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ABSTRACT

Developing foundation models for materials science has attracted attention. However, there is a lack
of work on inorganic materials due to the difficulty in the comprehensive representation of geometric
concepts composing crystals: the local atomic environments, their connections, and the global
symmetries. We present a contrastive learning of inorganic crystal structure (CLICS) for embedding
the geometric concepts, which contrasts texts representing the contextual patterns of geometries with
the crystal graphs. We demonstrate that the geometric concepts are integrally embedded on CLICS
feature space, through experiments of concept retrieval from crystal graphs, similar structure search,
and few-shot/imbalanced crystal structure classification.

Keywords Materials informatics ¨ Inorganic materials ¨ Crystal structure ¨ Foundation model ¨ Contrastive learning ¨

Language model ¨ Graph neural network

1 Introduction

Crystals have a pivotal role in the functional design of inorganic materials. Data-driven approaches have attracted
considerable interest for accelerating materials design and exploration [1, 2]. In particular, high-throughput screening
of materials and prediction of their properties are attractive options. Various machine learning techniques have been
used to accelerate screening [3–8]. Given the hardest challenge of exploring crystals never seen, generative models
have been extensively studied for sampling candidates [9–17]. However, current models frequently generate stuffs that
deviate from chemical principles, specifically from the geometric “concepts” such as the symmetry of crystals and local
atomic environments. Incorporating some symmetries has been considered [13–16]; however, global symmetries and
local atomic environments have not been integrally embedded in a feature space. Such a geometric-concept aware
feature space would not only augment existing models but also help scientists’ intuition or deduction with unveiling
relationships between the concepts, inductively from the ever-increasing data reported in the world.

Foundation models (FMs) have recently emerged on the basis of techniques from natural language processing, computer
vision, and any other machine learning communities [18]. They are trained on a large amount of data with multiple
modalities of concepts. They have been evolving interactively with large language models (LLMs) [19, 20], which have
also brought a significant impact on materials science [21–29]. FMs and LLMs often refer the same as natural language
is so common for us, which should also be the case for materials science; however, FMs more specifically connect
different modalities and are expected to open up ways of conceptual representation. After the studies of contrastive
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Figure 1: Intuition behind CLICS. Crystals and geometric concepts are contrasted on their shared feature space to learn the
underlying concepts of crystal structures. Here, the crystal on the left is positively paired with the octahedron, the connected
octahedra, and the tetragonal symmetry. The structure is negative against the tetrahedron, the connected tetrahedra, and the cubic
symmetry, which are positively paired with the crystal on the right. The two crystals will be represented in graphs (Section 3). The
local geometric environments (e.g., octahedron and tetrahedron on the top), the space groups (e.g., two placed in the middle), and
the connected geometries (e.g., corner-sharing octahedra and corner-sharing tetrahedra on the bottom) will be represented in texts
(Section 2, 3). Each double-headed arrow represents a negative pair (repulsion).

representation learning [30–32], the seminal work CLIP [33] has widespread multimodal FM and we now find a variety
of its folks. It has also inspired materials science community where scientific facts and measurement data are provided
along with their specific modalities. Models for applications in organic and drug chemistry have been trained by pairing
molecular structures and texts that describe their properties [34–41], which have rich information on molecules. In
contrast, relatively few such examples have been reported for inorganic materials, except for studies that used pairs of
crystal structures and X-ray diffraction data [42], which aimed to learn the concepts of crystals via the diffracted data,
and that used triplet pairs of crystal structures, density of states, and properties [43]. This is considerably because only
a few published and curated datasets of inorganic chemistry with multiple modalities are available, especially those
written in natural language. More essentially, inorganic materials are so intricate to be characterized only with motifs,
which often characterize the functionalities of organic materials.

Although the properties of inorganic materials depend on their compositions and are so intricate to be simply put, they
come from the interactions over local atomic coordinations, their connections, and the global crystal structure. We can
see typical patterns of local atomic coordinations, where charged ions orderly fill up the space or electron orbits make
bonds with certain symmetries in their environments. Crystal structures can take a variety of symmetries and atom
coordinates, but the local environments of atoms, their connections, and the global symmetries often arise harmonically.
Grasping these geometric concepts is thus fundamental for understanding and designing crystal structures. In machine
learning literature, a method was developed for the geometric attribution of local atomic environments [44], and the
order parameters were defined [45]. Our study has benefit from these work via Robocrystallographer [46], which
was also used in recent work showing that graph neural network (GNN)’s performance could be augmented by using
space group information [47], and informing both space groups and local atomic environments to a transformer-based
architecture could improve the predictive performance [48]. Another recent study focused on the shapes of motifs in
crystals, analyzed the statistics of polyhedra, and developed descriptors for the machine learning of crystals [49]. The
concept of motifs was also introduced to improve the prediction performance of a GNN model [50]. A mathematical
insight on crystal structures was presented for generating space-filling polyhedra with satisfying some symmetries [51].
We share their motivations but have been independently motivated to develop a way of integrally embedding in our
model the foundational concepts of inorganic crystal structure: local atomic environments, their connections, and the
global symmetries.

In this study, we present a Contrastive Learning of Inorganic Crystal Structure (CLICS), as a first step demonstration
toward a FM of inorganic materials. We consider two different modalities of crystal structures: graph and text. In
the framework of contrastive learning [33], we have two models each for graph and text embedding, and train these
models simultaneously by contrasting their outputs. A graph defines the arrangement of atoms and totally represents
the crystal structure as a chemical entity. On the other hand, a text represents contextual patterns of geometric entities
that compose the crystal structure, like the local atomic environments of “a Ti atom is bonded to six O atoms forming
a TiO6 octahedral coordination geometry”. The intuition behind CLICS is that the structural part of chemical entity
can be decomposed into the geometric concepts, and in turn, these concepts integrally represent the chemical entity.
Contrasting these two modalities is expected for the models to learn the underlying concept connecting the chemical
and geometric entities (Figure 1). A text itself may be considered as a concept; however, what we call concepts are the
geometric entities, their classification, and their relationships including the geometric similarities among them. For
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instance, “tetrahedral” and “distorted tetrahedral” are similar to each other, and “four coordinate” and “five coordinate”
would have similar meanings. The “tetrahedral” geometry is compatible with “four coordinate”, but has a higher order
symmetry. These similarities with respect to the coordination numbers and symmetries do not come only from the texts
themselves, but rather from the pairing between graphs and texts. Through the contrastive learning, we expect that
different crystal graphs would get closer on the feature space if the corresponding texts are similar, and in turn, different
texts, which represent the geometric concepts, will also get closer if the corresponding crystals are structurally similar.

We outline the remainder of this paper. Section 2 describes the dataset, especially focusing on the preparation of texts
that describe geometric entities. The criterion in preparing the texts defines with what abstraction level our model learns
the concepts. Tips are provided for learning the multiple concepts composing each crystal. Section 3 describes the
detailed architectures adopted for our purpose. Section 4 demonstrates CLICS’ embedding of geometric concepts,
through the experiments of concept retrieval, analysis of the relationships among concepts, similar structure search, and
few-shot/imbalanced crystal structure classification tasks.

2 Dataset

We converted CIF files from the Materials Project [52, 53] into crystal graphs. Texts describing the crystal structures
were generated using Robocrystallographer [46], which attributes various types of geometries based on modules via
Pymatgen [54]: AFLOW for mineral matching [55], Spglib [56] for computing global symmetry with matching space
groups, ChemEnv [57] and LocalEnv [44] for attributing local atomic environments (e.g., “octahedral”), and also
provides a module for determining connected geometries (e.g., “corner-sharing”).

We generated texts from crystals of 3D, or lower dimensional structured without orientation, which span approximately
90% of the materials on the Materials Project. Robocrystallographer [46] provides texts of its specific sentence
structures. For our model to learn the geometric concepts, we introduced the following rules for text preprocessing.

First, named crystal structures (e.g., rock salt), space groups, local atomic environments (e.g., 4-coordinate geometry),
and their connections (e.g., corner-sharing octahedra) were separately described (Table S1 shows the count of each
concept with an example). We added an unknown class “[UNK]” to the list of space groups as an indefinite label. Crystal
systems and points groups were not explicitly considered, but will be partly discussed regarding some hierarchical
similarities among space groups. When using the full texts to be contrasted with the graphs, the loss dropped without
any performance gain. Then, we inputted randomly selected N sentences from the texts in each epoch. N was set to 2
in the experiments, but using more sentences is possible. Inputting a single sentence is for our model to learn every
concept without training only with a part of the concepts that are easy to be paired with the graphs, nor being trained to
have one-to-one correspondence between the graphs and texts. Inputting two sentences is for the concepts to be learned
in various contexts. Each phrasing was randomized in order to avoid fully memorizing the whole sentence, where we
would rather let our model to see, e.g., what kind of element is connected how, in just such a short context though. In
the validation phase, we inputted for each crystal another phrase that was not used during the training phase (Table S2).

Second, each chemical composition in each text was replaced with e.g., “This crystal” (or randomly with the phrases
in Table S2), because the existence of compositions can make the training obvious: The nodes of a crystal graph
have features specific to the atoms, whereas the composition in the corresponding text also has the corresponding
word-embedding vectors, where the text encoder we adopted [58] tends to tokenize the compositions into the element
symbols. These features can be leaked and linearly converted into one another. In addition, the element symbols were
replaced with “[METAL]”, “[NONMETAL]”, or “[METALLOID]”, according to the attribution of each element, and
the local coordinations of atoms or clusters were replaced with the word “[POLYHEDRA]”. This denomination may
not best represent all types of coordinations such as ligands, but the words replacing chemical entities are arbitrary.
These replacements also prevent possible leaks between each graph and text, but the other important aspect is to define
the abstraction level of the chemical entities, rather than the geometric ones, which are the focus of this study.

Finally, every integer was replaced with a word (e.g., “4” with “four”), while real values were replaced with “[REAL-
VAL]”. The latter replacement was introduced to avoid possible leaks between the values in the CIF files and texts.
Sentences that only describe bond lengths and angles were not used.

Some examples generated by Robocrystallographer [46] and the preprocessed texts are in the supplementary information.
We randomly split the data into a training set consisting of 126035 and a validation set of 14004.

