
Feature Staleness Aware Incremental Learning for CTR Prediction

Zhikai Wang1 , Yanyan Shen1 , Zibin Zhang2 and Kangyi Lin2

1Shanghai Jiao Tong University
2Tencent

{cloudcatcher.888,shenyy}@sjtu.edu.cn, {bingoozhang,plancklin}@tencent.com

Abstract
Click-through Rate (CTR) prediction in real-world
recommender systems often deals with billions of
user interactions every day. To improve the training
efficiency, it is common to update the CTR predic-
tion model incrementally using the new incremen-
tal data and a subset of historical data. However,
the feature embeddings of a CTR prediction model
often get stale when the corresponding features do
not appear in current incremental data. In the next
period, the model would have a performance degra-
dation on samples containing stale features, which
we call the feature staleness problem. To miti-
gate this problem, we propose a Feature Staleness
Aware Incremental Learning method for CTR pre-
diction (FeSAIL) which adaptively replays samples
containing stale features. We first introduce a stal-
eness aware sampling algorithm (SAS) to sample a
fixed number of stale samples with high sampling
efficiency. We then introduce a staleness aware
regularization mechanism (SAR) for a fine-grained
control of the feature embedding updating. We
instantiate FeSAIL with a general deep learning-
based CTR prediction model and the experimen-
tal results demonstrate FeSAIL outperforms var-
ious state-of-the-art methods on four benchmark
datasets.

1 Introduction
Click-through Rate (CTR) prediction is to estimate the prob-
ability of a user clicking a recommended item in a specific
context [Qu et al., 2016; Guo et al., 2017; Zhou et al., 2018;
Guo et al., 2018; Sun et al., 2019; Zhang et al., 2021]. As
real-world recommender systems often encounter billions of
user interactions every day, various methods [Chen et al.,
2013; Barrett et al., 2017; Zhang et al., 2019; Teredesai et al.,
2019b] have been proposed to update CTR prediction model
in an incremental manner, which means that model will be
fine-tuned with newly arrived data and possibly with part of
historical data.

Typically, CTR prediction models [Krishnapuram et al.,
2016; Guo et al., 2017; Mi et al., 2020; Peng et al., 2021]
involve a low-level feature embedding layer, followed by the

high-level feature interaction and prediction layers. The pa-
rameters in the high-level layers are always updated with
incremental data. However in the low-level layer, the fea-
ture embeddings will not be updated and get stale when
the corresponding features do not appear in the incremental
data [Wang et al., 2020]. For instance, if samples with “per-
sonal care products” feature only exist in previous time spans
and missing in later time spans, the embedding of feature
“personal care products” will be stale and become incompat-
ible with the parameters in the high-level layers. When new
samples with “personal care products” feature appear in in-
cremental datasets, the model may not predict the CTR on
them precisely. We call this problem the feature staleness
problem.

0 1 2 3 >3
staleness

0.600

0.625

0.650

0.675

0.700

0.725

0.750

A
U

C

compared group
BM
BM+FSS

(a) Criteo

0 1 2 3 >3
staleness

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

A
U

C

compared group
BM
BM+FSS

(b) Avazu
Figure 1: The observed feature staleness problem on Criteo/Avazu.

Example 1. We use two real CTR prediction data Criteo and
Avazu [Wang et al., 2020] as examples which both consist of a
pretraining dataset and ten consecutive incremental datasets
denoted as {D0,D1, · · · ,D10}. We choose a state-of-the-art
incremental learning (IL) method [Peng et al., 2021] as the
base incremental method (BM) for illustration. In each time
span t, we fine-tune the model parameters with Dt. We then
test the BM on samples in Dt+1 which contain features with
different staleness. The staleness is defined as the number
of consecutive time spans for which a feature has been ab-
sent. We use the staleness to represent the out-of-date extent
of a feature embedding. The average AUC performance on
ten incremental datasets is reported in Figure 1. We can see
that the model reports a lower average AUC on samples con-
taining features with larger staleness, which reflects that the
model suffers from the feature staleness problem on stale fea-
tures, especially the feature absent for a long time, during the
testing phase.

A vanilla way to mitigate the feature staleness problem is
to replay all the samples, which contain stale features in each

incremental step, to ensure all the feature embeddings are up-
dated, which is referred as Full stale sampling (FSS). FSS
can serve as a replay plug-in for the base model. As pre-
sented in Figure 1, BM+FSS can achieve remarkable AUC
improvement on samples with stale features. However, this
vanilla way has two limitations. First, in practice, the distri-
bution of features can be scattered and vary among all incre-
mental datasets. The set of all historical samples containing
stale features will have an unaffordable size, and randomly
sampling a subset cannot guarantee a high coverage of stale
features. Second, it treats all stale features in the same way
regardless of the extent of feature’s staleness, which is not
reasonable. For instance, repeatedly updating low-frequency
features which keep stale for a long time will increase the risk
of over-fitting [Wang et al., 2017]. On the contrary, some fea-
tures are only stale for a few time spans, which are similar to
unstale features, should be updated normally. The improve-
ment on samples with smaller staleness features is more re-
markable in Figure 1, which validates the second limitation.

In this paper, we propose a Feature Staleness Aware
Incremental Learning method for CTR prediction (FeSAIL)
to overcome the above mentioned limitations. We introduce
a staleness aware sampling algorithm (SAS) using a fixed-
size reservoir to store samples with stale features. We aim to
cover as many features with small staleness values as pos-
sible, which is formulated as a maximum weighted cover-
age problem and solved by a greedy algorithm with an ap-
proximation ratio of 1− 1

e compared to the optimal solution.
We then introduce a staleness aware regularization mecha-
nism (SAR) to restrict the updating of feature embeddings
according to the extent of features’ staleness.

