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Notes

Note S1: FG-dataset

The functional groups dataset (FG-dataset) created to develop the GNN

model presented in this work includes 204 closed-shell molecules. For each

of them, the FG-dataset contains the gas-phase molecule and the molecule

adsorbed on 12 metal surfaces (Ag, Au, Cd, Cu, Ir, Ni, Os, Pd, Pt, Rh,

Ru, Zn). One adsorption configuration is included for each molecule/metal

combination except for the aromatics with one ring, which comprise two

different configurations for each metal. This leads to a total of 2849 DFT

samples in the FG-dataset. The set of molecules represents the most common

functional groups: for each chemical family, all the existing configurations

containing up to C4 are included, except aromatics where C>4 are considered.

The chemical families included in the FG-dataset are the following:

• Alkanes, alkenes and alkynes. Table S1

• Alcohols, aldehydes, ketones and ethers (1 Oxygen). Table S1

• Carbonates, carboxylic acids and esters (2–3 Oxygens). Table S2

• Amines and imines (1 Nitrogen). Table S3

• Amidines (2 Nitrogens). Table S4

• Thiols, thials, thioketones and thioethers (1 Sulfur). Table S5

• Amides and oximes (1 Oxygen + 1 Nitrogen). Table S6–S7
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• Carbamate esters (2 Oxygens + 1 Nitrogen). Table S8

• Aromatic molecules with up to two rings containing O, N and S. Ta-

ble S9

Note S2: Adsorption Conformational Search

Even simple C2–3 adsorbates could have approximately 100 conformations.

Thus, for the initial DFT adsorption geometries we followed a simplified

conformational analysis based on the heuristic rules devised in Refs. [1, 2].

These rules can be summarised as follows:

(i). The unsaturated bonds were placed close to the surface.

(ii). Heteroatoms (O, N and S) were placed close to the surface.

(iii). Carbon tails face the surface.

(iv). If the intermediate did not converge to a reasonable structure, the

molecule was readjusted manually, trying up to 6 conformations that

preserve the rules (i-iii).

Note S3: Automation of DFT Data Generation

To build and obtain the EDFT of the adsorbate/metal combinations included

in the FG-dataset, we executed the following procedure:

(i). First, the metallic surfaces were built starting from their respective

bulks.
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(ii). A list of SMILES [3] of the molecules in the FG-dataset has been fed

to Open Babel [4] in order to generate the .xyz geometry files of the

molecules. The applied force field is the MMFF94 [5].

(iii). The .xyz geometry files have been converted with pymatgen [6] to

POSCAR files representing the molecules in cubic cells with dimen-

sion of 20 Å. The gas-phase molecules have been calculated with this

initial geometry.

(iv). The relaxed molecules were copied and placed at a distance of 2.0–

2.3 Å from the Rh slab, our reference metal. The conformational rules

explained in Note S2 have been followed.

(v). The resulting structures were sent to our computational resources and

relaxed with VASP. Once full convergence has been reached, the ge-

ometry of the relaxed molecules on Rh has been extracted and auto-

matically placed on the slabs of the all the other metals preserving the

adsorbate distance from the Rh slab.

(vi). The obtained structures were checked for conformation errors, and if

needed, manually built and relaxed again. Typical problems encoun-

tered were related to the fragmentation of the adsorbate during the

relaxation due to the unstable initial geometry.

For the BM-Dataset, the molecules were manually built, adsorbed on the

metal surfaces and relaxed using VASP, including the gas phase molecules.

Structures obtained from both datasets were uploaded to ioChem-BD.[7,

8]
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Note S4: Graph Representation Algorithm

To convert the three-dimensional structures obtained from DFT to their re-

spective graph representation, we applied a modified version of the algorithm

presented in Ref. [9], implemented in pyRDTP. To define the neighbors of

each atom, the algorithm reads the relaxed three-dimensional atomic posi-

tions from the geometry file (CONTCAR) generated by VASP, and applies

the Voronoi tessellation method. This method creates a partition of the

three-dimensional space, defining a region for each atom that consists of all

points of the space closer to that atom than to any other. Two atoms are

considered connected if they share a Voronoi facet and their distance is less

than the sum of the atomic covalent radii plus a tolerance distance. In this

work we used as covalent radii those provided by Cordero et al. [10] multi-

plied by a scaling factor of 1.5 for metals, and a tolerance parameter of 0.5 Å

to help in the detection of metal-adsorbate connections.

