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Abstract

Background: The increasing amount of chemical reaction data makes traditional
ways to navigate its corpus less effective, while the demand for novel approaches
and instruments is rising. Recent data science and machine learning techniques
support the development of new ways to extract value from the available reaction
data. On the one side, Computer-Aided Synthesis Planning tools can predict
synthetic routes in a model-driven approach; on the other side, experimental
routes can be extracted from the Network of Organic Chemistry, in which reaction
data are linked in a network. In this context, the need to combine, compare and
analyze synthetic routes generated by different sources arises naturally.

Results: Here we present LinChemIn, a python toolkit that allows
chemoinformatics operations on synthetic routes and reaction networks.
Wrapping some third-party packages for handling graph arithmetic and
chemoinformatics and implementing new data models and functionalities,
LinChemIn allows the interconversion between data formats and data models and
enables route-level analysis and operations, including route comparison and
descriptors calculation. Object-Oriented Design principles inspire the software
architecture, and the modules are structured to maximize code reusability and
support code testing and refactoring. The code structure should facilitate external
contributions, thus encouraging open and collaborative software development.

Conclusions: The current version of LinChemIn allows users to combine
synthetic routes generated from various tools and analyze them, and constitutes
an open and extensible framework capable of incorporating contributions from
the community and fostering scientific discussion. Our roadmap envisages the
development of sophisticated metrics for routes evaluation, a multi-parameter
scoring system, and the implementation of an entire ”ecosystem” of
functionalities operating on synthetic routes. LinChemIn is freely available at
https://github.com/syngenta/linchemin.
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Introduction
Chemists are paying a renewed interest in chemical reaction data [1, 2] and seek

novel ways to extract value from them. The accurate prediction of retrosynthetic

routes [3, 4], the analysis [5] and optimization [6, 7] of existing reaction classes, or

the discovery [8–11] of new ones are just few examples that highlight the impact of

reaction analytics and reactivity modeling on chemical science. Such fundamental

shift in how scientists consume and use this data creates a demand for innovative

ways to shape raw data points, excerpt insightful information, and build action-

able knowledge. Moreover, on the one side, the traditional combination of visual

inspection and databases searches is made progressively less effective by the in-

creased amount of available reaction data. On the other side, some innovations in

data science and machine learning provide more efficient instruments to navigate

the available information to support scientists in making data-informed decisions

faster.

CASP (Computer-Aided Synthesis Planning) [3, 12–15] tools constitute model-

driven approaches to navigating the corpus of reaction data and have proven to be

able to predict retrosynthetic routes even for completely new compounds. The usage

of these tools can be considered complementary to the conventional construction of

synthetic procedures via iterative database searches. The experimental reaction data

available from the literature, from electronic lab notebooks, etc... can be arranged

in a network in which sequences of chemical reactions are linked through common

molecular intermediates, generating the so-called Network of Organic Chemistry

(NOC) [8, 16]. The NOC is often instantiated as graph databases to leverage graph

arithmetic [13] for unconventional search procedures, such as extracting chemical

routes [17–20]. This arrangement of the data allows scientists to efficiently navigate

the preexisting knowledge and to enrich it by identifying new potential routes for

known target compounds.

From these premises, a natural need arises to combine the routes predicted from

CASP tools with those extracted from NOC, to perform comparison, validation,

consensus, and diversity analyses across different sources and methods.

Synthetic chemists seek a better balance between performance and sustainability

in chemical processes [21–23]. Synthetic biologists and systems chemists analyze

biotic reaction networks [24, 25] to understand or design new bio-inspired reactive

systems [26–32]. Scientists in these disciplines need a representation of chemical

reaction data that explicitly accounts for the connectivity between chemical reac-

tions. Moreover, with the emphasis shifting from individual reactions to reaction

sequences, scientists’ requirements increase accordingly, creating a pressing demand

for route-level analytic based on quantitative descriptors and multi-parameter met-

rics. In addition to a general data model, they need tools (software, databases, etc.)

to manipulate and investigate chemical sequences and networks.

While only a few tools are publicly available for querying NOC databases, the

number of available CASP tools is rapidly increasing [3, 4, 33–35], including those

accounting for bio-catalyzed reactions [30]. Whether predicted or extracted, syn-

thetic routes come in different formats, often holding mutually incompatible data

models, depending on the source (NOC/CASP) and origin (specific CASP platform

or tool). Given the rapid evolution of the field and the growing number of method
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developers, imposing any unified standard of format and data model across appli-

cations and platforms appears daunting. As a lightweight alternative, we envision

bespoke software that operates translations between data formats and conversion

between data models, allowing third-party applications to consume the output of

multiple NOC and CASP tools.

