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Many-body potential energy functions (MB-PEFs), which integrate data-driven representa-

tions of many-body short-range quantum mechanical interactions with physics-based rep-

resentations of many-body polarization and long-range interactions, have recently been

shown to provide high accuracy in the description of molecular interactions, from the gas

to the condensed phase. Here, we present MB-Fit, a software infrastructure for the auto-

mated development of MB-PEFs for generic molecules within the TTM-nrg (“Thole-type

model energy”) and MB-nrg (“many-body energy”) theoretical frameworks. Besides pro-

viding all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs,

MB-Fit provides a seamless interface with the MBX software, a many-body energy/force

calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, we

believe that MB-Fit will enable routine, predictive computer simulations of generic (small)

molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling

of isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and

phase diagrams.
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I. INTRODUCTION

Molecular-level computer simulations, such as molecular dynamics (MD) and Monte Carlo

(MC) simulations,1,2 have become an indispensable tool in molecular sciences, providing funda-

mental insights into structural, thermodynamic, and dynamical properties of molecular systems,

from materials to biomolecules, which are difficult (if not impossible) to obtain by other means.3–8

However, the level of realism and the predictive power of any MD and MC simulation depends

sensitively on the accuracy of the potential energy function (PEF) used to represent the multidi-

mensional potential energy surface (PES) of the molecular system in question. In the early days of

computer simulations, due to limited computational resources, the only effectively suitable PEFs

were empirically parameterized force fields (FFs) that adopted relatively simple expressions to de-

scribe intramolecular distortions and purely pairwise additive functions to describe intermolecular

interactions.9,10 While more sophisticated (nonpolarizable and polarizable) FFs have been devel-

oped over the years and are still the most common PEFs used in MD and MC simulations,11–15 in

the last decade machine-learning (ML) models trained on electronic structure data have gained in

popularity, enabling computer simulations with higher level of accuracy.16–19

Various types of ML PEFs have been proposed, including neural network potentials (NNPs),20–29

Gaussian approximation potentials (GAPs),30 moment tensor potentials (MTPs),31 and spectral

neighbor analysis potentials (SNAPs),32 as well as PEFs based on the atomic cluster expansion,33

graph networks, kernel ridge regression methods,34 gradient-domain machine learning (GDML),35

support vector machines (SVM),36 permutationally invariant polynomials (PIPs),37–42 and per-

mutation invariant polynomial neural networks (PIP-NNs).43–46 The interested reader is re-

ferred to several excellent reviews of ML-based PEFs which have recently appeared in the

literature.16,18,47–49 It is generally found that ML PEFs trained on gas-phase reference data provide

highly accurate descriptions of individual molecules and small clusters of molecules50,51 but are

not necessarily able to describe condensed-phase systems.52 On the other hand, ML PEFs trained

on condensed-phase data are able to closely reproduce the corresponding ab initio simulations

of liquid and solid phases but are not, in general, directly transferable to molecular clusters or

air/solid and air/liquid interfaces.53 In this context, it should be noted that since gas-phase train-

ing data are generated for molecular systems with a handful of atoms, they can be computed at

relatively higher levels of theory, often coupled cluster with single, double, and perturbative triple

excitations, i.e., CCSD(T), the “gold standard” for molecular interactions,54 compared to training
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data for condensed-phase systems which are effectively limited to density functional theory (DFT)

calculations.17

An alternative ML approach to the development of accurate multidimensional PEFs, which

are transferable from the gas to the condensed phase, can be rigorously derived from the many-

body expansion (MBE) of the energy.55 These many-body PEFs (MB-PEFs) adopt a hybrid

data-driven/physics-based scheme, where a data-driven model, which captures many-body (short-

range) quantum-mechanical interactions arising from the overlap of the electron densities of

individual molecules (e.g., Pauli repulsion, and charge transfer and penetration), is integrated

with a physics-based model of many-body interactions, which are generally represented by clas-

sical many-body electrostatics.56,57 A remarkable example of MB-PEFs is the MB-pol PEF for

water.58–60 MB-pol has been shown to correctly reproduce the properties of water,56,61 from small

gas-phase clusters62–73 to liquid water,74–80 the air/water interface,81–85, and ice.86–90 The hybrid

data-driven/physics-based scheme originally developed for MB-pol was later extended to generic

molecules through the introduction of two families of MB-PEFs, the TTM-nrg (for “Thole-type

model energy”) and MB-nrg (for “many-body energy”) PEFs, for halide91–93 and alkali-metal94–96

ions in water, molecular fluids,97,98 and small molecules in water.99 When employed in computer

simulations, the MB-nrg PEFs have been shown to consistently provide remarkable agreement

with experimental data for both gas-phase and condensed-phase systems.100–107

Here, we present MB-Fit, a complete software infrastructure for the automated development

of TTM-nrg and MB-nrg PEFs for generic molecules. Besides providing a complete array of

computational tools for generating the necessary training and test sets, performing the required

quantum mechanical (QM) calculations, and fitting the TTM-nrg and MB-nrg PEFs, MB-Fit is

seamlessly integrated with the MBX software,108 a many-body energy/force calculator in both

finite and periodic boundary conditions, which enables computer simulations with both TTM-nrg

and MB-nrg PEFs, currently supporting LAMMPS109 and i-PI110.

II. THEORY

A. Many-body potential energy functions

The total energy of a system containing N (atomic and/or molecular) monomers can be formally

expressed as the sum of individual n-body energies, εnB, from one-body (1B) to N-body (NB),
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which is known as the many-body expansion (MBE) of the energy:55

EN(1, . . . ,N) =
N

∑
i=1

ε
1B(i)+

N

∑
i< j

ε
2B(i, j)+

N

∑
i< j<k

ε
3B(i, j,k)+ . . .+ ε

NB(1, . . . ,N), (1)

In Eq. 1, ε1B(i), corresponds to the distortion energy of monomer i from the corresponding equi-

librium geometry, i.e., ε1B(i) = E(i)−Eeq(i). It follows that ε1B = 0 for monoatomic monomers.

A rearrangement of Eq. 1 allows all higher-order n-body energies, εnB(2, . . . ,n), to be defined

recursively as

ε
nB(1, . . . ,n) = En(1, . . . ,n)−∑

i
ε

1B(i)−∑
i< j

ε
2B(i, j)− . . .