Once the connectivity is defined, the graphs are generated representing

the atoms as nodes and the detected connections as edges. The metal atoms

not directly connected to the adsorbate are not considered during the graph

generation process. The atomic elements are embedded to the nodes using the

one-hot encoding approach as implemented in Scikit-Learn (Figure S1).[11]

This step is needed to convert categorical variables (as atomic elements) into

ML-suitable data structures. This algorithm is applied to all the samples in

both FG-dataset and BM-dataset.

For a fraction of the adsorption systems, the graph conversion results into

inaccurate representations, as for specific geometries the M—A distance is so
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high that the algorithm is unable to properly define their connectivity. This

is due to the fact that the algorithm is based on a purely geometrical crite-

rion that defines the edges relying on a set of empirical covalent radii, which

are fixed for each element and do not account for all the possible phenom-

ena occurring in catalytic systems. Thus, the strategy for minimizing the

amount of bad representations has been to fine tune the tolerance parameter

and the covalent radii scaling factor. In order to discard inaccurate graph

representations and properly curate the graph dataset to be suitable for the

GNN model training, we implemented the following sieves (Figure S2):

(i). A first filter that discards the graphs representing adsorption configu-

rations without the presence of metal atoms.

(ii). A second filter that verifies the correct connectivity of C and H atoms

within the molecules: Connectivity of carbon atoms is properly defined

if the number of edges connecting it to other atoms in the molecule is

equal or less than 4, while hydrogen atoms are correctly connected if

its number of edges is exactly one.

(iii). A filter to prevent the inclusion in the dataset of DFT samples that

contain more than one adsorbate on the slab or with a final geometry

in which the adsorbate has dissociated in multiple fragments.

(iv). A last filter for removing duplicate graphs deriving from the presence of

stereo-isomers adsorbed in the same configuration on the metal surface.

The amount of graphs pruned out after the first two filters intrinsically

depends on the graph conversion algorithm: a higher applied tolerance pa-
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rameter would reduce the number of discarded graphs after the first filter,

but at the same time it increases the number of removed graphs in the second

filter, due to the creation of nonphysical connections within the adsorbates.

Note S5: GNN Model Architecture

The architecture of the GNN model developed in this work is shown in Fig-

ure S4. The input graphs are represented by a set of node feature vectors,

each of them being a 17-dimensional array (12 metals + C, H, O, N and S)

needed for representing the chemical element via the one-hot encoder, and

by the graph connectivity in coordinate format (Figure S1). In order to

transform this mathematical graph representation into the prediction of the

DFT energy of the associated chemical system, the following transformations

are applied in the listed order:

(i). First, each node feature vector is transformed via one fully connected

layer which increases the dimensionality of the vector from 17 to 128,

B17 → R128, where B denotes the Boolean space used to define the

nodes via one hot encoding.

(ii). Then, two additional fully connected layers are applied, keeping the

dimensionality of the nodes (R128 → R128). Up to now, no information

about the graph connectivity is exploited.

(iii). Three GraphSAGE [12] convolutional layers are applied to all the nodes

to capture the information from the neighbors by exploiting the graph

connectivity. Between each convolution, a fully-connected layer is ap-
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plied.

(iv). Finally, the information embedded in the nodes is compressed into

a global graph representation with the Graph Multiset Transformer

(GMT),[13] a global pooling layer which returns back a scalar value,

namely the prediction of the DFT energy of the chemical system repre-

sented by the initial input graph. RN×128 → R, where N is the number

of nodes in the graph.

The activation function used in the node-level layers (all except the pool-

ing layer) is the rectified linear unit (ReLU). [14] In total, the developed

GNN model contains 398,081 trainable parameters, 224,513 of them belong-

ing to the pooling layer due to its high internal complexity and the remaining

parameters equally distributed among the other layers.