The main difference between FeSAIL and the mainstream
IL methods [Mi and Faltings, 2020; Huang et al., 2020b;
Katsileros et al., 2022] for CTR prediction is that none of
the latter select samples at the level of feature granularity
and some important but stale features may be neglected if
they are not located in the replayed samples. Moreover, the
mainstream methods treat all features equally during param-
eters updating, including the stale features, and may easily
preserve some out-of-date and irrational knowledge from the
stale features.

The major contributions are summarized as follows.
• We observe the feature staleness problem existing in incre-

mental learning of CTR prediction models and propose a
feature staleness aware IL method named FeSAIL to miti-
gate this problem.

• We introduce the SAS algorithm based on feature stale-
ness and solve it as a maximum weighted coverage prob-
lem greedily to guarantee the sampling efficiency. We also
design the SAR algorithm for a fine-grained control of low-
frequency feature updating.

• We instantiate FeSAIL with a general deep learning-based
CTR prediction model and conduct extensive experiments,
which demonstrates that FeSAIL can efficiently alleviate
the feature staleness problem and achieve 1.21% AUC im-
provement compared to the state-of-the-art IL method for
CTR prediction on three widely-used public datasets and a
private dataset averagely.

2 Preliminaries
CTR prediction aims to estimate the probability that a user
will click a recommended item. Generally, CTR models
include three parts: embedding layer, interaction layer and
prediction layer [Rendle et al., 2010; Guo et al., 2017;
Wang et al., 2020; d’Aquin et al., 2020]. In typical CTR
prediction tasks, the input of each sample is collected in
a multi-field form [Wang et al., 2020; Wang et al., 2017;
He and McAuley, 2016]. The label y of each sample is
0 or 1 indicating whether a user clicked an item. Each
field Fi (1 ≤ i ≤ m) is filled with one specific fea-
ture fi from feature space Fi with size ni, where m is the
number of fields. Each data sample is transformed into a
dense vector via an embedding layer. Formally, for a sam-
ple d = {f1, f2, · · · , fm}, each feature is encoded as an em-
bedding vector ei ∈ R1×k, where k is the embedding size.
Therefore, each sample can be represented as an embedding
list E = (e>1 , e

>
2 , · · · , e>m) ∈ Rm×k. Let the total number

of features be N =
∑m

i=1 ni. The embeddings of all the fea-
tures form an embedding table E ∈ RN×k. In the interaction
layer, existing models [Guo et al., 2017; Wang et al., 2017;
Kang and McAuley, 2018; Caverlee et al., 2020] utilize prod-
uct operation and multi-layer perception to capture explicit
and implicit feature interactions. And prediction ŷ is gener-
ated as the probability that the user will click on a specific
item. The cross-entropy loss is calculated between the label
y and the prediction ŷ.

Given a series of CTR prediction datasets
{D0,D1, · · · ,Dt, · · · } indexed by time span. In IL
scenario, at time span t, Dt is the current dataset and
Dt

his = {D0,D1, · · · ,Dt−1} contains all the historical
datasets. If we train the model using the current dataset
and all the historical datasets, the size of the training
data will grow overwhelmingly large. In many exist-
ing IL methods for CTR prediction [Mi et al., 2020;
Mi and Faltings, 2020], instead of preserving the whole
historical datasets, they first initialize a reservoir R0 using
D0, which serves as a replay buffer. As time span t, they
generate the reservoirRt based onRt−1∪Dt−1 and train the
model using Rt and Dt, which can greatly reduce the size
of the training data. In this paper, we follow this setting and
investigate how to find an efficient way for sampling Rt from
Rt−1 ∪Dt−1 and update the model parameters usingRt and
Dt such that the model can achieve better performance on
Dt+1 at each time span t.

3 The FeSAIL Approach
3.1 Overview
The FeSAIL is a feature staleness aware IL method for train-
ing CTR prediction models to mitigate the feature staleness
problem. As presented in Figure 2, FeSAIL can be divided
into sampling and training stages for each time span t: In the
sampling stage, the staleness aware sampling (SAS) strategy
first uses a reservoirRt with a fixed size to store samples con-
taining stale features and uses a greedy algorithm to cover as
much staleness features as possible. In the training stage, the
model will be trained on Rt and the incremental dataset Dt

with the staleness aware regularization (SAR), which restricts

1 2 3 4 5 6
S1
S2
S3
S4
S5

S1
S2
S5
S6
S7

S3

SAS

S2
S5
S6
S8
S9

Data sampling Model training

Embedding
layer

…

Interaction
&prediction

layer

guard

Embedding
layer

Interaction
&prediction

layer

Loss

Loss

…

ℛ!

𝒟!

FeatureID

∅

time span 1

time span 2

time span 3

SAR

SAR
ℛ"

𝒟"

ℛ#

𝒟#

: select samples containing stale features

(SAS): select samples according to feature staleness

SAS

guard

Figure 2: The overview of FeSAIL. All features that appear in the
current dataset are in green squares. The redness of a feature repre-
sents the extent of its staleness.

the embedding updating of features according to the extent of
features’ staleness.

3.2 Staleness Aware Sampling (SAS)
In this section, we introduce how our method chooses sam-
ples for the reservoir based on the feature staleness. Our key
insight is that resampling samples with stale features, which
refer to the features not appearing in the current dataset, can
help mitigate the performance degradation on new samples
involving stale features, as illustrated Figure 1. A naı̈ve way
to generate Rt is to choose the samples from Rt−1 ∪ Dt−1
containing features that do not appear in Dt, which is re-
ferred as reservoir-based stale samplingRSS. More formally,
let FDt denote the feature set of Dt. We add a sample
d = {f1, f2, · · · , fm} in Rt−1 ∪ Dt−1 to Rt if d involves
at least one feature that is not included in the feature set of
Dt, i.e., ∃fi /∈ FDt where 1 ≤ i ≤ m. The model will be
trained with Rt and Dt jointly. In this way, the chosen sam-
ples in Rt can supplement the feature set of Dt and update
the feature embeddings such that the embeddings can adapt
to the updated high-level layers in the model.