− ∑
i< j<k

ε
3B(i, j,k)− . . .− ε

(n-1)B(1, . . . ,n−1)
(2)

Since the MBE converges quickly for non-metallic systems, Eq. 1 served as a rigorous theoreti-

cal framework for the development of TTM-nrg and MB-nrg PEFs for various aqueous systems

and molecular fluids, which are fully transferable from the gas to the condensed phase. Specif-

ically, building upon the MB-pol PEF for water, TTM-nrg and MB-nrg PEFs were introduced

for halide91,92 and alkali-metal ions94,95 in water, water–carbon dioxide97 and water–methane98

mixtures, and small molecules in water.99 When used in computer simulations, the TTM-nrg and

MB-nrg PEFs consistently provide remarkable agreement with experimental data, which is effec-

tively quantitative in the case of the MB-nrg PEFs.97,98,100–105,107

In the most general form, the TTM-nrg and MB-nrg PEFs approximate the MBE of Eq. 1 as

EN(1, . . . ,N) =
N

∑
i=1

V 1B(i)+
N

∑
i> j

V 2B(i, j)+
N

∑
i> j>k

V 3B(i, j,k)+Vpol(1, . . . ,N) (3)

where V 1B, V 2B, and V 3B are fitted to reproduce the corresponding reference values calculated at

the desired QM level of theory, and Vpol is an implicit many-body polarization term representing

induction interactions. In both TTM-nrg and MB-nrg PEFs, the 1B term is described by a set of

PIPs,37 i.e., ε1B =V 1B
PIP.

The 2B term of Eq. 3 is expressed as

V 2B =V 2B
sr +V 2B

disp +Velec (4)

where V 2B
sr describes short-range interactions between each pair of monomers, V 2B

disp describes 2B

dispersion energy, and Velec describes permanent electrostatics. In the TTM-nrg PEFs, V 2B
sr is
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represented by a sum of pairwise Born-Mayer functions between all pairs of atoms located on the

two monomers (M1 and M2),111

V 2B
sr, TTM-nrg = ∑

i∈M1
j∈M2

Ai je−bi jRi j (5)

Here, Ri j is the distance between atoms i and j on monomers M1 and M2, respectively, and Ai j

and bi j are fitting parameters. In the MB-nrg PEFs, V 2B
sr is expressed in terms of a set of PIPs37

that smoothly switch to zero as the distance between monomers M1 and M2 becomes larger than

a predefined cutoff value,

V 2B
sr, MB-nrg = s2(

R11−Rin

Rout−Rin
)V 2B

PIP(M1,M2) (6)

where R11 is the distance between the first atom of M1 and the first atom of M2. In Eq. 6, s2(t) is

a switching function defined as

s2(t) =


1 if t < 0

0.5× [1+ cos(πt)] if 0≤ t < 1

0 if 1≤ t

(7)

By construction, s2(t) = 1 when R11 ≤ Rin and s2(t) = 0 when R11 ≥ Rout. Therefore, the values

of the inner (Rin) and outer (Rout) cutoffs in Eq. 6 define the region over which V 2B
sr, MB-nrg is slowly

and continuously switched off. The values of Rin and Rout are chosen based on the distance at

which the short-range component of ε2B is no longer required to accurately model the 2B QM

energies. Since in the current version of MB-Fit the switching function is calculated based on

the coordinates of the first atom of each monomer, it is recommended to define the atom ordering

so that the most “central” atom in each monomer is listed first. It should be noted that, while

this definition of R11 is well suited for small molecules, more general definitions of the switching

distance between two monomers (e.g., the distance between the monomer’s centers of mass) may

be more appropriate for larger molecules and will be implemented in future releases of MB-Fit.

The 2B dispersion energy in both TTM-nrg and MB-nrg PEFs is represented by a sum of

pairwise additive contributions,

V 2B
disp = ∑

i∈M1
j∈M2

− f (δi jRi j)
C6,i j

R6
i j

(8)
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where Ri j is the distance between atoms i and j respectively on monomers M1 and M2, C6,i j is

the corresponding dispersion coefficient derived from QM calculations, and f (δi jRi j) is the Tang-

Toennies damping function,112

f (δi j,Ri j) = 1− exp(−δi jRi j)
6

∑
n=0

(δi jRi j)
n

n!
(9)

where δi j is set equal to fitting parameter bi j in Eq. 5.

While the 3B term in Eq. 1 is set to zero in the TTM-nrg PEFs, it is represented by a short-range

term in the MB-nrg PEFs:

V 3B =V 3B
sr (10)

As in the analogous 2B term, V 3B
sr is represented by a PIP37 over variables that are functions of the

distances between all atoms of the three monomers of the trimer,

V 3B
sr = [s3(t12)s3(t13)+ s3(t12)s3(t23)+ s3(t13)s3(t23)]V 3B

PIP(M1,M2,M3) (11)

Here, the sum of the three terms in the square bracket represents a compound switching function

that smoothly goes to zero as any of the molecules moves apart from the other two. In Eq. 11,

s3(t) = s2(t) from Eq. 7, and

tmn =
Rmn

Rcut
(12)

where Rmn is the distance between the first atoms on monomers m and n, and Rcut is a predefined 3B

cutoff chosen to disable the 3B short-range term at distances where its contribution is negligible.

Finally, Vpol in Eq. 1 describes induction energy and is represented by a classical many-body

polarization term built upon a modified version of the Thole-type model originally introduced in

Ref. 113.

B. Permutationally invariant polynomials

As discussed in the previous section, both the TTM-nrg and MB-nrg PEFs contain 1B terms

represented by PIPs, with the MB-nrg PEFs also including explicit 2B and 3B PIP terms. These

PIPs take the following general form:37

P(ξ1,ξ2, . . . ,ξN) =
L

∑
l=0

AlS [ξ1
al1,ξ2

al2, . . . ,ξN
alN ] (13)

Here, ξi is a variable defined as a function of the distance R jk between sites j and k, which include

both physical atoms and fictitious sites of the monomers contributing to the 1B, 2B, or 3B PIP.
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N is the total number of such variables, L is the total number of monomials in the polynomial,

Al is a linear fitting parameter and coefficient for monomial l, and S [ξ1
al1,ξ2

al2, . . . ,ξN
alN ] is an

operator that symmetrizes each monomial l to guarantee that the PIP is invariant with respect to

permutations of equivalent sites. Each ali passed to S indicates the degree of each ξi in monomial l.

The theory behind the development and symmetrization process of the PIPs is detailed in Ref. 37.

In the MB-nrg PEFs, the 2B and 3B PIPs have been shown to correct deficiencies intrinsic to

classical representations (e.g., Born-Mayer and Lennard-Jones functions) of quantum-mechanical

short-range interactions (e.g., Pauli repulsion, charge transfer and penetration) that arise from the

overlap of the monomer’s electron densities.57,93,96

In the MB-Fit software, four different functional forms are available for the variables ξ . Each

form is a function of the distance R and one or two non-linear fitting parameters k and d0:

ξ
exp(R) =e−kR (14a)

ξ
exp0(R) =e−k(R−d0) (14b)

ξ
coul(R) =e−kR/R (14c)

ξ
coul0(R) =e−k(R−d0)/R (14d)

It is important to note that, while the functional forms with the d0 parameter (Eqs. 14b and 14d) are

usually able to more closely reproduce the QM training data, they may also lead to discontinuities

in the representation of the target multidimensional PES which, in turn, may result in instabilities

in MD and MC simulations that use MB-nrg PEFs containing these monomials.