Note S6: GNN Training

The model training has been performed minimizing the mean absolute error

(MAE) as loss function with the ADAM algorithm as optimizer.[15] The

learning rate (LR) value is steered with the reduce-on-plateau scheduler.

The initial learning rate has been set to 10−3 and is reduced exponentially

by the scheduler every time in which there is no improvement after 5 epochs

(patience) in the MAE of the validation set. The minimum LR possible

has been set to 10−6, while the decrease factor has been set to 0.7. In each

training 250 epochs are performed. During each epoch, the training set is fed

to the model in batches of 32 samples, performing a backward propagation

and updating the model parameters after each batch.
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The performance of the GNN model has been assessed by applying a

stratified splitting of the FG-dataset by chemical families followed by a 5-

fold cross validation. The first (Figure S6) allows a proper distribution of

all the chemical families among the splits, while the latter provides a robust

estimation of the GNN generalization performance. The cross validation

approach follows the process depicted in Figure S7: After the partition in 5

stratified splits, each split is employed as test set: for each split used as test

set, 4 splits are left and each of them is employed as validation set. This leads

to a final validation approach consisting of 20 independent learning processes,

each one performed with a unique combination of the splits among train,

validation and test set. The generalization performance of the model is finally

assessed by averaging the MAE of the absolute errors of the learning processes

performed employing the same test set. Figure S8 shows the values of the

learning rate and MAE among the trained models. It is important to mention

that after the creation of the train, validation and test sets in each learning

process, a standardized target scaling is applied using the mean and standard

deviation of the energy values of the samples from the train and validation

sets, discarding the samples from the test set as its inclusion would lead to

a data leakage. The target scaling is essential to ensure a stable learning

process: if the target variable among the graph dataset has a large spread

of values, it may result in large error gradients causing model parameters to

change dramatically, making the learning process unstable.
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Note S7: BM-dataset

The big molecules dataset (BM-dataset) used for testing the GNN model

includes three industrially relevant materials:

• Biomass. Ref. [16], Figure S10

• Polyurethane precursors. Ref. [17], Figure S11

• Plastics. Ref. [18] Figure S12

These three groups consist of complex chemical structures that can be seen

as combinations of the functional groups present in the FG-dataset. For

each group, 5 representative molecules of larger size compared to those in

the FG-dataset have been selected and relaxed through DFT to simulate

the gas-phase and adsorption configuration on 2 metals chosen according

to the existing applications and studies. The BM-dataset (45 samples, 30

adsorptions + 15 gas-phase) is used as an additional test for assessing the

GNN performance on samples coming from a distribution distinct from that

used to build the model (FG-dataset). For example, for the plastic group

we represent polyethylene (PE), polypropylene (PP, both syndio- and iso-

tactic), polystyrene (PS) and polyethylene tereftalate (PET) as molecules

composed by a reasonable number of monomers. We generated the DFT

adsorption systems of these molecules on Pt and Ru metal surfaces as these

represent potential candidates for applications related to chemical recycling

technology.
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Note S8: Hyperparameter Optimization

Before testing the proposed model on the BM-dataset, we performed a hy-

perparameter optimization study to explore the vast space defined by all

the variables that can affect the final performance of the GNN model. The

hyperparameters can be defined as all the variables that are not model pa-

rameters, but that affect model performance at the same extent. These can

be divided in two groups:

• Training-related: they define the training process. Examples are learn-

ing rate, optimization algorithm, batch size, etc.

• Model-related: they define the architecture of the model and include

kind of activation function (ReLu, Tanh, etc.), number and depth of

layers, bias inclusion, etc.

We adopted the hyperband asynchronous algorithm (ASHA) [19] imple-

mented in RayTune. [20] ASHA combines random search and aggressive

early stopping in order to optimize the hyperparameters and is based on the

proved fact that in order to find the best hyperparameter settings, just a

small amount of iterations (epochs) is sufficient to discriminate between bad

models and promising candidates.