We did not use the named crystal structures during the training. This is because any crystal structure refers to a specific
arrangement of atoms. Thus, local atomic environments, their connections, and the global symmetries are at the bottom
of the concepts of crystal structures from a geometric perspective. Instead of learning the named crystal structures, we
will demonstrate that CLICS-pretrained model improves the classification accuracy of the named crystal structures even
when given a few number of data or imbalanced data, which would be typical situations for materials exploration.
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3 Method

We trained our model in the framework of contrastive learning between crystal graphs and texts. The crystal graphs were
computed from the CIF files of crystals, and then embedded into vectors by using a GNN: We employed ALIGNN [59],
which takes into account the bond angles in addition to the lengths. Aggregating bond angles as well as the lengths
is preferable in capturing the geometric concept of crystals. These graphs were contrasted with the texts that were
generated by using Robocrystallographer [46] and then preprocessed as described in Section 2. These texts were
encoded by using the MatSciBERT [58], which is a fine-tuned model of BERT [60] pretrained on a corpus of materials
science literature. We used its original tokenizer, which does not tokenize independent entities like space groups as they
are. Adding original tokens can be an option, but we had empirically no distinct performance gain from additional
tokens, as well as no remarkable degradation nor improvement using the other language models each pretrained on a
less domain specific corpora [60, 61]. Likely CLIP [33], we introduced projection heads after the graph embedding and
text embedding to have two copies of a feature space of the same dimension, so that they share the feature space where
concepts are learned.

As each crystal is a distinct chemical entity, the positive pair is defined between each crystal and any part of the text
describing the crystal. Note that, for each crystal, there are multiple positive pairs from the local atomic environments
and their connections. As described in Section 2, randomly sampled sentences were used in each epoch, which allows
for our model to learn each concept one by one as well as the contexts by inputting a text with two sentences.

The parameters of ALIGNN [59], MatSciBERT [58], and the projection heads were optimized through a symmetric
cross entropy (SCE) loss [33, 62] with the stochastic gradient descent. The loss function for each mini-batch is

LSCE “ ´

B
ÿ

i“1

«

log
exp pxPgpgiq,Ptptiqy{τq

ř

j exp pxPgpgiq,Ptptjqy{τq
` log

exp pxPtptiq,Pgpgiqy{τq
ř

j exp pxPtptiq,Pgpgjqy{τq

ff

, (1)

where gi and ti denote the feature vectors obtained from ALIGNN [59] and MatSciBERT [58] for an i-th sample in
the mini-batch, respectively; Pg and Pt denote the projection heads for graphs and texts, which project graph and text
embedding vectors into the same dimension (128-dimension in the experiments); τ denotes the trainable temperature
parameter [33].

We optimized the parameters for 128 epochs with the AdamW [63] optimizer. Following recent exploration of the
parameter tuning recipes [64], we decayed learning rate by a cosine schedule after linearly warming up the learning
rates for 5 epochs. We set learning rates for ALIGNN [59], MatSciBERT [58], and the projection heads to 10´3, 10´4,
and 10´3, respectively, and the coefficient of weight decay to 10´3 in the experiments.

4 Results and Discussion

This section is dedicated to see the embeddings by CLICS. In section 4.1, the retrieval accuracies of 228 space groups
and 233 local atomic environments (Table S1) are evaluated. Some examples are discussed in detail. The accuracy of
retrieving 5166 full patterns of polyhedral connections was not evaluated, because the intra-categories are too fine to be
rigorously matched. A detailed analysis for the connected geometries is provided in the supplementary information.
Section 4.2 shows the relationships among geometric concepts acquired by CLICS. Section 4.3 and 4.4 demonstrate that
CLICS has integrally embedded the geometric concepts, through similar structure search, and by showing a noticeable
improvement on few-shot/imbalanced crystal structure classification tasks.

4.1 Retrieval accuracies of space group and local atomic environments

The crystal graphs in the validation set were used to evaluate the top-K (K “ 1, 5) similarity scores against the
embedded vectors of texts that describe space groups and local atomic environments. Note that there are multiple, a
non-constant number of local atomic environments each crystal; we thus counted the top-K retrieval as correct if at
least one of the local atomic environments is included in the list of the ground truths. In evaluating the local atomic
environments, the metric that counts the cases of “at least one of them is included” as correct may be biased; however,
this metric seems not to deviate from the qualitative analysis through Table 2–5. Note that, we also observed cases
where retrieved concepts do not exactly match the list, but are still considered reasonable in their meanings of geometry.

In Table 1, reduced but comparable retrieval accuracies for space group were achieved compared to the supervised
training using ALIGNN [59], the same architecture used for CLICS. We did not perform supervised learning of local
atomic environments, which have non-constant numbers of ground truths. For reference, the top-1 and 5 accuracies
from CLICS were even higher than those for space group.
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Table 1: Classification accuracies of space group and local atomic environments: Top-1 and top-5 accuracies of CLICS (using
ALIGNN [59] for the graph encoder) and supervised learning (SL) using ALIGNN [59].

Concept Top-1 (CLICS) Top-5 (CLICS) Top-1 (SL) Top-5 (SL)
Space group 66.7 84.5 70.1 88.7
Local atomic environments 72.0 95.9 – –

Table 2–5 show examples of top-5 retrieved space groups and local atomic environments with their similarity scores.
Each table caption describes a part of the original text generated by Robocrystallographer [46] for comparison against
retrieved concepts. The number after each element symbol indicates an equivalent position of the atom. The pink
colored texts highlight correct retrievals. The purple colored texts highlight reasonable retrievals but requiring careful
consideration. The green colored boxes highlight the correspondences between words or sentences.

Table 2 is the result for PrVO4 (mp-19169 on the Materials Project), which has a zircon-type structure and has attracted
attention due to its redox activity as photocatalyst [65–67]. Its space group I41{amd was retrieved as the second scored
one. Both The I41{amd and the first scored I4122 have the tetragonal crystal system but with the point groups of D4

and D4h, respectively. These space groups are thus hierarchically familiar with each other. Note also that the difference
between the first and second scores are small compared to those between the second score and the third, forth, and
fifth scores. Next, the top-3 scored local atomic environments were retrieved correctly. Pr(1) and V(1) are attributed
to [METAL], and O(1) is to [NONMETAL], respectively. Note that CLICS cannot distinguish which retrieval has
come from which atom, but only can grasp the concepts within the given abstraction level of elements and predefined
geometric attributions [44–46]. The forth and fifth scores are much lower than those of the top-3 correct retrievals,
which suggests that the concepts have been embedded distinctively on the feature space.

Table 3 is the result for Sm2CoMnO6 (mp-1188690), which has a double perovskite-type structure and its magnetic
property was investigated [68–70]. The space group P21{c was retrieved first with a distinct score from the others.
The top-3 scored local atomic environments were retrieved correctly. This crystal also has corner-sharing octahedra,
but they were not found in the top-5 retrievals. This missing depends on what phrases we input to see the embedded
geometries. In fact, the corner-sharing octahedral geometries were retrieved via similarities to the full patterns of
connected polyhedral geometries, but the accurate number of connections was not retrieved (detailed discussion is
provided in the supplementary information). Note that we have two different descriptions for an equivalent site of
oxygen atom, O(1). Our dataset was prepared on 2023 August in date via the API of Pymatgen [54], and any update
manually confirmed on 2024 March is added in the table caption in the bracket with a dagger. The forth scored local
atomic environment (with a dagger) is then correct. The fifth scored one was not found natural.

Table 4 is the result for FeTa2O6 (mp-31755), an ordered tapiolite [71], a cation-ordered derivative of the rutile
structure [72, 73], of which antiferromagnetism was investigated [72, 74–77]. Its space group P42{mnm was found as
the first scored one. P42{mnm is accompanied with the point group symmetry of D4h, and is hierarchically familiar
with the second scored P42nm with its point group C4v. Regarding local atomic environments, the top-2 scored
geometries were correctly retrieved. The third scored one is incorrect but has a close meaning to the first scored
one except for “distorted”. The fourth scored one does not appear in the captioned text, but “three coordinate” has
similar meaning to “distorted trigonal planar” and “distorted T shaped” (highlighted in green boxes). Finally, although
CLICS does not distinguish whether “[METAL]” has come from Fe or Ta, the fifth scored “octahedra” is correct
but with a relatively low score. We empirically observed that CLICS may have independently embedded the local
atomic environments from the connected geometries. Not so essential, but the embedded concepts are retrieved via the
sentences describing the local atomic environments or the full patterns of connected polyhedral geometries. It seems
difficult to retrieve up to the detailed number of connections (discussed in the supplementary information).

Table 5 shows the erroneous result for NaClO3 (mp-630949). CLICS failed to retrieve any of the concepts. Its space
group is P21{c, but was not retrieved as top-5 scored. P21{c is monoclinic, while the first and forth scored space
groups P21212 and P212121 are both orthorhombic. There is a hierarchical relationship between P21{c and P21212,
both of which are attributed to translationengleiche subgroups of Pbcm [78], but the Laue class of P21{c is 2{m and
that of P21212 and P212121 is mmm. The second scored Cc is certainly monoclinic but with a different symmetry
along the principal axis. Also, none of the local atomic environments were retrieved as top-5 scored. Both of trigonal
bipyramidal and pentagonal pyramidal geometries have 6-coordinate, but the very “6-coordinate” geometry was not
retrieved. From a purely geometric view, the Na(1) atom is in fact bonded in a distorted trigonal planar with three
shorter bonds ranging 2.27, 2.47, 2.69 Å, and two vertical bonds, making a distorted trigonal bipyramidal geometry
(Figure S1 bottom). However, there is another bond of 2.78 Å closely near to the bond of 2.69 Å, and the geometry
deviates from the trigonal bipyramids. From another viewpoint, the Na-centered geometry also seems a distorted
pentagonal pyramidal geometry. The fifth scored one seems not even nearly describe any geometry.
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Table 2: Top-5 scored concepts for PrVO4 that “crystallizes in the tetragonal I41{amd space group. Pr(1) is bonded in a
8-coordinate geometry to eight equivalent O(1) atoms. V(1) is bonded in a tetrahedral geometry to four equivalent O(1) atoms. O(1)
is bonded in a 3-coordinate geometry to two equivalent Pr(1) and one V(1) atom.”

