligands for Clino and Tolba, i.e. in the minerals the Cu atoms
have an octahedral coordination.
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X- OH- ox2- MeO- AcO-

teen EAEP bipy Clino Tolba

Figure 8: t-SNE distribution of the training data and the experimental structures. In all cases
a perplexity value of 50 was used. Distributions with other perplexity values can be found in
the Supporting Information.

Comparing the experimental Js (Table 3) of teen, EAEP and bipy with the results obtained
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from DFT using the Green’s function approach to calculate J , it becomes clear that reproducing

experimental trends can be a challenging task. This is partly because of the missing crystal

effects and counter-ions in our DFT simulations. Furthermore, errors due to the approximated

nature of the exchange–correlation functional used in DFT are to be expected. Both are not

affecting our goal in this work, the prediction of DFT reference values with a regression model.

The DFT references (Table 3) suggest that teen and EAEP are supposed to show the strongest

antiferromagnetic coupling (J = −1.21 kJ/mol), followed by bipy and Tolba (both with J =

−0.74 kJ/mol). teen has the weakest AF coupling with −0.46 kJ/mol, and Clino is suggested

to have almost no exchange spin coupling.

Table 3 summarizes the J values predicted for the experimental structures (in their DFT-

optimized molecular structures) employing linear ridge regression and GPR (Matérn (1/2) only)

with all descriptors under study. With ridge regression, one obtains no reasonable results, as in

some cases the absolute values of J are significantly overestimated, and in some cases the model

even predicts the incorrect sign (with SOAP and Ang+Dist being at least in the right ballpark,

and with the good performance for Tolba being related to its closeness to the training set).

This suggests that for extrapolation to structures clearly different from the training data, a

linear model is not sufficient, although prediction for a test set chemically close to the training

set looks promising (see Section 4).

Within GPR (Matérn(1/2)), the F2B, F2B+F3B, MBTR and SOAP descriptors are not capable

of predicting reasonable Js with sufficiently low errors for all molecules except for Tolba. This

structure is clearly the most similar one to the [Cu2] set, and thus it is not surprising to

obtain good predictions and small errors for it. In fact, considering a t-SNE distribution145

(see Figure 8), for all mentioned descriptors Tolba lies close to the halogene-bridged molecules

in the training set. The remaining molecules are somewhat apart from the training data, which

is probably the reason for the poor prediction and rather large errors.

The descriptor guided by chemical intuition (Ang+Dist) yields the best results using GPR
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(Matérn(1/2)) when predictions on structures not similar to the test set are done. Except

for Clino, the predicted Js are close to the reference values and, at the same time, have

sufficiently low errors (within the error bar all predictions fit to the reference). The rather good

predictions and low error bars possibly result from an appropriate distribution of the data using

the Ang+Dist descriptor (see Figure 8). This distribution also suggests why the prediction for

Clino works rather poorly with the Ang+Dist descriptor: data point is slightly further apart

from the training data than the remaining experimental structures, and this is consistently

observed for different perplexity values (see Supporting Information). Furthermore, it agrees

with the fact that for Clino, none of the Euclidean distances to the different groups of Cu–

Cu bridges (Figure 9)e is as small as for the remaining experimental systems. The origin for

this observation might be that Clino shows a distinct nonplanar structure (see Supporting

Information), which is not captured within the [Cu2] set. For future applications, such issues

might be solved with active learning strategies78,146. Overall, although Ang+Dist has only a

dimension of 5 features, it captures the essential information correlated with J . Using artificial

neuronal networks, it was shown that such sparse descriptors can also give accurate results for

other properties of transition metal complexes147.
eWe employed the center of the cluster of a given Cu–Cu bridge to calculate the distances.
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Figure 9: Euclidean distances between the experimental structures and the center of a given
bridge type, calculated from the Ang+Dist descriptor.

To capture the qualitative trends correctly, i.e. that for teen a smaller AF coupling is predicted

than for bipy and Tolba, probably requires further model tuning. Nevertheless, the results

suggest that a descriptor guided by simple chemical intuition can lead to reasonable results.

Such information (Cu–Cu distance and bridging angles) is likely also encoded in descriptors

such as SOAP, MBTR or F2B (F3B), but might require more training data to make the model

recognize these features.
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Table 3: J for experimental structures (see Figure 7) in kJ/mol, as obtained from DFT and
as obtained from predictions from linear ridge regression and GPR. In addition, for GPR the
standard deviations are provided. Predictions were done on DFT (BP86/def2-SVP)-optimized
structures.