The hyperparameter space, shown in Table S12 has been investigated

picking randomly 2000 different settings and for each of those, a model train-

ing has been run by ASHA with a grace period of 15 epochs (e.g., the poorly-

performing models are discarded after having trained them for a minimum

of 15 iterations) and a maximum of 200 for the best ones. The final hyper-
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parameter setting is the one that minimizes the MAE of the energy of the

samples belonging to the BM-dataset.
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Figures

Figure S1: Example of graph data structure representation.
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Figure S2: Data cleaning workflow applied to the raw graph FG-dataset.
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Figure S3: Graph representations of the FG-dataset without metal-adsorbate
connections. a) Distribution by chemical family and b) by metal.
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Figure S4: GNN model architecture before hyperparameter optimization.
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Figure S5: GNN model architecture after hyperparameter optimization.
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Figure S6: Stratified data splitting procedure.
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Figure S7: Cross validation approach for estimating the GNN generalization
performance.
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Figure S8: Learning rate and MAE of the train/validation/test sets during
the training processes of the cross validation.
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Figure S9: a) Box-plot of the test error distribution sorted by metal and b)
mean error and standard error of the mean of the predictions obtained by
the cross validation models.
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Figure S10: BM-dataset: Biomass molecules and metals.
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Figure S11: BM-dataset: Polyurethane molecules and metals.
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Figure S12: BM-dataset: Plastic molecules and metals.
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Tables

Table S1: FG-dataset: Hydrocarbons, alcohols, aldehydes, ketones and
ethers.

IUPAC name SMILES
Formaldehyde C=O

Acetylene C#C
Ethylene C=C

Acetaldehyde CC=O
Ethane CC

Dimethylether COC
Ethanol CCO
Propyne C#CC

Propylene C=CC
Acetone CC(=O)C
Propane CCC

Ethylmethylether CCOC
N-propanol CCCO
I-propanol CC(C)O
2-butyne CC#CC
1-butyne C#CCC
1-butene C=CCC

2-butene-cis C/C=C\C
2-butene-trans C/C=C/C

I-butene CC(=C)C
Butanone CCC(=O)C
N-butane CCCC
I-butane CC(C)C

N-butanol CCCCO
2-butanol-R C[C@H](CC)O
2-butanol-S C[C@@H](CC)O
T-butanol CC(C)(C)O

Propionaldehyde CCC=O
Butyraldehyde CCCC=O

Isobutyraldehyde CC(C=O)C
Ethoxyethane CCOCC

1-methoxypropane CCCOC
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Table S2: FG-dataset: Carbonates, carboxylic acids and esters.

IUPAC name SMILES
Formic acid C(=O)O

Carbonic acid C(=O)(O)O
Acetic acid C(=O)(C)O

Methyl formate C(=O)OC
Methyl hydrogen carbonate C(=O)(O)OC

Propionic acid CCC(=O)O
Ethyl formate C(=O)OCC
Methyl acetate C(=O)(C)OC

Ethyl hydrogen carbonate C(=O)(OCC)O
Dimethyl carbonate C(=O)(OC)OC

Butyric acid CCCC(=O)O
Isobutyric acid CC(C(=O)O)C
Propyl formate C(=O)OCCC

Isopropyl formate C(=O)OC(C)C
Ethyl acetate CC(=O)OCC

Methyl propionate CCC(=O)OC
Propyl hydrogen carbonate C(=O)(OCCC)O

Isopropyl hydrogen carbonate C(=O)(O)OC(C)C
Ethyl methyl carbonate C(=O)(OC)OCC
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Table S3: FG-dataset: Amines and imines.

IUPAC name SMILES
Methanimine C=N
Methanamine CN
Ethanimine CC=N

Methylmethanimine C=NC
Ethanamine CCN

Dimethylamine CNC
Propan-1-imine CCC=N

N-ethylmethanimine C=NCC
(E)-N-methylethanimine C/C=N/C
(Z)-N-methylethanimine C/C=N\C

Propan-2-imine CC(=N)C
Propan-1-amine CCCN
Propan-2-amine CC(C)N

N-methylethanamine CCNC
Trimethylamine CN(C)C
Butan-1-imine CCCC=N

2-methylpropan-1-imine CC(C)C=N
N-propylmethanimine C=NCCC

N-isopropylmethanimine C=NC(C)C
(E)-N-ethylethanimine C/C=N/CC
(Z)-N-ethylethanimine C/C=N\CC