Space group Score Local atomic environment Score
I4122 1.97 [METAL] is bonded in a tetrahedral geometry. 1.98
I41{amd 1.96 [METAL] is bonded in a eight coordinate geometry. 1.81
I 4̄m2 1.85 [NONMETAL] is bonded in a three coordinate geometry. 1.80
C222 1.82 [POLYHEDRA] is bonded in a eight coordinate geometry. 1.60
Pccm 1.75 [METAL] is bonded in a distorted tetrahedral geometry. 1.58

Table 3: Top-5 scored concepts for Sm2CoMnO6 that “crystallizes in the monoclinic P21{c space group. Sm(1) is bonded in
a 8-coordinate geometry to two equivalent O(1), three equivalent O(2), and three equivalent O(3) atoms. Mn(1) is bonded to
two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms to form MnO6 octahedra that share corners with six
equivalent Cop1qO6 octahedra. Co(1) is bonded to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms to
form CoO6 octahedra that share corners with six equivalent Mnp1qO6 octahedra. O(1) is bonded in a 4-coordinate geometry to two
equivalent Sm(1), one Mn(1), and one Co(1) atom [O(1) is bonded to two equivalent Sm, one Mn, and one Co atom to form distorted
corner-sharing OSm2MnCo tetrahedra]:. O(2) is bonded in a 5-coordinate geometry to three equivalent Sm(1), one Mn(1), and one
Co(1) atom. O(3) is bonded in a 5-coordinate geometry to three equivalent Sm(1), one Mn(1), and one Co(1) atom.” The text in [ ]:

is added as the difference between our data generated in 2023 August and the description on the Materials Project in 2024 March.

Space group Score Local atomic environment Score
P21{c 1.84 [NONMETAL] is bonded in a five coordinate geometry. 1.87
P 1̄ 1.58 [METAL] is bonded in a eight coordinate geometry. 1.79
rUNKs 1.35 [NONMETAL] is bonded in a four coordinate geometry. 1.76
R3̄ 1.33 [NONMETAL] is bonded in a distorted tetrahedral geometry.: 1.67
Pc 1.23 [NONMETAL] is bonded in a distorted trigonal bipyramidal geometry. 1.58

Table 4: Top-5 scored concepts for FeTa2O6 that “crystallizes in the tetragonal P42{mnm space group. Ta(1) is bonded to two
equivalent O(1) and four equivalent O(2) atoms to form TaO6 octahedra that share corners with four equivalent Tap1qO6 octahedra,
corners with four equivalent Fep1qO6 octahedra, an edgeedge with one Tap1qO6 octahedra, and an edgeedge with one Fep1qO6

octahedra. Fe(1) is bonded to two equivalent O(1) and four equivalent O(2) atoms to form FeO6 octahedra that share corners with
eight equivalent Tap1qO6 octahedra and edges with two equivalent Tap1qO6 octahedra. O(1) is bonded in a distorted T-shaped
geometry to two equivalent Ta(1) and one Fe(1) atom. O(2) is bonded in a distorted trigonal planar geometry to two equivalent Ta(1)
and one Fe(1) atom.”

Space group Score Local atomic environment Score
P42{mnm 2.00 [NONMETAL] is bonded in a distorted trigonal planar geometry. 1.85

P42nm 1.99 [NONMETAL] is bonded in a distorted T shaped geometry. 1.75
Cmmm 1.93 [NONMETAL] is bonded in a trigonal planar geometry. 1.73
I41md 1.85 [NONMETAL] is bonded in a three coordinate geometry. 1.60
Cmm2 1.72 [METAL] is bonded in an octahedral geometry. 1.51

Table 5: Top-5 scored concepts for NaClO3 that “crystallizes in the monoclinic P21{c space group. Na(1) is bonded in a
6-coordinate geometry to two equivalent O(1), two equivalent O(2), and two equivalent O(3) atoms. O(1) is bonded in a 3-coordinate
geometry to two equivalent Na(1) and one O(2) atom. O(2) is bonded in a 3-coordinate geometry to two equivalent Na(1) and one
O(1) atom. O(3) is bonded in a distorted trigonal planar geometry to two equivalent Na(1) and one Cl(1) atom. Cl(1) is bonded in a
single-bond geometry to one O(3) atom.”

Space group Score Local atomic environment Score
P21212 1.86 [METAL] is bonded in a trigonal bipyramidal geometry. 1.81
Cc 1.85 [METAL] is bonded in a distorted pentagonal pyramidal geometry. 1.80
P31 1.73 [METAL] is bonded in a distorted trigonal bipyramidal geometry. 1.80
P212121 1.70 [METAL] is bonded in a distorted trigonal pyramidal geometry. 1.78
Fdd2 1.68 [NONMETAL] is bonded in a distorted water like geometry. 1.78
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Table 6: Top-5 similar structures for three example crystals. In each box is shown the composition and the crystal structure: “-d”
abbreviate “-derived” and “O-” abbreviate “Orthorhombic”.

Example First similar Second similar Third similar fourth similar Fifth similar

PrVO4

Zircon
GdY3V4O16

Zircon-d
DyNbO4

Zircon
EuV2BiO8

Zircon-d
CaZrV2O8

Zircon-d
HoPO4

Zircon
Sm2CoMnO6

O-Perovskite-d
Eu2RuCoO6

O-Perovskite-d
Nd2TiCuO6

O-Perovskite-d
La2CuIrO6

O-Perovskite-d
Sm2RuCoO6

n/a
Nd4Mn3NiO12

O-Perovskite-d
FeTa2O6

Rutile-d
Ta6Mn2FeO18

Hydrophilite-d
AlTiTaO6

Rutile-d
LiCu5F12

Hydrophilite-d
NbVO4

Rutile-d
Ti9SnO20

Hydrophilite-d

We have seen examples of a specific phase of each chemical composition. Recent work demonstrated crystal structure
classification given only chemical compositions [79, 80]. On the other hand, there exist often different phases for each
composition. Although we have avoided the leak of element symbols between crystal graphs and texts, there may be a
chance for our model to have connected chemical compositions with crystal structures during the training, and would
fail to retrieve the different phase of a crystal of the same composition in the validation set. This was not the case
and CLICS retrieved crystal structures given different phases of e.g., TmCO4 and Na3PS4, each the same chemical
composition, not so surprisingly as we give crystal graphs, not the chemical compositions. The detailed results and
discussion are provided in the supplementary information.

4.2 Geometric similarities among local atomic environments on CLICS feature space

CLICS has retrieved the geometric concepts based on the similarity scores on the feature space. It was also found
that some concepts often arise incorrectly but with sharing similar geometric attributions. These results suggest that
CLICS has acquired with their meanings w.r.t. their geometric realization in the 3-dimensional space. Note that the
“similarity” scores between texts would come from two aspects, and we will distinguish relatedness from similarity:
Similarity indicates how a concept is shared by two or more crystals, while we use the term relatedness regarding how
two concepts arise simultaneously for a crystal.

Table S14–S19 in the supplementary information show examples of the top-7 similarities among the concepts of
local atomic environments. On the CLICS feature space, just one more or less numbered coordinate geometries
have similar meanings. Named entities like “distorted square co planar” geometry is similar to “four coordinate”
geometry, “distorted hexagonal planar” geometry is similar to “six coordinate” geometry, “distorted body centered
cubic” geometry is similar to “eight coordinate” geometry, and so on. CLICS may have grasped the degree of symmetry
in addition to coordination number, as “distorted” appeared on top of these concepts. The orders in the top-7 ranked
concepts show some relationships among the geometries: e.g., hexagonal planar is similar to pentagonal planar, a
hexagonal pyramidal geometry is obtained by adding a vertex perpendicularly to the hexagonal plane, and adding
another vertex at the opposite side leads a hexagonal bipyramidal geometry. We also found the relatedness between the
[METAL]-centered 8-coordinate geometry and [NONMETAL]-centered 4/5-coordinate geometries. We have faced its
origin in e.g. Sm2CoMnO6, a family of perovskite structure (Table 3). A more detailed discussion is provided in the
supplementary information.

4.3 Similar crystal structure search on CLICS feature space

CLICS has well retrieved space groups, local atomic environments, and roughly the connections of polyhedral
geometries. The meanings of geometric concepts have also been acquired. The arrangement of atoms defines crystal
structures; in turn, CLICS feature space is expected to have grasped the patterns of the arrangement of atoms, from the
named crystal structures to arbitrary structures that are not attributed to any class of structures. To confirm this idea, we
demonstrate similar structure search in this section, and also an improved classification performance of named crystal
structures by only training the projection heads on top of the CLICS graph encoder in the next section 4.4.

Finding similar crystal structures is an interesting task for possible application to materials design [42, 81–83]. We
here demonstrate the similar structure search on the CLICS feature space. Table 6 shows top-5 similar structures in
the validation set for PrVO4, Sm2CoMnO6, and FeTa2O6 (displayed in Figure S2). The top-5 similar structures of
PrVO4 are all zircon-type or zircon-derived. Those of Sm2CoMnO6 are all orthorhombic perovskite-derived. This
class of structure is abundant and these similar structures have the same type of compositions. FeTa2O6 is a tapiolite, a
rutile-derived structured. The second and fourth similar crystals have also rutile-derived structures. The first, third,
and fifth are hydrophilite-derived structured, which are attributed to a distorted rutile family [71]. In fact, the four
corner-connected chains of edge-sharing octahedral geometries were observed for these crystals.
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4.4 Few-shot/imbalanced crystal structure classification using the CLICS-pretrained model

We prepared two type of datasets: Few-shot and imbalanced. Each few-shot dataset has the same number of training
data. For example, in the 2-shot task, every two crystal structures were randomly selected for training, and the remaining
data were used for validation. We have a fixed number of training data for every crystal structure, while the number of
validation data varies. On the other hand, each imbalanced dataset has randomly selected training dataset under a fixed
percentage against all the data, irrespective of crystal structures. Therefore, in each imbalanced classification task, we
have various numbers of data for both training and validation sets.

We compared the classification performance between the CLICS-pretrained model and the supervised model using
ALIGNN [59] from scratch. For the CLICS-pretrained model, we only trained the weights of the projection head
from scratch and the remained weights were frozen. For the scratch model, all the weights of ALIGNN [59] and the
projection head were trained. The output dimensions of the projection heads were both set to the number of crystal
structures. For a fair comparison, we varied the batch size and the learning rate and selected the best results for the
scratch model, while the batch size and the learning rate were fixed for CLICS-pretrained model predetermined on an
imbalanced task with 50 percent training data among all the data.