C. Fitting procedure

Eqs. 3 and 4 show that both TTM-nrg and MB-nrg PEFs include terms describing 1B dis-

tortions (V 1B
PIP), 2B short-range interactions (V 2B

sr ), 2B dispersion (V 2B
disp), permanent electrostatics

(Velec), and many-body polarization (Vpol). The MB-nrg PEFs also include an explicit term de-

scribing short-range 3B interactions (V 3B
sr in Eq. 11). As discussed in section II A, V 2B

disp, Velec,

and Vpol are derived from QM calculations of dispersion coefficients, atomic charges, and atomic

polarizabilities carried out for an isolated monomer. The remaining V 1B
PIP, V 2B

sr and V 3B
sr terms are

fitted to reproduce reference 1B, 2B, and 3B energies calculated at the desired QM level of theory.

Specifically, all linear and nonlinear fitting parameters entering the expressions of V 1B
PIP, V 2B

sr and

V 3B
sr are determined by minimizing the regularized weighted sum of squared residuals calculated

7



for the corresponding training sets, S ,

χ
2 = ∑

k∈S
wk
[
V nB(k)−V nB

ref (k)
]2
+Γ

2
∑

l
c2

l (15)

where V nB
ref (k) and V nB(k) are the reference QM and corresponding TTM-nrg or MB-nrg nB ener-

gies (n = 1,2,3) for the kth configuration in the training set. The weights, wk, are set to emphasize

configurations with low energies,

wk =

(
DE

Ek−Emin +DE

)2

(16)

where Ek is the energy of the kth n-body (i.e. monomer, dimer, or trimer) configuration in the

training set, and Emin is the corresponding minimum energy. For ε1B training sets, Emin corre-

sponds to the energy of the monomer’s optimized geomety, while for ε2B and ε3B, the binding

energies of the minimum-energy dimer or trimer geometries are used. DE in Eq. 16 thus defines

the range of favorably weighted energies, with wk = 0.25 for Ek = DE and wk = 1 for Ek = Emin.

The regularization parameter, Γ, is introduced in order to reduce the variation of the linear fitting

parameters (larger Γ values suppress any variation) without spoiling the overall accuracy of the fit

(favored by smaller Γ values), contributing no more than 1% to χ2. Given the small number of

linear parameters, Γ is not necessary in fitting the TTM-nrg PEFs. In Eq. 15, the linear parame-

ters, cl , are obtained through singular value decomposition, while the simplex algorithm is used to

optimize the nonlinear parameters.

III. SOFTWARE INFRASTRUCTURE

The MB-Fit software supports a number of features enabling the user to construct well-behaved

TTM-nrg and MB-nrg PEFs for generic molecules by following a standardized workflow. Broadly,

the steps in the workflow are as follows: 1) generate training and test sets, 2) set up and perform

the required QM calculations for collecting the necessary training data, 3) optimize the linear and

non-linear parameters entering the mathematical expressions of the TTM-nrg and MB-nrg PEFs,

and 4) generate the TTM-nrg and MB-nrg PEF codes that are exported to MBX108 for subsequent

MD simulations with LAMMPS109 or i-PI.110 The features provided by MB-Fit for each step

of the workflow shown in Fig. 1 are elaborated upon below. Optionally, some of the steps may

be skipped if the user wishes to directly provide the necessary data (e.g., dispersion coefficients,

atomic charges, and atomic polarizabilities), which may be acquired using software different from
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PostgreSQL 
Database

Configuration
Generator

QM 
Calculator

Polynomial
Generator

Fitting 
Procedure

Configurations
Hash Name Coords
...
Fe87 H2O H x y z H ...
6Kld H2O H x y z H ...
j4fD NH3 N x y z H ...
8jdF NH3 N x y z H ...
...

Energies
Hash Energy
...
Fe875.46 kcal/mol
6Kld10.40 kcal/mol
...

FIG. 1. MB-Fit drives generation of molecular configurations, quantum mechanical calculations, generation

of permutationally invariant polynomials, parameter optimization, and export the final TTM-nrg and MB-

nrg PEFs to the MBX108 many-body energy/force calculator for molecular-level computer simulations. All

data are stored in a central PostgreSQL database.

that currently supported by MB-Fit. MB-Fit is written in Python with a centralized postgreSQL

database for storage of QM data. C++ is used in the codes for the parameter optimizations and

energy evaluations of the TTM-nrg and MB-nrg PEFs. Maple114 is employed for an optional

factorization of the PIPs which allows for optimizing the run time of the final MB-PEFs.

It should be noted that, while the many-body formalism implemented in MB-Fit is completely

general, its “off-the-shelf” application to large molecules (with more than ∼15-20 atoms) can

become computationally expensive, both in terms of training and simulation.

A. Database

Storage of molecular configurations and associated nB energies is implemented using a Post-

greSQL database.115 This database can be either local or centralized, and allows simultaneous

connections by multiple clients, facilitating collaboration. The basic unit of storage within the

database is a molecular configuration, uniquely defined by a list of atoms and their coordinates
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alongside other molecular properties, such as net charge and spin multiplicity. Molecules are ro-

tated into standard orientation and moved to their center of mass prior to insertion into the database

in order to avoid repetition of configurations that differ only by rotations and/or translations. Each

molecular configuration can be associated with one or more “models”. A “model” is defined by

the QM level of theory and the basis set to be used in the electronic structure calculations. Each

configuration-model pair is associated with a number of electronic structure calculations required

to obtain the corresponding nB energies. Tags can be assigned to groups of configuration-model

pairs and later used to retrieve the corresponding nB energies. Generally, each training/test set is

given a unique tag.

Database operations are implemented by server-side PostgreSQL functions and interfaced into

the Python MB-Fit library using psycopg2.116 Python interfaces are available to initialize the

database, insert and retrieve configurations, generate input for electronic structure calculations,

insert calculation results into the database, and generate training/test sets consisting of configura-

tions and nB energies from the data stored in the database. Data insertion and retrieval is batched

to allow a minimum of round-trips between the client and the server while avoiding transferring

large amounts of data in a single payload. All operations run in average-case constant or linear

time, thus removing any database access bottlenecks. Favorable runtime and scalability enable in-

teractive retrieval of training set data consisting of tens of thousands of molecular configurations.

