
Linfopoyesis B

Desarrollo del linfocito B

- Es la producción de nuevos linfocitos en los tejidos linfoides centrales.
- <u>Precursores</u> originados en la médula ósea.
- Su diferenciación ocurre de forma completa en la médula ósea (adulto).
- Higado fetal hasta la 8va o 9na semana de gestación (espacios de Disse).

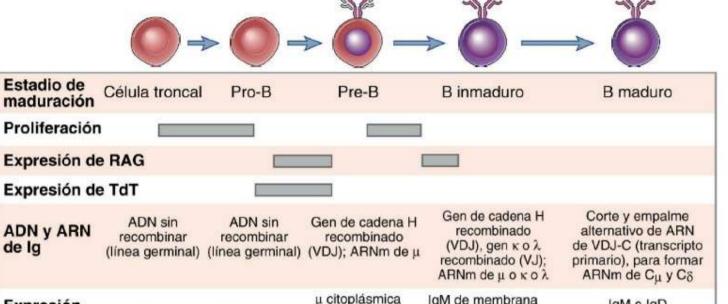
- Los precursores en todos los casos son células pluripotentes, luego se comprometen con un linaje determinado.
- El objetivo es generar linfocitos B maduros que puedan ser competentes luego en la periferia.
- Se llevan a cabo diversos procesos, interacciones celulares específicas y <u>reordenamiento de genes.</u>

FIGURA 8-1 Estadios de maduración del linfocito. El desarrollo de los linfocitos B y T implica la secuencia de estadios madurativos mostrada. Se ilustra la maduración del linfocito B, pero los estadios básicos de maduración del linfocito T son similares.

- La ontogenia del LB se divide en dos fases:

- La fase independiente de antígeno: ocurre en la médula ósea (órgano linfoide central o primario) y concluye con la salida de la médula del linfocito B maduro virgen e inmunocompetente.
- . La fase dependiente de antígeno: ocurre en los órganos linfoides secundarios o periféricos, y conduce a la diferenciación del linfocito B en dos subclones hermanos: uno de células plasmáticas secretoras de Ac y otro de linfocitos B cebados de memoria.

Fase independiente de antígeno:


- Ocurre en las cavidades del hueso esponjoso.
- En sentido radial.
- Del endostio al seno venoso central.
- Cada progenitor genera unos 64 descendientes.

- Microambiente especializado:

- Células del estroma (IL, contacto, CD44).
- Expresión del receptor de la IL 7.
- Stem Cell Factor (SCF)

Etapas:

- Pro- B temprana, Pro- B tardía.
- Pre- B grande, Pre- B pequeña.
- Célula B inmadura, célula B madura.

Expresión de Ig	Ninguna	Ninguna	μ citoplásmica y prerreceptor B asociado a μ	lgM de membrana (μ+ cadena ligera κ ο λ)	IgM e IgD de membrana
Marcadores de superficie	CD43+	CD43+ CD19+ CD10+	B220 ^{bajo} CD43+	IgM ^{bajo} CD43 ⁻	IgMalto
Zona anatómica		Médu	Peri	Periferia	
Respuesta al antígeno	Ninguna	Ninguna	Ninguna	Selección negativa (eliminación), edición del receptor	Activación (proliferación y diferenciación)

Estadio de

maduración

Proliferación

ADN y ARN

de Ig

FIGURA 8-12 Estadios de maduración del linfocito B. Se ilustran los acontecimientos correspondientes a cada estadio de maduración del linfocito B a partir de la célula troncal de la médula ósea hasta un linfocito B maduro. Se han usado varios marcadores de superficie, además de los mostrados, para definir diferentes estadios de la maduración del linfocito B.

Rearreglo de genes:

- El rearreglo del locus de la <u>cadena pesada</u> comienza en las células <u>pro-B tempranas</u> entre D_H y J_H en ambos alelos del locus.
- V(D)J recombinasa con RAG-1 y RAG-2.
- Luego de esto la célula pasa a ser pro-B tardía.

- En las células pro-B tardías ocurre la recombinación entre Vh y DJh, primero en un solo cromosoma
- Importante papal de la enzima dinucleotidil transferesa terminal (TdT) en estadío pro-B
- Un rearreglo exitoso lleva a la producción de cadenas pesadas µ.
- Luego la célula se convierte en pre-B.
- Las células que no producen cadenas pesadas son eliminadas

- Mecanismo de control para cadenas pesadas:
 - . Formación del <u>receptor pre-B</u> para pasar definitivamente al estadío pre-B
- . Unión de testeo entre la cadena pesada μ y la cadena "L sustituta".

Paralelamente existe proliferación celular al pasar de Pro-B a Pre-B.

- Fenómeno a conocer en el rearreglo de las cadenas pesadas:
 - . Exclusión alélica: Evita la producción de dos receptores con distinta especificidad.