However, in real scenarios such as news and short video
recommendation, the distribution of features can be quite
scattered and vary among each incremental datasets [Huang
et al., 2020a; Peng et al., 2021]. Even using the above men-
tioned method will still preserve samples with an uncontrol-
lable size and incur high computation cost. A more desirable
solution is to design a reservoir with a fixed size L to store
historical samples with stale features. Honestly, a fixed-sized
reservoir may not be able to cover all the stale features. To
mitigate the performance degeneration to the maximal extent,
we compute the fixed-size reservoir based on two rules. First,
the designed reservoir should cover as many stale features as

possible. Second, the features with smaller staleness will be
covered with higher priorities because they might have higher
possibilities of reappearing again in future datasets. We first
quantify the feature staleness. Formally, each feature fi is
assigned with one staleness sti which is initially set as 0. At
time span t, the staleness of feature fi will be:

sti =

{
st−1i + 1, if fi /∈ FDt

0, otherwise
, (1)

where FDt denotes the set of feature values contained in Dt.
Then we define the weight of each feature which has an in-
verse correlation with its staleness:

wi = func(sti) + b, (2)

where func(·) is an inverse correlation function like an in-
verse proportional function or negative exponential function,
and b is a bias term. Our goal is to select a fixed number of
samples with as many stale features as possible, which can be
formulated as follows.
Definition 1 (Stale Features Sampling (SFS)). Given the
reservoir Rt = {d1, d2, · · · , d|Rt|} of RSS where each sam-
ple dl contains m features {f1, f2, · · · , fm} associated with
weights {wi}mi=1. The SFS problem is to find a collection of
samplesRfixed

t ⊆ Rt, such that the total number of samples
in Rfixed

t does not exceed a given capacity L and the total
weight of features covered byRfixed

t is maximized.
The above problem is a generalized version of the stan-

dard maximum coverage problem (MCP) [Chekuri and Ku-
mar, 2004], which has been proved that an exact solution is
intractable because the search space is too large. We develop
a greedy algorithm (SAS) which can yield an approximation
ratio of 1− 1

e compared to the optimal solution.
Let Wl denote the total weight of the features covered by

sample dl, but not covered by any sample in Rfixed
t . As pre-

sented in Algorithm 1, SAS hasL iterations. In each iteration,
SAS will calculate Wl for each sample in Rt and select the
sample with the maximum Wl.

Algorithm 1: SAS algorithm
Input : a reservoir from RSS

Rt = {d1, d2, · · · , d|Rt|},
where each sample dl = {f1, f2, · · · , fm}
associated weights {wi}mi=1,
a given capacity L

Output: a collection of samplesRfixed
t ⊆ Rt

1 Rfixed
t ← ∅;

2 for L iterations do
3 select dl ∈ Rt that maximizes Wl;
4 Rfixed

t ← Rfixed
t + dl;

5 end

Let bl denote the total weight till lth iteration, i.e., bl =∑l
j=1Wj and OPT denote the optimal solution of the SFS.

Let cl denote the left weight for optimal, i.e., cl = OPT − bl.
Let b0 = 0, c0 = OPT .

Lemma 1. In l + 1th iteration, we always have Wl+1 ≥ cl
L ,

where Wl+1 is a possible total weight.

Proof. The optimal solution reaches OPT weight at L itera-
tions. That means, at each iteration l+1 there should be some
unchosen samples inRt whose contained weight greater than
cl

L−l ≥
cl
L . Otherwise, it was impossible to cover OPT

weight at L steps by the optimal solution. Since the approxi-
mation algorithm is a greedy algorithm, i.e., choosing always
the set covering the maximum weight of uncovered elements,
the weight of chosen set at each iteration should be at least
the 1

L of the weight of remaining uncovered elements.

Lemma 2. In l+ 1th iteration, we have cl+1 ≤ (1− 1
L)l+1 ·

OPT , where cl+1 is the optimal left weight.

Proof. We prove Lemma 2 by mathematical induction.
Base case: If l = 0,
we have OPT − c1 = b1 = W1 ≥ c1

L .
So c1 ≤ (1− 1

L) ·OPT and the lemma holds when l = 0.
Inductive hypothesis: Suppose the theorem holds for l ≥ 0.
Inductive step: cl ≤ (1− 1

L)l ·OPT
So cl+1 = cl −Wl+1→ cl+1 ≤ cl − cl

L

→ cl+1 ≤ (1− 1
L)l+1 ·OPT .

So the theorem holds for l + 1.

Theorem 1. SAS can achieve an 1 − 1
e approximation ratio

compared to the optimal solution for SFS.

Proof. According to Lemma 2, we have
cL ≤ (1− 1

L)L ·OPT = 1
eOPT .

so bL = OPT − cL ≥ OPT (1− 1
e).