Figure 2 plots the top-1 and 5 classification accuracies against the number of shot. The CLICS-pretrained model
classified the crystal structures accurately with more than twice the chance compared to the scratch model. Figure 3
plots the classification accuracies for the imbalanced tasks, against the ratio of training data in the total number of data.
As the same as the few-shot tasks, the CLICS-pretrained model outperformed the scratch model for all the ratios. A
detailed analysis of how accurately each crystal structure was classified is discussed in the supplementary information.
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Figure 2: Accuracy plots against the number of training data (1, 2, 4, 8, and 16 shots). The pink and green colored plots compare
the CLICS-pretrained model and the scratch model, and the solid and dotted lines show the top-1 and top-5 accuracies.)
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Figure 3: Accuracy plots against the imbalanced training data. The ratios of training data were selected from 3, 5, 10, 25%.
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5 Conclusions

We have presented a graph-text contrastive learning of inorganic crystal structure (CLICS) for grasping geometric
concepts composing crystal structures. CLICS breaks down chemical entities into geometric concepts and integrally
embeds them in the feature space. The contextual patterns of the local atomic environments, their connected geometries,
and the space groups were represented in texts, and contrasted with the graphs. Throughout experiments, we have
demonstrated that CLICS has integrally embedded the geometric concepts and is aware of the meanings of the
geometries. Experimental results of similar structure search and classification tasks under challenging situations also
suggest that similar crystal structures have got closer based on the geometric concepts. CLICS could be a first step
toward developing a geometric foundation model of inorganic materials. Incorporating chemical properties of elements
in addition to the geometric concepts is a promising research direction. As possible broader impacts, property prediction
would be improved by CLICS-pretraining, and the feature space would also be useful for materials exploration as well
as a soft constraint for generative models.
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Supplementary information
Example texts generated by Robocrystallographer and the preprocessed texts

We show example texts generated by Robocrystallographer [46] and their preprocessed texts (Section 2). Druing the
training phase, e.g., the sentence “This material crystallizes in Pnma space group.” was randomly replaced with one
of the four templates listed on the top of Table S2, the sentence “Sr(1) is bonded in a 9-coordinate geometry to three
equivalent O(1) and six equivalent O(2) atoms.” was also randomly replaced with one of the four templates listed in the
middle of Table S2, e.g., to “[METAL] has bondings to make a nine coordinate local geometry.”

Original text-1:

“SrOsO3 is Orthorhombic Perovskite structured and crystallizes in the orthorhombic Pnma space group. Sr(1) is bonded in a
9-coordinate geometry to three equivalent O(1) and six equivalent O(2) atoms. There are a spread of Sr(1)-O(1) bond distances
ranging from 2.46-2.99 Å. There are a spread of Sr(1)-O(2) bond distances ranging from 2.49-2.80 Å. Os(1) is bonded to two
equivalent O(1) and four equivalent O(2) atoms to form corner-sharing OsO6 octahedra. The corner-sharing octahedral tilt
angles are 22°. Both Os(1)-O(1) bond lengths are 2.03 Å. All Os(1)-O(2) bond lengths are 2.02 Å. There are two inequivalent
O sites. In the first O site, O(1) is bonded in a 4-coordinate geometry to three equivalent Sr(1) and two equivalent Os(1) atoms.
In the second O site, O(2) is bonded in a 5-coordinate geometry to three equivalent Sr(1) and two equivalent Os(1) atoms.”

Preprocessed text-1:

“This material crystallizes in Pnma space group. This material has Orthorhombic Perovskite crystal structure. [METAL] is
bonded in a nine coordinate geometry to three equivalent [NONMETAL] and six equivalent [NONMETAL] atoms. [METAL]
is bonded to two equivalent [NONMETAL] and four equivalent [NONMETAL] atoms to form corner sharing [POLYHEDRA]
octahedra. In the first [NONMETAL] site, [NONMETAL] is bonded in a four coordinate geometry to three equivalent [METAL]
and two equivalent [METAL] atoms. In the second [NONMETAL] site, [NONMETAL] is bonded in a five coordinate geometry
to three equivalent [METAL] and two equivalent [METAL] atoms.”

Original text-2:

“YbSc(BO3)2 is Calcite-derived structured and crystallizes in the trigonal R-3 space group. Yb(1) is bonded to six equivalent
O(1) atoms to form YbO6 octahedra that share corners with six equivalent Sc(1)O6 octahedra. The corner-sharing octahedral
tilt angles are 58°. All Yb(1)-O(1) bond lengths are 2.36 Å. Sc(1) is bonded to six equivalent O(1) atoms to form ScO6
octahedra that share corners with six equivalent Yb(1)O6 octahedra. The corner-sharing octahedral tilt angles are 58°. All
Sc(1)-O(1) bond lengths are 2.13 Å. B(1) is bonded in a trigonal planar geometry to three equivalent O(1) atoms. All B(1)-O(1)
bond lengths are 1.38 Å. O(1) is bonded in a distorted trigonal planar geometry to one Yb(1), one Sc(1), and one B(1) atom.”

Preprocessed text-2:

“This material crystallizes in R-3 space group. This material has Calcite-derived crystal structure. [METAL] is bonded to six
equivalent [NONMETAL] atoms to form [POLYHEDRA] octahedra that share corners with six equivalent [POLYHEDRA]
octahedra. [METAL] is bonded to six equivalent [NONMETAL] atoms to form [POLYHEDRA] octahedra that share corners
with six equivalent [POLYHEDRA] octahedra. [METALLOID] is bonded in a trigonal planar geometry to three equivalent
[NONMETAL] atoms. [NONMETAL] is bonded in a distorted trigonal planar geometry to one [METAL], one [METAL], and
one [METALLOID] atom.”
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Statistics of text data and templates for text replacement

Table S1 and S2 provide additional details to support Section 2.

Table S1 shows the statistics of our text data. The sentences were categorized into the six types of concepts, and
we counted the number of patterns appeared in each category. The 233 local atomic environments were extracted as
sentences including the word “geometry”. The 20 patterns of connected polyhedra describe the connected geometries
without how they are connected to the other polyhedra. The 2780 patterns of polyhedral connections at the second
row to last were not used in this study. The 5166 full patterns of polyhedral connections describe how polyhedra are
connected each other. We used these full patterns of texts to see whether the connected geometries have been embedded
on the CLICS feature space.

Table S2 shows the templates for text replacement. For example, a sentence regarding space group was randomized
using the four templates on top of the table, while the fixed template was used to retrieve the concepts. The phrases are
not essential in themselves for embedding the geometric concepts, and any contextual embedding would work if they
represent the geometric concept like what an element is bonded to, what geometry the bondings form, and what the
geometry is connected to.

Table S1: Statistics of text data: count of each concept with an example.

Concept Count Example
Named Crystal Structures 382 “This material has Salt crystal structure.”
Space groups 228 “This material crystallizes in Pmma space group.”
Local atomic environments 233 “[NONMETAL] is bonded in a body centered cubic geometry.”
Connected polyhedra 20 “This crystal has bondings to form [POLYHEDRA] tetrahedra.”

Polyhedral connections 2780
“This crystal has bondings to form [POLYHEDRA] tetrahedra
that share an edge-edge with one [POLYHEDRA] tetrahedra.”

Full patterns of — ” — 5166
“This crystal has bondings to form [POLYHEDRA] octahedra
that share corners with four equivalent [POLYHEDRA] octahedra and
corners with two equivalent [POLYHEDRA] pentagonal pyramids.”

Table S2: Templates of text replacement for training and fixed inputs used for validation.

Concept Count Example

Space group Training

“This is crystallized in 4mm space group.”
“This crystal has a space group of 4mm.”
“It is 4mm space group that this crystal is classified.”
“This is an inorganic material that has 4mm space group.”

Validation “This material crystallizes in 4mm space group.”

Local atomic
environments

Training

“[METAL] has bondings to make a octahedral local geometry.”
“The bonding of [METAL] makes a local geometry of octahedral.”
“[METAL] is bonded in a local geometry of octahedral.”
“The bonding of [METAL] has a octahedral geometry.”

Validation “[METAL] is bonded in an octahedral geometry.”

The other patterns of
random replacement

Training
“geometry” Ñ “local geometry” with
“is bonded in a” Ñ “has bondings to make a”, or
“is bonded in a” Ñ “is bonded in a local coordination of”
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Visual confirmation of concept retrieval

Figure S1 are the snapshots of the four crystals in Section 4.1, captured from different viewpoints on VESTA [84].

For PrVO4 (Table 2), the geometric concepts of local atomic environments were correctly retrieved.

For Sm2CoMnO6 (Table 3), an equivalent site of O atom is bonded in a 5-coordinate geometries. Another equivalent
O atom is also certainly bonded in a 4-coordinate geometry: Two Sm atoms are additionally bonded to the O atom at
the right bottom, but are not shown the bonds to a Co atom and a Mn atom.

For FeTa2O6 (Table 4), all the local atomic coordinates are observed. The distorted trigonal planar geometry and the
distorted T shaped geometry have similar geometries but CLICS successfully attributes them. Note that the octahedra
are connected with sharing their edges, and the edge-sharing octahedral chains are alternately tilted and connected at
the vertices of the octahedra. The connections are better visualized along the chains (the right top of Figure S2).

Finally, we have obtained erroneous retrievals for NaClO3 (Table 5). We here visually see why CLICS made the errors.
We show Na-centered trigonal bipyramidal geometry that is obtained by deleting the longest Na-O bond. Also, the five
O atoms except for the left side nearly make a distorted pentagonal planar geometry. These geometric objects were
assumed purely from geometric similarities, but the six Na-O bonds should have been considered. Adding the left side
O atom would make a distorted pentagonar pyramidal, as erroneously suggested in Table 5.

V is bonded in a tetrahedral geometry

Pr is bonded in a 8-coordinate geometry

O is bonded in a 3-coordinate geometry

PrVO4

Sm2CoMnO6

FeTa2O6

NaClO3

O is bonded in a 5-coordinate geometry

Sm is bonded in a 8-coordinate geometry

O is bonded in a 4-coordinate geometry
(Neighboring two Sm atoms are not shown)

O is bonded in a distorted trigonal planar geometry

O is bonded in a distorted T shaped geometry

Ta is bonded in an octahedral geometry

Fe is bonded in an octahedral geometry

Cl is bonded in a single-bond geometry

Na is bonded in a 6-coordinate gometry

O is bonded in a 3-coordinate geometry

Na-centered trigonal bipyramidal geometry

The longest Na-O bond was
deleted for visual inspection

Figure S1: Visual confirmation of concept retrieval. All the structures were visualized using VESTA [84].
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Retrieval of connected polyhedral geometries

Table S3: Top-5 scored concepts for SiO2 that “crystallizes in the hexagonal P63{mmc space group. Si(1) is bonded to one O(1),
one O(2), one O(3), and one O(4) atom to form corner-sharing SiO4 tetrahedra. O(6) is bonded in a linear geometry to two equivalent
Si(2) atoms. O(4) is bonded in a bent 150 degrees geometry to two equivalent Si(1) atoms. In the sixth O site, O(4) is bonded in a
bent 150 degrees geometry to two equivalent Si(1) atoms.”