To fill this gap in the chemoinformatics landscape, we present a chemical expert

system that will take for chemical routes and networks the role that toolkits like

OpenBabel, RDKit, and CDK play for molecules. LinChemIn captures the Linked

Chemical Information that underlies chemical reaction data and allows managing

entities of chemical relevance, such as the synthetic chemical route. Besides the

interconversion of file formats and data models, the toolkit enables route-level anal-

ysis and operations, including network editing, descriptor calculations, topological

and chemical route comparisons, and searches. On the one hand, application scien-

tists can conveniently access the toolkit functionalities via command-line interfaces

(CLIs) and front-facing high-level software components. On the other hand, devel-

opers of third-party applications can access lower-level modules to obtain complete

control of the toolkit functionalities. Besides these two user categories, we designed

the toolkit architecture to encourage scientists and developers to contribute to

its code base. The first release of LinChemIn constitutes an open and extensible

framework capable of incorporating contributions from the scientific community.

Following the AGILE approach to software development, the early publication of a

minimal viable product should stimulate scientific discussions and provide valuable

steers to further improvements. While pursuing an active development roadmap,

we will progressively release new modules that enable new functionalities.

This introductory article describes the LinChemIn toolkit and its benefits to dif-

ferent potential user categories. First, we report the domain analysis, where a formal

representation of the domain knowledge leads to a series of scientific and techni-

cal requirements. Next, we provide some implementation details, discussing our

software architecture choices while translating the scientific requirements into com-

putational procedures. Then, we present some applicative examples to demonstrate

the functionalities implemented in the toolkit and discuss the outcome of some il-

lustrative analyses. After that, we exemplify how developers could extend the code

to incorporate new functionalities. Finally, we offer a glimpse of the LinChemIn

development roadmap, highlighting the most significant functionalities planned for

future releases.

Domain Modeling
In our development work, we adopt Domain-Driven Design (DDD) principles to en-

sure a close match between the scientific domain (in this case, synthetic chemistry)

and the structure and language of the LinChemIn software code. This approach fos-

ters constructive collaboration between technical and domain experts by placing the

project’s primary focus on domain logic. The domain modeling of the LinChemIn

project captures the relationships between distinct chemical reactions, whose most

common cases are represented in Figure 2. Intermediates are chemicals produced

by one reaction and consumed by another (Fig. 2 A, M2). The chemical shared as a

product by two or more reactions (Fig. 2 B, M1) is a convergence point, indicating
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alternative ways to deliver a compound. The chemical shared as a reactant by two

or more reactions (Fig. 2 C, M4) is a common intermediate, a divergence point.

Together these reaction links define the Network of Organic Chemistry, described

in detail in several works [8, 16].

Figure 2: Types of connections between reactions. A: M2 is a molecular interme-

diate produced by reaction R1 and consumed by reaction R2. B: M1 is a chemical

produced by both R1 and R2, and represents a convergence point. C: M4 is a

chemical acting as reactant for both R1 and R2, and represents a divergence

point.

This section describes the data models we created to map a subset of the concepts

relevant to chemical synthesis. We build a list of operations necessary to map the

business logic of the scientific domain into algorithms and software.

The most granular concepts we encounter are those of chemical compounds and

chemical reactions, mapped as Molecule and Chemical Equation. We select a

set of immutable properties that define their identity so that we can treat them as

value objects. In the case of Molecule entities, we use an attribute derived from the

molecular structure like SMILES or the InChiKey strings. If we formalize chemical

reactions as chemical compounds that have a role (reactants, products, reagents),

the set of Molecule entities and a reaction role map suffice to define the nature

of a Chemical Equation. As value objects, Molecule and Chemical Equation in-

stances constitute the nodes of a graph representation of the reaction network. The

SynGraph (synthetic graph) is the central data object in LinChemIn. It contains

Chemical Equations and Molecules alongside their relationships. Relevant sci-

entific concepts map onto particular SynGraph sub-types, as shown in Figure 3. For

instance, we define the synthetic route as a set of unique (mutually exclusive) chem-

ical reaction steps that, arranged into a (possibly branched) sequence, are necessary

and sufficient (collectively exhaustive) to assemble a target compound from starting

material. We distinguish the synthetic route from simple synthetic pathways, con-

necting the target compound to a starting material through a linear sequence. In

addition, we envision aggregative data models such as the synthetic tree (collection

of synthetic routes) and the synthetic forest (collection of synthetic trees), which

are necessary to collect and compare routes from different sources (CASP, NOC,

etc.) for one or more targets.

SynGraph represents the connectivity betweenChemical Equation andMolecule

instances as a graph-like object. In a typical embodiment, based on a monopartite
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Figure 3: Schematic representation of different SynGraph types. Synthetic

Path: a linear sequence connecting a root and a leaf. Synthetic Route: the

union of Synthetic Paths starting from a single root that is collectively necessary

and sufficient to represent a chemical synthesis. Synthetic Tree: the union of

Synthetic Routes sharing the same root. Synthetic Forest: the union of Syn-

thetic Trees with distinct roots.

graph, directed edges connect Chemical Equation nodes, implying the reaction in-

termediates (Fig. 4 A). Alternatively, directed edges of a monopartite graph connect

Molecule nodes, implicitly suggesting chemical reactions (Fig. 4 B). As a third al-

ternative, Chemical Equations and Molecules are nodes of a bipartite graph where

directed edges map role relationships (reactant, product, etc.) (Fig. 4 C). While

containing the same information, these and other graph data models might serve

as alternative data representations fitting specific applications.