From Theorem 1, we know that SAS will drop about 30%
more stale features than the optimal solution. However, the
SAS chooses the features with small staleness in prior and
the actual drop ratio of stale features will be about 10%,
which is testified in Section 4.5. The complexity of SAS is
O(|Rt| ∗ L ∗ m), where m is the number of feature fields
and Rt| is the size of reservoir from RSS which still have
high computation cost because both |Rt| and L can be mil-
lion scales. We propose neighbour-based SAS which can de-
crease the complexity to O(|Rt| ∗m+ ¯|Q|N ∗L ∗m), where
the neighbours N refer to the samples which have at least
one common stale features with the current chosen sample
and ¯|Q|N denotes the mean of the neighbour numbers. Be-
fore Line 3 of Algorithm 1, we only need to update Wl of
these neighbour samples rather than all samples in the reser-
voir. Because only samples sharing at least one stale feature
will be neighbors, ¯|Q|N is much smaller than the total num-
ber of samples. For example in Avazu, the ¯|Q|N is in the 1e3
scale and the sample number or the total feature number is in
the 1e8 scale.

3.3 Staleness Aware Regularization (SAR)
Intuitively, the features keeping stale for a long time are prob-
ably low-frequency features. Updating their embeddings too
frequently will increase the risk of over-fitting [Wang et al.,
2017; Sun et al., 2022]. We follow the regularization-based
methods [Mi et al., 2020] to restrict the embedding updating
of these kind of features using regularization term. However,
a certain ratio of features only stale for one or two time spans,
whose regularization term will be quite large and become an
unaffordable burden for the model training. Thus it is un-
reasonable to treat all stale features equally regardless of the
extent of feature staleness. More formally, we add a regular-
ization loss for feature fi, which is called guard:

gi =
min(si, η)

min(smax, η)
||∆ei||2, (3)

where smax is the max staleness in the current time span, ∆ei
is embedding change for feature fi between two consecutive
mini-batches, and η is a hyperparameter used to exclude the
extreme staleness value. smax is used to normalize the stale-
ness to mitigate the influence of the dataset’s overall staleness
extent. Thus the total loss of FeSAIL will be:

L =
∑

d∈Dt∪Rt

(LCE,d + λ

N∑
i=1

gi), (4)

whereLCE,d refers to the cross entropy loss of model training
on sample d, and λ is the regularization coefficient.

3.4 Implementation Details
We implemented our FeSAIL approach using Pytorch 1.10 on
a 64-bit Linus server equipped with 32 Intel Xeon@2.10GHz
CPUs, 128GB memory and four RTX 2080ti GPUs. The pro-
posed FeSAIL is model-agnostic. To test its effectiveness,
we instantiate it on a general deep learning-based Embed-
ding&MLP model, a network architecture that most of the
CTR prediction models developed in recent years are based
on [Peng et al., 2021; Huang et al., 2020a; Lim et al., 2017].
By default, we set the inverse correlation function in Eq. (2)
as the inverse proportional function and the bias term as 1.
The sampling reservoir size L of Rt is the same size as the
corresponding incremental dataset Dt. We use a grid search
over the hidden layer size, initial learning rate and the num-
ber of cross layers. The batch size is set from 256 to 4096.
The embedding size and hidden layer sizes are chosen from
32 to 1024. The η in Eq. (3) is from 5 to 10. We choose
the Adam optimizer [Diederik P. Kingma, 2015] to train the
model with a learning rate from 0.0001 to 0.001 and perform
early stopping in the training process.

3.5 Complexity Analysis
Time Complexity. The computational complexity of SAS is
O(|Rt|∗m+ ¯|Q|∗L∗m) using neighbor based optimization.
The regularization term for SAR has complexity asO((|Rt|+
|Dt|) ∗ m). Thus the total external time complexity will be
negligible compared to model training.
Space Complexity. SAS needs to store |Rt| samples, the
size of which is fixed and can be set according to the actual
memory space. And the SAR is a non-parameterized module
which does not require extra storage space.

Table 1: The statistics of the datasets.

dataset #samples #fields #features
Criteo 10,692,219 26 1,849,038

iPinYou 21,920,191 21 4,893,029
Avazu 40,183,910 20 10,922,019
Media 104,416,327 337 60,833,522

4 5 6 7 8 9
time

0

1000

2000

3000

4000

5000

6000

7000

fe

at
ur

e

staleness
1
2
3
>3

(a) Avazu

4 5 6 7 8 9
time

0

10000

20000

30000

40000

50000

60000

fe

at
ur

e

staleness
1
2
3
>3

(b) Media
Figure 3: The number of features with different staleness on Avazu
and Media.

4 Experiment
We conduct the experiments to evaluate the performance of
our proposed method and answer the following questions :
• RQ1 Can the proposed FeSAIL outperform the existing IL

methods on CTR prediction?
• RQ2 How do the SAR and SAS algorithms affect the ef-

fectiveness of FeSAIL ?
• RQ3 How do different inverse correlation functions and

biases influence the performance of FeSAIL?
• RQ4 How does the SAS deal with features with different

staleness?

4.1 Experimental Setups
Dataset. We use three real-world datasets from Criteo1,
iPinYou2, Avazu3 and one private industrial dataset collected
from a commercial media platform.
• Criteo This dataset consists of 24 days’ consecutive traffic

logs from Criteo, including 26 categorical features and the
first column as a label indicating whether the ad has been
clicked or not.

• iPinYou This dataset is a public real-world display ad
dataset with each ad display information and the corre-
sponding user clicks feedback. The data logs are orga-
nized by different advertisers and in a row-per-record for-
mat. There are 21.92M data instances with 14.89K positive
labels (click) in total. The features for each data instance
are categorical.

• Avazu This dataset contains users’ click behaviours on dis-
played mobile ads. There are 20 feature fields, including
user/device features and ad attributes.

• Media This is a real CTR prediction dataset collected from
a commercial media platform. We extract 48 consecutive
hours of data that contains 337 categorial feature fields.
The detailed statistics of the datasets are listed in Table 1.