Space group Score Local atomic environment Score
P6{mcc 1.89 [METALLOID] is bonded in a hexagonal planar geometry. 2.00
P6mm 1.88 [NONMETAL] is bonded in a bent [REALVAL] degrees geometry. 1.86
P63{mmc 1.78 [NONMETAL] is bonded in a linear geometry. 1.83
P63{mcm 1.77 [POLYHEDRA] is bonded in a linear geometry. 1.73
P6{m 1.76 [METALLOID] is bonded in a distorted pentagonal pyramidal geometry. 1.70

We have briefly discussed missing retrieval of a polyhedron composing connected geometries in Section 4.1 (e.g.,
Sm2CoMnO6 in Table 3). There are cases where a polyhedron in the connection is retrieved simply via the similarity
to the local atomic environments (e.g., FeTa2O6 in Table S12), but for the other cases, intricate texts are required to
retrieve the connected geometries. The later cases seem to arise when the structures are specifically characterized by the
connected geometries rather than by each single polyhedron. Although it is not essential in itself what phrases would
retrieve the concepts, a successful retrieval allows us to see whether the concept is embedded near the target crystal. We
here discuss the retrieval of connected geometries in detail.

Table S3 is the erroneous result for SiO2 (mp-1256614), which is quartz (alpha)-like crystal structured. This crystal
is specifically characterized with its rings composed of connected SiO4 tetrahedra. Its space group P63{mmc was
retrieved as the third scored one, and both the first scored P6{mcc and P63{mmc have the hexagonal crystal system
and have the point group of D6h. The second scored space group P6mm has the same crystal system but its point
group is C6v, and so the 6-fold rotation axis was suggested by CLICS. The problem is that, although the second and
third scored local atomic environments are correct, the first scored one is perfectly wrong and also not similar to any
local geometries in the crystal: The only [METALLOID] is Si and is bonded in the common SiO4 tetrahedra. We found
the same errors for e.g. CapSiO2q6, BaFeSi4O10, and LiZr2pPO4q3 (Table S9) as their fourth scored local atomic
environments, and for other examples with the same type of text including long sentences that describe connected
polyhedra. The connected tetrahedra might have been learned as a distinct geometric entity not as a single tetrahedron
connected each other.

We then inputted all the full patterns of polyhedral connections (Table S1) and computed the similarities, but none of
them was in top-5 of SiO2.

We then specifically input the phrase “In the [METALLOID] site, [METALLOID] is bonded to one [NONMETAL], one
[NONMETAL], one [NONMETAL], and one [NONMETAL] atom to form corner sharing [POLYHEDRA] tetrahedra”,
and found it as the third scored. Note that, in this analysis, we have also added “trigonal pyramid”, “octahedral”,
and “hexagonal pyramid” that has a [METALLOID] center or a [METAL] center, and changed the details of the
phrases according to the number of vertices. Among these 8 connected geometries in addition to the 233 local atomic
environments (Table 15), “corner sharing tetrahedra” was retrieved with the third score of 1.86 on top of the others, and
“corner sharing trigonal pyramid” with the fifth score of 1.79, which is relatively similar to tetrahedral geometry.

Moreover, we had more reasonable retrievals when inputting texts with the two sentences from the correct space group
and the local geometries: “This material crystallizes in P63{mmc space group. [NONMETAL] is bonded in a bent
[REALVAL] degrees geometry” was the first scored of 2.32, “This material crystallizes in P63{mmc space group.
[POLYHEDRA] is bonded in a bent [REALVAL] degrees geometry” was the second scored of 2.23, “This material
crystallizes in P63{mmc space group. In the [METALLOID] site, [METALLOID] is bonded to one [NONMETAL],
one [NONMETAL], one [NONMETAL], and one [NONMETAL] atom to form corner sharing [POLYHEDRA]
tetrahedra” was the third scored of 2.20, ’This material crystallizes in P63{mmc space group. In the [METALLOID]
site, [METALLOID] is bonded to one [NONMETAL], one [NONMETAL], one [NONMETAL], and one [NONMETAL]
atom to form corner sharing [POLYHEDRA] trigonal pyramids” was the forth scored of 2.16, and “This material
crystallizes in P63{mmc space group. [POLYHEDRA] is bonded in a linear geometry” was the fifth scored of 2.14,
respectively. The erroneous “hexagonal planar” geometry did not appear anymore. Finally, the reason why the hexagonal
geometry appeared is considerably because the sentence “In the sixth [NONMETAL] site, [NONMETAL] is bonded in
a bent [REALVAL] degrees geometry to two equivalent [METALLOID] atoms” has a relatively close embedding to the
sentence “[METALLOID] is bonded in a hexagonal planar geometry”, where the word “sixth” may have been placed
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near the “hexagonal”. Getting more phrase variation on connected geometries would be beneficial, but we have not
given experimental verification.

Our analysis suggests that CLICS has learned the concepts of connected polyhderal geometries to some extent but as
a distinct concept when the crystal is specifically characterized with the connected polyhedra rather than each single
local geometry. This observation also suggests a limitation of CLICS that, although the geometric concepts have
been embedded on the feature space and the relationships among the local atomic environments were also acquired,
CLICS cannot reach the relationships between each local atomic environment and each connected polyhedral geometry.
Additional mechanisms would be required to learn the relationships.

Although a systematic analysis is difficult by using so specific patterns of connected geometries, we additionally show
some noticeable results. Unlike the case of SiO2, we did not input specific phrases directly extracted the corresponding
texts, but input the 5166 full patterns of connected polyhedra in Table S1.

For FeTa2O6 discussed earlier, we have retrieved the octahedral geometry in Table 4, but with a relatively low score.
A more important thing is that we cannot see the connected geometries only with this retrieval. When we added
the full patterns of connected polyhedral geometries, we retrieved the first scored “This crystal has bondings to
form [POLYHEDRA] octahedra that share corners with four equivalent [POLYHEDRA] octahedra and edges with
two equivalent [POLYHEDRA] octahedra”, which is in fact correct except for the two edge-edge connections are
inequivalent and there are the other four connections to octahedra. This lack of details may be due to the abstraction of
elements. The second scored “This crystal has bondings to form [POLYHEDRA] octahedra that share corners with
eight [POLYHEDRA] octahedra and edges with two [POLYHEDRA] octahedra” is correct even up to the detail. This
result may support that CLICS could grasp not only the global symmetry and local atomic environments, but also the
connections of polyhedral geometries; however, we should also note that the intricate concepts came to have top scores
but instead the other entities like “distorted trigonal planar” geometry was out of top-5 scored ones. This is because so
finely detailed sentences are similar to each other with including words that trigger to increase similarity scores.

Sm2CoMnO6 was discussed and its local atomic environments were retrieved (Table 3), but the connected geometries
were not. When the full patterns of connected polyhedral geometries were added, the five coordinate, four coordinate,
and eight coordinate geometries were again retrieved as the first, third, and forth scored ones. In addition, the second
scored geometry was “This crystal has bondings to form [POLYHEDRA] octahedra that share corners with two
equivalent [POLYHEDRA] octahedra and corners with two equivalent [POLYHEDRA] octahedra”. The corner-sharing
octahedra were correctly retrieved, but the detailed number of connections was inaccurate.
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Additional concept retrieval results for different phases of the same chemical compositions

We compare retrieval results for two different phases of TmCO4 [85], one of which is orthorhombic (mp-1191329) in
the validation set and the other is tetragonal (mp-1200742) in the training set.

Table S4 is the result for the orthorhombic TmCO4 (mp-1191329). The first scored space group is correct, and the
score is distinguishable from the top-2 to 5 scores. Also, the top-4 scored local atomic environments were retrieved
correctly.

Table S5 is the result for the tetragonal TmCO4 (mp-1200742). This is in the training set. Its space group P42{nmc
was retrieved as the forth scored one. The top-2 to 4 scores are the same up to the two decimal places. The first scored
space group P42nm has the point group of C4v, and so is considered familiar to the correct one P42{nmc with D4h.
The top-3 scored local atomic environments are also correct. The TmO8 hexagonal bipyramids were also retrieved, but
we should care that this type of sentences have often caused errorneous results when compared with the 233 of local
atomic environments, as discussed using examples of FeTa2O6 and SiO2. The fifth scored one is correct except for
“distorted” attribution in addition to the trigonal planar geometry.

Note that TmCO4 is a carbonate hydroxide with possible phases depending on the ionic radii of the rare earth [85].
CLICS directly encodes crystal graphs without finely attributing elements on the text encoder. Although structural
dependency on external conditions should also be challenging, mitigating this technical limitation would be useful for
connecting chemical compositions and the crystal structures, a possible extension of CLICS.

These two phases of TmCO4 are quite different in their crystal structures. We next show the results for different
phases of Na3PS4 that have similar crystal structures induced by an orientationally disordered transition of phosphate
anions [86].

Table S6 is the result for the cubic phase of Na3PS4 (mp-985584: Its synthesis was reported in [87, 88]). The space
group I 4̄3m was found as the second scored. The first scored I 4̄2m and the third scored P42mc are both tetragonal
with their point groups of C4v and D2d. The space group P42mc is considered familiar with P 4̄21c, which is also the
space group of the tetragonal phase of Na3PS4 (mp-28782). Both space groups are attributed to the same Laue class.
They share a certain kind of similar crystal structure [89, 90] despite their different ionic conductivities [89]: Grasping
functional difference is beyond the expected ability of CLICS. The first and third scored local atomic environments
were retrieved correctly. The second scored one is partly correct since the trigonal pyramids is a kind of polyhedra. The
fifth scored one was not found in the structure.

Table S7 is the result for the tetragonal phase of Na3PS4 (mp-28782). This is particularly similar to the cubic phase
with a structural distortion at the Na sites. Its space group P 4̄21c was retrieved as the first scored one. The top-2 scored
local atomic environments were retrieved correctly, but the following three retrievals were wrong. This error is the same
type that is considered to have come from the complex sentence structure and our relatively simple text inputting. Two
updated descriptions were found on the Materials Project, which were added in the table caption in [ ]:’s. Regarding the
second equivalent Na site, Na(2), there are shorter and longer Na-S bonds. Our dataset was based on the shorter bonds
and thus CLICS retrieved the four coordinate geometry (highlighted in the blue colored boxes). Regarding the S(1)
atoms with four or [five]: bonds to Na’s, the S-Na bond lengths are 2.81, 2.90, 2.96, 2.99, and 3.44 Å. Attributing the
four shorter bonds gives our generated dataset.