Figure 4: Schematic representation of different graph data models. A: monopar-

tite, Chemical Equations only. B: monopartite, Molecules only. C: bipartite

Molecules and Chemical Equations.

We represent the domain logic through the following formal operations, acting on

the SynGraph data model.

Translation Transforming SynGraph into other kind of graph objects is a crucial

prerequisite for other operations. This provides an alternative to adapting the (po-

tentially complex) application (algorithm, database, etc.) to accept the SynGraph

data format and, thus, lowers the barrier to integrating third-party software.
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Identification SynGraphs are value objects, and their immutable properties en-

tirely define their nature. In the most general case, this includes the overall graph’s

topology and the nodes’ properties. This means that multiple experimental syn-

thetic routes map onto the same SynGraph (specifically, a SynRoute) if they

share the same arrangement of identical reaction steps (Chemical Equations and

Molecules). SynRoutes constitute complex labels for entities such as real-life syn-

thetic routes.

Comparison SynGraph natively supports structural equality since it is a value

object : to tell apart two SynGraphs is necessary and sufficient to compare the

graph topology and the node properties (see above). Besides equality, SynGraph

supports the calculation of structural similarity by projecting node properties across

a topological distance between graphs. The following sections provide implementa-

tion specifics from a chemoinformatics standpoint.

Merging Merging SynGraphs corresponds to a union operation between the un-

derlying graphs by an equality operation on the nodes. This operation is essential

when creating SynTrees by merging SynRoutes, and corresponds to creating a

route catalog from different CASP tools.

Extraction Extraction procedures yield a new SynGraph by selecting a set of nodes

and edges from an existing SynGraph. Among the extraction procedures that have

a scientific value, identifying distinct SynRoutes from a SynGraph is possibly the

most important because it is the basis of identifying chemical routes from a route

catalog (a SynTree) or the NOC.

Implementation
Development and Deployment

The implementation information reported here provides a rationale for our software

architecture choices. We refer the interested reader, the user, and the developer to

the documentation enclosed with the software, where they can find more details

and material aligned with code releases.

LinChemIn is a software package written in Python 3. The source code is available

to the scientific community at https://github.com/syngenta/linchemin and is open

to external contributions through standard git workflows. LinChemIn depends on a

handful of common and reliable third-party python modules. For instance, RDKit

[36] is the chemoinformatics workhorse of this application, while graph arithmetic

leans mostly on NetworkX [37]. We actively manage the package dependency map,

aiming at a low coupling with applications or modules that are not compatible cross-

platform (e.g., GraphTools) or that bring potentially conflicting second-tier library

dependencies (e.g., RXNmapper). We rely on dedicated REST APIs (Application

Program Interfaces) or format-controlled I/O to deal with such cases.

The Object-Oriented Design (OOD) principles inspire the LinChemIn software

architecture. In particular, modules and functions follow the ”single-responsibility”

principle, thus maximizing code reusability, facilitating testing, and supporting

code refactoring. The usage of appropriate architectural patterns (e.g., the fac-

tory method pattern) ensures that the code is open for extension but closed for
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{’A’: {’C’, ’D’};

’B’: {’E’};

’D’: {’F’};

’E’: {’F’};

’C’: {};

’F’: {}}

Figure 5: SynGraph instance and corresponding graphical representation of a

generic graph.

modification (”open-closed” principle). This approach aims to lower the barrier of

incorporating external contributions to the code, thus fostering open and collabo-

rative software development.

LinChemIn is a python library. As such, it provides front-facing interfaces to the

developers of third-party applications. Several internal APIs (facades pattern) mask

the complexity of the underlying code, improving its readability. These APIs expose

useful helper functionalities, thus constituting a companion to software documenta-

tion. This approach reduces the coupling between LinChemIn and applications de-

pendent on it, decreasing the risk of breaking functionalities as the software evolves.

In addition, LinChemIn provides a Command Line Interface (CLI) exposing high-

level functionalities (e.g., route format conversion) to end-users with no software

development background.

SynGraph

The SynGraph python class, implementation of the homonym data model, is the

backbone of the overall package, used as the underlying data structure for most of

the code functions. It contains a graph-like structure implemented as a dictionary of

sets: the key encodes a ”parent” node having out edge(s), and the value is a python

set containing all its ”children” nodes. Using a set ensures no duplicates among

the ”children” nodes. While nodes are explicit, the edges stay implicit, and their

direction is presumed to always be from the ”parent” node to the ”children” nodes

(Fig. 5). This data model captures only the first mandatory ontological layer of

the NOC, linking chemical reactions together via reactants and products. We leave

the business logic of constructing other (optional) layers of the NOC (including

reagents, procedures, etc.) to dedicated translation procedures. This approach leaves

the code open to the extension to any other data models that include other objects

and relationships. It reduces the need to modify the SynGraph class, thus risking

breaking any of its many dependencies.