teen EAEP bipy Clino Tolba
exp.100 -1.23 -0.39 0.52 - -
DFT
B3LYP/TZVP −0.46 −1.21 −0.74 0.00 −0.74
linear ridge reg.
F2B 2.86 137.79 270.96 47.94 −0.79
F2B + F3B 76.18 732.04 2·103 −19.14 −0.73
MBTR 1·107 4·106 2·106 4·106 −0.52
SOAP −3.46 −0.56 −1.42 −0.88 −0.74
Ang. + Dist. −1.36 −2.10 −1.33 2.71 −1.25
Matérn(1/2)
F2B −0.71 ± 2.38 −0.90 ± 2.03 −0.93 ± 2.35 −4.76 ±1.93 −0.79 ± 0.74
F2B + F3B −0.64 ± 4.88 0.00 ± 5.49 0.00 ± 5.49 −3.69 ± 2.01 −0.91 ± 0.83
MBTR 0.00 ± 5.08 0.00 ± 5.08 0.00 ± 5.08 0.00 ± 5.08 −0.78 ± 0.72
SOAP −0.71 ± 3.72 −0.79 ± 3.33 −0.81 ± 3.01 −2.75 ± 0.83 −0.92 ± 0.51
Ang. + Dist. −0.62 ± 0.50 −1.18 ± 0.24 −0.64 ± 0.46 −0.20 ± 1.38 −0.50 ± 0.44

Since extrapolation to structures not captured in a training data set is of practical importance,

we have shown that this is in principle possible using GPR. Our results suggest that, at least

in the case of few training data points, a descriptor based on chemical intuition outperforms

other descriptors which contain more information (in terms of features) about the molecular

systems under study. It is known that ML can suffer from too many features compared with

the number of samples148,149, which could be one reason for why the GPR models trained with

the more sophisticated descriptors perform poorly when it comes to extrapolation. In further

studies, we will address this issue.

31



7 Conclusion and Outlook

We have explored the machine-learnability of Heisenberg exchange spin coupling constants

J for a series of 257 small doubly bridged dicopper complexes, employing Gaussian process

regression and a selection of different kernel functions (Matérn(1/2), Matérn(3/2), radial basis

functions) and molecular descriptors (FMB, MBTR, SOAP, angles + distances). We find that

the performance of GPR is nearly independent of the choice of kernel and descriptor, with

MAEs on the order of 0.1 kJ/mol (J ranges from −6.50 to 0.03 kJ/mol), with the exception of

the angles+distances descriptor yielding much larger errors. Interestingly, a simple linear ridge

regression performs equally well, with the exception of the simplest descriptor consisting of only

Cu–bridge–Cu angles and Cu–Cu distances, suggesting that any nonlinearities in structure–

property relations are taken care of by the more sophisticated descriptors. However, when

extrapolating to experimental dicopper complexes clearly outside of our training/test data set,

only the angles + distances descriptor is capable of making reliable predictions in combination

with GPR, and all linear models fail (sometimes dramatically). In other words, a compact

descriptor incorporating chemical intuition (the relation between bond angles / distances and

J is known since the 1950s12), while not capable of linearizing the problem, outperforms several

sophisticated state-of-the-art descriptors when it comes to extrapolation.

This finding is indeed restricted to J , as would be expected from the fact that the intuition-based

angles + distances descriptor is tailored to correlate with this property. For polarizabilities and

dipole moments, all descriptors perform equally poorly for extrapolation. As far as predictions

for the test set drawn from the small dicopper molecules are concerned, J interestingly behaves

very similar to the electric polarizability α, with prediction quality being high for both. This

may be rationalized by both properties encoding how the electronic structure responds to

perturbations, and the evaluation of both depending on unoccupied molecular orbitals. For

the dipole moment µ, representing a purely ground-state property, all regression models under

consideration do not perform well. This distinction between α and µ was also found for a data
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set of 6095 constitutional isomers of C7H10O2 frequently studied in the literature, suggesting

that this is a general trend and not specific to our dicopper data set.

Overall, our findings highlight the crucial importance of the descriptor, which, alone or in

combination with a kernel function, encodes chemical structure–property relationships. Our

data also suggest that chemical intuition can play a central role in finding suitable descriptors

for a given problem, even though systematic and automated feature selection91,150–152 — on its

own or combined with such intuition — has proven promising for spin-dependent properties150

and may be an exciting avenue to explore more deeply in chemistry and materials science.

Acknowledgement

We thank Ömer Sahin for valuable discussions. Financial support of this research by the

German Research Foundation (DFG) via projects HE 5675/6-1 (MPB, NM, and CH) and

389479699/GRK2455 (JP) is acknowledged. The authors thank the High-Performance Com-

puting Center at University of Hamburg for computational resources.

Supporting Information Available

Python scripts to reproduce our results (including readily available descriptors), Cartesian

coordinates and properties, division of complexes into test and training data set, data for

further kernels and properties (α, µ) for extrapolation to experimental structures, t-SNE data

with different perplexity factors, and data for the set of 6095 constitutional isomers of C7H10O2

are provided in the Supporting Information.