We also analyze the overall feature staleness extent of a

1https://www.criteo.com
2https://www.iPinYou.com
3https://www.kaggle.com/c/avazu-ctr-prediction

dataset. In Figure 3a, we can see that feature groups in Avazu
are evenly distributed on different stalenesses, which means
Avazu has a certain percentage of features reappearing af-
ter a long time and has high staleness extent. While in Fig-
ure 3b, the staleness of feature groups in Media are concen-
trate within small values, which means this dataset has rela-
tively lower staleness extent. For a fair comparison, we fol-
low the same data preprocessing and splitting rule for all the
compared methods. We omit the staleness analysis of Criteo
and iPinYou which have a similar staleness feature distribu-
tion with Avazu.

We filter out all features which appear in fewer than ten
samples as an “unknown” feature. For each dataset, the sam-
ples in the first half in the time sequence serve as the pre-
training datasets. And the remaining samples will be divided
equally into eleven incremental datasets. We use the samples
in the current incremental dataset and reservoir to fine-tune
the model and evaluate it on the next incremental dataset.
Evaluation Metrics. We use the following two metrics for
performance evaluation: AUC (Area Under the ROC curve)
and Logloss (cross entropy), which are commonly used in
CTR prediction works [Zhang et al., 2014; Zhu et al., 2019].
Baselines. We compare our proposed FeSAIL with six base-
lines including two existing sample-based and two model-
based IL methods for training CTR prediction models.
• Incremental Update (IU) updates the model incremen-

tally using only the new data.
• Random Sample (RS) updates the model using the new

data and the randomly sampled historical data.
• RMFX (sample-based) [Diaz-Aviles et al., 2012] is a ma-

trix factorization-based model which uses an active learn-
ing sampling algorithm to replay the most informative his-
torical samples.

• GAG (sample-based) [Huang et al., 2020b] is a method
which uses a global attributed graph neural network for
streaming session-based recommendation. We regard one
sample in the CTR task as a piece of session in this model.

• EWC (model-based) [Kirkpatrick et al., 2016] is a general
IL method which prevents the model from changing the
informative parameters learned in previous datasets.

• ASMG (model-based) [Peng et al., 2021] is a meta-
learning-based incremental method for CTR prediction
models, which uses a sequentialized meta-learner to gen-
erate model parameters in the next time span.

RMFX+SAR and GAG+SAR add the guard term in Eq. (3)
on the loss function (SAR) of original RMFX and GAG. Sim-
ilarly, EWC+SAS and ASMG+SAS use our sample method
SAS to enhance the performance of EWC and ASMG, which
is designed to prove the effectiveness of guarding term. Note
that we use the same reservoir size for our SAR and sample-
based baselines.

4.2 Experimental Results: RQ1

Table 2 presents the overall performance on four datasets (the
results are all averaged over ten runs), where we have the
following observations.

Table 2: Average AUC & LogLoss over 10 test periods for four datasets. The results on different metrics are given by the average scores
over all the incremental datasets. Note that “RI” indicates the relative improvement of FeSAIL over the corresponding baseline. * denotes
p < 0.05 when performing the two-tailed pairwise t-test on FeSAIL with the best baselines.

Datasets Criteo iPinYou Avazu Media

Methods AUC Logloss RI (%) AUC Logloss RI (%) AUC Logloss RI (%) AUC Logloss RI (%)

IU 0.7329 0.5284 4.43 0.7528 0.4866 4.09 0.7210 0.4388 3.81 0.6316 0.2884 4.46
RS 0.7363 0.5198 3.41 0.7585 0.4791 2.96 0.7244 0.4346 3.11 0.6379 0.2842 3.26

RMFX 0.7415 0.5096 2.10 0.7621 0.4791 2.72 0.7306 0.4328 2.48 0.6346 0.2844 3.56
GAG 0.7459 0.5084 1.68 0.7674 0.4715 1.58 0.7352 0.4249 1.26 0.6401 0.2759 1.65

RMFX+SAR 0.7480 0.5081 1.50 0.7672 0.4728 1.73 0.7344 0.4251 1.34 0.6379 0.2804 2.61
GAG+SAR 0.7498 0.5012 0.71 0.7735 0.4701 1.04 0.7380 0.4215 0.68 0.6451 0.2729 0.71

EWC 0.7391 0.5124 2.53 0.7595 0.4783 2.81 0.7295 0.4252 1.69 0.6374 0.2757 2.53
ASMG 0.7502 0.5039 0.95 0.7693 0.4708 1.38 0.7394 0.4233 0.78 0.6432 0.2777 1.72

EWC+SAS 0.7479 0.5075 1.45 0.7664 0.4762 2.14 0.7343 0.4196 0.69 0.6398 0.2758 1.65
ASMG+SAS 0.7535 0.5001 0.35 0.7734 0.4666 0.68 0.7407 0.4200 0.30 0.6471 0.2727 0.52

FeSAIL *0.7553 *0.4978 - *0.7788 *0.4636 - *0.7420 *0.4181 - *0.6503 *0.2712 -

FeSAIL ASMG+SAS GAG+SAR RMFX+SAR EWC+SAS RS IU

1 2 3 4 5 6 7 8 9 10
time span

0.72
0.73
0.74
0.75
0.76

A
U

C

(a) AUC on Criteo

1 2 3 4 5 6 7 8 9 10
time span

0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54

Lo
gl

os
s

(b) Logloss on Criteo

1 2 3 4 5 6 7 8 9 10
time span

0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80

A
U

C

(c) AUC on iPinYou

1 2 3 4 5 6 7 8 9 10
time span

0.44
0.45
0.46
0.47
0.48
0.49
0.50

Lo
gl

os
s

(d) Logloss on iPinYou

1 2 3 4 5 6 7 8 9 10
time span

0.70
0.71
0.72
0.73
0.74
0.75
0.76

A
U

C

(e) AUC on Avazu

1 2 3 4 5 6 7 8 9 10
time span

0.40
0.41
0.42
0.43
0.44
0.45
0.46

Lo
gl

os
s

(f) Logloss on Avazu

1 2 3 4 5 6 7 8 9 10
time span

0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660

A
U

C

(g) AUC on Media

1 2 3 4 5 6 7 8 9 10
time span

0.270
0.275
0.280
0.285
0.290

Lo
gl

os
s

(h) Logloss on Media
Figure 4: Prediction performance on each time span. We present the
six most competitive baselines and omit the remaining methods.