Instances of theMolecule class hold information about chemical species involved in

the route. The instantiation process starts from a molecular input string (SMILES,

MOL, etc.) and creates a canonicalized RDKit Mol instance. This Molecule at-

tribute is easily accessible for the dynamic calculation of molecular properties

such as descriptors and fingerprints. A structure-derived molecular identifier (e.g.,

SMILES or InChikey string) calculated from the Mol attribute makes a Molecule

into a value object, thus enabling equality assessment.
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Instances of the ChemicalEquation class hold information about chemical reac-

tions. The instantiation process starts from an input string (SMILES, RDMOL,

etc.) and proceeds with a role attribution process and canonicalization. Ultimately,

each instance contains a set of unique Molecule instances and a map containing

information about each chemical’s roles in the reaction (reactant, reagent, product,

etc.). Although the ChemicalEquation features other optional attributes (e.g., stoi-

chiometry), the attribute that turns it into a value object is a hash of the Molecule

instances having the role of reactants and products.

The choice of the identity attributes of Molecule and ChemicalEquation univo-

cally echoes the identity attribute of SynGraph and defines the equality operations

between its instances. For example, the same SynGraph maps two distinct routes

having identical reactants and products for each reaction step, irrespective of the

reagents, physical conditions, operative procedures, etc. This data model layer maps

the business logic’s first layer and is open to extensions to deeper layers by including

other properties of the Molecule or ChemicalEquation. Additional types of nodes

and relationships can extend the data model to enable different equivalence as-

sessments between SynGraph instances that include other aspects of the chemical

reaction.

Transformations

We map the synthetic chemistry domain into a graph-like data model to leverage al-

gorithms initially developed and optimized in other fields, like social networks and

sentiment analysis. Instead of adapting these algorithms to our particular scien-

tific area’s needs (and language), LinChemIn contains flexible machinery to morph

the SynGraph model to suit the technical requirements of specific graph libraries.

This approach allows the LinChemIn user and developer to focus on the chemistry

domain rather than modifying or reimplementing graph algorithms.

A key objective of the LinChemIn project is to read and compare synthetic routes

predicted from several different CASP tools or extracted from NOC databases. Al-

though these data are all similarly structured, with a graph-based representation,

the content, the format detail, and the data model differ from case to case. The

LinChemIn module that operates data transformation treats the translation be-

tween data formats independently from the conversion between data models (Fig.

6). The implemented architecture averts the consequences of a combinatorial ex-

plosion across data formats and data models. The developer can expand the list of

supported data formats, including popular third parties formats, such as NetworkX

and Pydot, with additional formats and easily project the existing data models onto

the new formats. Conversely, the user can create bespoke data transformation work-

flows by mixing and matching available data formats and models to suit specific

applicative or visualization needs.

Operations on Routes

Besides data I/O and data transformation, LinChemIn enables operations on con-

nected synthetic datasets. For instance, the design of SynGraph natively supports

smart data set merging, leveraging the node equality properties to identify dupli-

cates and super-/sub-sets. This is important while integrating the output of different
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Figure 6: Schematic representation of the architecture relation between the Lin-

ChemIn’s modules responsible respectively for translation between format and

conversion between data models.

CASP tools to yield synthetic trees that can include human input and experimental

data extracted from NOC. The identification of the intersection between SynGraph

instances is enabled by the equality properties of the nodes (Molecule and Chemi-

calEquation) underlying the graph representation of the synthetic routes. It is pos-

sible to configure these properties to obtain different behavior upon merging. For

instance, the tautomeric differences between molecules are ignored by switching the

equality property from a canonical isomeric SMILES string to an InChi key string.

Alternatively, removing the isomeric information leads to different streoisomerically

related compounds collapsing as the same node. This functionality relies on a set

of molecular hashes available in RDKit, and the developer can extend this set to

suit specific needs.

In addition, LinChemIn allows the calculation of route-level descriptors and the

comparison between routes. In the next section, we discuss both cases with illus-

trative examples. The first release of the code features a small number of route

descriptors, and while we are developing more complex ones, we look forward to

the user community feedback and contribution.

Route Descriptors

We extend the definition of descriptors from the molecule [38] to the synthetic

route. Thus, the route descriptor is ”the final result of a logical and mathematical

procedure, which transforms chemical information encoded within a symbolic rep-

resentation of a synthetic route into a useful number or the result of a standardized

experiment.” This definition encompasses computed, modeled, and experimental

descriptors. An example is the LogP, a quantitative representation of the lipophilic-

ity of the molecules that can be measured in an experiment or predicted with a

model. Similarly, the overall chemical yield can be the outcome of an experimental

synthetic procedure or a route projection of the yield predicted for the single steps

[39–43]. Here, we describe our approach to calculated route descriptors. In a future

code release, we will include methods to combine descriptors and construct hybrid

experimental/modeled route metrics.

