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Abstract 

Macrocycles represent an important class of ligands, both in natural products and designed drugs. 

In drug design, macrocyclizations can impart specific ligand conformations and contribute to 

passive permeation by encouraging intramolecular H-bonds. AutoDock-GPU and Vina can model 

macrocyclic ligands flexibly, without requiring enumeration of macrocyclic conformers before 

docking. Here, we characterize the performance of the method for handling macrocyclic 

compounds, which is implemented and the default behavior for ligand preparation with our ligand 

preparation pipeline, Meeko. A pseudoatom is used to encode bond geometry and produce an 

anisotropic closure force for macrocyclic rings. This method is evaluated on a diverse set of small 

molecule and peptide macrocycles, ranging from 7- to 33-membered rings, showing little accuracy 

loss compared to rigid redocking of the X-ray macrocycle conformers. This suggests that for 

conformationally flexible macrocycles with unknown binding modes, this method can be 

effectively used to predict the macrocycle conformation. 

Introduction 

Macrocycles occupy a unique segment of drug-relevant chemical space, yet they are relatively 

underexplored compared to acyclic small molecules.1 They represent a privileged class of 

molecules for the modulation of protein-protein interactions,2, 3 and interest in macrocyclic 

peptides as a class has been growing in both academic and industrial circles.3-6 Natural 

compounds have been the main source of macrocycles with relevance for therapeutic purposes. 

While there are over 100 marketed macrocyclic drugs derived from natural sources,7 they are for 

the vast majority either the actual natural compounds, or their modifications. Between 2014 and 

2021, nineteen of the FDA approved drugs are macrocycles,8 which represents roughly 1 in 20 

FDA approvals.  



Macrolide antibiotics9, 10 such as actinomycin11  and polyene antifungal compounds12 are among 

the most prominent classes of compounds. However, in the past decade there has been an 

increasing interest in de novo designed macrocycles, often starting from small molecule 

templates.1, 13, 14 The cyclization process is a very effective way to improve physio-chemical 

properties of molecules, improving pharmacological properties while retaining relatively low 

molecular weights.15, 16 For example, cyclization of peptides has been used by synthetic 

chemists,3-5 and in natural systems17, 18 through post-translational modification and non-ribosomal 

peptide synthesis, to confer metabolic stability as well as to restrict the conformational space to 

improve affinity and cell permeability. In particular, the cyclization can be used to reduce the 

entropic cost of binding by reducing conformational degrees of freedom, and ultimately shift the 

thermodynamics of binding favoring the formation of a complex.13, 14 Cyclization can also be used 

to increase cell permeability by exploiting the switching between solvent-dependent 

conformational states.19 

 

Modeling of macrocycles presents a number of challenges for docking algorithms due to the 

complexity of their constrained molecular structures.20 On one hand, many of the internal degrees 

of freedom are partially restrained by the cyclic structure, which limits the amplitude of bond 

torsional variability. On the other hand, the remaining intra-cyclic degrees of freedom are hard to 

sample because of their correlated and concerted motions.21, 22 Therefore, several methods have 

been proposed to describe and sample these constrained degrees of freedom during molecular 

docking.  These methods can be categorized into two main approaches. The first is a two-step 

process consisting in the enumeration of a possibly large number of macrocycle conformers 

followed by rigid docking of each conformer. The second, which is the topic of the present work, 

is flexible docking of the cyclic structures is simpler because it consists of a single step and allows 

for the sampling of cyclic conformations during docking, while taking into account the target 

structure. Both approaches were used successfully by participants of the D3R Grand Challenge 

4, which included the prediction of the binding mode of nineteen macrocycles.23 

 

In 2007 we reported the first AutoDock method for docking macrocycles flexibly. Macrocycles are 

challenging because AutoDock samples bond rotations independently from each other, but cyclic 

molecules introduce a dependence between multiple rotatable bonds to preserve their cyclic 

structure. The method reported in 2007 consisted in breaking the cyclic structures by removing 

one bond, to allow independent sampling of each rotatable bond, and use of a modified Lennard-

Jones-like potential between two previously bonded atoms (which we refer to as “glue” atoms)24 



to restore the cyclic structure. The original closure potential was isotropic because it did not 

depend on the relative orientation of the glue atoms. Consequently, this potential is inappropriate 

for chiral carbons, and can produce non-physical valence angles. 