First, RS performs slightly better than IU, which reflects
that the future samples also need the old knowledge preserved
in historical samples. Second, RMFX+SAR and GAG+SAR
perform better than RMFX and GAG respectively, which
shows restricting the feature embedding updating accord-
ing to its staleness can also improve the performance of
methods with other sampling strategies. Third, EWC+SAS

RSS+SAR FeSAIL FSS RSS+SAS RSS IU

1 2 3 4 5 6 7 8 9 10
time

0.74

0.76

0.78

0.80

0.82

AU
C

0

2

4

6

8

sa
m

pl
e

nu
m

be
r

1e6

method
FSS
RSS
FeSAIL

(a) iPinYou

1 2 3 4 5 6 7 8 9 10
time

0.70

0.72

0.74

0.76

0.78

AU
C

0.00

0.25

0.50

0.75

1.00

1.25

sa
m

pl
e

nu
m

be
r

1e7

method
FSS
RSS
FeSAIL

(b) Avazu
Figure 5: Ablation study on iPinYou and Avazu.

and ASMG+SAS perform better than EWC and ASMG re-
spectively, which indicates using a fixed size reservoir to
replay stale features is compatible with these model-based
methods using other regularization strategies. Fourth, Fe-
SAIL achieves 0.95%, 1.38%, 0.78% and 1.72% relative im-
provements compared to ASMG, the best baseline on four
datasets, respectively. The reason why FeSAIL achieves
greater improvement on Media might be that Media has lower
feature staleness extent (as presented in Figure 3b) which is
easier to be overcome by SAS. Figure 4 shows the disen-
tangled performance at each time span. The performance of
all methods has a similar trend on different datasets, and Fe-
SAIL outperforms all the other methods in most time spans.

4.3 Ablation Study: RQ2
We perform an ablation study on iPinYou and Avazu to eval-
uate the effects of different components of FeSAIL on the
performance. Similar conclusions can be drawn on Criteo
and Media (results can be found in supplementary material).
Specifically, we consider the following settings.
• Incremental Update (IU)4 updates the model incremen-

4For a fair comparison, we supplement the latest historical sam-
ples to make the total sample size the same as FSS.

Table 3: Average sampling and retraining time on Avazu.

Method/Runtime (min) sampling training total

IU 0 2,519 2,519
FSS 190 2,519 2,709
RSS 143 920 1,063

RSS+SAR 143 1,014 1,157
RSS+SAS 401 920 1,321
FeSAIL 401 1,014 1,415

1/si exp(si)

0 0.1 0.5 1 2 5 10
b

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d

func

1/si

exp(si)

0.750

0.755

0.760

0.765

0.770

0.775

0.780

0.785
A

U
C

(a) iPinYou

0 0.1 0.5 1 2 5 10
b

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d

func

1/si

exp(si)

0.720

0.725

0.730

0.735

0.740

0.745

A
U

C

(b) Avazu
Figure 6: Parameter sensitivity w.r.t different inverse correlation
functions and biases on iPinYou and Avazu.

tally using only the new data.
• Full stale sampling (FSS) updates the model with the new

data and all the historical samples containing stale features.
• reservoir-based stale sampling (RSS) updates the model

using the new data and all the samples in the reservoir.
• RSS+SAR add the SAR on RSS.
• RSS+SAS restrict the reservoir size of RSS using SAS.
• FeSAIL using both the SAR and SAS on RSS.
The results are presented in Figure 5. The line chart reflects
the AUC difference between different methods. We can see
that FeSAIL performs best among all the comparison meth-
ods, which shows the removal of any component from Fe-
SAIL will hurt the final performance. SAR and SAS jointly
contribute to improving the RSS performance. The bar chart
reflects the sample number in each time span. We can see
that FSS samples size increases during incremental learning
due to the growing size of historical samples. However, the
sample sizes of RSS and FeSAIL maintain relatively stable.
Moreover, the sample size of FeSAIL is fixed and control-
lable, which is more friendly to real-world incremental rec-
ommendation systems. One concern of SAS is to control the
time cost of sampling and model training. Table 3 shows the
average sampling time and the retraining time of each method
over different time spans on Avazu. The time cost for SAR
is negligible compared to the total training time cost. SAS
can remarkably reduce the sample size and accelerate model
retraining. In the meanwhile, thanks to the neighbour-based
SAS algorithm, the sampling time cost for SAS is bearable.

4.4 Parameter Sensitivity: RQ3
We investigate the sensitivity of choosing different inverse
correlation functions func and bias b in Eq.(2). We choose
iPinYou and Avazu, and report the average AUC (line chart)
and Jaccard Similarity (JS) of chosen samples set with the
control group (the group with the highest AUC) over ten
time spans. The func is chosen between inverse proportional
function 1/si and negative exponential function exp(si). The

1 2 3 4 5 6 7 8 9 10
time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

dr
op

 ra
tio

staleness
1
2
3
>3
overall

Figure 7: The drop ratios of feature groups with different staleness
on iPinYou.

b is chosen from [0, 0.1, 0.5, 1, 2, 5, 10], where the larger b
means the less consideration for feature staleness. As shown
in Figure 6, the performance on two datasets achieve a simi-
lar JS with two func and b in the range [0.1, 0.5, 1, 2], which
means the chosen samples set is insensitive to the func and
the b within a moderate range and productively achieve a
competitive AUC towards the control group. The reason
might be that only the relative weight sum order of samples
will influence the choosing order in Algorithm 1, and choos-
ing different func and b with small values will not change
the relative weight sum order of samples.