LinChemIn features an extensible factory of methods that take as an input the

SynGraph and return numerical or Boolean values of route descriptors. Each de-

scriptor captures a particular aspect of the route composition and structure, leverag-

ing the graph-like architecture underlying the SynGraph instances used to represent



Pasquini and Stenta Page 10 of 20

routes. In Table 1, we list the main descriptors currently implemented in the Lin-

ChemIn library, while Figure 7 highlights how each descriptor is able to discriminate

between particular graph structures.

Table 1: Descriptors currently implemented in LinChemIn and how they are mea-

sured.
Descriptor What is measured How it is measured
Number of Steps Overall size of the route Number of unique ChemicalEquation

nodes in a monopartite reaction-only
SynRoute

Longest Linear Se-
quence

Length of the longest synthetic branch
connecting the root with a starting ma-
terial.

Number of unique ChemicalEquation
nodes included in a monopartite reaction-
only SynPath

Number of Branches Number of times a synthetic route de-
parts from linearity

Number of ChemicalEquation nodes
whose ChemicalEquation ”child” node is
also a ”child” of other ChemicalEquation
nodes.

Convergence [44] Degree of branching of a route Ratio between the longest linear sequence
and the number of steps in a monopartite
reaction-only SynRoute.

Average Branching
Factor

Degree of branching of a route Ratio between the number of non-root
nodes and the number of non-leaf nodes
in a monopartite reaction-only SynRoute.

Figure 7: The value of structural descriptors calculated on representative graphs

illustrates their discriminative capability.

Comparison between Routes

Equivalence From a chemical standpoint, we call ”identical” two synthetic routes

that share the same synthetic steps arranged in the same order. However, this simple

definition depends on the level of detail adopted to describe each step. For example,

we can tell apart two identical reactions (same reactants/products) if we consider

reagents, procedures, or operational aspects (user, date, chemical batches, etc.); this

difference also echoes at the route level. For this reason, we prefer the term route

equivalence to that of identity and link it to the level of detail each route holds.
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As described above, we arbitrarily align the SynGraph equality property to the

route equivalence level that captures the single reactions’ reactants and products.

This decision aligns with the formal treatment of retrosynthesis provided by Corey

[45] and Hoffman [46] and ensures the best compatibility across CASP tools and

NOC databases. The SynGraph (a value object) is thus a label for synthetic routes

(entities). The other layers of route equivalence find their place in the data model

but do not contribute to the route ”label.” We build the route identity logic on the

equality of the dictionaries of sets that constitute SynGraph. Two dictionaries are

identical when they have the same key-value pairs. Since both keys and values are

Molecule or ChemicalEquation instances (value objects), the SynGraph equivalence

conveniently relies on standard python compassion functions.

Sub-/Super-Set We consider a synthetic route (SR2 in Figure 8) to be a subset of

another synthetic route (SR1) if it shares only a portion of the synthetic steps. The

case where the target compound is shared is chemically relevant, and it represents

the case when upon truncating a route branch, an intermediate is sourced rather

than synthesized. The sub-set assessment between routes efficiently leverages the

underlying dictionary data structure of SynGraph rather than relying on potentially

expensive graph isomorphism algorithms.

Figure 8: Depiction of the subset concept: the SR2 on the right is a subset of

SR1 on the left.

Similarity The equivalence (and the identity) is a Boolean response obtained by an

equality function. On the contrary, the similarity is a numerical response obtained

by comparing the numerical properties of two objects. By extending the molecular

similarity approach to routes, we could compare the numerical values of route de-

scriptors or hash the descriptors into route fingerprints and compare these instead.

Unfortunately, the number of route descriptors is still limited, and their importance

is still unclear. For this reason, we privilege a definition of similarity that depends

explicitly on the structure of the route and the chemical nature of its steps.

LinChemIn leverages the Graph Edit Distance (GED) to compute the similarity

between synthetic routes. The GED between two graphs, G1 and G2, is the cost

of the optimal edit path needed to transform G1 into a graph isomorphic to G2.
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The edit path may involve three types of operations, node insertion, node deletion,

and node substitution, each associated with a specific ’cost.’ The GED is a graph

arithmetic operation analogous to the Levenshtein distance between strings [37], and

it does not take into direct consideration the chemical information, which however is

essential when comparing synthetic routes. Genheden et al. [47] introduced chemical

information in the GED by enabling the GED cost functions to include calculations

of chemical similarity at molecular and reaction levels.