 

In 2019 we reported on an improved variation of the closure potential that uses pseudo-atoms to 

preserve the valence angles and chirality of the input molecule. Thus, the attraction between the 

previously bonded atoms can now be described as anisotropic, resulting in more accurate 

geometries. We employed this method in the D3R Grand Challenge 4,23, 25, 26 using AutoDock-

GPU, achieving RMSDs below 2 Å for all of the 19 macrocycles using visual inspection to select 

the best pose. The improved method was based on the Smallest Set of Smallest Rings (SSSR) 

perception algorithm available in OpenBabel. 

 

In the present work we describe the formalization of the closure potential reported in 2019, in 

which the molecule is represented by RDKit instead of OpenBabel, and rings are perceived with 

the Hanser-Jauffret-Kaufmann (HJK) ring perception algorithm.27 HJK returns the complete set of 

rings, instead of a SSSR, giving us more flexibility in the choice of rings to break and the bonds 

to remove. This change is part of our ongoing development of an interface between RDKit and 

AutoDock (Meeko),28, 29 which enables the user to use RDKit molecules as the input and output 

for AutoDock calculations, facilitating the integration of docking with other modeling software. 

 

Here, we characterize the performance of this improved flexible macrocycle leveraging the 

accelerated performance of AutoDock-GPU, using a large and diverse set of ligands from the 

PDB, spanning rings of multiple sizes, and including large and complex multicyclic molecules, 

such as vancomycin. Furthermore, this work validates our implemented algorithms for ring 

perception (HJK) and bond removal.  

Methods 

Ring breaking and closure 

 

The method consists of three main steps represented in Figure 1: 1) identification of cycles in the 

molecular graph that are suitable for breaking (ring perception); 2) identification of the optimal set 

of bonds to remove to obtain the optimal linear molecular graph (ring breaking); 3) docking of the 



acyclic molecular graph using an energy potential to induce ring closure (docking and ring 

closure).  

 

The ring perception step identifies cycles (i.e. rings) in the molecular graph using the Hanser-

Jauffret-Kaufmann (HJK) ring perception algorithm,27 which returns the complete and exhaustive 

set of rings. Since the complete set often has redundant ring information for our purposes, we 

remove “chorded rings” and “equivalent rings”. Rings are chorded if there is a shortcut between 

any two atoms containing fewer bonds than the path of the ring itself (e.g.: rings A and A’, Fig.1). 

Equivalent rings are rings of identical size that share at least one bond with a common neighbor 

ring, and for which all the bonds not contained in the common neighbor ring are the same (e.g.: 

rings A and A’, and B and B’, Fig.1). Then, rings between 7-membered and 33-membered are 

selected for breaking. Rings smaller than 7-membered rings have a small and well-defined set of 

stable conformations (e.g., boats and chairs) that do not require this method to be sampled. Rings 

larger than 33-membered rings are theoretically compatible with the method, but were arbitrarily 

excluded because the torsional complexity of their open forms would exceed the current search 

capabilities of our docking engines. 

In the following ring breaking step, we search for a set of bonds to remove such that each of the 

macrocycles identified in step 1 has exactly one bond removed. All bonds between non-aromatic 

carbon atoms that are not shared with non-breakable rings (i.e., 6-membered or smaller rings) 

are candidates for removal. We then perform an exhaustive search to find a set of bonds that 

when removed minimizes the depth of the deepest branch of rotatable bonds in the resulting 

acyclic molecular graph in order to minimize the search complexity during the docking. In fact, 

deeper branches of rotatable bonds (with respect to the central group of atoms in the graph, i.e. 

“root”)30 have potentially larger conformational variation upon torsional perturbations during the 

search, even for small angle steps. For most molecules, the number of removed bonds is equal 

to the number of macrocycles, but when bonds are shared between macrocycles, it is possible 

that there are fewer removed bonds than macrocycles. Each of the atoms previously bonded by 

a removed bond (e.g., a1, a2) is first assigned a special atom type CG (CGn), and then attached 

to a G pseudo atom at the position of the complementary G atom (Gn).  