B. Training and test sets

As in the case of any ML PEF, training and test sets for the TTM-nrg and MB-nrg PEFs should

provide a complete representation of the “physically relevant” low-energy regions of the target

multidimensional PES which are explored in MD and MC simulations. At the same time, an ade-

quate representation of high-energy configurations is also required for the TTM-nrg and MB-nrg

PEFs in order to guarantee the absence of “holes” on the PES in regions where the PIPs, extrap-

olating from (incomplete) training sets, may predict unphysical energy values. To satisfy these

requirements, the 1B training set is generated by sampling the harmonic distribution associated

with the optimized structure of the monomer. Other local minima can also be sampled for com-

plex molecules. Briefly, within the harmonic approximation, the canonical partition function for

an N-atom molecule can be written as117

Z = Tr
(

e−β Ĥ
)
= |det(2πD)|−1

∫
e−

1
2 (r−q)TD−1(r−q)dr (17)
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where

Ĥ =
1
2

∇
TM−1

∇+
1
2
(r−q)TK(r−q) (18)

is the Hamiltonian, with the minimum of the potential energy set equal to zero, β = 1/kBT with

kB being Boltzmann’s constant, D is the displacement-displacement correlation matrix (i.e., the

distribution covariance matrix), K is the Hessian, q is the center of the Gaussian. The covariance

matrix of the harmonic distribution is given by

D = M−1/2d(Ω)M−1/2 (19)

where M = diag(mi) is the mass matrix, Ω = diag(ωi) is the frequency matrix. For the classical

harmonic partition function, the auxiliary function d(Ω) is defined as

dclass(ωi;T ) =
kBT
ω2

i
(20)

while for the quantum harmonic partition function, it takes the following form

dquant(ωi;T ) =
h̄

2ωi
coth

(
h̄ωi

2kBT

)
(21)

In Eqs. 20 and 21, dclass(ωi;T ) and dquant(ωi;T ) describe the breadth of the corresponding har-

monic distributions at temperature T along the ith normal mode.

MB-fit allows the user to generate the training and test sets by sampling molecular configu-

rations using either the classical or the quantum harmonic distribution. Specifically, following

Ref. 117, MB-fit samples a given (classical or quantum) harmonic distribution using inverse trans-

form sampling that allows for sampling a normal distribution N (q,D), with mean q and covari-

ance matrix D, starting from an initial sequence of points uniform on [0,1)3N . A transformation

matrix is then constructed using the normal modes obtained from the mass-scaled Hessian which

are obtained from the corresponding QM calculations. Since it was shown that effectively no dif-

ferences are found when pseudorandom or quasirandom sequences are used to define the starting

uniform distribution,117 only the former is currently available in MB-Fit to generate the initial se-

quence of points. After transformation to N (q,D), these points correspond to unique molecular

configurations that can thus be included in the training/test sets.

In sampling the classical and quantum harmonic distributions, the only free parameter to be

chosen is the temperature, which effectively determines the range of molecular distortions that

are included in the training/test sets. As discussed in Ref. 117, linear (Ti+1− Ti = constant) or

geometric (Ti+1/Ti = constant) temperature progressions can be used to efficiently sample both
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distributions. Ideally, the temperature range should be sufficiently wide to “excite” all normal

modes of the monomer at the same time. Although this protocol often results in a maximum

temperature that may be significantly higher than the temperature range usually explored in MD

and MC simulations, highly distorted configurations generated at elevated temperatures guarantee

that the 1B PIPs of the TTM-nrg and MB-nrg PEFs are well-behaved over a wide region of the

configuration space. In this context, it should be noted that, since it primarily samples low-energy

configurations, the classical harmonic distribution may lead to “holes” in the representation of ε1B

in regions of the multidimensional PES that are not properly represented in the training sets used

to generate the corresponding PIPs. On the other hand, sampling exclusively with the quantum

harmonic distribution may result in a sub-optimal representation of ε1B in the minimum-energy

regions of the multidimensional PES, especially for floppy molecules with several atoms. In these

cases, it is thus recommended to supplement the training/test sets generated from sampling the

classical harmonic distribution with configurations sampled with the corresponding quantum har-

monic distribution.

It should also be noted that some complications may arise in generating training sets for

“floppy” molecules since sampling high-frequency normal modes may cause low-frequency nor-

mal modes to break.117 It was shown that this problem can be overcome by sampling each normal

mode at a characteristic temperature directly related to its frequency, which effectively mimics the

concept of the Einstein temperature introduced to model the heat capacity of crystals.117 While

this feature is currently not implemented in MB-Fit, it will become available in future releases.

For the training/test sets of the higher-body (>1B) terms of Eq. 1, MB-fit employs a general

configuration generator that uses distance-based sampling with randomized rotations which is ap-

plicable to both rigid and flexible monomers. The latter can be sampled from the 1B training/test

sets described above or re-generated as required with the normal-mode sampling algorithms. Con-

figurations are automatically screened for inter-molecular atomic distances that fall below a prede-

fined cutoff distance corresponding to a fraction (0.8) of the sum of the van der Waals radii of the

two closest atoms on two monomers of the target n-body system. Molecules are randomly rotated

using a quaternion-based algorithm.118 However, the higher-body terms in Eq. 1 are, in general,

associated with complicated, multidimensional energy landscapes. This implies that the random

distance and rotation sampling may not always suffice for generating adequate 2B and 3B training

sets for the MB-nrg PEFs. It is thus recommended to augment the 2B and 3B training sets by sam-

pling from MD or MC simulations carried out under various temperature and pressure conditions.
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Future releases of MB-Fit will include an active-learning approach to training set reduction which

was shown to be effective in the development of representative training sets for ion–water MB-nrg

PEFs.107,119

C. Quantum mechanical calculations

MB-Fit includes an interface that drives QM calculations in order to optimize molecular struc-

tures, perform normal-mode analysis, and compute molecular properties (e.g., atomic charges,

atomic polarizabilities, and dispersion coefficients). MB-Fit supports running QM calculations

locally or, alternatively, provides a job manager that generates short Python scripts for each nB

energy calculation which can then be executed on HPC platforms or in a cloud or grid computing

environment like Open Science Grid.120 The details of job scheduling depend on the platform and

are currently up to the user, but interfaces with common job schedulers will be included in future

releases of MB-Fit. Once the calculations have completed, the job manager automatically parses

QM data from output files and adds them to the database. The calculation of individual nB energies

(εnB in Eq. 2) from QM outputs is fully automated. MB-Fit uses third-party software to perform

QM calculations, currently supporting Q-Chem121 and Psi4.122 Extensions to other software are

planned for future releases. Electronic structure calculations can be carried out at an arbitrary QM

level of theory using an arbitrary basis set (among those available in Q-Chem and Psi4).