(E)-N-methylpropan-1-imine CC/C=N/C
(Z)-N-methylpropan-1-imine CC/C=N\C

Butan-2-imine CCC(=N)C
N-methylpropan-2-imine CC(=NC)C

Butan-1-amine CCCCN
(R)-butan-2-amine C[C@H](CC)N
(S)-butan-2-amine C[C@@H](CC)N

2-methylpropan-2-amine CC(C)(C)N
Diethylamine CCNCC

N-methylpropan-1-amine CCCNC
N,N-dimethylethanamine CCN(C)C
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Table S4: FG-dataset: Amidines.

IUPAC name SMILES
Formimidamide C(=N)N

N-methylformimidamide C(=N)NC
acetimidamide C(=N)(C)N

(E)-N’-methylformimidamide C(=[NH2])[N]C
(Z)-N’-methylformimidamide C(=[NH2])[N]C

N-ethylformimidamide C(=N)NCC
Propionimidamide C(=N)(CC)N

(E)-N’-ethylformimidamide C(=[NH2])[N]CC
(Z)-N’-ethylformimidamide C(=[NH2])[N]CC
(E)-N’-methylacetimidamide C(=[NH2])(C)[N]C
(Z)-N’-methylacetimidamide C(=[NH2])(C)[N]C
N,N-dimethylformimidamide C(=N)N(C)C

N-methylacetimidamide C(=N)(C)NC
(E)-N,N’-dimethylformimidamide C(=N\C)/NC
(Z)-N,N’-dimethylformimidamide C(=N\C)\NC

N-isopropylformimidamide C(=N)NC(C)C
N-propylformimidamide C(=N)NCCC

Isobutyrimidamide C(=N)(C(C)C)N
Butyrimidamide C(=N)(CCC)N

(E)-N’-isopropylformimidamide C(=[NH2])[N]C(C)C
(Z)-N’-isopropylformimidamide C(=[NH2])[N]C(C)C
(E)-N’-propylformimidamide C(=[NH2])[N]CCC
(Z)-N’-propylformimidamide C(=[NH2])[N]CCC
(E)-N’-ethylacetimidamide C(=[NH2])(C)[N]CC
(Z)-N’-ethylacetimidamide C(=[NH2])(C)[N]CC

(E)-N’-methylpropionimidamide C(=[NH2])(CC)[N]C
(Z)-N’-methylpropionimidamide C(=[NH2])(CC)[N]C
N-ethyl-N-methylformimidamide C(=N)N(C)CC

N-methylpropionimidamide C(=N)(CC)NC
N-ethylacetimidamide C(=N)(C)NCC

N,N-dimethylacetimidamide C(=N)(C)N(C)C
(E)-N’-ethyl-N-methylformimidamide C(=N\CC)/NC
(Z)-N’-ethyl-N-methylformimidamide C(=N\CC)\NC
(E)-N-ethyl-N’-methylformimidamide C(=N\C)/NCC
(Z)-N-ethyl-N’-methylformimidamide C(=N\C)\NCC
(E)-N,N,N’-trimethylformimidamide C(=N\C)/N(C)C
(Z)-N,N,N’-trimethylformimidamide C(=N\C)\N(C)C

(E)-N,N’-dimethylacetimidamide C(=N\C)(\C)/NC
(Z)-N,N’-dimethylacetimidamide C(=N\C)(/C)\NC
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Table S5: FG-dataset: Thiols, thials, thioketones and thioethers.

IUPAC name SMILES
Methanethial C=S
Methanethiol CS
Ethanethial CC=S
Ethanethiol CCS

Dimethylsulfane CSC
Propanethial CCC=S

Propane-2-thione CC(=S)C
Propane-1-thiol CCCS
Propane-2-thiol CC(C)S

Ethyl(methyl)sulfane CCSC
Butanethial CCCC=S

2-methylpropanethial CC(C)C=S
Butane-2-thione CCC(=S)C
Butane-1-thiol CCCCS

(R)-butane-2-thiol C[C@H](CC)S
(S)-butane-2-thiol C[C@@H](CC)S

2-methylpropane-2-thiol CC(C)(C)S
Diethylsulfane CCSCC

Methyl(propyl)sulfane CCCSC
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Table S6: FG-dataset: Amides.