In the last step, docking and ring closure, a distance-dependent penalty potential of 50 kcal/mol/Å 

is defined between each CGn/Gn pairs to favoring the restoration of the broken bond, then 

standard docking simulations are performed on the acyclic structures. While the potential between 

CG atoms and G pseudoatoms is isotropic (because it depends only on their distance), the bond 

restoration will be driven by their complementarity, hence resulting in anisotropic bond constraint 



which encodes and restores the original correct geometry and chirality (unlike the original 

implementation)24. This is the same potential used in our previous work.25, 26  

 

 



Figure 1. Schematic representation of the handling of flexible macrocyclic rings by Meeko and 

AutoDock-GPU. 



Ligand Dictionary Search and Filtering 

The ligand dictionary for the PDB was downloaded in a SMILES format from the RCSB website.31 

RDKit was used to parse the strings and detect ring sizes, as well as removing metals and 

inorganic species. Boettcher scores were used to provide a metric for molecular complexity, and 

calculated using previously reported code.32, 33 Representative ligands were sampled for each 

ring size, and the PDB was queried for their complexes with proteins. From that, we curated a 

small representative set of macrocyclic complexes matching the following criteria: deposited X-

ray crystal structure agreed with the chemical structure of the reported ligand; resolution <= 3.5 

Å; and no cofactors in the binding site. The final set contains 90 ligands. 

Ligand Preparation 

Ligand structures were manually inspected and extracted from the crystal structure using PyMol 

v2.5.2.34 Meeko v0.3.228 was used to assign atom types, check protonation, merge non-polar 

hydrogens, and define rotatable bonds. Additionally, Meeko was used to handle the breaking of 

the macrocyclic structure and the generation of pseudoatoms, as described above. Additionally, 

the rotation of conjugated bonds was disabled (using the options “-r C=C-C=A -b 2 3”). 

Receptor Preparation 

Receptor structure protonation states were assigned using pdb4amber[REF].35 Crystallographic 

waters and any other non-protein components, including metals and other cofactors, were 

manually removed using PyMol v2.5.2.34 The prepare_receptor4 script available in 

AutoDockTools36 was used to assign charges to the receptor and generate the PDBQT file. 

AutoGrid v4.2.630[REF] was used to generate the maps and associated files. Grid boxes were 

centered on and sized around the crystallographic ligand with an 8 Å padding on all sides. 

Docking Protocol 

AutoDock-GPU v1.5.3 was run with standard options, other than the calculation of input structure 

energies (--rlige 1). Briefly, for each complex 20 independent genetic algorithm runs were 

performed, with the resulting conformations clustered using a soft RMSD tolerance of 2 Å. The 

number of evaluations were estimated for each complex, using a built in heuristic based on the 

number of rotatable bonds,37 and capped with an asymptotic limit at 12M evaluations. 

Convergence was automatically assessed by the AutoStop criterion based on the standard 

deviation of the energy evaluations.37 Default settings for AutoStop of a 5 generation test rate and 

an energy standard deviation of 0.15 kcal/mol were used. These settings were used for all 



complexes, except for the extended runs to address convergence issues, and in the peptide case 

studies, where the search heuristics and AutoStop criteria were turned off and the docking run 

was performed with 100M evaluations. The best score pose for each docking was selected as the 

final pose for the analysis. 

 

Results 

Database curation 

The dictionary of all ligands currently deposited in the PDB (N=37023)1 was downloaded and 

filtered to remove complexes containing metals (N=406), or lacking carbon atoms (N=170), and 

SMILES with incorrect valances (N=513). The remaining complexes (N=35934) were filtered for 

ligands with at least one non-aromatic ring of size 7 or larger (N=1557, Figure 2), retaining 4% of 

the total ligands. These molecules have an increased molecular complexity relative to the overall 

list of deposited ligands (Figure 3). Representative examples of high resolution crystal structures 

of complexes containing randomly selected macrocyclic ligands, and not containing any other co-

factors in the site, were selected to approximately reproduce the distribution of ring sizes found in 

the PDB (N=90, Figure 2). Details on the complexes used in this set are available in Table S1. 