As described in Sec. II A, the TTM-nrg and MB-nrg PEFs adopt the same sets of atomic

charges, atomic polarizabilities, and dispersion coefficients. While the user has complete freedom

in selecting any method available to determine these quantities, it is recommended to calculate

the atomic charges using the CM5 scheme,123 and the atomic polarizabilities and dispersion coef-

ficients using the exchange-hole dipole-moment model (XDM).124–126 For the calculation of the

individual nB energies MB-Fit provides the user with the option of correcting the BSSE using the

counterpoise method.127

If users wish to use a “model” (i.e., a combination of QM method and basis set) not currently

supported by Q-Chem or Psi4, or otherwise wishes to generate the necessary QM data in an alter-

native way, they are free to bypass MB-Fit and use another software for this step. The “model”

and fitting procedure are independent of how the data is generated.
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D. Implementation of the permutationally invariant polynomials

The C++ PIP evaluation functions and their analytical gradients are generated automatically

with two main challenges in mind: 1) optimization of generation, and 2) optimization of evalua-

tion. MB-fit adopts a dynamic programming algorithm to address the first challenge, while relying

on optimization features provided by common C++ compilers (e.g., GCC128 (GNU license) or

ICPC129 (Intel)) and Maple114 to address the second challenge. Before compilation, Maple can

optionally be applied to factorize the polynomials which reduces the number of floating point

operations needed for evaluation.

Generation of PIPs up to arbitrary degree is supported, though polynomials of high degree

may be excessively large for use in actual MD and MC simulations, depending on the available

computational resources. Optional filtering of polynomials to exclude specific terms based on a

number of factors (e.g., degree of certain variables, inter/intra-molecular character, etc.) is also

available. A detailed description of the protocol used by MB-fit for the implementation of the PIPs

is reported in the Supplementary Material.

E. Parameterization and training

As described in Sec. II A, both MB-PEFs adopt the same representation of the 1B term, ε1B,

which is expressed by a PIP. In practice, for a given set of non-linear parameters entering the

expressions of the corresponding monomials (Eqs. 14), which are obtained using the simplex

algorithm, the linear coefficients of V 1B
PIP are obtained from a linear least-squares fit (see section

II C) by fitting

yref(k) = ε
1B
ref (k) (22)

where ε1B
ref (k) is the 1B QM reference energy for the kth configuration in the 1B training set, with

ε1B
ref = 0 for the optimized geometry of the monomer.

In the case of the 2B energy, Ai j, bi j and δi j of the the TTM-nrg PEFs in Eqs. 5 and 8 are fitting

parameters, with bi j = δi j by construction. For a given set of non-linear parameters (i.e., bi j) from

each simplex step, the linear parameter Ai j in Eq. 5 is obtained by fitting

yref(k) = ε
2B
ref (k)−Velec(k)−Vpol(k)−V 2B

disp(k) (23)

where ε2B
ref (k) is the 2B QM reference energy for the kth configuration in the 2B training set,
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with Velec(k), Vpol(k), and V 2B
disp(i) describing permanent electrostatics, polarization, and dispersion

energy, respectively (Eqs. 3-8).

The MB-nrg PEFs use the same classical electrostatic model as the TTM-nrg PEFs, and include

explicit representations of short-range 2B and 3B energies in terms of PIPs. In the case of the 2B

energy (Eq. 4), MB-Fit provides the user with the option of fitting V 2B
sr, MB-nrg in Eq. 6 with or with-

out including V 2B
sr, TTM-nrg in Eq. 5 as a baseline potential. For a given set of non-linear parameters

entering the expressions of the corresponding monomials (Eqs. 14), the linear coefficients of V 2B
PIP

in Eq. 6 are thus obtained by fitting

yref(k) = ε
2B
ref (k)−Velec(k)−Vpol(k)−V 2B

disp(k)−αV 2B
sr, TTM-nrg(k) (24)

where α = 1 when including the TTM-nrg Born-Mayer repulsion term V 2B
sr, TTM-nrg, otherwise α =

0. Fitting of V 2B
sr, MB-nrg over a baseline TTM-nrg potential is optional although recommended since

it significantly reduces the probability of “holes” in V 2B
PIP.

In the case of the 3B energy (Eq. 10), for a given set of non-linear parameters entering the

expressions of the corresponding monomials (Eqs. 14), the linear coefficients of V 3B
PIP in Eq. 11 are

obtained by fitting

yref(k) = ε
3B
ref (k)−Vpol(k) (25)

where ε3B
ref (k) is the 3B QM reference energy for the kth configuration in the 3B training set.

F. Visualization and analysis tools

Once a TTM-nrg or MB-nrg PEF has been obtained, MB-Fit provides tools to retrieve the

associated root-mean-square deviations (RMSDs) as well as the corresponding correlation plots

for both training and test sets. Different customization options for the visualization are available,

and the data used in the graphs are written as a data file for further inspection and visualization with

external plotting programs. In the correlation plots, the reference QM nB energies are reported on

the x-axis, and the corresponding TTM-nrg or MB-nrg values are reported on the y-axis.

G. Interface to MBX

MB-Fit provides an automated C++ code generator that enables the use of the TTM-nrg and

MB-nrg PEFs in MBX, our many-body energy/force calculator.108 Specifically, MB-Fit provides
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all the pieces of code that are needed by MBX and, if the location of the MBX software is provided

by the user, it automatically adds them to MBX with no need of action by the user. MBX is

currently interfaced with LAMMPS109 and i-PI,110 which thus allows the user to perform MD

simulations with both TTM-nrg and MB-nrg PEFs in all common thermodynamic ensembles.

Enhanced-sampling simulations and free-energy calculations are possible in both LAMMPS and

i-PI through the interface with PLUMED.130,131

H. Availability and documentation

The MB-Fit software is freely available on Github.132 Unit tests and regression tests ensure

correctness of the software. Extensive documentation is provided in form of Jupyter notebooks

that walk the user through the generation of TTM-nrg and MB-nrg PEFs, including details of the

background theory. The user is strongly encouraged to refer to the Jupyter notebooks to get started

building TTM-nrg and MB-nrg PEFs with MB-Fit.