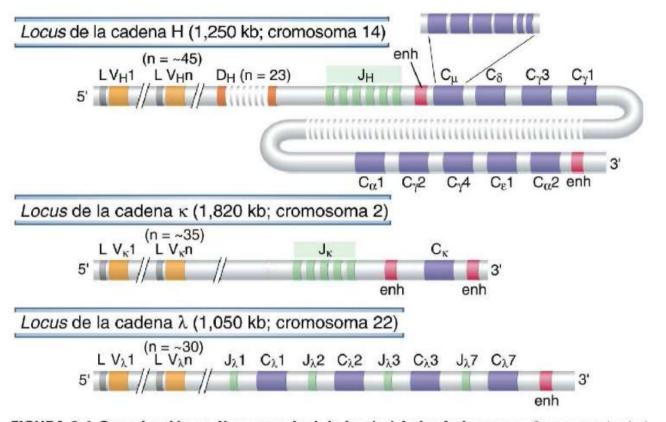
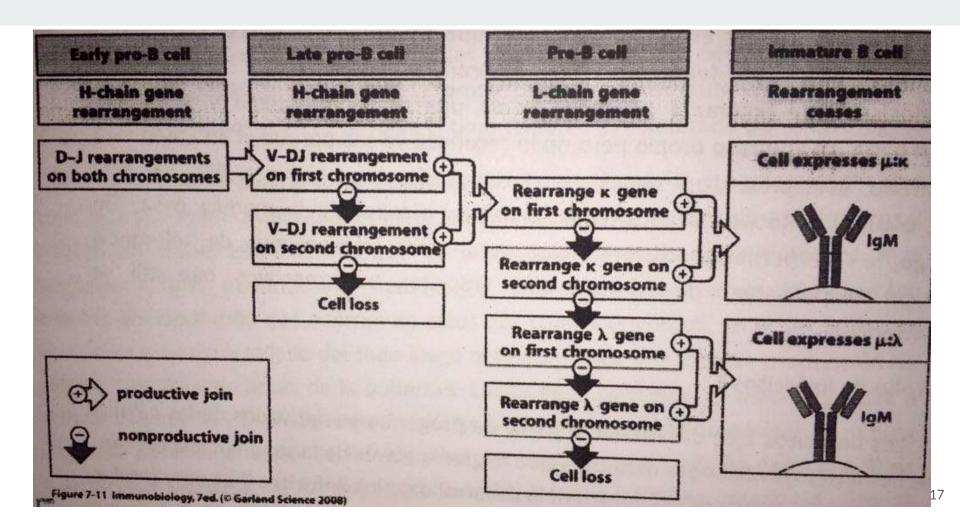
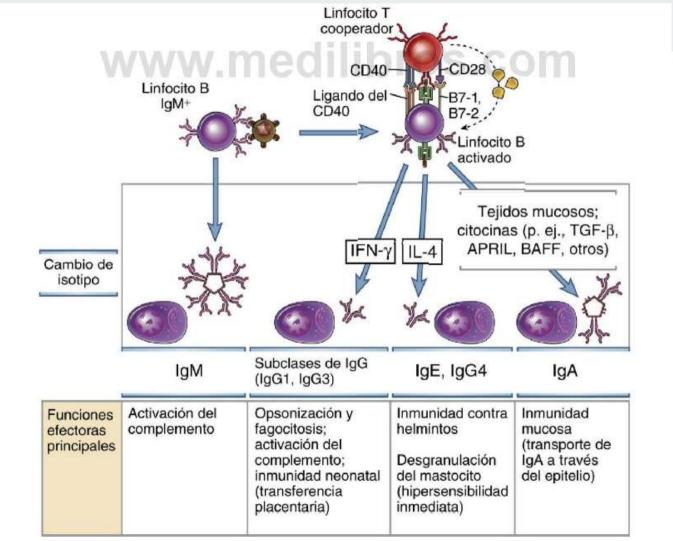



FIGURA 8-4 Organización en línea germinal de los loci de las Ig humanas. Se muestran los loci humanos de la cadena pesada, la cadena ligera κ y la cadena ligera λ . Solo se muestran los genes funcionales; los seudogenes se han omitido para simplificar la imagen. Los exones y los intrones no se dibujan a escala. Cada gen C_H se muestra como un solo recuadro, pero está compuesto de varios exones, como se ilustra para C_{μ} . Los segmentos génicos están indicados como sigue: C, constante; D, diversidad; enh, potenciador; J, unión; L, líder (llamado a menudo secuencia señal); V, variable. En esta figura y en las siguientes las estructuras tubulares muestran segmentos bicatenarios de cromosomas con los extremos 5' y 3' referidos a las cadenas codificadoras.