Importantly, this curated set also approximates the complexity profile of the overall set of 

macrocycles, implying it is representative of the complexity of challenges associated with 

macrocycles, both in terms of ring size and from an information theory perspective. During this 

process each deposited crystal structure was also checked for agreement with the deposited 

ligand chemical structure, ensuring that the stereochemistry and hybridization reported in the 

ligand dictionary agreed with the geometry of the deposited ligand (for example, removing cases 

where the deposited SMILES indicated a sp2-sp2 bonds, but the crystal structures contained non-

planar carbons).  

 

Peptide ligands tend to be larger than typical organic macrocyclic structures, resulting in a very 

large number of active torsions. Specialized software with ad-hoc protocols such as AutoDock 

CrankPep38 may be better suited to this task. However, given the relevance of cyclized peptides 

to drug design, several clinically relevant conformationally constrained peptides are presented 
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here as case studies, discussing the performance when docking such extra challenging 

structures. Details on the PDB structures used are available in Table S2. 

 

 

Figure 2. Distributions of largest ring size in the smallest set of smallest rings for all 

ligands deposited in the PDB, and the curated subset used in this work. 

ba 



 

Figure 3. Distributions of Boettcher molecular complexity scores for non-macrocyclic 

ligands in the PDB (blue), macrocyclic ligands (orange) in the PDB, and the curated 

subset used here (green). 

 

Comparison of flexible vs rigid redocking 

In order to assess the docking performance of the method in modeling full ring flexibility, ligands 

were docked both by modeling the full macrocycle flexibility (flexible), and while keeping rigid only 

the macrocycle conformation found in the crystallographic model (rigid). This allowed us to identify 

complexes in which other factors (e.g., scoring function limitations, water-mediated interactions, 

etc.) prevented reproducing the correct conformation, as well as assess the impact of the 

increased search complexity induced by the ring opening, 

 

In the case of rigid redocking the best pose of the most populous cluster found was within 2 Å of 

the crystallographic pose in 76% (68/90) cases (Figure 4). In the flexible redocking task, the 



success rate dropped to 53% (48/90) cases. In the rigid redocking the macrocycle conformation 

is known from the crystal structure, making it an inherently simpler task that not representative of 

the challenge of prospective dockings, when only the chemical structure is known and not its 

conformation. The difference in success rate between rigid and flexible redocking reflects this 

increased difficulty but is more representative of the task faced in docking and screening. The 

flexible success rate substantially improves when considering only smaller ring sizes (<15 atoms), 

becoming comparable to the rigid redocking success rate (59% vs 69%, n=54). This is an 

important aspect because these ring sizes are much more abundant in crystallographic structures, 

constituting more than 70% of all structures, and more relevant for drug discovery programs. The 

results also indicate this method comes at virtually no cost to the success rate while not requiring 

prior knowledge of ring conformations in most relevant situations. Selected successful flexible 

redocking results are shown in Figure 5. 



Figure 4. Distribution of root mean squared deviations (RMSD) for the best scoring pose 

found while redocking the macrocycle flexibly vs. redocking with the crystallographic 

macrocycle conformation.  

 



 

Figure 5. Comparison of experimental (color) versus flexibly docked (color) poses for 

selected successful redockings.  

 

The relative performance on between flexible and rigid (i.e. crystallographic ring conformation) 

macrocycle dockings is reflective of the challenges of search and scoring posed by the ring 

flexibility. To search for evidence of scoring problems caused by the ring closing method, we 

plotted the difference of the best scores obtained by flexible and rigid docking as a function of the 

RMSD of the pose docked flexibly (Figure 6). If unphysical bond geometries were produced during 

ring closing, these would likely lead to larger RMSDs. However, we observe no evidence of this 

being the case, because larger RMSD are not associated with better scores from the flexible 

docking. This suggests that the ring closing method does not introduce scoring aberrations. 