IV. EXAMPLE: TTM-NRG AND MB-NRG PEFS FOR AMMONIA

Ammonia (NH3) has been one of the most important industrial chemicals since the development

of the Haber-Bosch process. NH3 is widely used in the fertilizer and cleaning industries as well as

in synthetic chemistry where it is the most common source of nitrogen.133 Since the interactions

between NH3 molecules include all typical contributions (i.e., Pauli repulsion, permanent and

induced electrostatics, hydrogen bonding, and dispersion), ammonia serves as an ideal test case to

illustrate the workflow of the MB-fit software as well as the ability of MB-Fit to generate TTM-nrg

and MB-nrg PEFs at an arbitrary QM level of theory which are fully transferable from the gas to

the condensed phase. To this end, we present two sets of TTM-nrg and MB-nrg PEFs developed at

the DF-FNO-CCSD(T)134 and PBE0-D3(BJ)135,136 levels of theory, respectively, combined with

the aug-cc-pVTZ basis set.137 Since these MB-PEFs primarily serve as a showcase for the MB-Fit

ability to seamlessly generate transferable, many-body representations of molecular interactions

and not for quantitative analyses of the properties of ammonia, the MB-nrg PEFs are constructed

without including ε3B in Eqs. 10 and 11.

The same 1B and 2B training and test sets were used for both sets of MB-PEFs, which al-

lows for analyzing the relative accuracy of TTM-nrg and MB-nrg PEFs trained on two different
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QM levels of theory, i.e., DF-FNO-CCSD(T) and PBE0-D3(BJ). Independent of the QM level of

theory, the two sets of MB-PEFs share the same representations of Vpol, V 2B
disp, and Velec. Specifi-

cally, the atomic charges were calculated with the CM5 method,123 while the atomic polarizabil-

ities and dispersion coefficients were calculated using the exchange-hole dipole-moment model

(XDM).124–126 Because it is currently not possible to perform CM5 and XDM calculations at the

DF-FNO-CCSD(T) level of theory, in order to guarantee the same representations of Vpol, V 2B
disp,

and Velec for the two sets of TTM-nrg and MB-nrg PEFs, the CM5 and XDM calculations for all

MB-PEFs were carried out with the ωB97M-V functional since it was shown to consistently pro-

vide the closest agreement with CCSD(T) data for various molecular interactions.57,93,96,138–141

Both the CM5 and XDM calculations were carried out with Q-Chem v5.1121 using the aug-cc-

pVTZ137 basis set. All 1B and 2B energies were calculated using Psi4122 at the corresponding

QM level of theory, including counterpoise correction for the BSSE.

A. One-body PEF

As discussed in Sec. II A, the TTM-nrg and MB-nrg PEFs adopt the same functional form for

the 1B energies. The 1B configurations for the training and test sets were obtained from normal-

mode sampling using a piece-wise distribution over temperature provided by MB-Fit. The distribu-

tion was constructed relative to the temperature (Tmax) corresponding to the highest normal-mode

frequency (νmax) of the system (i.e., an isolated NH3 molecules) as T = h̄νmax/kB. Specifically,

5%, 40%, 30%, 20%, and 5% of the total number of 1B configurations for the training (4098

configurations) and test (512 configurations) sets were generated from the corresponding classical

harmonic distributions sampled at temperatures equal to Tmax/100, Tmax/20, Tmax/10, Tmax/5, and

Tmax/2, respectively. Half of the configurations were generated based on the optimized minimum

and umbrella inversion transition state structures, respectively. A fifth degree PIP, with six different

exponential variables ξ exp(R) corresponding to all the possible distances between pairs of atoms,

containing 102 symmetrized terms, was fitted to the QM data for ε1B. The unweighted RMSDs of

the 1B training set for configurations below 25 kcal/mol are 0.0967 and 0.0742 kcal/mol for two

sets of MB-PEFs derived from DF-FNO-CCSD(T) and PBE0-D3(BJ) 1B energies, respectively.

The correlation plots for the test sets shown in Fig. 2 demonstrate that the 1B PIPs are able to ac-

curately reproduce the reference data over a wide range of 1B energies, independently of the QM

level of theory. To assess the smoothness of the 1B PEFs, a relaxed scan along the umbrella motion
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FIG. 2. Correlation plots between the reference 1B energies and the corresponding MB-nrg values calcu-

lated for the NH3 test set. The reference 1B energies were calculated using DF-FNO-CCSD(T)/aug-cc-

pVTZ (panel a) and PBE0-D3(BJ)/aug-cc-pVTZ (panel b). The TTM-nrg PEFs have the same 1B term as

the corresponding MB-nrg PEFs. See main text for details.

of an isolated NH3 molecule was performed at both DF-FNO-CCSD(T) and PBE0-D3(BJ) levels

of theory. Fig. 3 shows that the 1B PEFs are able to quantitatively reproduce the corresponding

reference data.

B. Two-body PEF

The 2B training (597 configurations) and test (200 configurations) sets for the TTM-nrg PEFs

were obtained from scans along the distance between the two N atoms of the NH3–NH3 dimer,

applying random rotations to the two molecules at each distance while keeping their geometries

fixed at the corresponding optimized structure of an isolated NH3 molecule. The RMSDs for the

TTM-nrg training sets are 1.0424 and 1.0451 kcal/mol for the two MB-PEFs fitted to DF-FNO-

CCSD(T) and PBE0-D3(BJ) 2B energies, respectively. The correlation plots for the test sets in

Fig. 4 show that both TTM-nrg PEFs are able to semi-quantitatively reproduce the corresponding

reference 2B energies, with an accuracy which is independent of the QM level of theory.

As shown in previous studies,92,95,97–99 higher accuracy in modeling 2B energies is achieved by

the MB-nrg PEFs that adopt short-range PIPs to effectively represent 2B quantum-mechanical in-
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FIG. 3. Distortion energy calculated along a relaxed scan of the NH3 umbrella motion as a function of

the distance between the nitrogen atom and the plane defined by the three hydrogen atoms. Both DF-

FNO-CCSD(T)/aug-cc-pVTZ (black) and PBE0-D3(BJ)/aug-cc-pVTZ (grey) reference 1B energies along

with the corresponding MB-nrg values are shown. The TTM-nrg PEFs have the same 1B term as the

corresponding MB-nrg PEFs. See main text for details.

teractions that arise from the overlap of the monomers’ electron densities (e.g., Pauli repulsion, and

charge transfer and penetration).58,59,61,92,95,97,98,103,105,139 The 2B training (7261 configurations)

and test (1449 configurations) sets for the MB-nrg PEFs were generated by including configura-

tions extracted from three different sources. The first source was normal-mode sampling of the