IUPAC name SMILES
Formamide C(=O)N

N-methylformamide C(=O)NC
Acetamide C(=O)(C)N

N-ethylformamide C(=O)NCC
Propionamide C(=O)(CC)N

N,N-dimethylformamide C(=O)N(C)C
N-methylacetamide C(=O)(C)NC

N-isopropylformamide C(=O)NC(C)C
N-propylformamide C(=O)NCCC

Isobutyramide C(=O)(C(C)C)N
Butyramide C(=O)(CCC)N

N-ethyl-N-methylformamide C(=O)N(C)CC
N-ethylacetamide C(=O)(C)NCC

N-methylpropionamide C(=O)(CC)NC
N,N-dimethylacetamide C(=O)(C)N(C)C

Table S7: FG-dataset: Oximes.

IUPAC name SMILES
Formaldehyde oxime C=NO

(E)-acetaldehyde oxime C(=N\O)/C
(Z)-acetaldehyde oxime C(=N\O)\C

(E)-propionaldehyde oxime C(=N\O)/CC
(Z)-propionaldehyde oxime C(=N\O)\CC

Propan-2-one oxime C(=NO)(C)C
(E)-butyraldehyde oxime C(=N\O)/CCC
(Z)-butyraldehyde oxime C(=N\O)\CCC

(E)-isobutyraldehyde oxime C(=N\O)/C(C)C
(Z)-isobutyraldehyde oxime C(=N\O)\C(C)C

(E)-butan-2-one oxime C(=N\O)(\C)/CC
(Z)-butan-2-one oxime C(=N\O)(\CC)/C
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Table S8: FG-dataset: Carbamate esters.

IUPAC name SMILES
carbamic acid C(=O)(N)O

methylcarbamic acid C(=O)(NC)O
methyl carbamate C(=O)(N)OC
ethylcarbamic acid C(=O)(NCC)O
ethyl carbamate C(=O)(N)OCC

dimethylcarbamic acid C(=O)(N(C)C)O
methyl methylcarbamate C(=O)(NC)OC
isopropylcarbamic acid C(=O)(NC(C)C)O
propylcarbamic acid C(=O)(NCCC)O
isopropyl carbamate C(=O)(N)OC(C)C
propyl carbamate C(=O)(N)OCCC

ethyl(methyl)carbamic acid C(=O)(N(CC)C)O
methyl ethylcarbamate C(=O)(NCC)OC
ethyl methylcarbamate C(=O)(NC)OCC

methyl dimethylcarbamate C(=O)(N(C)C)OC
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Table S9: FG-dataset: Aromatic molecules.

IUPAC name SMILES
Furan o1cccc1

Thiophene s1cccc1
Pyrrole [nH]1cccc1
Pyridine c1ccncc1

Cyclopentadiene C1C=CC=C1
Benzene c1ccccc1
Phenol Oc1ccccc1

Thiophenol Sc1ccccc1
Aniline Nc1ccccc1
Toluene Cc1ccccc1

Para-xylene Cc1ccc(C)cc1
Meta-xylene Cc1cccc(C)c1
Ortho-xylene Cc1ccccc1C
Benzofuran o1ccc2ccccc12

Isobenzofuran o1cc2ccccc2c1
Benzo[b]thiophene s1ccc2ccccc12
Benzo[c]thiophene s1cc2ccccc2c1

1H-indole [nH]1ccc2ccccc12
2H-indole C1C=C2C=CC=CC2=N1
Quinoline c1ccc2ncccc2c1

Isoquinoline c1ccc2cnccc2c1
1H-indene C1C=Cc2ccccc12
2H-indene C1C=C2C=CC=CC2=C1

Naphthalene c1ccc2ccccc2c1
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Table S10: Standard deviation and standard error of the mean of the pre-
diction error of the models obtained by cross validation sorted by chemical
family. Values are reported in eV.