Convergence and extended runs 

To validate this and address the increased search complexity, cases were identified where results 

did not converge to well-defined clusters. We found 23 complexes where the most populous 

cluster contained three or fewer poses out of 20 generated/runs. This suggests that the automatic 

search termination criteria somehow hindered the docking performance by triggering an early 

energy convergence auto stopping and preventing from sampling sufficiently the ring 

conformational space. 



Figure 6. Difference in scores between the best pose found using flexible and rigid 

redocking vs the flexible redocking RMSD. 

This convergence issue was addressed by disabling the auto stopping criteria and heuristic for 

limiting evaluations, and instead running a docking for 100M evaluations, which far exceeds the 

usual number of evaluations. Of the 23 complexes treated this way, only 3 had RMSDs values 

that improved to be within the success criteria, while none got worse (5ta4, 5eqi, and 1nm6; Figure 

7 and 8). The success rate for this subset of challenging systems increased from 17% to 29%. 



Figure 7. Distribution of root mean squared deviations (RMSD) for the best scoring pose 

found while redocking with 100M evaluations vs. redocking with default AutoStop and 

heuristic settings. 

 



 

Figure 8. Comparison of experimental (blue) versus docked (orange) poses for 

complexes A) 5ta4, B) 5eqi, and C) 1nm6. 

 

Conformationally Constrained Cyclic Peptides 

Macrocyclic peptides feature in several therapeutically relevant contexts. To provide a proof-of-

principle of the application of this method to these challenging systems, we selected a small ad-

hoc set of 6 conformationally restrained peptides which were not included in the main dataset 

(Figures 9 and 10, Table S2): 3 inhibitors of HIV-1 protease (PDB: 1b6j, 1b6p, 4cpw); 3 antibiotics:  

arylomycin C (PDB: 3s04), darobactin (PDB: 7nrf), and vancomycin (PDB: 1rrv). Due to the high 

number of torsions present in these compounds, they were docked by disabling the AutoStop and 

search heuristic, and using 100M evaluations. For the complexes in PDBs 1b6j and 1b6p, the top 

pose was within 2 Å of the crystallographically determined ligand. For 1b6p, this involved two 

cyclic systems, a 15-membered ring and a 16-membered ring. Interestingly, in the latter, two of 

the carbons were not resolved in the crystal structure. While these atoms were excluded from the 

RMSD calculation, the docking was performed with the goal of assessing the application of this 

method to help refine incomplete structural data and infer the positions of the unresolved atoms 

in the macrocycle. The re-docking of the 4cpw complex is the only example of this set in which 

the top pose did not match the crystal structure. The best pose for the third ranked cluster was 

accurate to within 1 Å and was scored within 1 kcal/mol of the best cluster, showing that while 



AutoDock-GPU failed to properly rank the poses, the search algorithm showed to be capable of 

properly sampling the correct pose. For arylomycin C (PDB: 3s04), darobactin (PDB: 7nrf), and 

vancomycin (PDB: 1rrv) <2 Å RMSD poses were identified as the top result. These antibiotic 

peptides represent a series of increasing complexity challenges, with a progressively increasing 

number of torsions and flexible ring systems from arylomycin (24 torsions, 1 macrocyclic ring), to 

darobactin (32 torsions, 2 macrocyclic rings), to vancomycin (39 torsions, 3 macrocyclic rings). In 

both arylomycin and vancomycin, the accuracy of the macrocyclic portion is higher than for the 

linear chains attached to it, likely due to the more specific and constrained interactions established 

by the former versus the latter. In particular, for vancomycin the higher accuracy portions of the 

docked pose are near to the intersections of rings, and in regions with more contact with the 

protein, compared to distal portions of the molecule.  



 

Figure 9. Comparison of experimental (blue) versus docked (orange) poses for 

macrocyclic HIV protease inhibitors A) 4cpw, B) 1b6j and C) 1b6p. 