NH3–NH3 optimized dimer which was carried out adopting the same protocol described above

for the 1B sets. The second source was scans along the N–N distance of the NH3–NH3 dimer

with rigid NH3 molecules as described above for the 2B TTM-nrg training and test sets. The third

source was scans along the N–N distance of the NH3–NH3 dimer using distorted NH3 configu-

rations extracted from the 1B sets instead of rigid NH3 molecules. The present MB-nrg PEFs

for ammonia use 2B PIPs up to the fourth degree, which include 3, 23, 159, and 930 symmetrized
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FIG. 4. Correlation plots between the reference 2B energies data and the corresponding TTM-nrg (panels

a and c) and MB-nrg (panels b and d) values calculated for the NH3–NH3 2B test set. The reference 2B

energies were calculated using DF-FNO-CCSD(T)/aug-cc-pVTZ (panels a and b) and PBE0-D3(BJ)/aug-

cc-pVTZ (panels c and d). Also shown are the corresponding RMSDs. See main text for details.

terms of degree 1, 2, 3, and 4, respectively. The 2B PIPs contain 28 different variables correspond-

ing to all possible intra- and inter-molecular distances between atoms of the NH3–NH3 dimer, all

described with the ξ exp(R) functional form. The unweighted RMSDs for the MB-nrg training sets

are 0.1524 and 0.1542 kcal/mol for the two MB-nrg PEFs fitted to DF-FNO-CCSD(T) and PBE0-

D3(BJ) 2B energies, respectively. Fig. 4 shows the correlation plots for the corresponding test sets
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FIG. 5. Interaction energy scans along the H-H (panels a and d), H-N (panels b and e), and N-N (panels c

and f) distances between the two monomers in the NH3–NH3 dimer. The reference interaction energies cal-

culated using DF-FNO-CCSD(T)/aug-cc-pVTZ along with the corresponding TTM-nrg and MB-nrg values

are shown in the top panels, while the reference interaction energies calculated using PBE0-D3(BJ)/aug-

cc-pVTZ along with the corresponding TTM-nrg and MB-nrg values are shown in the bottom panels. See

main text for details.

which, as previously found for other molecular systems,97,98 demonstrate that the MB-nrg PEFs

are able to quantitatively reproduce QM reference data, independently of the QM level of theory.

It should be noted that the accuracy of the MB-nrg PEFs can be improved by increasing the degree

of the PIPs and/or applying filters on terms containing variables that involve interatomic distances

that are found to be less relevant for the representation of the underlying PES.

The smoothness of the 2B PEFs is assessed by performing three scans along the H-H, H-N, and

N-N distances between the two monomers in the NH3–NH3 dimer. Fig. 5 shows the orientations

of the monomers and performance of the four MB-PEFs on each of the scans relative to the QM

reference data, providing further evidence for the ability of the MB-nrg PEFs to reproduce arbi-

trary QM reference data. On the other hand, the TTM-nrg PEFs display well known deficiencies

that are common to all PEFs purely based on classical polarization.142,143 This results in only a

qualitative agreement between the TTM-nrg and QM 2B energies, with the TTM-nrg accuracy

being particularly sensitive to the relative orientation of the two NH3 molecules.
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C. Many-body energies in ammonia clusters

While the analyses presented in Fig. 2 and 5 assess the ability of the TTM-nrg and MB-nrg PEFs

to reproduce 1B and 2B energies that were the target of the training process, one of the greatest

challenges for ML PEFs is to preserve the same accuracy for many-body energies and/or molecular

systems that are not included in the training sets. Combining explicit data-driven representations

of short-range low-order interactions with implicit (mean-field-like) many-body representations of

high-order and long-range interactions, it has been shown that the MB-pol PEF58–61,142 for water

as well as the MB-nrg PEFs for ions in water92,95,107,141 and various molecular fluids97,98 are able

to correctly reproduce each individual term of the MBE of Eq. 1. Relatively large deviations were

instead observed for the TTM-nrg PEFs.91,94,97,98

To assess how the different many-body terms in the MBE for ammonia are represented by

the TTM-nrg and MB-nrg PEFs, we performed many-body decompositions of the lowest-energy

isomers of the (NH3)n clusters, with n = 2,3,4. Fig. 6 shows the deviations ∆E per fragment

associated with each nB term of the TTM-nrg and MB-nrg PEFs relative to the corresponding

reference values (dashed line) which were calculated using the SAMBA approach.144 Specifically,

the 1B and 2B reference energies were calculated at the CCSD(T) level of theory using a two-point

extrapolation between the aug-cc-pVTZ and aug-cc-pVQZ basis sets. The 3B reference energies

were calculated at the CCSD(T)/aug-cc-pVTZ level of theory with a cluster counterpoise correc-

tion for the BSSE, while the 4B reference energies were calculated at the CCSD(T)/aug-cc-pVTZ

level of theory. Also shown in Fig. 6 are the deviations calculated with DF-FNO-CCSD(T) and

PBE0-D3(BJ) which allow for assessing the ability of the corresponding TTM-nrg and MB-nrg

PEFs to reproduce the target energies as well as for quantifying the relative accuracy of the differ-

ent models in reproducing the reference energies. The deviations are calculated as ∆E = 1
n ∑

n
i ∆Ei,

where n is the number of monomers, dimers, trimers, etc. in a given cluster, and ∆Ei is the

the individual signed error of the ith fragment. In summary, Fig. 6 shows the average error per

monomer, dimer, trimer and tetramer for the three cluster sizes analyzed. While the 1B deviations

from the CCSD(T)/SAMBA reference values are negligible for all models, significant errors are

associated with the TTM-nrg representations of 2B energies. In contrast, the MB-nrg 2B ener-

gies closely reproduce the corresponding DF-FNO-CCSD(T) and PBE0-D3(BJ) target values for

all three clusters. Importantly, while the 2B energies calculated with DF-FNO-CCSD(T) and the

corresponding MB-nrg PEF are in close agreement with the CCSD(T)/SAMBA reference values,
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FIG. 6. Energy deviations per fragment from the reference CCSD(T)/SAMBA values for each individual

many-body contribution to the interaction energies of (NH3)n clusters, with n=2 (panel a), n=3 (panel b)

and n=4 (panel c) calculated using DF-FNO-CCSD(T) and PBE0-D3(BJ), and the corresponding MB-nrg

and TTM-nrg PEFs. See main text for details.

appreciable deviations are associated with 2B energies calculated using PBE0-D3(BJ) and the cor-

responding MB-nrg PEF. It should be noted that the relatively large deviations associated with the

representation of 3B energies based on classical polarization which is adopted by the TTM-nrg

and MB-nrg PEFs suggests that the inclusion of explicit 3B PIPs may be needed for a more quan-

titative description of 3B interactions. The analyses reported in Fig. 6 demonstrate that classical

polarization is instead able to quantitatively reproduce the 4B energies.

D. Second virial coefficient

While the analysis of individual many-body energies allow for a general assessment of the abil-

ity of any PEF to describe the underlying molecular interactions, these quantities are not amenable

to direct measurements. However, the interplay of many-body interactions directly determines

the free-energy landscape that effectively determines structural, thermodynamic, and dynamical

properties of any molecular system at finite temperature, which can be measured experimentally.