Chemical Family Standard Deviation Standard Error
CxHyO(0,1) 0.26 0.0073
CxHyO(2,3) 0.13 0.0024
CxHyN 0.23 0.0027
CxHyS 0.26 0.0044

Amidines 0.23 0.0039
Amides 0.15 0.0046
Oximes 0.19 0.0043

Carbamates 0.16 0.0035
Aromatics 0.48 0.0102

Table S11: Standard deviation and standard error of the mean of the pre-
diction error of the models obtained by cross validation sorted by metal (the
last row considers the gas-phase subset). Values are reported in eV.

Metal Standard Deviation Standard Error
Ag 0.23 0.0104
Au 0.16 0.0080
Cd 0.10 0.0041
Cu 0.12 0.0076
Ir 0.17 0.0065
Ni 0.14 0.0038
Os 0.20 0.0051
Pd 0.15 0.0051
Pt 0.19 0.0055
Rh 0.15 0.0080
Ru 0.22 0.0106
Zn 0.11 0.0045
Gas 0.22 0.0078
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Table S12: Summary of the performed hyperparameter optimization. All the
pooling-wise options refer to the GMT implementation in Pytorch Geometric
(PyG).

Hyperparameter Type Search space Optimum
Batch size int 16, 32, 64, 128 16

Loss function func MAE, MSE MAE
Initial lr float 1e-1, 1e-2, 1e-3, 1e-4 1e-3

Lr-patience int 5, 7, 9 5
Lr-factor float 0.5, 0.7, 0.9 0.7

Minimum lr float 1e-7, 1e-8, 1e-9 1e-8
Amsgrad bool True, False True

Layers depth int 64, 128, 256 256
Bias inclusion bool True, False False
Linear layers int 0, 1, 2, 3, 4 1

Convolutional layers int 1, 2, 3, 4, 5 3
Convolution type func GraphSAGE, GATv2 GraphSAGE
Normalized conv. bool True, False False

Root-weighted conv. bool True, False True
Pool ratio float 0.25, 0.50, 0.75 0.25
Pool heads int 1, 2, 4 1

Pool sequence list[func] (see PyG Docs) [GMPool_I]
Pool normalization bool True, False False
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Table S13: Adsorption energy of BM-dataset samples obtained with the op-
timized GNN and compared to DFT. Values are reported in eV.

Molecule Family Metal EDFT
ads EGNN

ads Absolute error
mol1 Polyurethanes Ag -0.75 0.12 0.87
mol2 Polyurethanes Ag -0.81 -0.77 0.04
mol3 Polyurethanes Ag -0.77 -0.40 0.38
mol4 Polyurethanes Ag -0.84 -1.06 0.22
mol5 Polyurethanes Ag -1.11 -1.20 0.09
mol1 Polyurethanes Au -0.50 -0.12 0.38
mol2 Polyurethanes Au -0.40 -0.84 0.44
mol3 Polyurethanes Au -0.36 -0.19 0.17
mol4 Polyurethanes Au -0.39 0.00 0.39
mol5 Polyurethanes Au -0.84 -0.60 0.24
PE Plastics Pt -1.17 -0.72 0.45

PP-it Plastics Pt -0.93 0.00 0.93
PP-st Plastics Pt -0.86 0.00 0.86
PS Plastics Pt -2.95 -3.41 0.45

PET Plastics Pt -2.86 -1.89 0.97
PE Plastics Ru -0.18 -0.04 0.15

PP-it Plastics Ru 0.02 0.00 0.02
PP-st Plastics Ru 0.08 0.00 0.08
PS Plastics Ru -3.10 -3.47 0.36

PET Plastics Ru -4.78 -4.16 0.63
mol1 Biomass Ni -2.86 -2.51 0.36
mol2 Biomass Ni -2.39 -2.18 0.21
mol3 Biomass Ni -2.79 -1.64 1.15
mol4 Biomass Ni -1.92 -1.34 0.58
mol5 Biomass Ni -1.60 -1.51 0.09
mol1 Biomass Ru -3.65 -3.58 0.07
mol2 Biomass Ru -3.15 -2.95 0.20
mol3 Biomass Ru -3.41 -2.41 1.00
mol4 Biomass Ru -2.50 -2.16 0.33
mol5 Biomass Ru -1.99 -1.44 0.55
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