 

Figure 10. Comparison of experimental (blue) versus docked (orange) poses for 

antibiotics A) arylomycin C (3s04), B) darobactin (7nrf), and C) vancomycin (1rrv) 



Discussion 

 

In this work, we formalize and validate the flexible treatment of macrocyclic rings in AutoDock-

GPU on a large set of diverse macrocyclic molecules from the PDB. The method leverages an 

improved preparation  protocol for the ligands for flexible docking of macrocyclic structures, which 

is now enabled by default in Meeko,28 our recently developed interface between AutoDock and 

RDKit. Meeko streamlines the ligand preparation workflow, enabling users to use RDKit molecule 

objects to manage the AutoDock input and output data. Given the popularity and wide use of 

RDKit, this interface enables users to more easily integrate AutoDock with other software that 

supports the RDKit library. For docking methods requiring pseudo atoms, such as the macrocycle 

flexibility described herein, having streamlined input and output in a well-established molecular 

representation (as opposed to running scripts to add and remove pseudo-atoms from AutoDock-

specific file formats) reduces the burden on the user and makes it easy to use docked poses as 

input for other modeling tools, such as molecular dynamics simulations. 

 

Docking macrocycles flexibly greatly increases the number of conformations that are scored 

during the search. In comparison to rigid docking, there is a greater chance of finding wrong 

conformers with good scores, which would be detrimental to docking performance. However, we 

found no evidence of this being the case (Figure 6), which we attribute to the fact that the 

anisotropic closure potential used here retains bonding information and prevents deformations in 

bonding geometry from erroneously being scored favorably. Thus, our data suggests that the 

method does not introduce scoring functions issues. 

 

A flexible system has a greater number of active torsions than does a rigid system. This increases 

the difficulty of searching the torsional space for the appropriate binding mode, decreasing the 

rate of convergence. We show that removing the heuristic for estimating the number of 

evaluations needed for a system and turning off the auto stopping criteria (both of which designed 

to reduce the time taken to dock small molecules) can improve performance on some of the larger 

systems that do not converge. Importantly, this difference in number of torsions is intrinsically 

dependent on the ring size for the broken macrocycle, and this is reflected in the fact that this 

method performs better for smaller rings (up to 15-membered rings). As shown in Fig. 3, these 

rings represent the majority of deposited complexes, and are more commonly accessible through 

medicinal chemistry approaches. Some of these inaccuracies in the scoring and ranking of the 

correct results could be also mitigated in the context of a focused drug discovery effort by using 



knowledge-based post-processing steps, such as the presence of known interactions, (e.g., the 

key hydrogen bonding with the catalytic aspartates in the context of the HIV-1 protease inhibitors). 

 

With respect to cyclic peptides, which are possibly the most studied class of macrocycles, a 

systematic treatment would be challenging because of the large number of active torsions. 

Nevertheless, our work shows that select clinically relevant cyclic peptides, with relatively few 

torsions, can be handled by this method. We obtained very satisfactory results for vancomycin, 

which contains 39 torsions. While it would be helpful to address such molecules with specialized 

representations and energy models, from the perspective of the docking software and scoring 

function, there is fundamentally no difference between molecules with amino acid constituents 

and any other chemical matter. Therefore, the success in this space suggests that improvements 

in the search function will be able to extend this method to larger and more torsionally complex 

peptides. 

Conclusions 

 

We have presented here the validation of our flexible ring docking method. The method has been 

implemented and validated in AutoDock-GPU, extending the original approach implemented for 

AutoDock3 and AutoDock 4.2. Using an anisotropic ring closure potential provides a robust 

approach to dock cyclic molecules containing one or more flexible rings consisting of 7 or more 

atoms, and addresses most of the limitations of the first implementation. The results show the 

performance of the method is related to the complexity of the search, while the anisotropic 

potential does not alter the scoring function value of converged systems. This is further reinforced 

by the responsiveness of these systems to increased numbers of evaluations, which are shown 

to improve performance. This additionally means the method performs very well on the smaller 

ring systems most prevalent in druglike molecules. Finally, we show this method is capable of 

handling challenging multicyclic systems of clinical relevance. The method is compatible with all 

the other protocols available in the AutoDock Suite, therefore we recommend, and internally use, 

this method as a standard part of our docking pipeline. The automated preparation and simulation 

steps make this method suitable for high-throughput applications.  
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