The connected geometries were missed in the above analysis. We give additional results for Na3PS4 with adding all the
full patterns of polyhedral connections. For the cubic phase (Table S6), “This crystal has bondings to form distorted
[POLYHEDRA] trigonal pyramids that share corners with three equivalent [POLYHEDRA] tetrahedra” was retrieved
as the second scored next to the first scored “[NONMETAL] is bonded in a tetrahedral geometry”. The other retrievals
are just similar to the trigonal pyramids, like tetrahedra, and seem not be improved compared to Table S6. For the
tetragonal phase (Table S7), “This crystal has bondings to form distorted [POLYHEDRA] tetrahedra that share corners
with four equivalent [POLYHEDRA] pentagonal pyramids and an edge-edge with one [POLYHEDRA] tetrahedra” was
retrieved as the first scored, and “This crystal has bondings to form distorted [POLYHEDRA] pentagonal pyramids
that share corners with eight equivalent [POLYHEDRA] tetrahedra” as the second scored, both of which grasp the
connected geometries to some extent, but not accurately up to the detailed numbers of connections.

These examples suggest that CLICS has learned crystal structures without directly connecting them to the chemical
compositions, even for similarly structured phases.
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Table S4: Top-5 scored concepts for TmCO4 that “crystallizes in orthorhombic P212121 space group. Tm(1) is bonded in a
9-coordinate geometry to two equivalent O(1), two equivalent O(2), two equivalent O(4), and three equivalent O(3) atoms. C(1) is
bonded in a trigonal planar geometry to one O(2), one O(3), and one O(4) atom. O(1) is bonded in a bent 120 degrees geometry to
two equivalent Tm(1) atoms. O(2) is bonded in a distorted single-bond geometry to two equivalent Tm(1) and one C(1) atom. O(3) is
bonded in a distorted single-bond geometry to three equivalent Tm(1) and one C(1) atom. O(4) is bonded in a distorted single-bond
geometry to two equivalent Tm(1) and one C(1) atom.

Space group Score Local atomic environment Score
P212121 1.92 [NONMETAL] is bonded in a distorted single bond geometry. 1.83
P61 1.69 [NONMETAL] is bonded in a bent [REALVAL] degrees geometry. 1.77
P65 1.66 [NONMETAL] is bonded in a trigonal planar geometry. 1.74
P21 1.66 [METAL] is bonded in a nine coordinate geometry. 1.74
Pna21 1.62 [NONMETAL] is bonded in a trigonal non coplanar geometry. 1.66

Table S5: Top-5 scored concepts for TmCO4 that “crystallizes in the tetragonal P42{nmc space group. Tm(1) is bonded to two
equivalent O(1), two equivalent O(2), and four equivalent O(3) atoms to form a mixture of distorted corner and edge-sharing TmO8

hexagonal bipyramids. C(1) is bonded in a trigonal planar geometry to one O(2) and two equivalent O(3) atoms. O(1) is bonded in a
3-coordinate geometry to two equivalent Tm(1) and one C(1) atom. O(2) is bonded in a bent 150 degrees geometry to two equivalent
Tm(1) atoms. O(3) is bonded in a distorted single-bond geometry to two equivalent Tm(1) and one C(1) atom.”

Space group Score Local atomic environment Score
P42nm 1.92 [NONMETAL] is bonded in a distorted single bond geometry. 1.80
P4222 1.90 [METAL] is bonded in a distorted hexagonal bipyramidal geometry. 1.77
P42{nnm 1.90 [NONMETAL] is bonded in a bent [REALVAL] degrees geometry. 1.76
P42{nmc 1.90 [METAL] is bonded in a hexagonal bipyramidal geometry. 1.76
Fddd 1.86 [NONMETAL] is bonded in a distorted trigonal planar geometry. 1.74

Table S6: Top-5 scored concepts for Na3PS4 that “crystallizes in the cubic I 4̄3m space group. Na(1) is bonded in a 4-coordinate
geometry to four equivalent S(1) atoms. P(1) is bonded in a tetrahedral geometry to four equivalent S(1) atoms. S(1) is bonded to
three equivalent Na(1) and one P(1) atom to form a mixture of corner and edge-sharing SNa3P trigonal pyramids.”

Space group Score Local atomic environment Score
I 4̄2m 1.97 [NONMETAL] is bonded in a tetrahedral geometry. 2.09
I 4̄3m 1.87 [NONMETAL] is bonded in a [POLYHEDRA] geometry. 1.92
P42mc 1.84 [METAL] is bonded in a four coordinate geometry. 1.92
P 4̄3n 1.81 [NONMETAL] is bonded in a distorted tetrahedral geometry. 1.89
P 4̄3m 1.79 [POLYHEDRA] is bonded in a tetrahedral geometry. 1.85

Table S7: Top-5 scored concepts for Na3PS4 that “crystallizes in the tetragonal P 4̄21c space group. Na(1) is bonded to six
equivalent S(1) atoms to form distorted NaS6 pentagonal pyramids that share corners with eight equivalent Nap1qS6 pentagonal
pyramids, corners with two equivalent Pp1qS4 tetrahedra, edges with two equivalent Nap1qS4 pentagonal pyramids, and edges with
two equivalent Pp1qS4 tetrahedra. Na(2) is bonded in a 4-coordinate geometry to four equivalent S(1) atoms [Na(2) is bonded in a

8-coordinate geometry to eight equivalent S atoms. There are four shorter (2.90 Å) and four longer (3.44 Å) Na-S bond lengths]:.
P(1) is bonded to four equivalent S(1) atoms to form PS4 tetrahedra that share corners with four equivalent Nap1qS6 pentagonal
pyramids and edges with four equivalent Nap1qS6 pentagonal pyramids. S(1) is bonded in a 5-coordinate geometry to one Na(2),
three equivalent Na(1), and one P(1) atom [S(1) is bonded in a 6-coordinate geometry to five Na and one P atom]:.” The text in [ ]:

is added as the difference between our data generated in 2023 August and the description on the Materials Project in 2024 March.

Space group Score Local atomic environment Score
P 4̄21c 2.02 [METAL] is bonded in a four coordinate geometry. 1.86
P 4̄2c 1.95 [NONMETAL] is bonded in a five coordinate geometry. 1.85
P4{ncc 1.88 [NONMETAL] is bonded in a distorted trigonal bipyramidal geometry. 1.77
P4cc 1.83 [METAL] is bonded in a distorted rectangular see saw like geometry. 1.76
I222 1.83 [NONMETAL] is bonded in a four coordinate geometry. 1.74
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Some additional results for the retrieval of space group and local atomic environments

Table S8–S13 provide additional results that support discussion in Section 4.1. We select examples various symmetries
of crystals including successful retrievals and failure.

In Table S8, the space group and local atomic environments were correctly retrieved. The fifth scored distorted body
centered cubic geometry did not appear in the text, but the Ca-centered 8-coordinate geometry is certainly similar to a
body-centered cubic geometry.

In Table S9, the geometric concepts were correctly retrieved except for the octahedra and tetrahedra, both of which
are in the connected geometries. The “distorted hexagonal planar” geometry seems the same type of error for SiO2.
When we evaluated the similarities additionally to the full patterns of connected geometries, “This crystal has bondings
to form distorted [POLYHEDRA] octahedra that share corners with four equivalent [POLYHEDRA] tetrahedra and
faces with two equivalent [POLYHEDRA] octahedra” came to the first, and the next was “This crystal has bondings to
form [POLYHEDRA] octahedra that share corners with six equivalent [POLYHEDRA] tetrahedra and faces with two
equivalent [POLYHEDRA] pentagonal pyramids”. The latter certainly retrieves the Zr-centered octahedra connected at
their corners with six P-centered tetrahedra. The face-sharing connection seems not correct.

In Talbe S10, the space group was retrieved as third scored, and the top-2 local atomic environments are also correct.
The third and forth scored “pentagonal planar” geometry are wrong, but seems to have confusing bondings.

Table S11 and S12 also retrieved their space groups and local atomic environments except for the connected octahedra
in CaCuO2. The space group of Be4TeO7 was not retrieved in Table S13, but the second and forth scored space
groups are familiar to the correct one. In additional test, “This crystal has bondings to form [POLYHEDRA] octahedra
that share corners with three equivalent [POLYHEDRA] tetrahedra and corners with six equivalent [POLYHEDRA]
tetrahedra” was retrieved as the first scored one, and “This crystal has bondings to form [POLYHEDRA] tetrahedra
that share corners with three equivalent [POLYHEDRA] octahedra and corners with three equivalent [POLYHEDRA]
square pyramids” was retrieved as the forth scored one. They retrieved the octahedra connected at the corners and the
tetrahedra, but the accurate number of connections were not retrieved. Note that “tetrahdera that share corners with
three equivalent octahdera” is correct but not perfectly.

Table S8: Top-5 scored concepts for CaCuSi4O10 that “crystallizes in the tetragonal P4{ncc space group. Ca(1) is bonded in
a 8-coordinate geometry to four equivalent O(1) and four equivalent O(2) atoms. Cu(1) is bonded in a rectangular see-saw-like
geometry to four equivalent O(1) atoms. Si(1) is bonded to one O(1), one O(3), and two equivalent O(2) atoms to form corner-sharing
SiO4 tetrahedra. O(2) is bonded in a distorted bent 150 degrees geometry to one Ca(1) and two equivalent Si(1) atoms. O(3) is
bonded in a linear geometry to two equivalent Si(1) atoms. O(1) is bonded in a distorted trigonal planar geometry to one Ca(1), one
Cu(1), and one Si(1) atom.”

Space group Score Local atomic environment Score
P4{ncc 2.22 [METAL] is bonded in a rectangular see saw like geometry. 1.84
P4cc 2.03 [NONMETAL] is bonded in a distorted trigonal planar geometry. 1.79
I422 2.01 [METAL] is bonded in a eight coordinate geometry. 1.78
P422 1.99 [NONMETAL] is bonded in a distorted bent [REALVAL] degrees geometry. 1.77
P4212 1.99 [METAL] is bonded in a distorted body centered cubic geometry. 1.75

Table S9: Top-5 scored concepts for LiZr2pPO4q3 that “crystallizes in the trigonal R3̄c space group. Li(1) is bonded in a
6-coordinate geometry to six equivalent O(2) atoms. Zr(1) is bonded to three equivalent O(1) and three equivalent O(2) atoms to form
ZrO6 octahedra that share corners with six equivalent Pp1qO4 tetrahedra. P(1) is bonded to two equivalent O(1) and two equivalent
O(2) atoms to form PO4 tetrahedra that share corners with four equivalent Zrp1qO6 octahedra. O(1) is bonded in a bent 150 degrees
geometry to one Zr(1) and one P(1) atom. O(2) is bonded in a 3-coordinate geometry to one Li(1), one Zr(1), and one P(1) atom.”