Inspired by this approach, we implemented a simple framework of route similar-

ity relying on the NetworkX GED algorithm. The NetworkX GED functionality

accepts a bespoke cost function for the node substitution through the parame-

ter ’node subst cost’ of the ’graph edit distance’ or ’optimized graph edit distance’

functions. Here, the cost for deleting and inserting nodes was set to unity, as this

is common in literature and corresponds to swapping a node with one of a differ-

ent type (e.g., Molecule with a Chemical Equation). Otherwise, the cost for node

substitution derives from fingerprint-based molecular or reaction similarity, as im-

plemented in RDKit. Since the LinChemIn module exposes the RDKit options,

the user can select the most appropriate combination of reaction/molecular finger-

print and similarity metric. By restricting the application to rooted graphs (such

as synthetic routes), the ’roots’ parameter of the GED function increases the com-

putational efficiency of the algorithms.

To our knowledge, the only currently available open-source package to compute

the similarity between Synthetic Routes is the one developed by Genheden et al.

[47] using the APTED algorithm [48, 49]. We provide a comparison between that

approach and the one described here. However, it is worth noticing that the absence

of a reference ground truth for synthetic routes similarity does not allow one to de-

termine whether one implementation is more accurate than the other. We took 100

routes among those used by Genheden et al. [50, 51] and we computed the distance

matrix with both the APTED and the NetworkX algorithms using the monopartite

representation (chemical reaction only) of the routes. To make the results compara-

ble, we used a set of parameters for the chemical similarity calculations analogous to

the one used by Genheden et al.: difference fingerprints for chemical reactions, Mor-

gan fingerprints for the molecules, and the Tanimoto algorithm for the similarity.

Figure 9 shows a good correlation between the values computed with the two algo-

rithms, although the APTED values are generally lower than those calculated with

NetworkX, and the agreement decreases as the values increase, suggesting a variance

accumulation. On the one hand, the difference in the absolute values could depend

on the actual algorithm. Also, in the approach by Genheden et al., some heuristics

were imposed over the APTED algorithm to compensate for the fact that the routes

are not ordered trees. On the other hand, small differences in the RDKit parameters

used lead to different values of chemical similarity and, in turn, to different values

of GED. Even though the absolute values are not identical, the overall Spearmen

correlation between the two sets of APTED and GED values is good, namely 0.87.

For what concerns computational efficiency, the algorithm by Genheden et al. out-

performs the NetworkX GED, being much faster in computing the distance matrix.

As shown in Figure 10, both algorithms have an approximately linear dependency

on the number of routes. Still, the slope for the APTED approach is about two
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orders of magnitude smaller than the one for the GED NetworkX. The performance

of the NetworkX algorithm can be improved by using the parallelization option for

calculating the distance matrix available in LinChemIn.

Figure 9: Relation between the GED values computed with the NetworkX algo-

rithm and with the APTED algorithm. The Spearman correlation between the

two sets is 0.87.

Clustering LinChemIn allows to cluster synthetic routes based on their similarity

matrix. Currently, two clustering algorithms are available: Agglomerative Clustering

[47] as implemented in sklearn, and Hdbscan [52]. Since the agglomerative cluster-

ing algorithm needs the number of clusters as input, we followed the strategy of

Genheden et al. [47] and implemented a process to optimize this parameter based

on the Silhouette score. The default linkage is single, but users can modify it ac-

cording to their needs. The ’clustering’ module has a factory structure to enable

scientists to experiment with other clustering algorithms.

Results and Discussion
In this section, we present some code snippets providing practical applications of

LinChemIn and an example of how a user could implement the calculation of a

custom metric. A high-level facade function wraps the main functionalities and sim-

plifies their usage; a convenient helper supports interactive usage (e.g., via Jupyter)

by exposing detailed information about available methods, parameters and their

default values.

Translation and Conversion functions

Using LinChemIn, the users can handle the outputs of various CASP tools and

transform the format and the data model of the predicted routes. The following
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Figure 10: Computational time needed to compute the distance matrix for an

increasing number of routes with APTED and NetworkX algorithms.

code shows how to exploit the main facade function ’processs routes’ to handle the

predictions of two different CASP tools, AiZynthFinder [14] and IBMRXN [15],

provided as JSON files, translate them into a list of SynGraph instances, while also

changing the type of graph; the routes are then written into a json file as lists of

dictionaries containing nodes and edges.

The input files are passed to the function alongside the names of the CASP tools

that generated them through a dictionary of the form {’file path’: ’casp name’}
By default, a json file containing the bipartite representation of the routes is cre-

ated. However, it is possible to change the output file format to csv through the

’output format’ argument and to select a different data model by specifying the

’out data model’ parameter. The ’process routes’ function also creates an output

object, whose attributes store the outcomes of the calculation as object.

from linchemin.interfaces.workflows import process_routes

# To convert the routes predicted by two CASPs into Syngraph instances

# and write them to a json file

output = process_routes(

{’data/AZ_AIZINTHFINDER/MOL001_routes.json’: ’az’, # input file and

relative CASP

’data/IBMRXN/MOL001.json’: ’ibmrxn’}) # input file and relative CASP

# To access the Syngraph instances

routes = output.routes_list

# To select a different output format and data model

output = process_routes(

{’data/AZ_AIZINTHFINDER/MOL001_routes.json’: ’az’, # input file and

relative CASP

’data/IBMRXN/MOL001.json’: ’ibmrxn’}, # input file and relative CASP

output_format=’csv’, # output file format

out_data_model=’monopartite_reactions’) # output data model
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Routes Operations

The ’process routes’ function allows users to select one ore more operations to be

performed on the routes, such as the calculating descriptors or clustering, by spec-

ifying the ’functionalities’ argument as a list of strings.