- El rearreglo de la cadena liviana involucra a un segmento V y un segmento J.
- Carecen de segmentos D.
- Presentan exclusión alélica y exclusión isotípica (65% k y 35% lambda).
- Cadena liviana asociada con una cadena pesada µ
 permiten formar la IgM de superficie y pasar al estadío
 de linfocito B inmaduro.
- Va a ser sometido al proceso de tolerancia central.

- Fase dependiente de antígeno:


. En la periferia, el linfocito B virgen puede encontrarse o no con el antígeno para el que son específicas sus inmunoglobulinas de membrana.

- Salen a la periferia co expresando IgD e IgM de memb.
- Si entra en contacto con su antígeno específico, se convierte en <u>linfocito B activado</u> que se expanden clonalmente y se diferencia en dos subclones:
- Células plasmáticas productoras de Ac. (pierde IgD).

 Células B cebadas memoria: Luego del contacto con el antígeno perfeccionan su especificidad y adquieren vida media larga (mlgD).

Maduración de la afinidad (diversidad):

- A nivel de los centros germinales.
- Switch o cambio de clase de (IgM a IgG) condicionado por IL. (AID).
- Hipermutación somática, maduración con el transcurso del tiempo.

	7-22		12.00		(print(m))
Estadio de maduración	Célula troncal	Pro-B	Pre-B	B inmaduro	B maduro
Proliferación					
Expresión de	RAG				
Expresión de	TdT				
ADN y ARN de Ig	ADN sin recombinar (linea germinal)	ADN sin recombinar (línea germinal)	Gen de cadena H recombinado (VDJ); ARNm de μ	Gen de cadena H recombinado (VDJ), gen κολ recombinado (VJ); ARNm de μοκολ	Corte y empalme alternativo de ARN de VDJ-C (transcripto primario), para formar ARNm de C_{μ} y C_{δ}
Expresión de Ig	Ninguna	Ninguna	μ citoplásmica y prerreceptor B asociado a μ	lgM de membrana (μ+ cadena ligera κ ο λ)	IgM e IgD de membrana
Marcadores de superficie	CD43+	CD43+ CD19+ CD10+	B220bajo CD43+	IgM ^{bajo} CD43 ⁻	IgM ^{alto}
Zona anatómica		Médula	i ósea	Per	iferia
Respuesta al antígeno	Ninguna	Ninguna	Ninguna	Selección negativa (eliminación), edición del receptor	Activación (proliferación y diferenciación)

FIGURA 8-12 Estadios de maduración del linfocito B. Se ilustran los acontecimientos correspondientes a cada estadio de maduración del linfocito B a partir de la célula troncal de la médula ósea hasta un linfocito B maduro. Se han usado varios marcadores de superficie, además de los mostrados, para definir diferentes estadios de la maduración del linfocito B.

¿Cuáles de los siguientes mecanismos es responsable de generar la diversidad en la estructura de los Ac durante la linfopoyesis en la médula ósea?:

- a) Recombinación de las regiones constantes por el mecanismo de cambio de clase.
- b) Generación de diversidad en la unión entre V-D y D-J mediante la adición de nucleótidos por la enzima TdT.
- c) Diferenciación del LB a plasmocito.
- d) Introducción de mutaciones somáticas en la región variable de los genes que codifican para las Ig.

¿Cuáles de los siguientes mecanismos es responsable de generar la diversidad en la estructura de los Ac durante la linfopoyesis en la médula ósea?:

- a) Recombinación de las regiones constantes por el mecanismo de cambio de clase.
- b) Generación de diversidad en la unión entre V-D y D-J mediante la adición de nucleótidos por la enzima TdT.
- c) Diferenciación del LB a plasmocito.
- d) Introducción de mutaciones somáticas en la región variable de los genes que codifican para las Ig.

21- Indique lo correcto en relación a la linfopoyesis B:

- a) El estadío pro-B se caracteriza por la co-expresión de IgM e IgD en la superficie celular.
- b) En el estadío pre-B se encuentra usualmente la cadena pesada mu (µ) a nivel del retículo endoplásmico o en la membrana celular asociada a una proteína similar a la cadena liviana (seudo-cadena liviana).
- c) La célula progenitora linfoide co-expresa en su superficie inmunoglobulinas (Ig) y receptores de células T (TCR).
- d) El proceso de recombinación génica que genera los exones que van a codificar las regiones variables de los anticuerpos requiere de la activación celular por parte del antígeno.
- e) Las células B que salen de la médula ósea al finalizar la linfopoyesis se denominan plasmocitos y tienen una alta capacidad para secretar anticuerpos.