Space group Score Local atomic environment Score
R3̄c 2.05 [NONMETAL] is bonded in a three coordinate geometry. 1.81
P6122 1.86 [METAL] is bonded in a six coordinate geometry. 1.80
P 6̄c2 1.82 [NONMETAL] is bonded in a bent [REALVAL] degrees geometry. 1.80
P6522 1.79 [METAL] is bonded in a distorted hexagonal planar geometry. 1.60
P6{mcc 1.75 [NONMETAL] is bonded in a distorted T shaped geometry. 1.58
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Table S10: Top-5 scored concepts for MgPd2 that “crystallizes in the orthorhombic Pnma space group. Mg(1) is bonded in a
10-coordinate geometry to five equivalent Pd(1) and five equivalent Pd(2) atoms. There are two inequivalent Pd sites. In the first
Pd site, Pd(2) is bonded in a 5-coordinate geometry to five equivalent Mg(1) atoms. In the second Pd site, Pd(1) is bonded in a
5-coordinate geometry to five equivalent Mg(1) atoms.”

Space group Score Local atomic environment Score
Cmcm 1.80 [METAL] is bonded in a five coordinate geometry. 1.85
P21{m 1.77 [METAL] is bonded in a ten coordinate geometry. 1.82
Pnma 1.75 [METAL] is bonded in a distorted pentagonal planar geometry. 1.79
Pbam 1.64 [METAL] is bonded in a pentagonal planar geometry. 1.78
C2{m 1.62 [METAL] is bonded in a four coordinate geometry. 1.74

Table S11: Top-5 scored concepts for CePd2Al3 that “crystallizes in the hexagonal P6{mmm space group. Ce(1) is bonded in a
distorted hexagonal planar geometry to six equivalent Pd(1) atoms. Pd(1) is bonded in a 9-coordinate geometry to three equivalent
Ce(1) and six equivalent Al(1) atoms. Al(1) is bonded in a 4-coordinate geometry to four equivalent Pd(1) atoms.”

Space group Score Local atomic environment Score
P6{mmm 2.00 [METAL] is bonded in a distorted hexagonal planar geometry. 1.92
P6mm 1.96 [METAL] is bonded in a hexagonal planar geometry. 1.90
Cmmm 1.81 [METAL] is bonded in a nine coordinate geometry. 1.85
I41{amd 1.60 [METAL] is bonded in a four coordinate geometry. 1.83
rUNKs 1.54 [METAL] is bonded in a eighteen coordinate geometry. 1.77

Table S12: Top-5 scored concepts for CaCuO2 that “crystallizes in the tetragonal P4{mmm space group. Ca(1) is bonded in a
body-centered cubic geometry to eight equivalent O(1) atoms. Cu(1) is bonded in a square co-planar geometry to four equivalent O(1)
atoms. O(1) is bonded to four equivalent Ca(1) and two equivalent Cu(1) atoms to form a mixture of face, corner, and edge-sharing
OCa4Cu2 octahedra.”

Space group Score Local atomic environment Score
P4{mmm 1.86 [METAL] is bonded in a square co planar geometry. 1.93
I4{mmm 1.63 [METAL] is bonded in a body centered cubic geometry. 1.84
rUNKs 1.51 [METAL] is bonded in a rectangular see saw like geometry. 1.67
P42{mmc 1.50 [METAL] is bonded in a linear geometry. 1.56
P4mm 1.48 [NONMETAL] is bonded in a linear geometry. 1.48

Table S13: Top-5 scored concepts for Be4TeO7 that “crystallizes in the cubic F 4̄3m space group. Be(1) is bonded to one O(1) and
three equivalent O(2) atoms to form BeO4 tetrahedra that share corners with three equivalent Tep1qO6 octahedra and corners with
six equivalent Bep1qO4 tetrahedra. Te(1) is bonded to six equivalent O(2) atoms to form TeO6 octahedra that share corners with
twelve equivalent Bep1qO4 tetrahedra. O(1) is bonded in a tetrahedral geometry to four equivalent Be(1) atoms. O(2) is bonded in a
trigonal planar geometry to two equivalent Be(1) and one Te(1) atom.”

Space group Score Local atomic environment Score
P63mc 1.92 [NONMETAL] is bonded in a [POLYHEDRA] geometry. 1.89
I 4̄3m 1.90 [NONMETAL] is bonded in a tetrahedral geometry. 1.85
R3m 1.87 [NONMETAL] is bonded in a trigonal planar geometry. 1.85
P 4̄3m 1.84 [NONMETAL] is bonded in a trigonal non coplanar geometry. 1.68
P321 1.77 [NONMETAL] is bonded in a distorted tetrahedral geometry. 1.62
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Detailed results of text similarity analysis among local atomic environments

The following results support the discussion in Section 4.2.

Table S14 is the top-7 similar concepts against the [METAL]-centered four coordinate geometry. CLICS encodes
“three” and “five” coordinates similarly to “four” coordinate, and “distorted rectangular see saw like”, “distorted see
saw like”, and “distorted square co planar” geometries are also similar to “four coordinate” geometry. In fact, these
geometries have four coordinates. Note that just the “tetragonal” and “see saw like”, and “square co planar” geometries
are not in the top-7. They have four coordinate, but also have higher symmetries, which are not endowed for the
geometric concepts appeared in Table S14. The concepts that CLICS has learned depends on the dataset and the rules
that generated the dataset. The symmetries of local atomic environments come from the order parameter [45, 46].
Compared to the results from CLICS, the result from MatSciBERT [58], which is also used for initialization of CLICS,
ranked almost randomly numbered coordinate geometries with with high, almost the same scores.

In Table S15, CLICS encodes “six” coordinate geometry similarly to “five” and “seven” coordinate geometries, and next
“distorted hexagonal planar” geometry, which has coordinations with six atoms. There does not appear the octahedral
geometry, as such a geometric concept with a high symmetry has its own identity apart from the coordination number.
Note that MatSciBERT [58] scored “four coordinate” geometry the first, with a slightly higher score than the second
scored ones and others. “five” and “seven” coordinate is considered more similar to “six coordinate”, compared to “four
coordinate”, and thus thus the similarity obtained by CLICS is considered to have grasped the geometric concepts rather
than the language-only pretrained text encoder.

In Table S16, CLICS encodes the “eight coordinate” geometry most similarly to “seven” and “nine” coordinate
geometries. This is also interpretable even when compared to MatSciBERT [58]’s result that “six” and “four” coordinate
geometries come next to “seven coordinate” geometry. The third scored “distorted body centered cubic” geometry
has coordination with eight atoms. In addition, there are two remarkable concepts “[NONMETAL] is bonded in a
four/five coordinate geometry”, despite that similarity is measured against the [METAL]-centered bondings. As we
have seen, the double perovskite Sm2CoMnO6 (Table 3) has in fact these three geometries. Perovskite-type structures
often have [METAL]-centered eight bondings and four and/or five nonmetal-centered bondings. Therefore, we consider
that CLICS has learned a relatedness between the concepts that [NONMETAL]-centered four or five coordination
geometries and [METAL]-centered eight coordination geometry often arise together.

In Table S17, the [NONMETAL]-centered tetrahedral geometry is most similar to the nonmetal centered distorted
tetrahedral geometry. Succeeding it follows the other objects centered tetrahedral geometries. The forth scored
“distorted trigonal pyramidal geometry” is in fact similar to tetrahedron but a vertex is reduced. A bit interesting thing
is that the [NONMETAL]-centered tetrahedral geometry is more similar to the [METALLOID]-centered one rather
than the [METAL]-centered one. This result may reflect the similarity of among the attributions of elements. The
sixth scored “trigonal non coplanar” is obtained by reducing another vertex from the forth scored “distorted trigonal
pyramidal geometry” except for the distortion. The seventh scored “distorted trigonal bipyramidal geometry” is obtained
conversely by adding a vertex to the “distorted trigonal pyramidal geometry”. In contrast, although MatSciBERT’s
similarities include some meaningful concepts, they seem ranked almost randomly based purely on the similarities as
texts. The following two examples suggest likewise.

The top-7 ranked concepts were also similar in their geometric meanings to the [METAL]-centered octahedral geometries.
The third scored [METAL]-centered square pyramidal geometry is obtained by reducing a vertex from an octahedron,
and reducing another vertex at the opposite side gives the forth scored square co planar geometry. The fifth scored
“linear geometry” seems not so natural, but an atom-centered octahedron has three mutually perpendicular linear bonds.
The sixth scored trigonal bipyramidal geometry is obtained by reducing a vertex from the octahedron. The seventh
scored cuboctahedral seems not natural.

Finally, the [METALLOID]-centered hexagonal planar geometry is similar to the distorted one. The pentagonal planar
geometry is obtained by reducing a vertex, and its distorted one is ranked next, the hexagonal pyramidal geometry by
adding a vertex to the planar geometry comes to the next with a distortion, the bipyramidal geometry with another
vertex comes to the next. These geometric concepts are certainly similar.
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Table S14: CLICS’ top-7 similarity/relatedness to “[METAL] is bonded in a four coordinate geometry”.

CLICS’ top-7 retrieved concepts Score
[METAL] is bonded in a three coordinate geometry. 0.918
[METAL] is bonded in a distorted rectangular see saw like geometry. 0.907
[METAL] is bonded in a five coordinate geometry. 0.900
[METAL] is bonded in a two coordinate geometry. 0.899
[METAL] is bonded in a distorted see saw like geometry. 0.849
[METAL] is bonded in a distorted square co planar geometry. 0.844
[METAL] is bonded in a distorted trigonal non coplanar geometry. 0.824

MatSciBERT’s top-7 retrieved concepts Score
[METAL] is bonded in a six coordinate geometry. 0.9998
[METAL] is bonded in a three coordinate geometry. 0.9998
[METAL] is bonded in a five coordinate geometry. 0.9996
[METAL] is bonded in a seven coordinate geometry. 0.9993
[METAL] is bonded in a two coordinate geometry. 0.9990
[METAL] is bonded in a nine coordinate geometry. 0.9986
[METAL] is bonded in a eight coordinate geometry. 0.9986

Table S15: CLICS’ top-7 similarity/relatedness to “[METAL] is bonded in a six coordinate geometry”.