33



A Gaussian Process Regression

A.1 Conceptual Introduction

For the simplest case of one training input x with functional value f(x) and one test data point

x∗ with functional value f∗ = f(x∗), a bivariate Gaussian distribution is assumed,

 f

f∗

 = N


 0

0

 ,

 K K∗

K∗ K∗∗


 (16)

with a mean of zero and a covariance matrixK. K has the entriesK = k(x,x), K∗ = k(x,x∗) =

k(x∗,x), K∗∗ = k(x∗,x∗), where k is a kernel function which encodes the correlation between

chemical properties depending on distances in molecular-structure space (see below). k(x,x∗)

reaches a maximum if x is equal to x∗ and approaches zero if x∗ is very different from x.

Therefore, if two inputs, i.e., two molecular structures, are very different, K will be a unit

matrix, resulting in a perfect bell-shape of the distribution (see left-hand side of Figure 10).

The idea behind GPR is that if we choose a certain training input x, we obtain a conditional

distribution p(f∗|x∗,x, f) which is also Gaussian, like cutting through an actual bell (the red

lines in Figure 10). The mathematical relations for the mean (in this case zero) and the variance

of p(f∗|x∗,x, f) are established, including their generalization to higher dimensions31,76, so that

both the most likely functional value for a given test data point x∗ and its variance are known.

If the test data point is close to a training data point, k(x,x∗) will become nonzero, resulting

in a distorted bivariate Gaussian (see right-hand side of Figure 10). This implies that f∗ and

f are correlated, pulling the prediction for f∗ closer to f(x) and reducing the variance.
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Figure 10: Illustration of how the covariance matrixK (with elements determined by the kernel)
determines the distribution of f∗ if a the functional value f for a training input is known (red
line in the bottom plots), depending on whether the test molecular structure encoded via a
descriptor as x∗ is far from a molecular structure x in the training set (left-hand side) or close
to it (right-hand side). In other words, x and x∗ determine what the bivariate Gaussian looks
like, and f = f(x) determines where to cut it, and all three together determine the most likely
value and variance for f∗. Normalization has not been considered in these plots.

A.2 Further Information

The coefficients {αi} of Eq. (2) are determined from the (N×N)-dimensional covariance matrix

of the training set, K, the noise variance, σ2
n, and the N -dimensional vector of training labels,

y,

α =


α1

...

αN

 =
(
K + σ2

nIN
)−1

y (17)
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where IN is the (N ×N)-dimensional unity matrix. While the coefficients {αi} are global, the

coefficients {β∗i } of Eq. (3) depend on the queried molecule, represented by input vector x∗,

β∗ =


β∗1
...

βN

 =
(
K + σ2

nIN
)−1

k∗ (18)

where k∗ = k(X,x∗) is an N -dimensional covariance vector that measures similarity between

the queried molecule and the N molecules of the training set,

k∗ =


k(x1,x∗)

...

k(xN ,x∗)

 (19)

The GPR model studied here comprises three hyperparameters: the signal variance, σ2
f , and

the length scale, l—see Eqs. (4), (5), and (6)—as well as the noise variance, σ2
n. The hyper-

parameters implicitly determine the hypothesis space, which can be interpreted as the space

of possible functions. The actual regression step, cf. Eq. (2), which takes into account the

training data, weights those functions according to how likely they are to explain the data.

In GPR, hyperparameter optimization is performed in a Bayesian fashion, i.e., by maximizing

the marginal likelihood p (D | σ2
f , l, σ

2
n), which is the probability of observing the training data

conditioned on the specific values of the hyperparameters,

opt
(
σ2
f , l, σ

2
n

)
= arg max

σ2
f ,l,σ

2
n

p
(
D | σ2

f , l, σ
2
n

)
(20)

Assuming likelihood and prior to be Gaussian (as applies here), the marginal likelihood is

Gaussian, too, which can be expressed in closed form,
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log p
(
D | σ2

f , l, σ
2
n

)
= −1

2
y>
(
K + σ2

nIN
)−1

y − 1

2
log
∣∣K + σ2

nIN
∣∣− N

2
log 2π (21)

B The Molecules under Study

The [Cu2] input structures (Figure 2) were generated as described in Section 3.1. For all

molecules, the copper atoms have an oxidation state of +II, resulting in (formally) one unpaired

electron per copper atom. The two unpaired electrons can be coupled ferromagnetically (triplet)

or antiferromagnetically (singlet). For most cases, the ground state is a singlet, resulting in

a negative exchange coupling constant J (see Table 4 and Figure 11), with an average of J

= −1.00 kJ/mol. The distributions and statistics of the remaining properties are provided in

Table 4 and Figure 11.

Table 4: Statistical values of J , α, and µ for the [Cu2] molecules as obtained from
B3LYP/TZVP. Std refers to the standard deviation, and Min / Max to smallest / largest
values in the data set.

J [kJ/mol] α [Bohr3] µ [D]
Average −1.00 141.0 2.60
Std 1.62 32.93 1.64

Median −0.42 142.0 2.53
Min −6.50 59.77 0.00
Max 0.03 220.44 7.56
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J

α

μ

Figure 11: Distribution of J , µ and α for the [Cu2] molecules as obtained from B3LYP/TZVP
in the high-spin state.
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