21- Indique lo correcto en relación a la linfopoyesis B:

- a) El estadío pro-B se caracteriza por la co-expresión de IgM e IgD en la superficie celular.
- b) En el estadío pre-B se encuentra usualmente la cadena pesada mu (µ) a nivel del retículo endoplásmico o en la membrana celular asociada a una proteína similar a la cadena liviana (seudo-cadena liviana).
- c) La célula progenitora linfoide co-expresa en su superficie inmunoglobulinas (Ig) y receptores de células T (TCR).
- d) El proceso de recombinación génica que genera los exones que van a codificar las regiones variables de los anticuerpos requiere de la activación celular por parte del antígeno.
- e) Las células B que salen de la médula ósea al finalizar la linfopoyesis se denominan plasmocitos y tienen una alta capacidad para secretar anticuerpos.

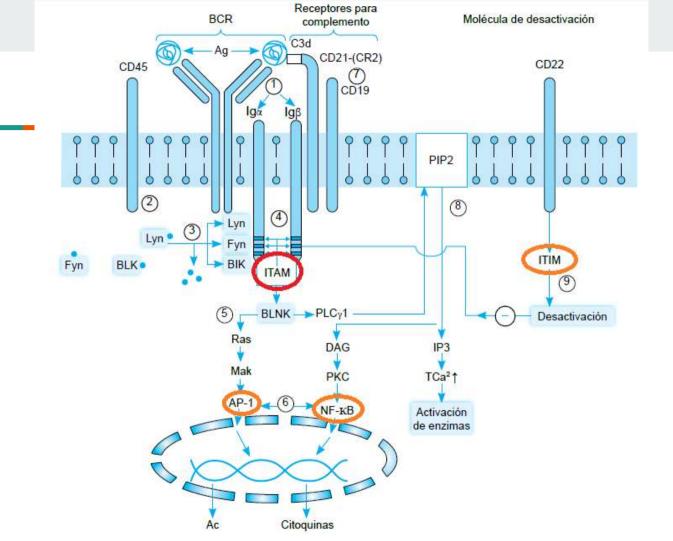
23- En relación a la linfopoyesis indique la opción correcta:

- a) El timocito doble positivo co-expresa en su superficie inmunoglobulinas (Ig) y receptores de células T (TCR).
- b) La gran mayoría de los linfocitos CD8 positivos que salen del timo una vez finalizada la linfopoyesis T son linfocitos T citotóxicos maduros.
- c) En la médula ósea el linfocito pro-B se caracteriza por secretar altas cantidades de inmunoglobulinas.
- d) El linfocito pre-B expresa solamente la cadenas livianas kappa en su membrana plasmática.
- e) Los segmentos génicos VH, D y JH se recombinan durante la linfopoyesis B para generar el exón que codifica para la región variable de la cadena pesada de las inmunoglobulinas.

23- En relación a la linfopoyesis indique la opción correcta:

- a) El timocito doble positivo co-expresa en su superficie inmunoglobulinas (Ig) y receptores de células T (TCR).
- b) La gran mayoría de los linfocitos CD8 positivos que salen del timo una vez finalizada la linfopoyesis T son linfocitos T citotóxicos maduros.
- c) En la médula ósea el linfocito pro-B se caracteriza por secretar altas cantidades de inmunoglobulinas.
- d) El linfocito pre-B expresa solamente la cadenas livianas kappa en su membrana plasmática.
- e) Los segmentos génicos VH, D y JH se recombinan durante la linfopoyesis B para generar el exón que codifica para la región variable de la cadena pesada de las inmunoglobulinas.

Inmunidad adaptativa


Activación de Linfocitos B - Mecanismos efectores humorales

Introducción:

- Los linfocitos B actúan destruyendo los microorganismos extracelulares y evitan la diseminación de infecciones intracelulares.
- El antígenos activa directamente al LB y en la mayoría de los casos necesita de la colaboración de LT.

Activación de LB:

- El BCR cumple dos funciones fundamentales en la activación: Se une al Ag y media su endocitosis.
- La endocitosis es crucial para internalizar al Ag y presentarlo a los LT específicos.
- Estos LT colaboran en la proliferación de los LB a plasmocitos y células memoria

- Existen dos tipos de respuestas: <u>T dependiente y T independiente.</u>
- La respuesta T independiente termina siendo menos eficaz dado que no hay ayuda y no aumentaría la afinidad de los Ac producidos.
- La segunda señal en este caso se da por parte del mismo antígeno.

- La respuesta T dependiente es crucial en el contexto de una infección a un antígeno <u>proteico</u> ya que por sí solos no inducen respuesta.
- Un LB solo puede ser activado por un LT específico para ese mismo antígeno que se pretende eliminar (reconocimiento ligado)
- Importancia en la tolerancia inmunolólica.