4.5 Case Study: RQ4
We perform a case study on iPinYou to illustrate the effec-
tiveness of SAS in selecting samples. As presented in Fig-
ure 7, we have two observations. First, the overall feature
drop ratio after SAS is around 10%, which is consistent with
the approximation ratio given by Algorithm 1. Second, the
features with larger staleness have a higher drop ratio in most
time spans except in the first several time spans, which do not
have features with staleness larger than its time span index.
It means SAS prefers to choose features with smaller stale-
ness, which is consistent with our motivation and mitigates
the low-frequency features’ influence on performance.

5 Conclusion
In this paper, we show the feature staleness problem existing
in CTR prediction and propose a feature staleness aware IL
method for CTR prediction (FeSAIL) to mitigate this prob-
lem by adaptively replaying samples containing stale fea-
tures. We first introduce a feature staleness aware sam-
pling algorithm (SAS) to guarantee sampling efficiency. We
then introduce a feature staleness aware regularization mech-
anism (SAR) to restrict the low-frequency feature updating.
We conduct extensive experiments and demonstrate that Fe-
SAIL can efficiently tackle the feature staleness problem. On
average, it achieves 1.21% AUC improvement compared to
various state-of-the-art methods on three widely-used public
datasets and a private dataset.

Acknowledgement
This work is supported by the National Key Research
and Development Program of China(2022YFE0200500),
Shanghai Municipal Science and TechnologyMajor Project
(2021SHZDZX0102), the Tencent Wechat Rhino-Bird Fo-
cused Research Program, and SJTU Global Strategic Partner-
ship Fund (2021SJTU-HKUST).

References
[Barrett et al., 2017] Rick Barrett, Rick Cummings, and Eu-

gene Agichtein. Streaming Recommender Systems. In
IJCAI, pages 381–389, 2017.

[Caverlee et al., 2020] James Caverlee, Xia ”Ben” Hu, Mou-
nia Lalmas, Wei Wang, Jiacheng Li, Yujie Wang, and Ju-
lian McAuley. Time Interval Aware Self-Attention for
Sequential Recommendation. In WSDM, pages 322–330,
2020.

[Chekuri and Kumar, 2004] Chandra Chekuri and Amit Ku-
mar. Maximum coverage problem with group budget con-
straints and applications. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and
Techniques, pages 72–83. Springer, 2004.

[Chen et al., 2013] Chen Chen, Hongzhi Yin, Junjie Yao,
and Bin Cui. TeRec: a temporal recommender system
over tweet stream. In RecSys, volume 6, pages 1254–1257,
2013.

[d’Aquin et al., 2020] Mathieu d’Aquin, Stefan Dietze,
Claudia Hauff, Edward Curry, Philippe Cudre Mauroux,
Xiang Li, Chao Wang, Bin Tong, Jiwei Tan, Xiaoyi Zeng,
and Tao Zhuang. Deep Time-Aware Item Evolution Net-
work for Click-Through Rate Prediction. In Proceedings
of the 29th ACM International Conference on Information
& Knowledge Management, pages 785–794, 2020.

[Diaz-Aviles et al., 2012] Ernesto Diaz-Aviles, Lucas Dru-
mond, Lars Schmidt-Thieme, and Wolfgang Nejdl. Real-
time top-n recommendation in social streams. In WWW,
pages 59–66. 2012.

[Diederik P. Kingma, 2015] Jimmy Lei Ba Diederik
P. Kingma. Adam: A Method for Stochastic Optimization.
In ICLR, pages 785–794, 2015.

[Guo et al., 2017] Huifeng Guo, Ruiming Tang, Yunming
Ye, Zhenguo Li, and Xiuqiang He. DeepFM: A
Factorization-Machine based Neural Network for CTR
Prediction. arXiv, 2017.

[Guo et al., 2018] Yike Guo, Faisal Farooq, Guorui Zhou,
Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao
Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. Deep
Interest Network for Click-Through Rate Prediction. In
AAAI, pages 1059–1068, 2018.

[He and McAuley, 2016] Ruining He and Julian McAuley.
Fusing Similarity Models with Markov Chains for Sparse
Sequential Recommendation. arXiv, 2016.

[Huang et al., 2020a] Jimmy Huang, Yi Chang, and Xueqi
Cheng. How to Retrain Recommender System? A Se-
quential Meta-Learning Method. In Proceedings of the
43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 1479–
1488, 2020.

[Huang et al., 2020b] Jimmy Huang, Yi Chang, and
Xueqi and Cheng. GAG: Global Attributed Graph Neural
Network for Streaming Session-based Recommendation.
In SIGIR, pages 669–678, 2020.

[Kang and McAuley, 2018] Wang-Cheng Kang and Julian
McAuley. Self-Attentive Sequential Recommendation. In
ICDM, pages 197–206, 2018.

[Katsileros et al., 2022] Petros Katsileros, Nikiforos Mandi-
laras, Dimitrios Mallis, Vassilis Pitsikalis, Stavros
Theodorakis, and Gil Chamiel. An Incremental Learning
framework for Large-scale CTR Prediction. In Sixteenth
ACM Conference on Recommender Systems, pages 490–
493, 2022.

[Kirkpatrick et al., 2016] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Had-
sell. Overcoming catastrophic forgetting in neural net-
works. arXiv, 2016.