Routes Descriptors The code below shows how to compute some descriptors of

routes generated by different CASP tools. This is done by specifying the ’com-

pute descriptors’ string in the ’functionalities’ list. By default all the available de-

scriptors are calculated, however it is possible to specify the desired ones by passing

their names to the ’descriptors’ parameter as a list of strings. The output is stored

in the ’descriptors’ attribute of the output object as a pandas Dataframe, and it is

also written to the ’descriptors.csv’ file. Moreover, it is possible to use parallel com-

puting by setting the argument ’parallelization’ to True and selecting the number

of CPUs to be used through the ’n cpu’ parameter.

from linchemin.interfaces.workflows import process_routes

output = process_routes(

{’data/AZ_AIZINTHFINDER/MOL001_routes.json’: ’az’, # input file and

relative CASP

’data/data/MIT_ASKCOS/MOL001_routes.json’: ’askcos’}, # input file and

relative CASP

functionalities=[’compute_descriptors’], # selecting the functionality

descriptors=[’nr_branches’, ’nr_steps’], # descriptors

parallelization=True, # activate parallelization

n_cpu=16) # nr CPUs to be used

# To access the descriptors DataFrame

descriptors = output.descriptors

Routes Clustering Another available functionality is the one for clustering the

routes based on their GED. Once again, the facade function ’process routes’ is the

simplest way to access this functionality.

The input json files are passed to the function through a dictionary, as previsouly

shown, while the functionality to be specified is ’clustering’. The clustering algo-

rithm can be selected through the ’clustering method’ argument; by default the Ag-

glomerative Clustering algorithm is used when there are less than 15 routes in the

input list and Hdbscan otherwise. The ’ged method’ parameter determines which

algorithm is used to compute the similarity matrix; by default, the standard GED

algorithm provided by NetworkX is selected. It is also possible to specify the type

of fingerprints and similarity method for both molecules and chemical reactions by

setting the ’ged params’ parameter.



Pasquini and Stenta Page 16 of 20

from linchemin.interfaces.workflows import process_routes

output = process_routes(

{’data/IBMRXN/MOL001.json’: ’ibmrxn’}, # input file and relative CASP

functionalities=[’clustering’], # selecting the functionality

clustering_method=’agglomerative_cluster’, # clustering algorithm

ged_method=’nx_ged’, # GED algorithm

ged_params={ # optional parameters for GED calculations

’reaction_fp’: ’difference_fp’, # reaction fingerprints

’reaction_fp_params’: {’fpSize’: 1024}, # reaction fingerprints

parameters

’reaction_similarity_name’: ’dice’}, # chemical similarity method

)

Code Customization

The module ’route descriptors’ dedicated to the calculation of route descriptors has

been implemented as a factory pattern and the functions computing the metrics are

methods of subclasses of the abstract class DescriptorCalculator. Thus, to introduce

a new metric, the first step is to define a new subclass, for example CustomMet-

ric(DescriptorCalculator), and its method ’compute descriptor’. The latter should

contain the code necessary to compute the new metric and return its value. As can

be seen in the snippet below, there are no requirements for the type of input of the

method and the developer can build it as they prefer.

class CustomMetric(DescriptorCalculator)

def compute_descriptor(self, graph):

x = some_calculation(graph)

return x

The second step is to add the new metric among the available ones. This can be

done by adding a new key in the ’route descriptors’ dictionary of the DescriptorCal-

culatorFactory class, which maps a string identifying a metric into the relative sub-

class; the string is then used to access the metrics through the descriptor calculator

function, as shown below.

class DescriptorsCalculatorFactory:

""" definition of the DescriptorsCalculatorFactory factory. """

route_descriptors = {

’longest_seq’: {’value’: LongestSequence,

’info’: ’Computes the longest linear sequence in the input

SynGraph’},

’nr_steps’: {’value’: NrReactionSteps,

’info’: ’Computes the number of chemical reactions in the input

SynGraph’},

[...],

’new_metric’ : {’value’: CustomMetric,

’info’: ’Descriptor description (will appear in the

helper)’}}
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The usage will then simply be:

from linchemin.interfaces.workflows import process_routes

output = process_routes(

{’data/AZ_AIZINTHFINDER/MOL001_routes.json’: ’az’},

functionalities=[’compute_descriptors’],

descriptors=[’new_metric’])

Most of the modules in the package have the same factory structure as the

’route descriptors’, so that the procedure to add new functionalities also in other

parts of the code (format conversion, ged calculation and clustering) is the same as

the one shown above.