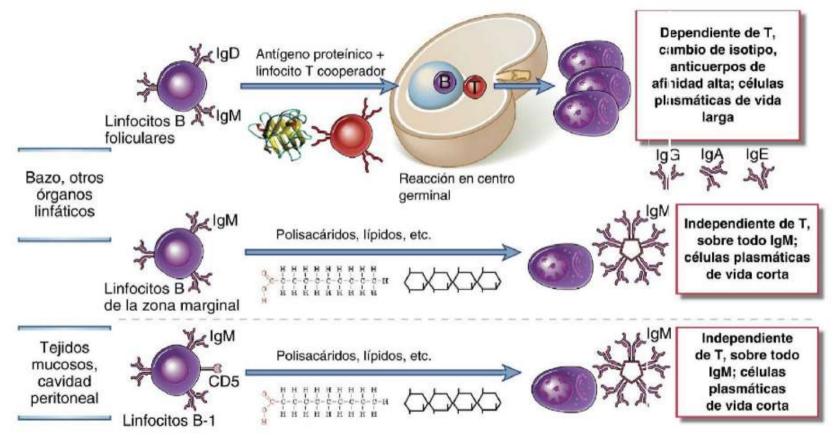
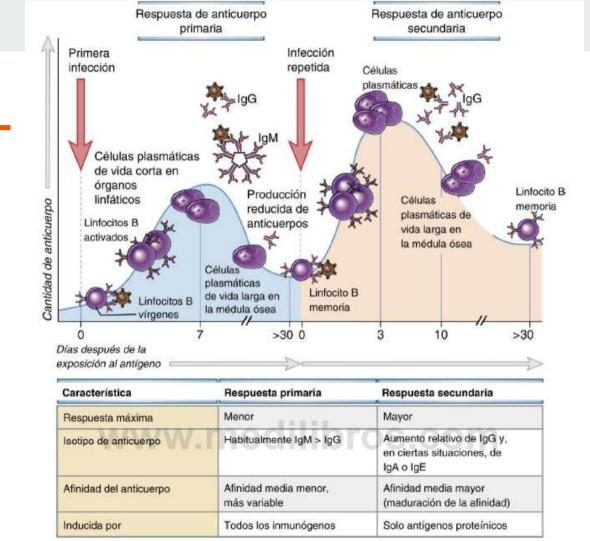



FIGURA 12-3 Diferentes subgrupos de linfocitos B median diferentes tipos de respuestas de anticuerpos. Los linfocitos B foliculares responden a antigenos proteínicos, y así inician respuestas de anticuerpos dependientes de T. Las respuestas independientes de T frente a antigenos multivalentes están mediadas, sobre todo, por linfocitos B de la zona marginal en el bazo y linfocitos B-1 en las mucosas. Estas distinciones funcionales entre los subgrupos no son absolutas.

Reconocimiento:

- Los LT reconocerán el MHC de clase II.
- El CD40 y CD40L induce a los LB en reposo que ingresen nuevamente al ciclo celular.
- Causa también la expresión de moléculas co estimuladoras (B7).
- Otras señales: CD30 y CD30L.
- Finalmente se generan células plasmáticas.

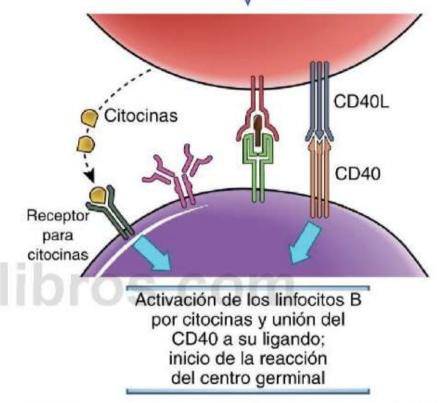


FIGURA 12-10 Mecanismos de la activación del linfocito B mediada por el linfocito T cooperador. Los linfocitos T cooperadores que se activan al reconocer los antígenos presentados por los linfocitos B expresan el CD40L, que se une al CD40 situado en los linfocitos B y estimula la proliferación y diferenciación del linfocito B. Las citocinas producidas por los linfocitos T cooperadores también contribuyen a las respuestas del linfocito B.

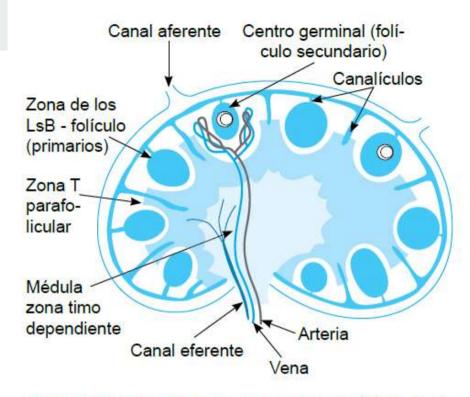


Figura 9-6. Estructura de un ganglio linfático. En la parte cortical se encuentran los acúmulos de LsB que forman los folículos linfoides y luego los centros germinales. Los LsT se acumulan alrededor de los folículos y en la parte medular, en donde también se acumulan las células plasmáticas generadas en los centros germinales.