[Krishnapuram et al., 2016] Balaji Krishnapuram, Mohak
Shah, and JC Mao. Deep Crossing: Web-Scale Model-
ing without Manually Crafted Combinatorial Features. In
KDD, pages 255–262, 2016.

[Lim et al., 2017] Ee-Peng Lim, Marianne Winslett, Mark
Sanderson, Ada Fu, Jimeng Sun, and Shane Culpepper.
Neural Attentive Session-based Recommendation. CIKM,
pages 1419–1428, 2017.

[Liu et al., 2022] Congcong Liu, Yuejiang Li, Xiwei Zhao,
Changping Peng, Zhangang Lin, and Jingping Shao. Con-
cept Drift Adaptation for CTR Prediction in Online Adver-
tising Systems. arXiv, 2022.

[Mi and Faltings, 2020] Fei Mi and Boi Faltings. Memory
Augmented Neural Model for Incremental Session-based
Recommendation. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence,
pages 2169–2176, 2020.

[Mi et al., 2020] Fei Mi, Xiaoyu Lin, and Boi Faltings.
ADER: Adaptively Distilled Exemplar Replay Towards
Continual Learning for Session-based Recommendation.
arXiv, 2020.

[Parisi et al., 2019] German I. Parisi, Ronald Kemker,
Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A re-
view. Neural Networks, 113:54–71, 2019.

[Peng et al., 2021] Danni Peng, Sinno Jialin Pan, Jie Zhang,
and Anxiang Zeng. Learning an Adaptive Meta Model-
Generator for Incrementally Updating Recommender Sys-
tems. In SIGIR, pages 411–421, 2021.

[Qu et al., 2016] Yanru Qu, Han Cai, Kan Ren, Weinan
Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-
based neural networks for user response prediction. In
2016 IEEE 16th International Conference on Data Min-
ing (ICDM), pages 1149–1154. IEEE, 2016.

[Rendle et al., 2010] Steffen Rendle, Christoph Freuden-
thaler, and Lars Schmidt-Thieme. Factorizing person-
alized Markov chains for next-basket recommendation.
WWW, pages 811–820, 2010.

[Shin et al., 2017] Hanul Shin, Jung Kwon Lee, Jaehong
Kim, and Jiwon Kim. Continual Learning with Deep Gen-
erative Replay. arXiv, 2017.

[Sun et al., 2019] Fei Sun, Jun Liu, Jian Wu, Changhua Pei,
Xiao Lin, Wenwu Ou, and Peng Jiang. BERT4Rec:
Sequential Recommendation with Bidirectional Encoder
Representations from Transformer. In Proceedings of the
28th ACM International Conference on Information &
Knowledge Management, 2019.

[Sun et al., 2022] Li Sun, Junda Ye, Hao Peng, Feiyang
Wang, and Philip S Yu. Self-supervised continual graph
learning in adaptive riemannian spaces. In IJCAI, 2022.

[Teredesai et al., 2019a] Ankur Teredesai, Vipin Kumar, and
Ying Li. Practice on Long Sequential User Behavior Mod-
eling for Click-Through Rate Prediction. In SIGIR, pages
2671–2679, 2019.

[Teredesai et al., 2019b] Ankur Teredesai, Vipin Kumar, and
Ying Li. Streaming Session-based Recommendation. In
IJCAI, pages 1569–1577, 2019.

[Wang et al., 2017] Ruoxi Wang, Bin Fu, Gang Fu, and Min-
gliang Wang. Deep & Cross Network for Ad Click Predic-
tions. In ADKDD, pages 1–7, 2017.

[Wang et al., 2020] Yichao Wang, Huifeng Guo, Ruiming
Tang, Zhirong Liu, and Xiuqiang He. A Practical Incre-
mental Method to Train Deep CTR Models. arXiv, 2020.

[Zhang et al., 2014] Weinan Zhang, Shuai Yuan, Jun Wang,
and Xuehua Shen. Real-Time Bidding Benchmarking with
iPinYou Dataset. arXiv, 7 2014.

[Zhang et al., 2019] Lingling Zhang, Hong Jiang, Fang
Wang, Dan Feng, and Yanwen Xie. T-Sample: A
Dual Reservoir-based Sampling Method for Characteriz-
ing Large Graph Streams. In SIGIR, volume 00, pages
1674–1677, 2019.

[Zhang et al., 2021] Weinan Zhang, Jiarui Qin, Wei Guo,
Ruiming Tang, and Xiuqiang He. Deep learning for click-
through rate estimation. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4695–4703, 8 2021.

[Zhou et al., 2018] Guorui Zhou, Na Mou, Ying Fan, Qi Pi,
Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai.
Deep Interest Evolution Network for Click-Through Rate
Prediction. In AAAI, pages 5941–5948, 2018.

[Zhu et al., 2019] Wenwu Zhu, Dacheng Tao, Xueqi Cheng,
Peng Cui, Elke Rundensteiner, David Carmel, Qi He, Jef-
frey Xu Yu, Zekun Li, Zeyu Cui, Shu Wu, Xiaoyu Zhang,
and Liang Wang. Fi-GNN: Modeling Feature Interactions
via Graph Neural Networks for CTR Prediction. Proceed-
ings of the 28th ACM International Conference on Infor-
mation and Knowledge Management, pages 539–548, 11
2019.

	Introduction
	Preliminaries
	The FeSAIL Approach
	Overview
	Staleness Aware Sampling (SAS)
	Staleness Aware Regularization (SAR)
	Implementation Details
	Complexity Analysis

	Experiment
	Experimental Setups
	Experimental Results: RQ1
	Ablation Study: RQ2
	Parameter Sensitivity: RQ3
	Case Study: RQ4

	Conclusion