Conclusions
We introduced LinChemIn, an open-source python toolkit to work with synthetic

routes generated by a variety of different sources, such as CASP tools and NOC. The

toolkit enables interconversion between data formats and data models, as well as

route-level analysis and operations. The Object-Oriented Design principles inspire

the software architecture so that functions and modules are structured using appro-

priate architectural patterns to maximize code reusability and support code testing

and refactoring. This also aims to minimize the effort needed to incorporate exter-

nal contributions and to encourage open and collaborative software development.

Moreover, the Domain-Driven Design principles were adopted to ensure a close

match between the scientific domain (i.e., synthetic chemistry) and the structure

and language of the code, fostering a constructive collaboration between technical

and domain experts.

We presented the data models created to map concepts relevant for the synthetic

chemistry domain, as well as the main functionalities that have been implemented

so far. The current version of LinChemin represents the first step of a much bigger

project, aiming to build an entire ”ecosystem” of data models and functionalities

to manipulate and operate on synthetic routes, similar to what RDKit and other

tools created for molecules.

In future releases of the code, we aim to include more sophisticated synthetic

routes metrics integrating experimental and modeled data, a multi-parameter score

system and a plug-in to directly connect LinChemIn to an NOC database.

Availability and requirements
LinChemIn is available at https://github.com/syngenta/linchemin

Programming language: Python >=3.9

License: MIT

Other requirements:

• rdkit >=2022.3

• rdchiral

• pydot

• networkx

• pandas

• numpy
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• hdbscan

• scikit-learn

• joblib==1.1.0

Scripts and data used to generate the plots are available at

https://github.com/syngenta/LinChemIn publications
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41. Żurański, A.M., Martinez Alvarado, J.I., Shields, B.J., Doyle, A.G.: Predicting reaction yields via supervised

learning. Accounts of Chemical Research 54(8), 1856–1865 (2021). doi:10.1021/acs.accounts.0c00770. doi:

10.1021/acs.accounts.0c00770

42. Kwon, Y., Lee, D., Choi, Y.-S., Kang, S.: Uncertainty-aware prediction of chemical reaction yields with graph

neural networks. Journal of Cheminformatics 14(1) (2022). doi:10.1186/s13321-021-00579-z

43. Probst, D., Schwaller, P., Reymond, J.-L.: Reaction classification and yield prediction using the differential

reaction fingerprint drfp. Digital Discovery (2022). doi:10.1039/d1dd00006c

44. Cornwall, P., Diorazio, L.J., Monks, N.: Route design, the foundation of successful chemical development.

Bioorg Med Chem 26(14), 4336–4347 (2018). doi:10.1016/j.bmc.2018.06.006

45. Corey, E.J.: The logic of chemical synthesis: Multistep synthesis of complex carbogenic molecules (nobel

lecture). Angewandte Chemie International Edition in English 30(5), 455–465 (1991).

doi:10.1002/anie.199104553. https://doi.org/10.1002/anie.199104553

46. Hoffmann, R.W.: In: Hoffmann, R.W. (ed.) Ranking of Synthesis Plans, pp. 133–144. Springer, Berlin,

Heidelberg (2009). doi:10.1007/978-3-540-79220-88.https://doi.org/10.1007/978-3-540-79220-88

47. Genheden, S., Engkvist, O., Bjerrum, E.: Clustering of synthetic routes using tree edit distance. Journal of

Chemical Information and Modeling 61(8), 3899–3907 (2021)

48. Pawlik, M., Augsten, N.: Efficient computation of the tree edit distance. ACM Transactions on Database

Systems (TODS) 40(1), 1–40 (2015)

49. Pawlik, M., Augsten, N.: Tree edit distance: Robust and memory-efficient. Information Systems 56, 157–173

(2016)

50. Genheden, S., Bjerrum, E.: PaRoutes: a framework for benchmarking retrosynthesis route predictions (2022).



Pasquini and Stenta Page 20 of 20

doi:10.26434/chemrxiv-2022-wk8c3. Preprint at https://dx.doi.org/10.26434/chemrxiv-2022-wk8c3

51. Genheden, S.: PaRoutes: a Framework for Benchmarking Retrosynthesis Route Predictions.

doi:10.5281/zenodo.6275421. https://doi.org/10.5281/zenodo.6275421

52. Mo, Y., Guan, Y., Verma, P., Guo, J., Fortunato, M.E., Lu, Z., Coley, C.W., Jensen, K.F.: Evaluating and

clustering retrosynthesis pathways with learned strategy. Chem Sci 12(4), 1469–1478 (2020).

doi:10.1039/d0sc05078d. Mo, Yiming Guan, Yanfei Verma, Pritha Guo, Jiang Fortunato, Mike E Lu, Zhaohong

Coley, Connor W Jensen, Klavs F eng England 2021/06/25 Chem Sci. 2020 Nov 23;12(4):1469-1478. doi:

10.1039/d0sc05078d.