- En el bazo migran hacia los límites de la zona T y la pulpa roja.
- En los ganglios el foco primario se asienta en las cuerdas medulares.
- Durante varios días proliferan linfocitos en el foco primario.
- La maduración de la afinidad y la generación de células B de memoria, ocurre en los **centros germinales**

- Los linfocitos B migran junto con los T a proliferar en folículos linfáticos periféricos.
- Formando así un centro germinal.
- El centro germinal está compuesto por LB y LT (10%).
- Provee una respuesta tardía y eficaz.
- En dicho centro se llevan a cabo procesos importantes como <u>hipermutación somática</u> y <u>cambio de clase.</u>

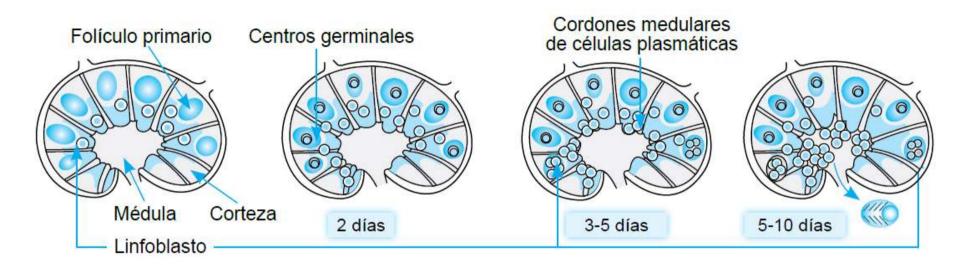


Figura 11-6. Formación de los centros germinales. La llegada del Ag al ganglio desencadena un proceso de activación y reproducción de los Ls capaces de reconocer ese Ag con lo cual el folículo primerario se transforma en un centro germinal generador de células plasmáticas y de LsB de memoria.

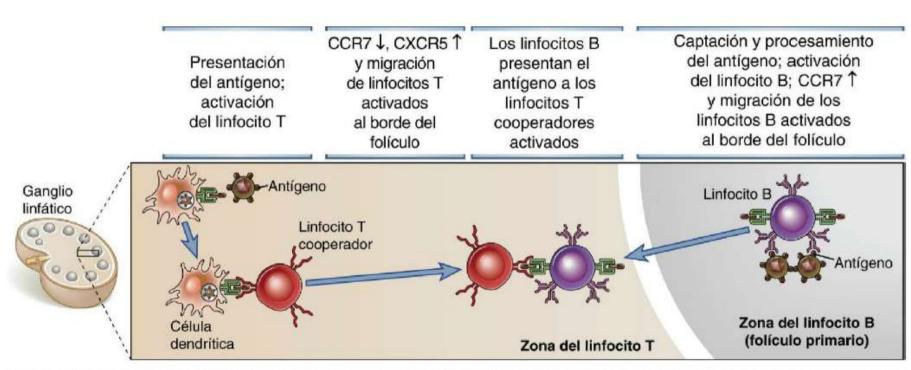


FIGURA 12-8 Migración de los linfocitos B y de los linfocitos T cooperadores e interacción T-B. Los linfocitos T cooperadores y los linfocitos B, activados ambos por el antígeno, se mueven el uno hacia el otro en respuesta a las señales de las quimiocinas y entran en contacto junto al borde de los folículos primarios.

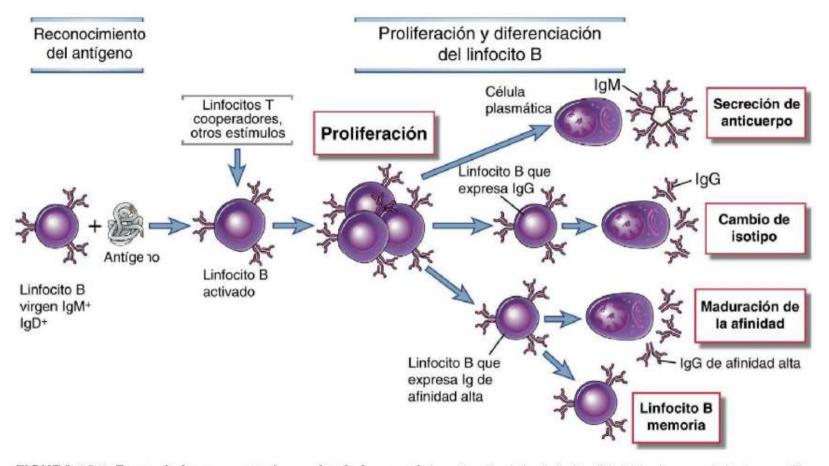


FIGURA 12-1 Fases de la respuesta inmunitaria humoral. La activación de los linfocitos B la inicia el reconocimiento específico de antígenos por los receptores de superficie (Ig) de estas células. El antígeno y otros estímulos, como los linfocitos T cooperadores, estimulan la proliferación y diferenciación del clon específico de linfocitos B. La progenie del clon puede diferenciarse en células plasmáticas que producen IgM u otros isotipos de Ig (p. ej., IgG), realizar una maduración de la afinidad o persistir como células memoria.