Since these properties can be calculated using computer simulations and be directly related to the

underlying molecular interactions using statistical mechanics principles, it follows that compar-

isons between measured and calculated properties provide an effective means to assess the ability

of a PEF to realistically describe the molecular system of interest.

In this context, a direct probe of the overall 2B energy landscape is provided by the second
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virial coefficient, B2(T ) given by

B2(T ) =−2π

∫
∞

0

(〈
e−

ε2B(R)
kBT

〉
−1
)

R2dR (26)

Here, ε2B is the 2B energy of Eq. 1, kB is Boltzmann’s constant, R is the distance between the two

monomer centers of mass in a given dimer configuration, and T is the temperature. We calculated

B2(T ) for ammonia by numerically solving the integral in Eq. 26 using the trapezoidal rule with

an integration step ∆R = 0.05 Å, and 120,000 dimer configurations generated via Monte Carlo

sampling for each radial grid point. Fig. 7 shows the virial coefficient as a function of the temper-

ature, calculated with both sets of TTM-nrg and MB-nrg PEFs trained on DF-FNO-CCSD(T) and

PBE0-D3(BJ) data. These comparisons indicate that the TTM-nrg PEFs perform similarly, inde-

pendently of the QM level of theory. This is in line with the analysis of the many-body energies

presented in Fig. 5 which shows that, although PBE0-D3(BJ) predicts 2B energies that deviates

appreciably from the CCSD(T) reference values, the functional form adopted by the TTM-nrg

PEFs is too simple for quantitatively capturing these differences. On the other hand, these differ-
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FIG. 7. Comparison between the experimental NH3–NH3 second virial coefficients and the corresponding

values calculated with the TTM-nrg and MB-nrg PEFs trained on DF-FNO-CCSD(T) and PBE0-D3(BJ)

data. The experimental data are from Ref. 145.
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ences become apparent in the MB-nrg calculations of B2(T ) which clearly show that the MB-nrg

PEF trained on DF-FNO-CCSD(T) data closely reproduces the available experimental values over

the entire temperature range. The larger B2(T ) values predicted by both TTM-nrg PEFs can be

traced back to the inability of these MB-PEFs to correctly reproduce the attractive region of the

corresponding 2B energy landscape (Fig. 5). The lower B2(T ) values obtained with the MB-nrg

PEF trained on PBE0-D3(BJ) data instead are directly related to PBE0-D3(BJ) predicting overly

attractive 2B energies as shown in Fig. 5.

E. Structure of liquid ammonia

Finally, we used classical MD simulations to investigate the structure of liquid ammonia. While

the present MD simulations are not meant to provide a comprehensive analysis of the liquid prop-

erties, they can be used to assess the transferability of the TTM-nrg and MB-nrg PEFs from the

gas to the condensed phase. To this purpose, classical MD simulations were carried out with the

FIG. 8. Comparison between experimental and simulated nitrogen-nitrogen (gNN, left panels), nitrogen-

hydrogen (gNH, central panels), and hydrogen-hydrogen (gHH, right panels) radial distribution functions

(RDFs) of liquid ammonia at 273 K. RDFs calculated using the MB-nrg and TTM-nrg PEFs trained on DF-

FNO-CCSD(T) data are shown in the top panels, while those calculated with the corresponding MB-PEFs

trained on PBE0-D3(BJ) data are shown in the bottom panels. The experimental RDFs are from Ref. 146.
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MBX software108 interfaced with i-PI.110 All simulations were carried out in the canonical (NVT)

ensamble at a temperature of 273 K using a cubic box of length 23.084 Å with 279 NH3 ammo-

nia molecules, which corresponds to the liquid density used in the experimental measurements of

Ref. 146. The initial configuration was generated using Packmol,147 and the system was equili-

brated for 50 ps before a production run of 100 ps, using a time step of 0.2 fs. The temperature

was controlled by a global Langevin thermostat.

Fig. 8 shows that all MB-PEFs provide nearly quantitative agreement with the experimental

N-N, N-H, and H-H radial distribution functions (RDFs). In particular, the location of the differ-

ent solvation shells is accurately predicted, while all MB-PEFs predict higher first peaks in the

N–N and N–H RDFs. Various reasons may be responsible for these differences between the ex-

perimental and calculated RDFs: 1) intrinsic inaccuracies in the QM data used in the training of

the TTM-nrg and MB-nrg PEFs, 2) inaccuracies in the TTM-nrg and MB-nrg representations of

individual many-body terms of the MBE, 3) neglect of the explicit 3B term in the MB-nrg PEF,

and 4) neglect of nuclear quantum effects. It is interesting to note that the differences that were

apparent in the analysis of individual many-body energies of (NH3)n clusters (Fig. 6) appear to be

washed out in the MD simulations of the liquid phase, with all MB-PEFs performing similarly. In

this context, it should be noted that our previous studies of various molecular fluids97,98 show that

the differences between different TTM-nrg and MB-nrg PEFs are somewhat suppressed in MD

simulations carried out in the NVT ensemble but can lead to qualitatively different liquid struc-

tures and phase behavior when the simulations are performed in the isobaric-isothermal (NPT)

ensemble. While these are certainly important aspects to investigate, they go beyond the scope of

the present study and will be the subject of future studies.

V. CONCLUSIONS

We have introduced MB-Fit, an integrated software infrastructure that enables the automated

development of fully transferable, data-driven MB-PEFs for generic molecules within the TTM-

nrg and MB-nrg theoretical/computational frameworks. MB-Fit provides a complete array of tools

to: 1) generate training and test sets for individual many-body energies, 2) set up and perform the

required QM calculations of the necessary training data, 3) optimize both linear and non-linear pa-

rameters entering the mathematical expressions for the TTM-nrg and MB-nrg PEFs, and 4) gen-

erate the associated codes that are directly exported to the MBX energy/force calculator108 that
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enables MD simulations with the TTM-nrg and MB-nrg PEFs using LAMMPS109 and i-PI110.

Given the demonstrated accuracy of the MB-pol PEF for water,58–61 and the TTM-nrg and MB-

nrg PEFs for ions in water92,95,100–105,107 and various molecular fluids,97,98 we believe that MB-Fit

can open the door to routine, predictive computer simulations of small molecules in the gas, liquid,

and solid phases, including, but not limited to, the modeling of molecular clusters, solvation struc-

ture and thermodynamics, heterogeneous processes at air/liquid and air/solid interfaces, molecular

crystals, and phase diagrams.

VI. SUPPLEMENTARY MATERIAL

The supplementary material includes details on the implementation of the permutationally in-

variant polynomials in MB-Fit.
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