CLICS’ top-7 retrieved concepts Score
[METAL] is bonded in a five coordinate geometry. 0.915
[METAL] is bonded in a seven coordinate geometry. 0.885
[METAL] is bonded in a distorted hexagonal planar geometry. 0.873
[METAL] is bonded in a distorted pentagonal planar geometry. 0.866
[METAL] is bonded in a pentagonal planar geometry. 0.848
[METAL] is bonded in a eight coordinate geometry. 0.830
[NONMETAL] is bonded in a four coordinate geometry. 0.830

MatSciBERT’s top-7 retrieved concepts Score
[METAL] is bonded in a four coordinate geometry. 0.9998
[METAL] is bonded in a five coordinate geometry. 0.9996
[METAL] is bonded in a three coordinate geometry. 0.9995
[METAL] is bonded in a seven coordinate geometry. 0.9995
[METAL] is bonded in a nine coordinate geometry. 0.9990
[METAL] is bonded in a eight coordinate geometry. 0.9990
[METAL] is bonded in a two coordinate geometry. 0.9987

Table S16: CLICS’ top-7 similarity/relatedness to “[METAL] is bonded in a eight coordinate geometry”.

CLICS’ top-7 retrieved concepts Score
[METAL] is bonded in a seven coordinate geometry. 0.884
[METAL] is bonded in a nine coordinate geometry. 0.882
[METAL] is bonded in a distorted body centered cubic geometry. 0.873
[METAL] is bonded in a ten coordinate geometry. 0.861
[NONMETAL] is bonded in a five coordinate geometry. 0.846
[NONMETAL] is bonded in a four coordinate geometry. 0.838
[METAL] is bonded in a twelve coordinate geometry. 0.837

MatSciBERT’s top-7 retrieved concepts Score
[METAL] is bonded in a seven coordinate geometry. 0.9990
[METAL] is bonded in a six coordinate geometry. 0.9989
[METAL] is bonded in a four coordinate geometry. 0.9986
[METAL] is bonded in a nine coordinate geometry. 0.9985
[METAL] is bonded in a three coordinate geometry. 0.9982
[METAL] is bonded in a five coordinate geometry. 0.9981
[METAL] is bonded in a nineteen coordinate geometry. 0.9977
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Table S17: CLICS’ top-7 similarity/relatedness to “[NONMETAL] is bonded in an tetrahedral geometry”.

CLICS’ top-7 retrieved concepts Score
[NONMETAL] is bonded in a distorted tetrahedral geometry. 0.919
[POLYHEDRA] is bonded in a tetrahedral geometry. 0.860
[METALLOID] is bonded in a tetrahedral geometry. 0.837
[NONMETAL] is bonded in a distorted trigonal pyramidal geometry. 0.832
[METAL] is bonded in a tetrahedral geometry. 0.826
[NONMETAL] is bonded in a trigonal non coplanar geometry. 0.817
[NONMETAL] is bonded in a distorted trigonal bipyramidal geometry. 0.811

MatSciBERT’s top-7 retrieved concepts Score
[NONMETAL] is bonded in an octahedral geometry. 0.9987
[METAL] is bonded in a tetrahedral geometry. 0.9977
[NONMETAL] is bonded in a single bond geometry. 0.9977
[NONMETAL] is bonded in a square pyramidal geometry. 0.9974
[NONMETAL] is bonded in a distorted hexagonal planar geometry. 0.9973
[NONMETAL] is bonded in a distorted linear geometry. 0.9973
[NONMETAL] is bonded in a distorted T shaped geometry. 0.9973

Table S18: CLICS’ top-7 similarity/relatedness to “[METAL] is bonded in an octahedral geometry”.

CLICS’ top-7 retrieved concepts Score
[METAL] is bonded in a distorted octahedral geometry. 0.917
[METALLOID] is bonded in an octahedral geometry. 0.856
[METAL] is bonded in a square pyramidal geometry. 0.831
[METAL] is bonded in a square co planar geometry. 0.816
[METAL] is bonded in a linear geometry. 0.806
[METAL] is bonded in a trigonal bipyramidal geometry. 0.801
[METAL] is bonded in a distorted cuboctahedral geometry. 0.799

MatSciBERT’s top-7 retrieved concepts Score
[METAL] is bonded in a tetrahedral geometry. 0.9990
[METAL] is bonded in a square pyramidal geometry. 0.9985
[NONMETAL] is bonded in an octahedral geometry. 0.9981
[METAL] is bonded in a distorted octahedral geometry. 0.9977
[METAL] is bonded in a distorted tetrahedral geometry. 0.9974
[METAL] is bonded in a distorted hexagonal planar geometry. 0.9971
[METAL] is bonded in a distorted linear geometry. 0.9971

Table S19: CLICS’ top-7 similarity/relatedness to “[METALLOID] is bonded in a hexagonal planar geometry”.

CLICS’ top-7 retrieved concepts Score
[METALLOID] is bonded in a distorted hexagonal planar geometry. 0.934
[METALLOID] is bonded in a pentagonal planar geometry. 0.837
[METALLOID] is bonded in a distorted pentagonal planar geometry. 0.834
[METALLOID] is bonded in a distorted hexagonal pyramidal geometry. 0.818
[METALLOID] is bonded in a distorted hexagonal bipyramidal geometry. 0.811
[METALLOID] is bonded in a distorted cuboctahedral geometry. 0.811
[METALLOID] is bonded in a distorted pentagonal pyramidal geometry. 0.808

MatSciBERT’s top-7 retrieved concepts Score
[METALLOID] is bonded in a trigonal planar geometry. 0.9982
[METALLOID] is bonded in a square pyramidal geometry. 0.9981
[METALLOID] is bonded in a pentagonal planar geometry. 0.9980
[METALLOID] is bonded in a square co planar geometry. 0.9980
[METALLOID] is bonded in a single bond geometry. 0.9977
[METALLOID] is bonded in a linear geometry. 0.9973
[METAL] is bonded in a trigonal planar geometry. 0.9972
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Visual demonstration of similar structure search on CLICS’ feature space

Figure S2 shows the top-5 similar structures of PrVO4, Sm2CoMnO6, and FeTa2O6 discussed in Section 4.3. The
snapshots of these structures were captured on VESTA [84]. All the structures in each column are certainly similar to
each structure on the top. Note that these crystals were searched only from the validation set, but still such a variety of
similar structures were found.

For PrVO4, all the structures listed in this column are structured as zircon-type or zircon derivatives. have the zigzag
chains of 8-coordinate geometries shared on their edges. The zigzag chains are also bonded to the tetrahedral geometries.
DyNbO4 (mp-768303) and HoPO4 (mp-4104) have the same structure, but HoPO4 appear as less similar to the
others. Instead, GdY3V4O16 (mp-1224509) is most similar on CLICS. GdY3V4O16, EuV2BiO8 (mp-1225151), and
CaZrV2O8 (mp-1226968) have similar structures to PrVO4 but with more kind of elements, and thus with different
crystal systems or space groups. We consider that these similarities have come from the abstraction level of elements,
with which we have attributed the metal and nonmetal elements. P atoms in HoPO4 is nonmetal, and thus different
in chemical concept from PrVO4 and DyNbO4. On the other hand, GdY3V4O16, EuV2BiO8, and CaZrV2O8 have
metal atoms (Bi may be attributed to a metalloid), and thus these structures are similar under this abstraction level. This
result suggests that CLICS could be controlled via how chemical entities are attributed.

For Sm2CoMnO6, all the structures have similar compositions and structures. All of them are structured in orthorhombic
perovskite derivatives except for Sm2RuCoO6, which also seems to have quite a similar structure.

Finally, the rutile-derived structure of FeTa2O6 is characterized with the edge-sharing octahedral geometries [71], the
chains of which are also connected at the corners of the octahedra alternately in a tilted angle. All the structures found
on the CLICS’ feature space are certainly characterized with such chains of octahedra.
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PrVO4 Sm2CoMnO6 FeTa2O6

GdY3V4O16 Eu2RuCoO6 Ta6MnFeO18

DyNbO4 Nd2TiCuO6 AlTiTaO6

EuV2BiO8 La2CuIrO6 LiCu5F12

CaZrV2O8 Sm2RuCoO6 NbVO4

HoPO4 Nd4Mn3NiO12 Ti9SnO20

Figure S2: Top-5 similar crystal structures searched on the CLICS feature space. Each column shows the top-5 similar structures to
each structure placed on top of the column. All the structures were visualized using VESTA [84] and each aligned on its representative
direction.

28

https://doi.org/10.26434/chemrxiv-2024-mpl8l-v3 ORCID: https://orcid.org/0000-0002-9783-5762 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-mpl8l-v3
https://orcid.org/0000-0002-9783-5762
https://creativecommons.org/licenses/by/4.0/


CLICS A PREPRINT

Detailed results of few-shot and imbalanced classification tasks

We provide detailed results to support the discussion in Section 4.4.

Figure S3 shows the top-1 classification accuracies trained only with two data each crystal structure. We displayed the
bars for structures with 11 or more validation data for visibility. The CLICS-pretrained model outperformed the scratch
model for most crystal structures, but the scratch model was better partly for caswellsilverite-derived, molybdenum
carbide max phase-derived, and magnesium tetraboride-like structures. Some structures from indium-derived, indium-
like, beta Cu3Ti-like, hausmannite-derived, and enargite-like were classified inaccurately by using either model. The
accuracies for ilmenite-derived and fluorite structures were also unsatisfactory, but only the CLICS-pretrained model
successfully classified some of them. The CLICS-pretrained model classified crystals from the fluorite-derived more
accurately. The structural difference between fluorite and its derivatives on their definitions may affect the results.

Figure S4 shows a more detailed result that also displays the count of each crystal structure. On top right is shown for
some fewer counts. The CLICS-pretrained classified better regardless the abundance of each structure.

Figure S5 shows the detailed counts for the imbalanced task using 5% data for training. The CLICS-pretrained model
was better again compared to the scratch model. There is a difference from the few-shot case: The difference in
each classification accuracy was not so significant for abundant structures (from heusler to spinel-derived), while the
difference became more significant for less abundant structures. This is probably because the scratch model was trained
under the bias of imbalanced data.
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Figure S3: 2-shot classification accuracy (top-1) for each crystal structures with 11 or more validation data. The pink and green
colored bars show accuracies of the CLICS-pretrained model and the scratch model.
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Figure S4: Top-1 counts for all the crystal structures in the 2-shot classification task. The pink and green colored bars show counts
that the CLICS-pretrained model and the scratch model correctly classified as top-1, and the brown colored bars show the number of
each crystal structure appeared in the validation set. Some fewer crystal structures are displayed on top right for visibility.)
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Figure S5: Top-1 counts for all the crystal structures in an imbalanced classification task (5% data for training). The pink and green
colored bars show counts that the CLICS-pretrained model and the scratch model correctly classified as top-1; the brown bars show
the numbers of each crystal structure appeared in the validation set; the pale brown bars for those in the training set. Some fewer
crystal structures are displayed on top right for visibility.)
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