Respuesta de Ac:

- Los Ac sirven para neutralizar patógenos o promover su eliminación.
- Los primeros, aunque menos afines, son los IgM.
- Compensan su poca afinidad con múltiples sitios de unión.
- Activa al sistema de complemento.

- IgA, IgG e IgE son más pequeñas y difunden fácilmente.
- IgG es la principal clase de Ac encontrada en plasma.
- IgA es la principal en mucosas y secreciones.
- IgE se une eficazmente a mastocitos y desencadena reacciones ricas en mediadores químicos.

Isotipo de anticuerpo Funciones efectoras específicas del isotipo IgG Opsonización de antígenos para la fagocitosis por los macrófagos y los neutrófilos

Funciones de los isotipos de anticuerpos

Activación de la vía clásica de complemento

Citotoxicidad celular dependiente de anticuerpos mediada por los linfocitos citolíticos naturales Inmunidad neonatal: transferencia de anticuerpos maternos a través de la placenta y del intestino

Inhibición por retroalimentación de la activación

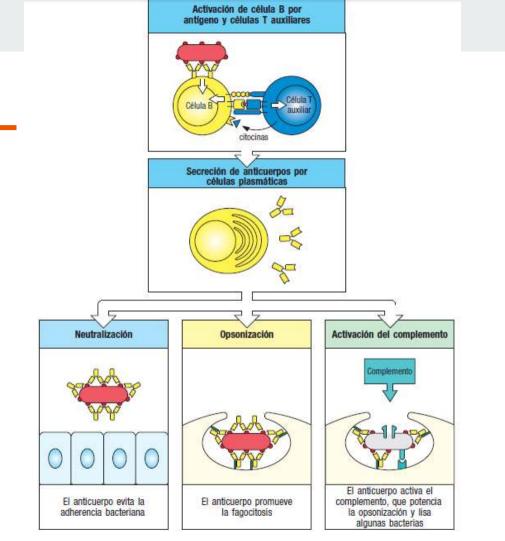
IgM

IgA

IgE.

IgD.

y no secretados.


TABLA 13-2

Activación de la vía clásica del complemento Receptor para el antígeno de los linfocitos B vírgenes* Inmunidad de las mucosas: secreción de IgA en las

luces de las vías digestiva y respiratoria Desgranulación del mastocito (reacciones de hipersensibilidad inmediata)

del linfocito B

Receptor para el antígeno de los linfocitos B vírgenes* *Estas funciones están mediadas por anticuerpos unidos a la membrana

¿Cómo neutralizamos?

- Para que una toxina sea eficaz tiene que interactuar con un receptor en la célula blanco.
- Los Ac se unen a la toxina para evitar la infección.
- IgG neutraliza principalmente en tejidos e IgA en mucosas.
- Ej: toxina diftérica y tetánica; Hemaglutinina.

Otros mecanismos efectores:

- Se activa el complemento a través de la vía clásica, C1q; pueden hacerlos moléculas de IgM e IgG.
- Se pueden activar células efectoras a través de receptores
 Fc.
- Con este mecanismo se favorece la fagocitosis del patógeno.
- El Fc se activa por medio del Ac unido al patógeno.

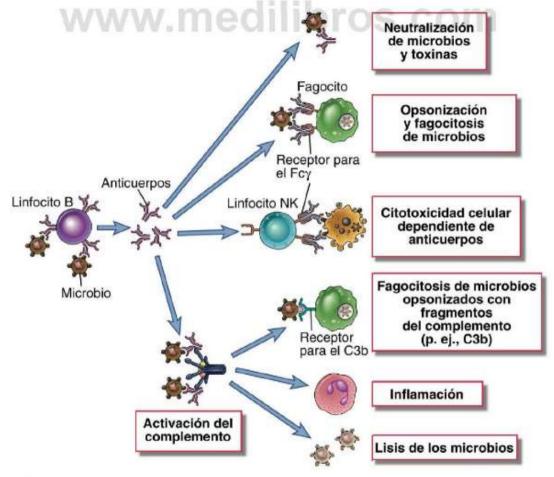
FcR	Afinidad por la inmunoglobulina	Distribución celular	Función
FcyRI (CD64)	Alta (K _d < 10 ⁻⁹ M); se une a la IgG1 y la IgG3, puede unirse a IgG monomérica	Macrófagos, neutrófilos; también eosinófilos	Fagocitosis; activación de fagocitos
FcyRIIA (CD32)	Baja ($\mathrm{K_d} > 10^{-7} \; \mathrm{M}$)	Macrófagos, neutrófilos; eosinófilos, plaquetas	Fagocitosis; activación celular
FcyRIIB (CD32)	Baja ($\mathrm{K_d} > 10^{-7} \mathrm{\ M}$)	Linfocitos B, macrófagos, células dendríticas y otras células	Inhibición por retroalimentación de las distintas respuestas celulares
Fa. DUC (CD32)	Deia (V. 5. 10=7.84)	Manufaces and office Reference NIV	Francisco antiquation coluing

FcyRIIC (CD32) Macrófagos, neutrófilos, linfocitos NK Fagocitosis, activación celular Baja $(K_d > 10^{-7} M)$ FcyRIIIA (CD16) Baja $(K_d > 10^{-6} M)$ Linfocitos NK

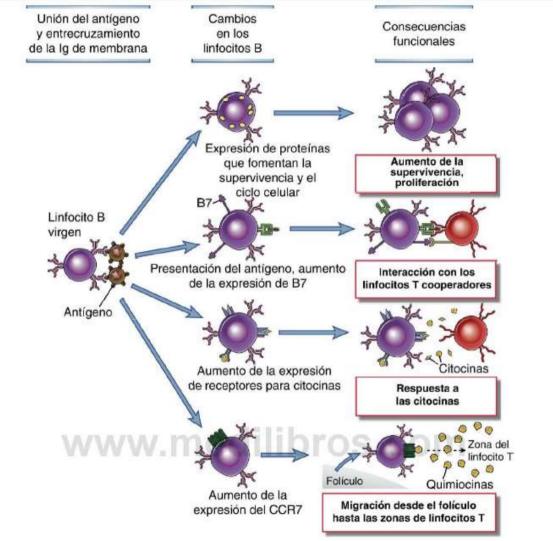
TABLA 13-3

Receptores para el Fc

Citotoxicidad celular dependiente de anticuerpos Neutrófilos Baia (K_d > 10⁻⁶ M); proteina ligada a GPI Fagocitosis (ineficiente)


FcyRIIIB (CD16) FCERI Alta (K_d > 10⁻¹⁰ M); se une a IgE monomérica Mastocitos, basófilos, eosinófilos Activación celular (desgranulación) FceRII (CD23) Baja $(K_d > 10^{-7} \text{ M})$ Linfocitos B, eosinófilos, células de Desconocida

Langerhans


Baja $(K_d > 10^{-6} \text{ M})$ ¿Activación celular? Neutrófilos, eosinófilos, monocitos

FcaR (CD89)

GPI, glucofosfatidilinositol; NK, citolítico natural.

FIGURA 13-1 Funciones efectoras de los anticuerpos. Los anticuerpos contra los microbios (y sus toxinas, *no mostradas*) neutralizan estos agentes, los opsonizan para la fagocitosis, los sensibilizan para la citotoxicidad mediada por anticuerpos y activan el sistema del complemento. Estas diversas funciones efectoras pueden estar mediadas por diferentes isotipos de anticuerpos.

Preguntas:

- 6) Entre las señales importantes para la activación de los linfocitos B se destaca:
 - a) Interacción de CD40 CD40L
 - b) Interacción de MHC-I- CD8
 - c) Interacción de TLR TCR
 - d) Interacción de ICAM-LFA-1

- 7) En cuanto a las funciones de las inmunoglobulinas es correcto afirmar que:
 - a) Las IgD participa en la citotoxicidad celular dependiente de anticuerpos (ADCC)
 - Las IgA se unen a virus y toxinas en el lumen intestinal neutralizando los mismos
 - c) Las IgG no son capaces de activar al sistema de complemento por ser un monómero
 - d) La principal de las Las IgE es la acivacion del complemento

- 12) En referencia a la respuesta de células T se puede afirmar:
 - a) La células Th17 reclutan neutrófilos
 - b) La células Th2 activan macrófagos
 - c) La células T se activan en la puerta de entrada del antigeno

- 14) En referencia a las cel. T es correcto decir:
 - a) La IL8 e IL23 dirige la respuesta hacia Th17
 - La IL12 e IFN gama dirige la respuesta hacia Treg
 - c) La IL4 e IL5 dirige la respuesta hacia Th1
 - d) La IL 12 e IFN gama dirige la respuesta hacia Th2

- 16) Sobre respuesta secundaria de linfocitos T es correcto afirmar:
 - a) Los Th1 liberan INF (gamma) en respuestas a patogenos intraveciculares
 - b) Los CD8 efectores (LTC) solo con la primera señal pueden fagocitar las células infectadas
 - c) Los Th1 liberan IL4 en la respuesta a bacterias extracelulares

- 10) En relación a las inmunoglobulinas podemos afirmar que:
 - a) Las IgA es secretada como un dimero en mucosas
 - b) Las IgG de membrana en un tetrámero
 - c) Las IgM de membrana en un pentámero
 - d) Las IgD es secretada como un monmoero en torrente sanguíneo